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Abstract

Genetic analyses of host-specific parasites can elucidate the evolutionary histories
and biological features of their hosts. Here, we used population-genomic analyses of
ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history
of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enig-
matic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in
northern Europe. We found that that lice of four postglacially diverged subspecies of
the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts,
form genetically differentiated entities. Using coalescent-based demographic infer-
ence, we show that the sequence of divergences of the louse populations is consistent
with the geological history of lake formation. In addition, local effective population
sizes of the lice are generally proportional to the census sizes of their respective seal
host populations. Genome-based reconstructions of long-term effective population
sizes revealed clear differences among louse populations associated with gray versus
ringed seals, with apparent links to Pleistocene and Holocene climatic variation as
well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses
also revealed ancient gene flow between the lice of Baltic gray and ringed seals, sug-
gesting that the distributions of Baltic seals overlapped to a greater extent in the past
than is the case today. Taken together, our results demonstrate how genomic informa-
tion from specialized parasites with higher mutation and substitution rates than their
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data from their hosts.
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1 | INTRODUCTION

Parasites can provide key additional information on the ecology, bi-
ology and evolutionary history of their hosts. For example, genetic
analyses of parasites have been used to gain insights into past for-
aging habits and food sources of hominids (Hoberg et al., 2001), the
origin of clothing (Kittler et al., 2003), and contacts between modern
and archaic humans (Reed et al., 2004). Within the field of phylo-
geography, parasites have provided evidence about past dispersal
events, Quaternary refuges, and colonization routes (Nieberding
et al., 2004; Whiteman et al., 2007; Wickstrom et al., 2003). Beyond
the study of such historical processes, parasites have been widely
used as biological markers to discriminate between extant stocks,
migration routes, and nursery grounds (Catalano et al., 2014; Gagne
et al., 2022; Mattiucci et al., 2015; Moore et al., 2019). Parasite ge-
netic data can also provide information about host population con-
nectivity (Sromek et al., 2023; Virrueta Herrera et al., 2022) and
can detect recent changes in dispersal patterns that may be diffi-
cult to assess using host genetics alone (Gagne et al., 2022; Speer
et al, 2019). An important practical advantage for biodiversity
conservation is that many parasites have considerably smaller ge-
nomes (Coghlan et al., 2019) than their vertebrate hosts (Kapusta
et al., 2017), which makes genome-level analyses faster and more
cost efficient (Johnson, 2019; Virrueta Herrera et al., 2022).

For a parasite to be useful as a marker of its host's evolutionary
history, it must share a common history of isolation and diversifi-
cation with the host (Nieberding & Olivieri, 2007). This condition
is most often met by host-specific directly transmitted permanent
parasites that do not have a free-living phase (Gagne et al., 2022;
Geraerts et al.,, 2022; Nieberding & Olivieri, 2007, Whiteman
et al., 2007). Such parasites typically undergo more generations per
unit time than their hosts (Johnson et al., 2014; Light & Hafner, 2007;
Whiteman & Parker, 2005), which may be associated with higher
rates of mutation and genetic substitution. At the same time, within-
population genetic variation may be lowered by inbreeding caused
by infrapopulation structure (Criscione & Blouin, 2005; Dona &
Johnson, 2023) and successive founder events during colonization
of new host individuals (Papkou et al., 2016). These properties are
particularly beneficial for reconstructing recent divergence events
in long-lived hosts with large subpopulations (Gagne et al., 2022).
In such cases, the level of incomplete lineage sorting may be lower
between parasite populations, and the parasite tree may therefore
better reflect the shared history of the parasite and its hosts than
the host tree (Nieberding & Olivieri, 2007). This ‘magnifying glass

hosts can potentially illuminate finer scale population genetic patterns than similar

coalescent simulations, demographic history, genetic diversity, host-associated genetic
differentiation, host-parasite interactions, phylogeography

effect’ (Nieberding & Morand, 2006) makes parasites a particularly
compelling system for studies in population genetics.

Here, we applied detailed population-genomic analyses of the
seal louse Echinophthirius horridus (Psocodea: Echinophthiriidae) to
elucidate the postglacial history of ringed seal (Pusa hispida) sub-
species inhabiting the Arctic Ocean, the Baltic Sea, and the large
lakes Saimaa and Ladoga in northern Europe (Figure 1). The Baltic
ringed seal (P.h.botnica), the Saimaa ringed seal (P. h.saimensis), and
the Ladoga ringed seal (P.h.ladogensis) are believed to descend
from Arctic ringed seals (P.h.hispida) that colonized the Baltic Sea
basin after the retreat of the Scandinavian Ice Sheet some 10,200-
10,900years ago (Schmolcke, 2008; Ukkonen, 2002; Ukkonen
et al., 2014). Due to progressive land uplift resulting from the dis-
appearance of the thick continental ice sheet, parts of this ancestral
Baltic population were subsequently trapped in the emerging lakes
Saimaa and Ladoga. Based on the geological history of the Baltic
Searegion (Figure 2a-e), the endemic seal population of Lake Saimaa
presumedly has been isolated for around 9500years (Ukkonen
et al., 2014). By contrast, the effective isolation of the relict sub-
species inhabiting Lake Ladoga is probably shorter, as the Ladoga
basin may have been broadly connected with the Baltic Sea until
around 4000vyears ago (Kuznetsov et al., 2022; Saarnisto, 2011).
Despite their relatively short evolutionary histories, the Baltic and
landlocked ringed seal subspecies are genetically, morphologically
and behaviourally differentiated from each other as well as from the
Arctic ringed seal (Kunnasranta et al., 2021).

While the well-known geological history of northern Europe
predicts a clear time frame and sequence of events for the coloni-
zation of the Baltic Sea and the two postglacial lakes by ringed seals
(Figure 2a-e), recent genetic studies on Saimaa ringed seals have
challenged the concordance between geology and genetics. A study
of mitochondrial control-region sequences in museum and extant
Saimaa ringed seal samples by Heino et al. (2023) did not confirm its
close affinity with the Baltic ringed seal population, but rather sug-
gested links with North American ringed seals. Similarly, a phyloge-
netic tree based on whole-genome resequencing data by Loytynoja
et al. (2022) placed the Saimaa ringed seal at a basal position, as sis-
ter to a clade formed by Arctic, Baltic and Ladoga seals. Although
many regional trees were incongruent with the consensus topology
(Loytynoja et al., 2022), the presence of many unique SNPs in Saimaa
ringed seals also suggests a more ancient origin of the subspecies
(Loytynoja et al., 2023). Resolving the relationships among northern
European ringed seal populations is evidently complicated not only
by the relatively rapid and sequential divergence of the subspecies,

9sU2DI'T suowwo)) aanea1) a[qearjdde oy £q pauroAoS are so[onIE YO (38N Jo I[N 10§ AIRIQIT SUIUQ A3[IAL UO (SUONIPUOI-PUL-SULID}/WOY" K[IM° AIRIQI[UI[UO//:$d1Y) SUONIPUOD) pue SWLIA], 3y 23S *[$70/01/L1] uo Areiqry auruQ A3[1p7 Iy stoul[[] JO ANsIaATuN Aq €761 9wy [ [ ['0[/10p/wiod Ka[im’ Areiqrjaurfuo//:sdny woij papeoumo( ‘0z ‘#20T ‘Xr67S9E 1



SROMEK ET AL.

FIGURE 1 (a) Nymph of the seal louse
Echinophthirius horridus clinging to hairs of
a Saimaa ringed seal pup. (b) Dorsal and
ventral view of an adult male E. horridus
from Baikal seal. (c) Geographical
distributions and estimated current
population sizes of the focal northern
European seal populations from which
E.horridus lice were collected for the
present study.
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Arctic Ocean:

Arctic ringed seal
Pusa hispida hispida
(N: > 2,000,000)

Lake Saimaa:

Saimaa ringed seal
Pusa hispida saimensis
(N: = 440)

Lake Ladoga:

Ladoga ringed seal
Pusa hispida ladogensis
(N:>5,000)

Baltic Sea:

Baltic ringed seal
Pusa hispida botnica
(N:>20,000)

8| Baltic Sea:

- Baltic gray seal
Halichoerus grypus grypus
(N:>55,000)

but also by the extremely large size of the Arctic ringed seal pop-
ulation, which consists of several million individuals in a largely
panmictic, circumpolar population (Fulton & Strobeck, 2010; Lang
et al., 2021; Martinez-Bakker et al., 2013). Under a simple allopatric
speciation model, reciprocal monophyly at more than 50% of loci is
attained after about 4-5 N, (effective population size) generations
of population isolation (Hudson & Coyne, 2002). For the ringed seal,
with a generation time of c. 11years and an effective population size
in the tens of thousands (Loytynoja et al., 2023; Palo et al., 2001,
Peart et al., 2020), reaching this level would take millions of years.
In this context, the seal louse Echinophthirius horridus emerges as
a promising ‘independent marker’ of seal evolution and demography
due to its reduced generation time, which is in the range of a few
months rather than years (Aznar et al., 2009; Thompson et al., 1998),
and therefore an order of magnitude shorter than that of its seal
hosts. The demographic and population history of E. horridus is
expected to be tightly linked to that of its hosts, because seal lice
are permanent, obligate ectoparasites whose transmission requires
close physical contact between host individuals (Leidenberger
et al., 2007; Leonardi et al., 2013, 2021). A phylogenomic analysis of
other lice from southern-hemisphere seals and sea lions by Leonardi
et al. (2019) indeed showed a strong pattern of codivergence, with
a low degree of switching among host species. At the population
level, a recent survey of E.horridus from Lake Saimaa revealed that
spatial genetic differentiation in the louse population (Virrueta
Herrera et al., 2022) closely matches the spatial structuring present

within the lake-endemic Saimaa ringed seal population (Loytynoja
et al., 2023; Valtonen et al., 2012, 2014).

In this study, we integrated population- and phylogenomic anal-
yses with demographic modelling in a coalescent framework to re-
construct the evolutionary history of Echinophthirius lice parasitizing
ringed seal subspecies that have diverged after the Pleistocene in
northern Europe. Our underlying assumption was that genome-
wide analyses of these specialized, rapidly evolving ectoparasites
would be useful for elucidating the puzzling history of northern
European seals because, temporally, the colonization of the Baltic
Sea basin and large postglacial lakes by ringed seals spans a win-
dow between the species-level divergences studied by Leonardi
et al. (2019) and the fine-scale population structuring investigated
by Virrueta Herrera et al. (2022). As the first step, we conducted
whole-genome sequencing of E.horridus specimens collected from
Arctic, Baltic, Ladoga, and Saimaa ringed seals, as well as the par-
tially sympatric Baltic gray seal. We then used the resultant nuclear
and mitochondrial datasets to estimate levels of population differ-
entiation and genetic diversity, and to infer the sequence and time
frame of divergence events among the focal populations through
phylogenomic analyses and coalescent simulations. Finally, we esti-
mated population-size trajectories through the Pleistocene based on
individual genome assemblies. Specifically, we hypothesized that: (1)
E.horridus populations on different seal host species and subspecies
should be genetically differentiated; (2) genetic diversity within each
seal louse population should reflect the population size and genetic
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(a) Baltic Ice Lake (14,500-11,500 YBP) (b) Yoldia Sea (11,500-10,700 YBP) (&) Baltic Sea (3,000-0 YBP)

(€) Ancylus Lake (10,700-10,000 YBP)  (d) Littorina Sea (10,000-3,000 YBP)
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FIGURE 2 (a-e) The main periods of the Baltic Sea basin and (e) the current Baltic Sea during and after the disappearance of the
Scandinavian Ice Sheet. In (e), the distributions of the focal seal host populations from which Echinophthirius horridus lice were collected

for the present study are indicated with the same colours as in Figure 1c. (f) Principal component analysis (PCA) plot illustrating genetic
relatedness among seal louse individuals based on the LD-pruned SNP dataset. The first two principal components are shown, and dots

are coloured according to the seal host populations. (g) Concatenated ML tree for 22 E. horridus individuals inferred based on the nuclear
phylogenomic dataset. Branch lengths are proportional to the number of substitutions per site, and numbers above branches separated

by slashes are: Ultrafast bootstrap support value, gene concordance factor (gCF) and site concordance factor (sCF), respectively, for that
branch (for discordance factors, see Table S3). The inset in (g) shows alternative topologies corresponding to the traditional hypothesis of the
origin of ringed seal subspecies in northern Europe (Davies, 1958; Ukkonen, 2002) and the phylogenetic hypothesis proposed by Léytynoja
et al. (2022) based on data on seal genomes; populations are abbreviated and coloured as in Figure 3. Maps in panels a-e were drawn based
on templates provided by Datawrapper GmbH.

diversity of their host (sub)species; (3) the order and timing of di- during the gradual disappearance of the Scandinavian Ice Sheet and
vergences among seal louse populations should reflect the sequen- (4) long-term population trajectories should show signatures of past
tial emergence of the Baltic Sea basin and lakes Saimaa and Ladoga climatic variation. Additionally, because the distributions of Baltic
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ringed and gray seals overlap partially, we used multiple different
statistical approaches to test for the presence of hybridization be-

tween the focal louse populations.

2 | METHODS
2.1 | Sample collection

We sampled a total of 22 E.horridus seal lice for our analyses.
To avoid sampling closely related individuals (Virrueta Herrera
et al., 2022), we aimed as far as possible to sample louse specimens
from different seal individuals within each focal population. Hence,
we sampled one louse each from four Saimaa ringed seals, one louse
each from four Ladoga ringed seals, a total of five lice from three
Baltic ringed seals, three lice from one Arctic ringed seal and one
louse each from three Baltic gray seals (Table S1). In addition to
these 19 lice from the focal northern European seal populations, we
sequenced one specimen each from three Baikal seals (Pusa sibirica)
to serve as an outgroup during phylogeny reconstruction. Lice were
collected opportunistically through 2009-2020 from pups han-
dled during radio telemetry studies (Saimaa and Baltic ringed seals;
permit numbers ESAELY/433/07.01/2012, ESA-2008-L-519-254,
ESAVI1/8269/04.10.07/2013, and ESAVI-2010-08380/Ym-23), dur-
ing necropsies of stranded and by-caught seals (Saimaa and Ladoga
ringed seals and Baltic gray seals; permits MMM 234/400/2008
and VARELY/3480/2016), from a seal skin sold to a tannery (Arctic
ringed seal), and from seals hunted during the regular hunting season
(Baltic ringed seals and Baikal seals). Lice were preserved in 99.5%
ethanol or RNAlater and stored at -20°C.

2.2 | DNA extraction and whole-genome
sequencing

DNA was isolated using the QIAmp DNA Micro Kit (Qiagen) accord-
ing to the manufacturer's protocol with the following modifications:
incubation time was increased from 1-3 to 24-48h and buffer AE
was replaced with buffer EB. DNA extracts were quantified with
a Qubit fluorometer (Thermo Fisher). Individual-specific whole-
genome sequencing libraries were prepared using either KAPA
Hyper Prep Kit (Kapa Biosystems) or NEBNext Ultra Il DNA Library
Prep Kit (New England Biolabs). Multiplexed libraries were then se-
quenced on NovaSeq 6000 platform using 150-bp paired-end mode.

2.3 | Genome assembly

To obtain a reference for read mapping and genotyping, we first as-
sembled the nuclear genome of E. horridus. For this, we followed the
analysis pipeline described by Zhang et al. (2019). Raw sequences
were firstly compressed into clumps, deduplicated, quality trimmed
and normalized using BBTools suite v. 37.62 (Bushnell, 2014), and
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then error corrected using Lighter v. 1.1.2 (Song et al., 2014). Next,
contig assembly was performed using Minia v. 3.2.1 (Chikhi &
Rizk, 2013) and redundant contigs were removed using Redundans
v. 0.14a (Pryszcz & Gabaldén, 2016). Finally, scaffolding and gap-
filling were performed with BESST v. 2.2.8 (Sahlin et al., 2014) and
GapCloser v. 1.12 (Luo et al., 2012), respectively. Assembly com-
pleteness was assessed with BUSCO v. 5.4.5 (Manni et al., 2021)
against the insect reference gene set (n=1367). The genomes of
several individuals were assembled using this fast pipeline, and the
genome of the individual (EchorO3 from Lake Saimaa) with highest
completeness was used for further analyses. To detect potential
contaminants, assembled scaffolds were blasted against the NCBI
nucleotide database, using BLAST 2.10.0+ (Zhang et al., 2000) with
an ‘E-value’ significance threshold of 1x 107%. A total of 91 scaffolds
that had hits to seals, otter or bacterial sequences at a length of at
least 200bp were discarded from further analysis. Six scaffolds that
contained louse mitochondrial genes were also excluded.

2.4 | Nuclear datasets

For use in the different phylogenomic and population-genomic
analyses below, we created three different nuclear datasets (Sromek
et al., 2024), which were then modified as needed for each specific
analysis (Figure S1). In the first step, the adapter-and-quality-trimmed
reads were mapped to our draft E. horridus genome using the local
alignment mode of Bowtie2 v. 2.4.4 (Langmead & Salzberg, 2012).
Duplicate reads were not filtered because quality checks of raw se-
quence data in FastQC (Andrews, 2010) did not indicate any clear
issues with the degree of sequence duplication. Because per-sample
coverages are high in relation to the estimated levels of duplica-
tion (Table S1), the inclusion of duplicate reads is not expected to
influence genotype calls (Rochette et al., 2023). Variant calling was
performed using the ‘HaplotypeCaller’ function in GATK v. 3.8 (Van
der Auwera & O'Connor, 2020) for each sample separately. Samples
from the same host population were then jointly genotyped using
the ‘GenotypeGVCF’ function in GATK, retrieving both variant and
non-variant sites. Samples from different populations were then
merged into one VCF file using BCFtools (Danecek et al., 2021).

For analyses of host-associated genetic differentiation, genetic
diversity, hybridization and demographic history, we extracted bial-
lelic SNPs from the GATK file using BCFtools and filtered them with
the following parameters: site Phred quality score >30, a maximum
site depth of 3067x (twice the average site read depth), a minimum
genotype depth of 10x and sample-level genotype quality >30. SNPs
heterozygous in more than 14 individuals were also removed as po-
tential mapping errors in repetitive or structural variants. We did
not mask repeats, as by filtering for unusually high site read depth,
genotyping quality, and an excess of heterozygotes we should have
excluded most variants in these regions, and because louse genomes
generally seem to have a low fraction of repeats (Xu et al., 2024).
Finally, SNPs with missing genotypes for any individual were ex-
cluded using VCFtools v. 0.1.17 (Danecek et al., 2011), resulting in
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Echinophthirius horridus seal lice from:
ARC: Arctic ringed seal (Pusa hispida hispida) GRAY: Baltic gray seal (Halichoerus grypus)
BAL: Baltic ringed seal (Pusa hispida botnica) BAIKAL: Baikal seal (Phoca sibirica)
LAD: Ladoga ringed seal (Pusa hispida ladogensis)
SAl: Saimaa ringed seal (Pusa hispida saimensis)
(a) BAL (b) BAL
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f=0.79£0.11%

LAD GRAY ARC SAl GRAY
P2 P3 P1 P2 P3

FIGURE 3 Maximum likelihood trees inferred in TreeMix based on the LD-pruned SNP dataset while allowing (a) no migration events and
(b) one migration event. Trees were rooted with lice from Baikal seal, and branch lengths reflect the amount of genetic drift. The arrow in

(b) indicates the estimated direction and intensity of gene flow. For trees with more migration edges, see Figure S7. (c-h) Four-taxon ABBA/
BABA tests of introgression and estimated fractions of admixture (f) at different time scales: (c-e) between lice of Baltic gray and ringed
seals, (f-g) between lice of Baltic gray and Ladoga ringed seals, and (h) and between lice of Baltic gray and Saimaa ringed seals. P1, P2 and P3
refer to the three populations used for the ABBA/BABA tests, values of D and f are given with their standard errors.

dataset below referred to as the filtered SNP dataset. An additional
dataset controlling for linkage was obtained by pruning the filtered
SNP dataset for r?<.1 in PLINK v.1.90 (Chang et al., 2015) consider-
ing 50 SNP windows and moving 10 SNPs per set (-indep-pairwise
50 10 0.1). This dataset is below referred to as the LD-pruned SNP
dataset.

To obtain a dataset for reconstructing phylogenetic relationships
and examining genealogical discordance across the genome, we split
our assembled scaffolds into 50-kb non-overlapping windows. The
VCF file from GATK was split into windows using BCFtools and con-
verted to PHYLIP format with the vcf2phylip script (Ortiz, 2019).
Scaffolds shorter than 50kb and nucleotide positions present in
less than four individuals were discarded. This dataset consisting of
50-kb genomic windows is below referred to as the phylogenomic
dataset.

2.5 | Mitochondrial dataset

In addition to the nuclear datasets, we used the sequencing out-
puts to assemble the sequences of seven maternally inherited mi-
tochondrial coding genes. For this, we used aTRAM v. 2.3.0 (Allen
et al.,, 2018), with mitochondrial amino acid sequences from the
human louse, Pediculus humanus (Shao et al., 2009) as the reference
target. We used this approach because louse mitochondrial genomes
are frequently fragmented (Shao et al., 2009; Sweet et al., 2022)
and because including only coding sequences increases the reli-
ability of alignments. To make aTRAM libraries, we subsampled 8.5
million quality-trimmed reads from each individual using BBTools
suite. Assemblies were performed using the Velvet assembler and
default aTRAM parameters. Of the 13 mitochondrial genes, seven
(i.e. COI, COll, COIIl, CYTB, ND1, ND4 and ND5) were successfully
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assembled in all individuals. Since for some individuals the final as-
sembled sequences were not complete or contained putative bac-
terial contaminants, the most complete assembled sequences were
used as targets for read mapping in Bowtie2. Consensus sequences
were then constructed from the mapped reads using SAMtools and
BCFtools (Li, 2011), and converted to fasta files using scripts written
by Andrew D. Sweet (https://github.com/adsweet/louse_genomes).
Individual mitochondrial genes were aligned in MAFFT v. 7.505
(Katoh & Standley, 2013) using the accurate -linsi option.

2.6 | Inference of host-associated genetic
divergence and genetic diversity

To visualize overall relationships among louse individuals collected
from different hosts, we used principal component analysis (PCA). PCA
was computed based on the LD-pruned SNP dataset using the dudi.
pca function in ade4 v.1.7.20 (Dray & Dufour, 2007) of R v. 4.2.2 (R
Core Team, 2022). Next, we estimated SNP statistics (i.e. the number
of polymorphic and fixed SNPs in each population) from the filtered
SNP dataset using BCFtools, and used Venn diagrams drawn with the
R package ggVennDiagram (Gao, 2021) to examine patterns of SNP
sharing between louse populations from different hosts. Because the
population-level number of polymorphic sites may be influenced by
sample size, we also calculated this index based on all possible subsam-
ples of three individuals for lice from Baltic, Ladoga and Saimaa ringed
seals. Genetic diversity within each sample was also evaluated based
on per-individual observed heterozygosity calculated from the LD-
pruned SNP dataset and an intermediate dataset of filtered genotypes
(i.e. including also invariant sites and before LD pruning; Figure S1).

For the mitochondrial data, we estimated percent pairwise se-
quence divergences (uncorrected p-distances) between and within
populations using the R package APE v. 5.7.1 (Paradis & Schliep, 2019).
These calculations were based solely on sequences (1428 bp) of the
COlI standard ‘DNA barcoding gene’ (Hebert et al., 2003), which is
extensively used for species identification and delimitation in in-
sects (Lee et al., 2022; Wilson et al., 2017).

2.7 | Phylogeny estimation

We estimated maximum likelihood (ML) phylogenetic trees for the
concatenated nuclear sequence dataset and each 50-kb window in
IQ-TREE v. 2.2.2.7 (Minh, Schmidt, et al., 2020). The concatenated
species tree was inferred using the edge-linked partition model
(Chernomor et al., 2016), with model selection (Kalyaanamoorthy
et al., 2017) performed separately for each partition (genomic win-
dow). Branch support was inferred based on 1000 ultrafast bootstrap
replicates (Hoang et al., 2018). Gene trees estimated for individual
genomic windows were used to calculate the gene concordance fac-
tor (gCF) for each branch of the species tree, that is, the percent-
age of decisive gene trees supporting that particular branch (Minh,
Hahn, & Lanfear, 2020). The site concordance factor (sCF), defined
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as the fraction of decisive alignment sites supporting each particular
branch, was calculated using 100 randomly sampled quartets. The
root position was inferred using RootDigger v. 1.7.0 (Bettisworth &
Stamatakis, 2021) with default parameters.

IQ-TREE was also used for estimating an ML tree for the seven-
gene mitochondrial sequence alignment. The analysis was parti-
tioned according to gene and codon positions (1+2 vs. 3), with model
selection for each partition. Branch support was estimated using

1000 ultrafast bootstrap replicates.

2.8 | Estimation of hybridization

To further explore ancestral relationships between louse popula-
tions, we performed TreeMix v. 1.13 (Pickrell & Pritchard, 2012)
analysis, which uses allele frequency data for inferring past popu-
lation splits and admixture. This analysis involves adding migration
edges to the population tree and evaluating whether they reduce
deviations in the residual covariance matrix and improve the model
fit. The TreeMix input file was created from the LD-pruned SNP
dataset using PPP Input File Generator (Webb et al., 2021). Up to
five migration events were fitted on the tree, with five independent
runs performed for each scenario. Lice from Lake Baikal were set as
the outgroup.

Since the patterns of phylogenetic discordance and the results
of the TreeMix analyses were consistent with admixture between
lice from Balticringed and gray seals (see below), we tested this pos-
sibility using D statistics (ABBA-BABA tests) (Durand et al., 2011;
Green et al.,, 2010). In the analyses, lice from Baikal seal were used
as the outgroup [O], lice from Baltic gray seal as a potential donor
species (P3), and lice from Baltic, Saimaa and Ladoga ringed seals
as potential recipient populations (P2). Lice from Ladoga, Saimaa
and Arctic ringed seals were successively used as P1, according to
the method described by Martin et al. (2013). This allowed us to
estimate admixture between lice from Baltic ringed and gray seals
across three different time periods: a recent period, subsequent
to the divergence of lice from Baltic and Ladoga ringed seals; an
intermediate period, subsequent to the divergence of lice from
Baltic and Saimaa ringed seals; and the longest period, subsequent
to the divergence of lice from the Baltic and Arctic ringed seals.
The relative abundance of ABBA and BABA patterns was com-
pared using the D statistic, based on derived allele frequencies at
each SNP in the filtered SNP dataset. Sites that were not homo-
zygous for the same allele in the three outgroup lice from Baikal
seal were excluded, resulting in dataset of 3,484,553 SNPs. The
admixture proportion f was calculated by comparing the observed
excess of ABBA over BABA sites with that expected under com-
plete admixture. To approximate the expectation under complete
admixture, we split the P3 population into two (P3a and P3b) and
counted ABBA and BABA sites using P1, P3a and P3b. A 1-Mb
block jack-knifing procedure was then used to calculate the mean
and variance of both the D statistic and f value using R scripts by
Martin et al. (2013).
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2.9 | Inference of demographic history

We used coalescent simulations in fastsimcoal2 (Excoffier
et al., 2021) and analyses based on the Pairwise Sequentially
Markovian Coalescent (PSMC) model (Li & Durbin, 2011) to infer
the demographic histories of the focal northern European seal louse
populations. The aim of the coalescent simulations was to evaluate
how different hypothetical models of the origin of lake seal louse
populations fit our data, and we used the PSMC analyses to infer
population-size trajectories over longer time periods.

The coalescent simulations in fastsimcoal2 were based on mul-
tidimensional folded site frequency spectra (SFSs) built from the fil-
tered SNP dataset using R scripts by Vitor Sousa (http://cmpg.unibe.
ch/software/fastsimcoal2/additionalScripts.html). One SNP per
1000bp block was sampled for model selection to reduce the effect
of non-independence of markers, and all SNPs were used for estima-
tion of parameters. For each demographic model, 30 independent
fastsimcoal runs were conducted, with each run consisting of 40
expectation-conditional maximization cycles rounds and 100,000
coalescent simulations. The run yielding the highest ML value for
each model was then selected for calculating Akaike's Information
Criterion (AIC).

We initially formulated and tested six different five-population
models (Figure S2). The first three models corresponded to the
three possible topologies between the lice from Baltic and land-
locked ringed seal populations. The fourth model tested the pos-
sibility that the divergence of lice of Saimaa ringed seal pre-dates
the divergence of the common ancestor of lice from Baltic and
Ladoga ringed seals from lice of Arctic ringed seals (as suggested
by the genetic uniqueness of the Saimaa ringed seal). The fifth
model tested the possibility that lice from both Saimaa and Ladoga
descend from an unsampled ‘ghost’ lineage and are not closely re-
lated to lice from the Baltic ringed seal. Based on the results of
the TreeMix analyses and ABBA-BABA tests (see below), the sixth
model included an admixture event between lice from Baltic gray
and ringed seals. Of these six models, the model with admixture
had the highest likelihood, so we added two more models with
continuous and ancient gene flow between lice of Baltic gray and
ringed seals (Figure S2). Details of each tested model (template
and parameter estimation files with all defined parameters and
their search ranges) are available in the file package deposited on
Zenodo (see Data availability statement).

We then performed final parameter estimates under the best
supported model using all SNPs and non-parametric bootstrapping.
Bootstrap replicates (n=100), used to calculate 95% confidence in-
tervals of the estimates, were obtained by resampling with replace-
ment blocks of 1000bp. To convert the inferred parameters into
demographic units, we used a mutation rate of 3.5x 1077 per site
and generation, based on an estimate from Drosophila melanogaster
(Keightley et al., 2009). The generation time of E. horridus is likewise
unknown (Herzog, Siebert, & Lehnert, 2024; Herzog, Wohlsein,
et al., 2024). Different species of seal lice take from 18 to 26days
to complete their life cycle, but the lice can reproduce only when

their hosts are hauled out on land or ice during their reproductive or
moulting seasons (Aznar et al., 2009; Kim, 1975; Murray et al., 1965).
Depending on the biology of the host (Soto et al., 2024) this
would mean two to three generations per year (Aznar et al., 2009;
Kim, 2006). Because the duration of the life cycle of E.horridus
was suggested to be longer than those of Antarctic lice (Thompson
et al., 1998), we conservatively assumed two generations per year.

The PSMC method uses the genome sequence of a single indi-
vidual to identify how the coalescent rate varies across the genome,
and from these values estimates changes in effective population
size over time (Li & Durbin, 2011). To prepare the input for the
PSMC analyses, we obtained a consensus genome sequence from
the mapped BAM files for each ingroup louse individual using the
‘mpileup’ and ‘call’ commands in BCFtools. Several filters were added
to keep only those consensus sequences with high confidence: (1)
the minimum mapping quality for an alignment (-q) was set to 5 and
minimum base quality (-Q) to 28, (2) sites with sequencing depths
smaller (-d) than 10 and larger (-D) than twice of the average depth
of the aligned genome were excluded and (3) consensus sequences
shorter than 10kb and those with consensus quality lower than 20
were filtered out. The first two filters were applied in BCFtools and
the third one in the PSMC package. For PSMC analyses, we tested
different settings for atomic time intervals (-p) and the upper limit for
the most recent common ancestor (-t) to select those that maximized
the number of time intervals with at least 20 recombination events.
The final setting was “p 45*2 -t10'. The reconstructed population
history was plotted using the plotPsmc.r script from the study by
Liu and Hansen (2017). The mutation rate and the generation time
were assumed as in the above fastsimcoal2 analyses (/4:3.5><10'9,
g=0.5).

3 | RESULTS

3.1 | Draft genome assembly and datasets
The sequencing runs produced between 41 and 257 million reads
per sample (Table S1). Our final draft genome assembly based on
individual EchorO3 comprised 12,561 scaffolds with a total length
of 190,395,858bp. The longest scaffold was 289,887 bp long, the
contig L50 was 25,864 bp and the scaffold L50 37,262bp. BUSCO
search against the insect ortholog database identified 95.5% of
single-copy orthologs, indicating a good level of completeness.
After mapping our sample reads to the draft genome, mean read
depth varied from 29 to 140 (overall mean 86+29 SD) (Table S1).
Of the 5,037,996 SNPs that remained in the filtered SNP dataset,
3,542,082 were shared by our ingroup samples of lice from the
ringed seal subspecies and Baltic gray seal (Figure S3). The LD-
pruned SNP dataset contained 309,941 SNPs. The phylogenomic
dataset consisted of 1170 50-kb genomic windows and had a total
alignment length of 57,345,636 positions, thus representing about
30% of the estimated genome size. The concatenated alignment of
seven mitochondrial coding genes was 6600bp long.
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Due to the theoretical possibility of louse transfer among seal
skins in tanneries or mislabelling of specimens, we determined the
species identity of the host of each sequenced louse by assembling
opportunistic sequencing reads that mapped to seal mitochondrial se-
quences (evidently originating from seal blood in the louse digestive
tract). These partial assembled sequences confirmed that each louse

specimen originated from the correct seal species (results not shown).

3.2 | Host-associated genetic differentiation and
genetic diversity

PCA analysis based on the LD-pruned SNP dataset revealed that lice
from different host (sub)species cluster in different groups (Figure 2f).
The first two principal components, which together explained 42.9%
of the total genetic variation, mainly separated lice from Saimaa
ringed seal and lice from Baltic gray seal from the less differentiated
lice sampled from Arctic, Baltic and Ladoga ringed seals.

The number of polymorphic sites was 1,638,129 for lice from
Arctic ringed seal, 1,508,043 for lice from Baltic ringed seal,
1,312,543 for lice from Ladoga ringed seal, 674,445 for lice from
Baltic gray seal and 219,222 for lice from Saimaa ringed seal
(Figure S4a). As expected, downsampling the Baltic, Ladoga and
Saimaa population samples to three individuals per population led
to slightly lower estimates (on average 1,210,393; 1,171,360; and
198,965 polymorphic sites, respectively; Figure S4a). The level of
individual heterozygosity followed a similar pattern and was highest
in lice from Arctic ringed seal (0.275-0.280 when including only
unlinked variant sites and 0.0069-0.0070 when including also in-
variant and linked sites) and lowest in lice from Saimaa ringed seal
(0.023-0.035 and 0.0006-0.0009 respectively) (Figure S4b,c).
A total of 21% of the polymorphic sites were private to lice from
Arctic ringed seals, 10% each to lice from Baltic ringed seals and
Baltic gray seals, 8% to lice from Ladoga ringed seals, and only 1%
to lice from Saimaa ringed seals (Figure S3a). Of the polymorphic
variants that were present in more than one population, the largest
number, 7% of all, was shared by lice from Ladoga, Baltic and Arctic
ringed seals, and another 6% were shared by all populations except
that from the Saimaa ringed seal (Figure S3a). Consistent with this
pattern, the most fixed genetic variants were found between lice
from Baltic gray seals and the rest (399,711 SNPs) and between lice
from Saimaa ringed seals and the rest (31,589) (Figure S3b).

The genetic divergence in the mitochondrial COIl gene between
lice within louse populations from the four different ringed seal sub-
species ranged from 0.0% to 0.28% (Table S2). The COI divergence
between louse populations of different ringed seal subspecies was
somewhat higher, with mean divergence ranging from 0.20% to
0.94%. These low divergences contrasted to mean divergences be-
tween the population of lice on the Baltic gray seal and those on the
four subspecies of ringed seals, which ranged from 5.35% to 5.61%.
Furthermore, the divergence between the louse population on the
Baikal seal and those on other seal species was notably even higher
than this, with the mean ranging from 12.55% to 12.89%.
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3.3 | Nuclear and mitochondrial phylogenies

The partitioned IQ-TREE analyses yielded a tree topology supported
by high bootstrap values (Figure 2g). As in the PCA plot, all seal
louse individuals were grouped according to host seal population,
with 100% bootstrap support for the monophyly of each population.
Long branches leading to lice collected from Baikal seal, Baltic gray
seal, and Saimaa ringed seal were supported by most gene and site
trees (gCF: 87-100, sCF: 96-100). As expected, the shorter branches
grouping lice from Ladoga, Baltic and Arctic ringed seals received
much lower gene and site concordance factors (gCF: 10-14, sCF:
44-57) (Figure 2g and Table S3).

While the overall backbone structure of the ML phylogeny re-
ceived strong bootstrap support, the relationships among ringed
seal louse populations were associated with a high level of phylo-
genetic discordance (Figure 2g and Figure S5). The placement of lice
from Ladoga ringed seal as sister to lice from Baltic ringed seal was
supported by 6.2% of gene trees and 37.8% of sites (Figure S5a and
Table S3). The branch joining lice from Saimaa ringed seal as sister
to the Baltic Sea + Lake Ladoga clade was supported by 8.6% of the
gene trees and 40.8% of sites (Figure S5b and Table S3). However,
in both cases alternative topologies were generally supported by a
clearly lower proportion of both gene trees and sites (Table S3).

The phylogenetic tree based on sequences of mitochondrial cod-
ing genes (Figure S6) was for the most part strongly supported and
nearly identical to the nuclear tree (Figure 2g). The main discrep-
ancy was that, in the mitochondrial tree, lice from Baltic ringed seals
formed a paraphyletic group with respect to a clade consisting of
lice from Ladoga ringed seal. However, this arrangement involved
a very short and weakly supported branch, essentially creating a
polytomy at the base of the Baltic + Ladoga clade (Figure Sé). In gen-
eral, long branches that had high gCFs in the nuclear tree (e.g. the
branches subtending lice from Saimaa ringed seal, Baltic gray seal
and Baikal seal) also had high bootstrap support in the mitochondrial
tree. Conversely, short branches with low gCFs in the nuclear tree,
such as the ones subtending lice from Baltic and Arctic ringed seals,
were also weakly supported in the mitochondrial tree. The exception
was the placement of lice from Saimaa ringed seal as sister to the
clade formed by lice from Ladoga and Baltic ringed seals, which was
strongly supported in the mitochondrial tree despite low gene and
site concordance in the nuclear data.

3.4 | Hybridization

The TreeMix tree without migration (Figure 3a and Figure S7a) ex-
plained 99.49% of the variance in the observed covariance matrix, but
positive residual covariances between lice from Baltic gray and Baltic
ringed seals stood out from the rest (Figure S7b). As expected, the first
migration edge was placed between these two populations, resulting
in a tree that explained 99.77% of the variance in relatedness between
populations (Figure 3b and Figure S7c,d), thus reaching the 99.8%
threshold of explained variance suggested by the authors of TreeMix
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(Pickrell & Pritchard, 2012). This model inferred that 7% of the ances-

try of lice from Baltic ringed seal comes from lice of Baltic gray seal

(Figure 3b), while the remaining relationships among louse populations
were fully consistent with the individual-based ML tree (Figure 2g). The
second and third migration edges were placed, respectively, between
the ancestor of lice from Baikal seals and lice from Saimaa ringed seals,
and between lice from Baltic and Arctic ringed seals (Figure S7e,g).
However, fitting more than one migration edge changed the tree to-
pology, so that lice from Ladoga ringed seal diverged before the split
between lice from Baltic and Saimaa ringed seals.

We examined the rates of gene flow between lice of ringed and
gray seals further using ABBA-BABA tests (Figure 3c-h). Regardless
of whether lice from Ladoga, Saimaa, or Arctic ringed seal were used
as P1, the tests showed significant excess of shared alleles between
lice from Baltic ringed and gray seals. For the first time period, subse-
quent to the divergence between lice from Baltic and Ladoga ringed
seals, the estimated admixture proportion (f) was 4.1% (Figure 3c).
The same estimate of f was also obtained for the longer time period
subsequent to the divergence between lice from Saimaa and Baltic
ringed seals (Figure 3d). When considering the period subsequent
to the divergence of lice from Baltic and Arctic ringed seals, the es-
timated admixture proportion increased only to 4.9% (Figure 3e). In
tests involving lice from Ladoga and Saimaa ringed seal as recipient
populations, excess ABBA over BABA was not statistically signifi-
cantly different from zero (Figure 3f), or significant but with a very

low estimated admixture proportion (Figure 3g,h).

3.5 | Demographic history

Of the six models we initially tested (Models 1-6 in Figure S2 and
Table 1) in fastsimcoal2, the models assuming a common ancestor
of lice from Saimaa, Ladoga, and Baltic ringed seals (Models 1-3) re-
ceived more support than the model in which lice from Saimaa ringed
seal diverged earlier (Model 4) or the one in which Saimaa and Ladoga
lice separated from an unsampled (ghost) population (Model 5). The

model with the order of population splits consistent with geological

Number of
Model parameters Log-likelihood AAICa®
Model 1 12 -426,973.34 53,802.65
Model 2 12 -426,918.12 53,548.33
Model 3 12 -427,035.19 54,087.45
Model 4 11 -430,337.06 69,291.13
Model 5 13 -428,882.81 62,598.09
Model 6 14 -423,272.95 36,765.72
Model 7 15 -415,796.25 2336.25
Model 8 16 -415,288.51 =

Note: For a graphical representation of the models, see Figure S2.

Difference in Akaike information criterion relative to the best-fitting model.

PRelative likelihood of models based on AIC.

history of the lakes was the best supported, but only when gene
flow between lice from Baltic gray and ringed seals was taken into
account (Model 6). Of the models assuming no gene flow, the best
supported model was actually Model 2, which corresponds to the
second discordant topology on the ML tree (i.e. the split between lice
from Saimaa and Ladoga ringed seal occurred after the split of lice
from the Baltic ringed seal), and Model 1 (consistent with the ML tree
and the geological history of the lakes) was the second best. Adding a
single admixture event between lice from Baltic gray and ringed seals
(Model 6) greatly improved the fit of Model 1, which increased fur-
ther when single admixture was replaced by continuous (Model 7) or
ancient (Model 8) gene flow (Figure S2 and Table 1). Of these, the
model with ancient gene flow was better supported than the one with
continuous gene flow, so we used Model 8 for parameter estimation.

According to the ML point estimates, the lineage leading to
the extant louse populations of Baltic, Ladoga, and Saimaa ringed
seals diverged from lice of Arctic ringed seal 192,179 generations
ago, which corresponds to 96,090 [95% Cl 92,736-98,974] years as-
suming two louse generations per year (Figure 4a). Saimaa ringed
seal lice diverged from the common ancestor of lice from Baltic
and Ladoga ringed seals 8360 [7407-10,331] years ago, while the
latter two populations became separated 7545 [6669-9377] years
ago. The simulation revealed very wide variation in estimated cur-
rent effective sizes of the focal louse populations (Figure 4a). The
smallest effective population size was estimated for lice of Saimaa
ringed seal, at around 4600 individuals, while estimates were nearly
an order of magnitude higher for lice of Baltic and Ladoga ringed
seals. The estimated effective population sizes for lice of Baltic gray
seals and Arctic ringed seals were substantially higher (around 1.2
and 4.9 million respectively).

Based on the estimate from the coalescent simulation, the lin-
eages of lice infesting gray and ringed seals were separated around
2.4 million years ago (Figure 4a). Despite wide variance in estimates
of the number of migrants (Figure 4a), we found evidence of asym-
metrical gene flow, occurring mainly in the direction from lice of the
Baltic ringed seal to those of the Baltic gray seal, starting around
5500years ago and persisting for about 400vyears.

TABLE 1 Results of model selection

Relative with fastsimcoal2.

likelihood®
~0
~0
~0
~0
~0
~0
~0
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FIGURE 4 Demographic histories (a)

of seal louse populations on gray seal T

and four subspecies of ringed seals 2’403\/&),'5 """""

based on (a) the most supported model [2,363 kya - 2,974 kya]
in fastsimcoal2 and (b) PSMC analyses.
In (a), estimates represent divergence

times (T, in years), effective population
sizes (N) and numbers of migrants (N, )
per generation. Numbers in brackets

are 95% confidence intervals obtained

through non-parametric bootstrapping. Tg‘éz _______
In (b), separate lines represent individual [7,407 - 10,331]

seal lice. (c) Corresponding long-term Towt
demographic reconstructions for the 7,545 === - -
focal ringed seal subspecies estimated 6,669 - 9,377]

by Léytynoja et al. (2023) using MSMC2 Twmigs ----- ..
analyses of seal genome resequencing [4,71554-681,884]

data (redrawn from the original article, Twoe ... I

which was published under a CC-BY 4.0
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The PSMC plots generated from individual seal louse genomes
showed relatively consistent long-term N, trajectories comparing
individuals belonging to the same population, but clear differences
across populations (Figure 4b). The population-size trajectory of lice
on gray seals peaks around 200,000-300,000years ago, but also
shows a small transient increase around 3000-4000vyears ago. All
louse populations associated with ringed seals exhibit a concurrent
increase that commences around 200,000 ago and then intensifies
at about 100,000years ago. The population peak of Saimaa ringed
seal lice is lowest, and the population size then decreases earlier
than in the three other populations. The N, trajectories of lice asso-
ciated with Baltic and Ladoga ringed seals undergo a rapid decline

between 10,000 and 30,000years ago. By contrast, the effective
population size of lice associated with the Arctic ringed seal contin-

ues to increase and becomes inestimable towards the recent.

4 | DISCUSSION

Genetic analyses of rapidly-evolving host-specific parasites can offer
improved resolution for inferring population differentiation and past
demographic events in their hosts (Ascunce et al., 2023; Criscione
et al., 2006; Simkova et al., 2022; Whiteman et al., 2007). The im-
petus for the present work was to explore whether the genomes
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of seal-associated lice (Echinophthirius horridus) could shed light
on how and when ringed seals colonized the Baltic Sea basin and
large postglacial lakes in its vicinity, and how the population sizes
of ringed and gray seals have fluctuated through the Pleistocene.
As our main analysis, we used model selection and parameter esti-
mation in a coalescent framework, complemented by PSMC-based
inference of changes in effective population sizes over longer time
periods. Combining genome-wide data with demographic model-
ling represents a powerful strategy for testing alternative hypoth-
eses about historical drivers of existing population structure and
genetic diversity (Nadachowska-Brzyska et al., 2016; Salmona
etal., 2017; Zhou et al., 2014). However, despite the numerous inter-
esting questions that can be quantitatively addressed, demographic
modelling has thus far only rarely been applied to parasite species
(Angst et al., 2022; Ascunce et al., 2023; Cooper et al., 2020; Hecht
et al., 2018; Techer et al., 2022).

4.1 | Population-genomic structuring and
diversity are correlated in seal lice and their hosts

Many louse taxa have become important model systems for research
on specialization, speciation and coevolution, because lice tend
to have narrow host ranges (Johnson et al., 2011; Kim, 2006), fre-
quently exhibit genetic differentiation across host taxa (Demastes
et al., 2012; Johnson et al., 2021; Sweet et al., 2018), and sometimes
even show partial phylogenetic congruence with their hosts (Hughes
etal., 2007; Johnson et al., 2022). In the case of E. horridus, we found
distinct differentiation in nuclear (Figure 2f,g) as well as mitochon-
drial (Figure S6) genomes among specimens collected from different
seal species and populations (for taxonomic implications, see Text
S1). The overall pattern of genome-wide variation within and among
our focal northern European louse populations (Figure 2f) is strik-
ingly similar to that found in their seal hosts (Loytynoja et al., 2023;
see also Nyman et al., 2014; Peart et al., 2020). Among lice as well as
ringed seals, the population from Lake Saimaa is the most differenti-
ated from the others (Figure 2f), having the highest proportion of
fixed genetic differences (Figure S3b) and showing remarkably re-
duced genetic diversity (Figure S4).

Interestingly, however, the general gradient of genetic diversity
across populations appears to be more pronounced in the lice than
in their hosts. Studies based on various nuclear (Martinez-Bakker
et al., 2013; Nyman et al., 2014; Palo et al., 2001; Peart et al., 2020;
Stoffel et al., 2018) and mitochondrial (Heino et al., 2023; Palo, 2003;
Valtonen et al., 2012; see also Martinez-Bakker et al., 2013) markers
inthe seals have consistently indicated that genetic diversity is nearly
equal in Arctic and Baltic ringed seals, and that the Ladoga ringed
seal is only slightly less variable than the latter. Recently, Loytynoja
et al. (2023) somewhat surprisingly reported lower genome-wide
heterozygosity and nucleotide diversity in Arctic ringed seals than
in the Baltic and Ladoga subspecies, but they also cautioned that the
result may reflect lower mean sequencing coverage in samples from
the Arctic population (see also Kardos & Waples, 2024; Rosing-Asvid

et al., 2023). In our louse data, both the number of polymorphic sites
and individual-level heterozygosity were higher in the population as-
sociated with the Arctic ringed seal than in those on the Baltic and
landlocked subspecies (Figure S4). In the case of lice on Baltic gray
seal, the estimates of genetic diversity appear low in relation to the
current host population size of around 55,000 individuals (Carroll
et al., 2024). On the other hand, this may be the case also for the
gray seals themselves (Peart et al., 2020; Yakupova et al., 2023),
suggesting that the genetic uniformity of gray seals and their lice
is connected to demographic events at deeper timescales in their
history (see below).

4.2 | Louse demography reflects postglacial
changes in northern European geology and seal host
populations

The northward retreat of the Scandinavian Ice Sheet com-
menced about 17,000years ago (Tylmann & Uscinowicz, 2022;
Ukkonen, 2002). This led to the formation of the current Baltic Sea
through a succession of alternating freshwater and marine stages
reflecting the net effect of global sea-level rise caused by the disap-
pearance of continental ice sheets and isostatic bedrock rebound in
previously glaciated regions (Figure 2a-e). The rising bedrock also
created large lakes that harbour typical marine species as glacial
relicts to this day, including crustaceans (Sarkka et al., 1990), fish
(Kontula & Va&ino6la, 2003), and - in the case of lakes Saimaa and
Ladoga - even seals (Ukkonen et al., 2014). Although the geologi-
cal history of the Baltic Sea and large postglacial lakes as such is
well known, pinpointing how and when lakes Saimaa and Ladoga
were colonized by ringed seals has proven complicated (Heino
et al., 2023; Léytynoja et al., 2022; Nyman et al., 2014; Palo, 2003).
The problems apparently arise from the occurrence of multiple se-
quential population splits within in a short time frame in relation to
the genetic variability and generation time of ringed seals.

In contrast to the most recent results concerning ringed seals by
Loytynoja et al. (2022, 2023), our analyses based on multiple differ-
ent datasets and statistical approaches consistently supported the
traditional hypothesis (Davies, 1958; Ukkonen, 2002) that the Baltic
and landlocked populations are monophyletic (Figures 2g, 3a,b, 4a,
Figures S6 and S7), and that the two postglacial lakes were colonized
in the order in which they were formed. As in ringed seals (LOytynoja
et al., 2022), the rapid succession of population divergences is seen
as low gene and site concordance factors even for branches that re-
ceive strong bootstrap support on the phylogenetic trees (Figure 2g,
Figure S5, Table S3). The improved resolution of the louse phylogeny
in relation to the phylogenetic tree of their seal hosts is most likely
explained by the shorter generation time and higher mutation rate
of lice (Johnson et al., 2014), which has provided more opportunity
for variants to arise and go to fixation by drift between population
splits.

Furthermore, our best-fitting fastsimcoal2 reconstruction of
the demographic history of louse populations from Saimaa and
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Ladoga ringed seals (Figure 4a) is consistent with the presumed
timeline of lake formation (Figure 2a-e). The oldest known ringed
seal fossils from the current Baltic Sea coast are dated to around
10,400-10,200years ago (Sommer & Benecke, 2003; Ukkonen
et al., 2014). Our estimated origination time of lice of Saimaa ringed
seals (Figure 4a) closely matches the separation of the Lake Saimaa
complex from the Baltic basin approximately 9500-8000years ago
(Schmolcke, 2008; Ukkonen, 2002). Based on our analyses, lice as-
sociated with Ladoga ringed seals diverged from the Baltic source
population roughly a thousand years later. While the main basin
of Lake Ladoga was initially separated at about the same time as
Lake Saimaa, geological evidence points towards the existence of
a broad connection with the Baltic Sea until about 4000years ago
(Saarnisto, 2011; Ukkonen, 2002). This so-called Heinjoki paleostrait
has been put forth as a potential explanation for the weak genetic
differentiation between Ladoga and Baltic ringed seals (Nyman
et al., 2014), but our louse results suggest that movement of seals
to and from Lake Ladoga was restricted already well before the esti-
mated closing of the paleostrait.

The scaling of these estimates in absolute time is naturally in-
fluenced by the mutation rate (Martin & Hohna, 2018; Salmona
et al., 2017), for which direct estimates from seal lice are not avail-
able. Like many corresponding studies on non-model insects (Walton
et al., 2021; Wang et al., 2024; Zhang et al., 2021), we therefore re-
sorted to using an estimate from Drosophila (Keightley et al., 2009) in
our demographic model. However, available evidence points to rel-
atively similar rates of mutation across insect taxa (Liu et al., 2017).
More importantly, the ages of the two youngest splits in our best-
fitting model (Figure 4a) are compatible with constraints imposed
by geology: due to a slow postglacial change in the tilt of the rising
bedrock, the outlet of Lake Saimaa gradually shifted from the north-
west towards the south and finally abruptly towards the southeast
c. 6000vyears ago (Saarnisto, 2011). The new outlet (Vuoksi River)
still has a series of steep rapids that would have prevented seal col-
onization after this hydrological shift. Furthermore, it is highly un-
likely that the divergence between Baltic and Ladoga ringed seals
would have occurred before the formation of Lake Ladoga. The fact
that our time estimates fall within the time window allowed by these
geological constraints points to the conclusion that the mutation
rate and generation time applied in our models are approximately
correct.

Reflecting the aforementioned levels of genetic diversity, the
estimated effective population sizes of the focal seal louse lin-
eages differ by three orders of magnitude (Figure 4a). Our esti-
mates are correlated with - but in most cases substantially higher
than - census population sizes (Figure 1c) as well as N, estimates
published for their seal hosts (Nyman et al., 2014; Palo, 2003;
Stoffel et al., 2018). That louse N, would exceed host N, is as such
not surprising, because each seal individual can harbour many
louse individuals (Herzog, Wohlsein, et al., 2024). Even when con-
sidering this, particularly the N, of 4600 estimated for lice from
Lake Saimaa, the N, of over 40,000 for lice from Lake Ladoga
and N, of over one million for lice of Baltic gray seals appear

13 of 22
MOLECULAR ECOLOGY gAViVA i [l 2AY%

excessive, because microsatellite-based estimates of current ef-
fective population sizes of their hosts range from a few tens in
the severely bottlenecked Saimaa ringed seal to a few hundred in
the Ladoga ringed seal and somewhere between ten and twenty
thousand in the Baltic gray seal (Klimova et al., 2014; Stoffel
et al., 2018; Valtonen et al., 2014). However, it is known that ef-
fective population size may be inflated by population structure
(Charlesworth, 2009), which is likely to occur in lice as a result of
their existence as transient, partially isolated infrapopulations on
individual hosts (Virrueta Herrera et al., 2022). For lice of Baltic
gray seals, the relatively high N, estimate may also reflect past
introgression from the louse population of Baltic ringed seals,
which was detected by several different statistical approaches
(Figures 3b-e and 4a). While the inferred direction of gene
flow differs between our TreeMix (Figure 3b) and fastsimcoal2
(Figure 4a) results, several points suggest that the latter are more
likely to be correct. Incorrectly oriented migration edges was one
of the main errors found in the simulation-based TreeMix tests of
Pickrell and Pritchard (2012), and the TreeMix algorithm models
admixture between populations as occurring at a single time point.
In our fastsimcoal2 simulations, such a scenario was found to be
less likely than models with continuous or ancient gene flow, and
estimates of the latter indicated asymmetric gene flow from lice of
Baltic ringed seals to those of gray seals.

It should also be noted that published N, estimates for the
seal hosts vary greatly depending on the marker and method
used and the time scale considered. In the case of lice of Saimaa
and Baltic ringed seals, our estimates are more reconcilable with
long-term seal N, estimates based on SNPs (Peart et al., 2020) and
microsatellites and/or mtDNA control-region sequences (Nyman
et al,, 2014; Palo et al., 2001; Valtonen et al., 2012). The explana-
tion for the apparently high N_/N_ ratios in these seal louse pop-
ulations is therefore likely to be the same as the one proposed by
Peart et al. (2020) for their hosts, that is, retention of residual vari-
ation from much larger ancestral populations. However, we note
that the N, estimate of Peart et al. (2020) for the Saimaa ringed
seal was only circa 40% lower than the (near-equal) estimates for
Baltic and Arctic ringed seals, meaning that our louse-based esti-
mates are more in line with the presumed postglacial relative cen-

sus sizes of these subspecies.

4.3 | Long-term demographic trajectories of seal
lice show imprints of Pleistocene and Holocene
climatic fluctuations

Our PSMC analyses based on genome sequences of individual seal
lice revealed clear differences in long-term population-size trajec-
tories among louse populations associated with different seal (sub)
species (Figure 4b) as well as intriguing correspondence to prior esti-
mates from their hosts (Loytynoja et al., 2023; Yakupova et al., 2023).
Many authors have noted that PSMC plots should be interpreted
with caution because the scaling of both effective population size
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and time depends on knowledge on generation times and mutation
rates (Pujolar et al., 2017; Yakupova et al., 2023). These complica-
tions are naturally compounded in comparative analyses of parasites
and hosts, because the scaling parameters need to be correct on
both trophic levels. Published reconstructions of demographic tra-
jectories in seals have applied species-specific information on gen-
eration times, but have had to rely on mutation rates estimated for
polar bear (Léytynoja et al., 2023) or other marine and terrestrial
mammals (Yakupova et al., 2023) for scaling. Furthermore, the fact
that PSMC reconstructs N, trajectories based on the rate of coales-
cence at different time intervals in the past means that estimates can
be distorted by admixture, inbreeding and population substructure
(Mather et al., 2020; Mazet et al., 2016; Morin et al., 2018; Teixeira
et al., 2021). While our fastsimcoal2 results suggest that the muta-
tion rate and generation time applied in our model are approximately
correct (see above), it is unclear whether and how the transient
yet regular infrapopulation structuring of lice (Virrueta Herrera
et al., 2022) would affect estimates of population size stretching
over many millennia. However, we note that lice generally present a
comparative advantage because the potentially confounding param-
eters are expected to be relatively similar across populations.

Thus, even if considered only qualitatively, the seal louse PSMC
trajectories show remarkable similarity between the lice within an
individual population as compared to between populations, and
suggest that long-term variation in seal louse (and seal host) pop-
ulation sizes has been driven by climatic fluctuations through the
late Pleistocene and the Holocene. Combined PSMC analyses of
gray and ringed seals have thus far not been published. However,
our finding of an earlier past population peak in lice associated with
gray seals appears expected considering the differing niches and cli-
matic preferences of gray and ringed seals, and resembles the pat-
tern in the gray seals themselves (within the limits of uncertainty
noted by Yakupova et al. (2023)). The main population peak in lice
on gray seals was likely driven by the warmer climate of the Eemian
interglacial between 130 and 100 kya (Stein et al., 2017) and possi-
bly preceding middle Pleistocene interglacials (Hughes et al., 2020),
which would have made a large part of the Arctic Ocean suitable
for inhabitation by gray seals. As shown by the hindcast estimate of
Boehme et al. (2012), when the global climate grew gradually cooler
from the beginning of the last glacial period around 100 kya, the
advancing North American and northern European ice sheets would
have forced gray seals southward. At the same time, the freezing of
the northern Atlantic Ocean would have separated the overall pop-
ulation into two subpopulations inhabiting the western and eastern
sides of the Atlantic. More importantly, the same paleoenvironmen-
tal reconstruction showed that the lowering of global sea levels by
up to 130 m during the last glacial maximum (LGM) may have reduced
the extent of productive continental shelf seas (which support the
highest densities of gray seals) by up to 97%. Our finding of a small
recovery in gray seal louse populations during the last 5000years is
partly consistent with genetic signatures of a population expansion
in the Baltic gray seal population during the late Holocene (Ahlgren
et al.,, 2022; Fietz et al., 2016; Klimova et al., 2014). On the other

hand, the timing of the peak overlaps with our estimate of the time
window of substantial introgression from lice of Baltic ringed seals
(Figure 4). The apparent recovery could therefore reflect hybridiza-
tion with lice of Baltic ringed seals during an extended mid-Holocene
period of low gray seal abundance but high and widespread ringed
seal occurrence in the Baltic fossil record (Ahlgren et al., 2022;
Ukkonen et al., 2014).

More direct demographic comparisons are possible for the seal
louse populations associated with ringed seals (Figure 4b,c). Notably,
although louse and host trajectories show evidence for parallel
changes especially in the Arctic, Baltic and Ladoga subspecies, the
timing of events appears slightly shifted towards the recent in the
seals. Part of the discrepancy could result from the use of the polar
bear mutation rate in the ringed seal MSMC2 analyses by Léytynoja
et al. (2023). Applying the lower seal-specific mutation-rate esti-
mates of Peart et al. (2020) should stretch the ringed seal trajec-
tories backward in time and thereby improve the correspondence
between louse and host estimates. Given that the order and time
frame of population splits in our results shows closer correspon-
dence to geological constraints (see above), we tentatively consider
our temporal scaling more reliable.

As would be expected for parasites of hosts that are dependent
on ice and snow for reproduction (Lone et al., 2019), the popula-
tion trajectories of lice associated with ringed seals enter a period
of rapid growth at the beginning of the last glacial period around
100 kya, concurrently with the main decline in lice of gray seals
(Figure 4b). However, the peak is transient in lice of Baltic, Ladoga,
and Saimaa ringed seals, in which the trajectories turn into decline
approximately 30 kya. While such downward turns at the height of
the LGM may seem counterintuitive at first sight, concurrent pop-
ulation declines have recently been demonstrated for many Arctic
cetaceans (Skovrind et al., 2021; Westbury et al., 2023). Here it
is important to notice that ringed seal densities are highest along
marginal ice zones above highly productive continental shelf areas
(Lone et al., 2019). Therefore, although the ringed seal distribution
most likely did not shift as far south as that of the gray seal during
the LGM, ringed seals would still have been adversely affected by
the loss of shallow continental shelf seas demonstrated by the pa-
leoenvironmental reconstructions by Boehme et al. (2012), Foote
et al. (2013) and Skovrind et al. (2021).

Why, then, do the long-term population trajectories of neither
Arctic ringed seals (Figure 4c) nor their lice (Figure 4b) exhibit a par-
allel decrease during the LGM, and instead exceed the scale before
the beginning of the Holocene around 10,000years ago? As such, an
increasing trend through the Holocene would not be unexpected,
because post-Pleistocene population recoveries or expansions have
been found in many Arctic marine mammals (Foote et al., 2013; Louis
et al., 2020; Skovrind et al., 2021; Westbury et al., 2019). As shown
by Cabrera et al. (2022), these responses were in many cases most
likely driven by increased availability of important prey species in
productive continental shelf seas, which were resubmerged as a re-
sult of the melting of continental ice sheets. Our analyses suggest
that the populations of lice of Baltic and landlocked ringed seals
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could not respond as strongly to the increasingly mild climate, be-
cause by the early Holocene their hosts were already confined to
their respective water bodies.

However, the population increases in both Arctic ringed seals and
their lice appear too strong and too early to be explained by post-
Pleistocene climatic amelioration alone. Instead, we propose that
broader consideration of Pleistocene climatic patterns and geology
in the Arctic may provide clues. Of importance here is that our fast-
simcoal2 simulations indicate that the ancestor of the lice from Baltic,
Ladoga and Saimaa ringed seals was separated from the ancestor of
lice of Arctic ringed seals nearly 100 kya (Figure 4a). The emergence
of this structuring, with a period of diminishing gene flow, could in
fact partly explain the apparent parallel rise in the effective sizes of all
louse populations associated with ringed seals (cf. Cahill et al., 2016;
Morin et al., 2018). While our 96-ky age estimate for the split conflicts
with the ‘standard model’ of post-Pleistocene separation Baltic and
Arctic ringed seals (Nyman et al., 2014; Palo, 2003; Schmdlcke, 2008;
Ukkonen, 2002), it is consistent with the fact that the Baltic ringed
seal is genetically nearly as distant from the Arctic ringed seal as is
the recently found Kangia ringed seal population, for which Rosing-
Asvid et al. (2023) estimated an age of over 200,000years (see their
Figure 3b). Therefore, the separation of the Arctic lineage and the
common ancestor of Baltic, Ladoga and Saimaa ringed seals could
have commenced already at the onset of the last (Weichselian) gla-
ciation, which led to the formation of continental ice sheets in North
America, Greenland, Iceland, Western Europe and Western Siberia
(Hughes et al., 2013), and year-round covering of a large part of the
Arctic Ocean by up to 1-km thick ice shelves (Jakobsson et al., 2014).
In North America, Pleistocene ringed seal fossils are found thou-
sands of kilometres south of their current range along the Pacific
(Harington, 2008) and Atlantic coasts (Feranec et al., 2014). On the
eastern side of the Atlantic, the main distribution of ringed seals is
likely to have been to the west and south of the British Isles, along
coastlines that are now below sea level. Fossils from these regions are
therefore unavailable, but the occurrence of ringed seals outside their
current range is confirmed by fossil remains from the Danish Straits
dated to approximately 45,000years ago (Ukkonen et al., 2014).
Throughout most of the last glacial period, the separation of ringed
seals of the Atlantic and Pacific Oceans would have been com-
pleted by the Bering land bridge between eastern Siberia and Alaska
(Jakobsson et al., 2014; Praetorius et al., 2023).

Based on the above, we suggest that the PSMC population tra-
jectory of lice of Arctic ringed seals as well as their hosts reflects
postglacial fusion of populations that had been isolated after the
end of the Eemian interglacial - a possibility initially proposed by
Davies (1958) on the basis of distributions of morphologically de-
fined ringed seal subspecies across the Holarctic. The Baltic Sea
basin became colonized by eastern Atlantic ringed seals while they
followed the northward retreat of the Scandinavian Ice Sheet at
the end of the Pleistocene. The continued warming of the climate
then separated the ancestral population in the Baltic Sea from the
one inhabiting the North Sea coast of Norway. When the limit of
wintertime sea ice continued to move northward, the population on
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the North Sea coast merged with the likewise northward-moving
western Atlantic population and, eventually, with seals arriving in
the Arctic from the Pacific Ocean coastline. Therefore, the popu-
lation explosion seen in the PSMC trajectories of Arctic seal louse
and ringed seal populations would reflect a combination of (i) a real
increase in the number of individuals in more benign environmen-
tal conditions and increased extent of continental shelf seas, and
(ii) admixture of lineages that had been separated through most of
the last glacial period. Particularly the demographic trajectory of
Arctic ringed seal lice shows resemblance to artefactual population
explosions found in simulation studies creating artificial ‘pseudohy-
brid’ genomes using data from distantly related populations (Cabhill
et al., 2016; Carroll et al., 2021; Morin et al., 2018). While such a
scenario may seem speculative, similar Holocene fusions of Atlantic
and Pacific stocks within the Arctic Ocean have also been suggested
for bowhead whales (Foote et al., 2013) and belugas (Skovrind
et al., 2021). Fusion of Pacific and Atlantic ringed seals seems in-
evitable considering that the species is highly mobile and currently
forms a near-panmictic population throughout its Arctic range (Lang
et al,, 2021; Martinez-Bakker et al., 2013; Rosing-Asvid et al., 2023).

5 | CONCLUSIONS

Advanced sequencing technologies, computing power and statisti-
cal methods now offer unprecedented opportunities for using ge-
nomes of rapidly evolving specialist parasites as proxy markers for
understanding the ecology and evolution of their hosts (Nieberding
& Olivieri, 2007; Thorn et al., 2023) and as a general tool of infer-
ence in conservation biology (Gagne et al., 2022; Gupta et al., 2020;
Whiteman & Parker, 2005). The breadth of possibilities is nicely illus-
trated by our study and those of Leonardi et al. (2019) and Virrueta
Herrera et al. (2022), which in combination demonstrate how genomic
analyses of seal lice can be applied to tackle research questions span-
ning widely different spatial, temporal and taxonomic scales.

When it comes to population-specific genetic diversities, among-
population similarities and demographic histories, Echinophthirius
horridus seal lice exhibit patterns that are in some cases strikingly
similar to prior findings from their hosts. At the same time, seal
louse genomes offer improved resolution with respect to the tim-
ing and sequence of divergence events. Notably, our results support
the traditional hypothesis of stepwise colonization of the Baltic
Sea and postglacial lakes during and after the disappearance of the
Scandinavian Ice Sheet (Davies, 1958; Ukkonen, 2002). Over lon-
ger time scales, demographic patterns in seal lice show connections
to the climatic history of the Pleistocene as well as intriguing par-
allels with population fluctuations, divergences, and fusions that
have been suggested for Arctic cetaceans. Many questions remain,
however, and follow-up studies should aim at broader and denser
sampling of populations, and should especially strive towards inte-
grated analyses of genomic data from seals, seal lice and other seal-
associated parasites. Clearly, the full potential of parasite genomics
in basic and applied biological research is yet to be realized.
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