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Abstract

The free fall of an ellipse in an infinite linearly-stratified fluid is investigated
using a linear two-dimensional, Boussinesq, diffusionless, inviscid model. The
oscillations of the ellipse decay because of radiation damping, but unlike the
case of a circular cylinder, the ellipse can also rotate and move horizontally.
The resulting equations are solved analytically for some simple cases for which
there is little or no rotation. Motions with rotation are studied numerically using
a spectral method to solve for the wave field in the fluid.

Keywords: stratified flow, internal waves, fluid-structure interaction
1. Introduction

It is an everyday occurrence that objects do not fall in a purely vertical trajectory. One such
example is the secondary horizontal motion that can be seen when a coin is thrown into a foun-
tain. A more complicated secondary motion is observed in a falling piece of paper. Flat plates
can flutter (periodically oscillating from side to side) or tumble (drifting horizontally while
rotating as they fall). This motion is due to the fact that the centre of mass does not coincide
with the centre of the resistive stresses provided by the surrounding fluid, hence creating a
torque on the object.

The investigation of free-falling bodies goes back to Newton and Galileo. Maxwell (1853)
discussed the falling plate problem, including rotation, in a homogeneous fluid. There have
been a number of studies of freely falling objects since then. Willmarth et al (1964) and then
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Field et al (1997) studied discs, while Isaacs and Thodos (1967) investigated cylinders, and
Lugt (1980) specialized to elliptic cylinders. Mahadevan et al (1999) looked at tumbling cards,
while Skews (1990) did similar work examining rectangular plates, as did Belmonte and Moses
(1999). Tanabe and Kaneko (1994) proposed an ad hoc model for falling paper. Other numer-
ical work includes Huang (2001), Pesavento and Wang (2004), Andersen et al (2005a, 2005b),
while Jones and Shelley (2005) presented a vortex sheet model and Michelin and Llewellyn
Smith (2009) used an unsteady point vortex approach. Field et al (1997) provide a good list of
references for various applications.

A lot of work has also been carried out on the forced motion of bodies in stratified fluids,
with a view to calculating the wave field produced by the body. Internal waves are radiated
when an object oscillates in a stratified fluid at a frequency less than the buoyancy frequency,
and more generally when particles are displaced from their equilibrium vertical location, such
as in a turbulent wake (e.g. Brucker and Sarkar 2010) or when the tide moves over bathymetry,
generating the internal tide (e.g. Garrett and Kunze 2007, Sarkar and Scotti 2017). Hurley
(1969) studied a cylinder of slender cross-section and Hurley (1972) a circular cylinder, as
did Sutherland et al (1999) and Appleby and Crighton (1986), who also later also investigated
spheres Appleby and Crighton (1987). Hurley (1997) and also Sutherland and Linden (2002)
investigated elliptic cylinders, with Hurley (1997) considering translational oscillations alone
and Hurley and Hood (2001) considering rotational oscillations. Martin and Llewellyn Smith
(2011) examined discs, as did Davis and Llewellyn Smith (2010) who included viscosity the-
oretically. Much of this work is reviewed in Voisin (2019, 2024a) and Voisin (2024b).

There have also been studies of the drag forces associated with these wave fields. Warren
(1960) investigated both cylinders and spheres, as did Ermanyuk (2000), Ermanyuk and
Gavrilov (2002) and Ermanyuk and Gavrilov (2003). Torres et al (2000) focused on spheres
in a numerical study. Higginson et al (2003) were concerned with a grid of bars, while Scase
and Dalziel (2004) investigated a travelling sphere.

The combination of the above two problems, namely the motion of a freely falling object
in a stratified fluid has received less attention. When stratification is introduced, the motion of
the solid is also coupled to the wave field, providing an extra physical mechanism affecting
the motion. Larsen (1969) looked at the motion of a neutrally buoyant sphere (and a cylin-
der) in a linearly-stratified inviscid fluid, while Winant (1974) added an empirical nonlin-
ear drag term (see also Cairns et al 1979, Andersson and Rahm 1984), and noted that, for
small initial displacement of the body compared to its dimension, the amplitude decay of the
oscillations is due primarily to radiation damping, while for larger initial displacement the
decay is due primarily to viscous attenuation. More recent experiments on oscillating spheres
are presented in Chashechkin and Levitskiy (2003), Chashechkin and Prikhod’ko (2006),
Prikhod’ko and Chashechkin (2006), Vasil’ev et al (2007), Biré et al (2008) and Vasil’ev and
Chashechkin (2009), while Pyl'nev and Razumeenko (1991) carried out experiments on a thin
two-dimensional body elongated along the vertical. Experiments on heavy spheres falling in
a stratified fluid are presented in Nikiforovich and Dudchak (1992), Abaid et al (2004) and
Huguet et al (2020).

We draw on Larsen’s (1969)’s work, but while in that case the rotation and horizontal
motions of the body are zero due to the symmetry of the problem, here we break this sym-
metry, and therefore the secondary motions of the solid body in the two-dimensional plane are
now relevant. Almost all fluids found in the environment are stratified, and most natural bodies
are not symmetric. so they will tend to rotate in a non-trivial manner as they fall. As applica-
tions, we can mention weather balloons, oceanographic drifters, falling leaves, and so on. Lam
et al (2018) present experimental results on the fall of heavy discs in a stratified fluid along
with a quasi-steady theoretical model that neglects the wave field. Akulenko and Baydulov
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(2019) and Baidulov (2022) studied the oscillations of an elliptical float. A general review of
the motion of bodies moving in stratified fluids is presented in More and Ardekani (2023).

In this paper we study the motion of an elliptic cylinder in a stably stratified fluid. More
specifically, we examine the initial-value problem, that is releasing the solid object from rest
after displacing it from its neutrally buoyant position. We carry out a two-dimensional, incom-
pressible, inviscid analysis in an infinite domain. It is expected that the ellipse will oscillate
about its stable vertical position with a decaying amplitude due to radiation damping, that is to
say the emission of internal waves. Horizontal motions are also expected due to the asymmetry
of the body.

In section 2 we formulate the initial-value problem. The ellipse obeys Newton’s laws of
motion. The fluid properties are calculated using the linearized Boussinesq approximation,
under which density variations are taken into account only in calculating buoyancy forces. A
constant background stratification of the fluid is assumed, and the governing equations for a
two-dimensional incompressible fluid are established. It was noted previously in e.g. Larsen
(1969) that the decaying amplitude of oscillation of the solid body is due primarily to radiation
damping as opposed to viscous attenuation, and therefore an inviscid model is a natural first
step. Due to the complexity of the resulting governing equations for the motion of the ellipse,
we implement in section 3 a numerical scheme to solve the problem using spectral method.
We conclude in section 4.

2. Mathematical formulation

2.1 Governing equations and coordinate transformations

We will use a frame co-moving with the ellipse and a coordinate system fixed rigidly in the
ellipse. This frame is non-inertial and the basic equations for stratified flow, whether written in
the co-moving coordinate system or the laboratory coordinate coordinate system, will reflect
this, so that pseudoforces will be present. An overview of the link between the coordinates x
in the laboratory frame and X, in the co-moving frame is given in the appendix.

To derive the governing equations, we start with the nonlinear Boussinesq equations in two
dimensions, written in inertial space:

Du .

or = —Vp+oj, (1)
V-u=0, )
D

§+N2v:o. 3)

The Eulerian velocity is u = (u,v), the pressure p is normalized by a mean or representative
density value py, and j is a unit vector pointing up in the inertial frame. The density has been
decomposed as

p-m(l—g‘/y N (T) dT—glg>, )
0

so that o is the buoyancy. (The lower limit of the integral is arbitrary and corresponds to fixing
po = p»(0).) Here N is the buoyancy frequency, given by
2 g dp

VT 2
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This corresponds to a decomposition of the total pressure, p”, in the following form: p” =
pP(y) +p, where
dp®

(T:—g+/’N2(n)dns=—g+q(y)~ (6)
y 0

The function ¢(y) depends on the background stratification. For constant N2, it is given by
2
q(y) =N°y.
To transfer these equations into non-inertial space, we use the transformation laws derived
above in the appendix to obtain

D . .
%?unum+mwnxw+&ﬂnxmxm+%mmo
sinf
:_VOP+U< cosf )a (7)
Vo-up =0, (8)
D
F(:+N2{Sin9[MQ—Q(yO+Y0)+U0]+COS€[V0+Q(X0+XQ)+V0]}ZO, ©)]

where V) is the gradient operator in non-inertial space.

We now linearize, which corresponds to replacing convective derivatives by partial time
derivatives in the laboratory frame (denoted here by dots). We linearize in the laboratory frame,
assuming that u is the small quantity. Taking just the partial (not total) time derivative of (A.2)
when using the transformation laws gives the linearized set of equations

g+ 2 x (u()+2U())+QX (x0 + Xo) + Q2 x [€2 x (X0+X0)]+U0

sinf
V()p+0( cosf ), (10)
Vo -up =0, an
& -+ N*{sinf [ug — Q (yo + Yo) + Ug] +cos [vo + 2 (xo + Xo) + Vo] } =0 (12)

in the co-moving frame.
From the incompressibility condition, we can define a streamfunction, v, by
0 0
—izuo—Q(yo—f—Y())—i-Uo, iZVO—‘rQ(xO—I—Xo)—‘rVo. (13)
5‘y0 8X()
This corresponds physically to the streamfunction in inertial space (hence the absence of a 0
subscript). We note that the absolute vorticity in non-inertial space is

Co+ 29 = Oy vo — Oy ttg + 20 = V. (14)

The momentum equations become, in components,

itg — (v +2Vp) — Q()’O +Yy) — 0? (%o +Xo) + Uy = —px, +osing,  (15)
vo + Q (uo +2Up) + 0 (xo +Xo) — 0? (yo+Yo) + Vo = =Dy +ocosf. (16)
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Rewritten entirely in terms of the streamfunction, these take the form

by, — Wy, = —px, +0sind, (17)
1/.% — Qa)y, = —py, +ocosb. (18)
We hence obtain the vorticity equation
o +2Q = V3 = 0, cosf — gy, sinf = g, (19)
where the operator acting on o is just the x-derivative in the non-rotating frame:
0y = (cos8) Ox, — (sinf) Oy,. (20)
The buoyancy equation gives
G = —N?[1hy, c0s 0 — by, sinf] = —N*1),. 1)
Note that N? is a known function of y. Finally the pressure equation becomes
Vip=QViy +oy, (22)
where
0y = (sin®) Oy, + (cos ) Oy,. (23)
We are therefore left to solve the set of equations
Vi = o, (24)
&= —N"ty, (25)
Vip=QViy +o,. (26)

Now that we have the prognostic equations, we need boundary conditions. On the surface of
the object, the normal velocity in the co-moving frame must vanish, i.e. ug - ng = 0. (We define
n, to point out from the object into the fluid.) Now the normal is parallel to (dyg, —dxo)7, so
the boundary condition becomes

0 1o}
9 (ot Yo) — Up bedyo+ 4 2% 0 (w04 Xo) — Vo b (—dxo) =00 @7
Oyo Oxo
Integrating gives
1 _
b = Voxo — Uoyo + 59 (0 + Xo)? + (o + Yo)’ | = & 8)

on the boundary. This is the boundary condition one would obtain in inertial space by equating
the streamfunction to the streamfunction for the rigid-body velocity of the boundary. The term
1 is the average of the other terms on the boundary and is there to make sure that Poisson’s
equation for v is well-posed mathematically.

The boundary condition for pressure on the object comes from the momentum equations

and takes the form

Ny - Vop = no - ( Yy, + 2y, +osind > . 29)

— Uy, + Py, + o cosd

This can be simplified using the fact that ng- Vo =9, and ng - (9, , —9x,)” = d;, where n
and s are coordinates normal to and along the boundary, respectively. The pressure boundary
condition then becomes

Bup = Ot + QO + omg - ( j;‘gz > . (30)
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2.2. Equations of motion for the body

The position of the object is found by solving its equations of motion. The external forces
acting on the object are gravity and pressure, which can be decomposed into hydrostatic (F?)
and dynamic (FP) contributions. (Because pressure has been scaled by po, these forces are
actually per unit mass of the body in the following analysis. The forces in inertial and non-
inertial space are related through the rotation matrix R.). Of these, the dynamic pressure is
the only one which needs to be calculated using the spectral method presented below. The
drawback of this approach is that pseudo-forces appear in the equations of motion in non-
inertial space.
The general form of the equations of motion for the ellipse in non-inertial space is

Uy =g, +F5 +F) +F§, (31)
IN=GE+GY, (32)
where Uy = XO, Q= é, and / is the moment of inertia of the ellipse divided by its mass. Here

Fg represents the pseudo-forces due to the fact we are in a non-inertial reference frame, and
is given by

F§ = —2Q x Uy — 2 x Xo— 2 x (2 xX). (33)

The forces acting on the object that we can calculate a priori are its weight, and the buoy-
ancy force from the hydrostatic pressure, p?. However, both of these are simpler in the labor-

atory frame, so we first calculate the nondimensional weight g = —gj), and then g, = RTg.
Similarly, F5 = R'F”, where
1 1 [dpP 1
Ff=—— Bdf:—'—/—dA:' ——/ dA|, 34
A//’“ i3] ilg AACI()’) (34)

and A is the area of solid object. As noted previously the equilibrium level of the object is at
y=0. Then the first term in F? exactly cancels the weight of the object. If N? is constant, we
can compute the second term in F2 exactly:

1
ij/NZ [xosinf + yocosd + Y] dA = —N?Yj. (35)
A

This is just the usual expression for the restoring force of a small particle in a stratified fluid.
If N2 is not constant, F5 is still vertical but has a more complicated form.

The torque due to the background pressure gradient acting on the object is the same in both
inertial and non-inertial space (this is not necessarily true for three dimensions), and can be
written as

1 1
Gh =4 [pents=Xmat =~ [ =2 [-g+q0)aa
¢ A
1
= —Z/(xocosﬂ—yosiHG)q(xosinﬁ +yocosf +Y) dA. (36)
A

If N? is constant, the integral can be computed for an ellipse, and becomes
1
Gh = fgzv2 (a* — b*) sin26). 37)

It can be shown that G5 =0 if Q = 0 = 0. We can then see from equation (32) that 6 = k7 /2
are fixed points of the rotational motion, for any integer k (assuming the ellipse is released

6
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from rotational rest, or éi = 0, where the subscript i denotes the initial condition). Even values
of k correspond to stable fixed points, whereas odd values are unstable.
The dynamic force and torque are given by

1 1
Fg = fX/Pnodé and ng: *Z/PX() X mgde. (3%)

Since the pressure depends on both the streamfunction and buoyancy field, these will be cal-
culated numerically in the co-moving frame using spectral methods. These methods will be
much more efficient if we have a convenient way of expressing the boundary of our object.
For an ellipse, we use elliptical coordinates, as follows.

2.3. Elliptical coordinates

Up to this point, the results stated apply to any arbitrarily shaped object, except for (37). We
now specialize to the case of an ellipse, where we define the new variables p and v such that

X0 = acoshpcosv, Yo = asinh psinv. (39)

The boundary of the ellipse with major and minor axes of length 2a and 2b, respectively, is
given by 1 = o where

b
tanh p19 = —, and a= (a2 — bz) 12 . 40)
a

With these definitions, we have xo = acosv and yy = bsinv on the boundary. Derivatives can
be computed from

L T R sinhpcosy  coshpusiny @n
U Uy —coshysiny  sinhpcosv /)’

where the metric factor is i = a(sinh? ;1 4 sin*)'/2. The Laplacian becomes

-2
V2= % (02, + 32, = [+ (42)

sinhzlu—i—sin v

We also have on the ellipse 8, = h~'0,, and d; = h~'9,,, and

1
Oy =ah™*(d0, — dr0,) = d0,, — dr0,), 43
(d . 200) oz(sinhz,tH—sinzu)( 1% 200) “3)

1
0, = ah™?(d»0,, +d0,) = d0, +d9,), 44
g (423 19y) oz(sinhz,u+sin2u) (420, 19v) “44)

where

dy = sinh gcosv cosf — cosh psinvsiné, (45)
d, = coshusinv cos + sinh g cosvsin6. (46)

The dynamic force on the ellipse in the co-moving frame is given by

AJy

The dynamic torque is the same in both frames. Hence

1 1 27
F) = 77/ p(dyo, —dxo)" = f—/ p(bcosv,asiny)’ dv. 47
) mab J,

GP = l/P[JC()dJCo + yodyo] :—azi 2/27r17511121’(11/- (48)
A ‘% 2mwab 0
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The moment of inertia for an ellipse normalized by mass is I = (a> + b?) /4.

To find the forces and torque on the boundary we calculate the pressure from an elliptic
problem. However, the boundary condition for the pressure equation involves Uy, Vi and Q,
which are given by equations of motion that involve the pressure. The problem is not under-
determined, but these three variables need to be solved for as part of the procedure.

To do this we note that these variables appear linearly in the pressure boundary condition,
and that pressure obeys a linear equation. The resulting force is also linear in pressure, so we
write

FD = FoUp+FIQ+FS,  GP =Gy Uy + GO0+ GE. (49)

The linear relations are represented by the matrix Fy, the vectors Ff)), the row vector Gy and
the scalar G} (in three dimensions these are all matrices.) The terms F§ and G¥ correspond to
terms that are independent of the accelerations 2 or Uy, which will be calculated numerically.

The terms proportional to Uy, Vy, and Q) come from the first term in the pressure boundary
condition (30), namely the tangential derivative of the time derivative of the streamfunction
on the boundary. This time derivative is obtained from (28), yielding

. i 1.
Y = Voxo — Upyo + EQ [(xo +X0)* + (o + Yo) | +Q[(x0 +Xo) Uo + (o + Yo) Vo] — . (50)
Hence we decompose the time derivative of streamfunction and pressure according to
P = UgthV + VoV + p2 + 9k, pP = Upp? + Vop" + Qp® +pR. (51)

The functions z/fU , w.V and wQ are harmonic, as are p¥, p¥ and p*?. Hoever, we do not actually
need to solve for the v terms since all that matters is their values on the boundary. For the
boundary conditions we decompose (50) according to

) . ) 1
YU = —yp, YV = xo, P = 3 [(Xo +X0)* + (o + Yo)*| . (52)

And
3nPU = aﬂbU7 anPV = 8swva anpﬂ = as'(/)ﬂ- (53)

These fields allow us to compute FoUo + FgQ and Gy - Uy + G(?Q. In section 3.1 we discuss
how to obtain F§ and G~.

Explicitly, for the Uy problem we have YU = —yg = —bsinv on the boundary, so that
pY =Y = —bcosv there, along with decay at infinity. This gives p = be"*~* cosv. Finally
we compute

1 1 b
—f/pU“nodﬂz ——/pU“ (bcosu,asinu)sz/: ——ip. 54)
A wab a

The Vj problem gives the force —(a/b)j,. We also find that G, vanishes. Here iy and jo rep-
resent the directions of the semi-major and semi-minor axes (xo and yy), respectively. For the
Q2 problem we have 1 = 1(a? — b?) cos2v + Xoacos v + Ypbsinv on the boundary. Solving
the two elementary problems gives

b a r a* —b? :
Fy = (aYo, bX0> Gy = f%. (55)
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(a) (b)

Figure 1. (a) Horizontal (stable) position corresponding to even . (b) Vertical (unstable)
position corresponding to odd k.

We now know all but one of the terms on the right-hand side of the governing equations,
which become

22 2\
(i (a®+b%) + (aSab)> Q= —%NZ (a® — b*) sin260 + G§ (56)

(14 b/a) Uy = —N* (Xosinf + Yycosf)sind + 2QV,
+ %X + (1 +b/a) QYy + F§ -i (57)

(14 a/b) Vo = —N*(Xosinf + Yycosf) cos§ — 2QU,
+ Q%Yo — (1 +a/b) Xy +FR - j, (58)

where Fi and GR are found through the spectral method detailed in the next section. The
boundary conditions for pX are

ApR = Q0,1 +omg - ( sin0 ) . (59)

cosf

Once the forces and hence accelerations are computed, we time step the equations X, and
hence the motion in the laboratory frame from the relation X = RXj (and similarly for U).

2.4. Simple cases

Before moving on to the numerical implementation, we analyze some simple cases. The first
is the case examined by Larsen (1969) where a = b, so that the ellipse is a circular cylinder.
The vertical displacement in this case is Y(¢) = Y;Jo(Nt), where ¥; is the initial vertical dis-
placement, and J is the zeroth-order Bessel function. The horizontal and rotational motions
in this case disappear because of the symmetry of the problem.

The second case is when the initial inclination of the ellipse is ; = 0 or §; = /2, and there
is no initial angular velocity. Details of the analysis required to obtain (60) are given in Hurlen
(20006), section II.1.A. These values of 6; correspond to fixed points of the rotational motion,
as described in the previous section (see figure 1). In this case, the horizontal motion is again
0, and the vertical motion is described by

X /A J
Y(t) = Y;Jo (Nt) + 2Y; <> Jo; (Nr) (60)
; A+1) 77
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5 10 15 20 25 30
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Figure 2. Vertical motion of the horizontal (6 = 0) ellipse for various values of the aspect
ratio A = a/b. (The dashed line for A = 1 corresponds to the solution ¥ = Jo(Nt)).

where A = a/b for even k and A = b/a for odd k, with 6; = km /2.

For arbitrary A, some interesting behavior can be seen in figure 2. As A — 0 the solution
tends to a sinusoid, and as A — oo the solution tends to Y =Y}, corresponding to the limit
of horizontal and vertical flat plates. When A = 1 the solution reduces to the given Bessel
function solution for the case a = b, as expected. There are other consequences of increasing
A. For instance, when A > 2.5, the first minimum occurs above the neutrally buoyant position
Y =0. When A > 5.1, the first minimum is lost to an inflection point. In this case, it can be
seen that the second minimum also occurs above the neutrally buoyant position. Indeed as A
increases an increasing number of minima occur above Y =0, and an increasing number of
minima/maxima are lost to inflection points.

These curves all tend to the solution ¥ = (Y; /A)Jo(Nt) for large times. This behavior is to
be expected, since

JK(Z)M/:ZCOSG—’ZT—Z) 61)

when z > 1. So, for large Nt, equation (60) becomes

~ 2 Ny

The final case to be analyzed is for the rotational motion, when 6 is small. Assuming 6 < 1,
and no initial angular velocity, the solution for this case (to first order in 6) is

20; (a?
0 ~ 6;Jo (Nt) + BiJ; (N1) (63)
o(N) wab a2—|—b22z L
20; (— 1) (A — A
— 0,0 (N?) + By (N¥), (64)
o (M) T (A+ AT Z 2j

j=1
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0.1 T

0.08

0.06

0.04

0.02

-0.02

-0.04 R

-0.06 4

-0.08 . . .
0 5 10 15 20 25 30

Nt

Figure 3. Rotational motion of the ellipse for small initial inclination (6; < 1), for vari-
ous values of the aspect ratio A = a/b. Dotted: A = 1.25, dashed: A = 2.5, dash-dot:
A =5, and solid: A = 12. Here 0; = 5° ~ 0.09 radians.

where
/2 cos® ¢cos (2j ¢
B = / — (sz)f . do. (65)
0 (ZZ;ZZ — sin d)) =+ 402;2(5172-‘,-172)25in ¢COSZ¢

We show the results of calculating the B; numerically in figure 3. The rotational motion for
small inclination shares many of the features of the vertical motion. When A 2 5, the first
minimum occurs above § = 0. We see that this occurs for subsequent minima as A is increased,
as well as losing minima to inflection points (for A > 12 in this case). However, there are also
some new features. For instance, now both the amplitude and frequency of oscillation depend
upon A. As A — 1, the frequency goes to zero, along with the decay in amplitude. (This is to
be expected, since at A = 1 we would expect no motion whatsoever due to symmetry). As A
is increased beyond 10, it becomes a bit more difficult to determine general trends due to the
increased decay rate.

3. Numerical calculations

3.1 Implementation

We now need to calculate the force, F§. This is basically a modified version of the pressure
force, since some of the pressure force has been calculated near the end of section 2.3. We
need to solve the fluid equations as given in section 2 to find the pressure on the boundary of
the object, removing the previously calculated contributions from Uy, Vj, and Q.

We use spectral methods in elliptic coordinates that move with the body. The advantage
of this is that the boundary is invariant in time. Further information on spectral methods can
be found in Boyd (2000), Trefethen (2000) and Weideman and Reddy (2000). We will use
a pseudospectral (or collocation) method. The focus of this paper is not on the numerical
scheme used to solve the equations, but rather the solutions themselves, and so we only briefly
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describe the procedure used. Most of the method implemented in this work is based on in
Trefethen (2000).

We began by setting up differentiation matrices in the i and v variables. For the p direction,
since it is a semi-infinite domain and we desire the variables of interest to decay at infinity,
we use a Laguerre interpolant. The variable x begins at yi9 = tanh ™" (b/a) as opposed to zero,
so we add g to the polynomial interpolant. For the v direction, which is periodic, a Fourier
matrix is the natural choice.

The scale factors h = h,, = h,, lead to a diagonal matrix, with the diagonal entries corres-
ponding to the values of & as given in section 2. The other differentiation matrices were then
calculated using the basic differentiation matrices. For instance, the Laplacian is calculated
using the formula

L=+ (D}, +D}) (66)

where H is the diagonal matrix mentioned above and D’ represents the second derivative matrix
with respect to the subscripted variable. Similar techniques were used to set up both D, and
D, (from equation (44)).

The boundary conditions are imposed by replacing the appropriate rows of the differenti-
ation matrix by either the identity (for Dirichlet conditions) or by a row from another differ-
entiation matrix. For example, take the equation for the pressure (59). In elliptic coordinates,
this leads to

9,p" = Q0% + o (bcosvsinf + asinvcosf). (67)
This becomes in matrix notation
Lp® = Q[(—asinv + Xo) Uy + (bcosv + Yy) Vo] + QLy) + Dyo = &, (68)

To implement the boundary condition, we replace the boundary rows of the matrix L by the
boundary rows in the matrix D,,, the differentiation matrix representing 9,,, and replace the
boundary entries of the vector £, by the specified boundary condition. In this case, that is the
value of QD 1) + o (bcosvsing + asinvcosd) on the boundary.

At each time step, the program first calculates p®. Once this is done, the force and torque
components from the pressure are calculated, along with the other moments, GE, GR, and fo.
From this, the angular acceleration, Q, can be calculated. Then the other forces, F(?, Fg, Fo,
and the pseudo-forces F§ are calculated to find the accelerations in the (xo,yo) directions,
given by X,. The program then calculates 4 from the Poisson equation (24) and the boundary
condition (50), along with ¢ from (25) which requires no boundary condition. A time step is
then taken to obtain 1/ and o. Once this is done, the motion and velocity of the ellipse in the
co-moving frame, Xy and Uy, are found by time stepping. The motion of the ellipse in the
laboratory frame (X) is then calculated at each instant in time using the relation X = RXj (and
similarly for the velocity). The time stepping is carried out using a built-in MATLAB ODE
solver, ode15s. A solver for stiff problems helps since there is a time scale associated with v,
while the pressure equation is elliptic so that information is propagated immediately

To get an indication of the error involved in this numerical scheme, we examine the case
0; = 0. We know the exact solution for Y in this particular case, and 6 remains 0. Hence we
obtain an indication of the error associated with both vertical and rotational motions. We ana-
lyzed the results for various values of m and n, the degrees of the polynomial interpolant in
the © and v variables respectively. It was found that an appropriate value of n needs to be
taken to make sure that the solution is qualitatively correct, and then increasing m increased
the accuracy.
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In the experiments of Larsen (1969), with a large sphere (i.e. large Stokes number) and
small initial displacement, the oscillations of the sphere were effectively finished after about
ten buoyancy periods. Hence we examine solutions up to Nt = 30. For situations with small
Stokes number and large initial displacements so that viscosity is important, which is not the
relevant parameter regime here, the experiments of Biré ez al (2008) indicated oscillations over
a larger number of periods.

3.2. Vertical motion

For all the numerical results, the program was set to the following conditions. It was found that
m =16 and n = 48 provided adequate precision over the time range of interest. We also set the
buoyancy frequency N = 1, with ¥; = b, and X; = 0 (to match the majority of experiments).
In all the figures the data for 6 is given in radians, and the X and Y results are normalized by
Y; (or equivalently b).

We began by analyzing the case of a circular cylinder (a =b) to verify the results. The
numerics for this case follow what is given above, except we need to use a different coordinate
system, since the elliptic system is singular when a = b. We use the coordinates

x=ae"cosv, y = ae’ sind. (69)
In this system, r acts like p and ¥ like v. The derivatives are
b, = e_’cosﬂar B e_’sinﬁaﬁ’ 9, = e"sim?ar L e_’cosﬂaﬁ. (70)
a a ’ a a

The scale factors are again equal and given by h = h, = hy = ae’, so that the Laplacian is
given by

V2 = (ae") 7 (92 +32y). (71)
The boundary conditions become
1/}: Vacos, p,:d}g +a 'osind. (72)

We also need to calculate the pressure integrals in equation (38) numerically. This is done
by summing the contribution at each boundary point using

—i~/pdS%Zpacos19A19, —j-/pdS%Zpasim?Aﬁ. (73)
C C

(This is the trapezoidal or midpoint rule, which is exponentially accurate for periodic integ-
rands.) The integrated pressure in the horizontal direction should be zero by symmetry with
no horizontal motion. This is a useful test to make sure the program functions correctly.

The solution produced here compares very well with the analytic solution, as shown in
figure 4(a). The error between the two solutions had a very similar form and amplitude to that of
the following case, shown in figure 4(b), in which there is no rotational motion, and §; = km /2.
We determined analytical solutions in these cases in the previous section, and comparison
between those and the numerical solution shows good agreement, as can be seen in figure 4.
The two solutions differ by no more than 4.5 x 1073 over the entire interval.

3.3. Energy budget

A useful check on the numerical procedure is to examine the energy budget of the system.
We outline this budget for the case of a cylinder, in which case rotation does not feature. It is
easiest to work in an inertial frame when dealing with the energy (which is frame dependent).

13
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Figure 4. (a) Comparison between the numeric (solid) and analytic (dashed) solutions
for 6; = 7 /2 (large amplitude solution) and 6; = 7 (smaller amplitude). The lines are
indistinguishable. (b) Absolute error between the theoretical and numerical solutions in
each case. Solid: §; = 7, dashed: 6; = 7/2.

The total energy of the cylinder is

E, — % (70 + 7 d®N*Y?) (74)
made up of a kinetic and a potential term, while the total energy of the fluid is
12 02
Ef= — | dA 75
= [ (WP ) aa 75)

where the integral is over the fluid domain. The transfer of energy from solid to fluid can be
written as

AE{:m2U-FD:—/pbn-U= —AE;:/u-VpdAdﬁ. (76)
A

The two integrals are equal by the divergence theorem, but can be computed separately for the
cylinder and fluid quantities respectively as a check on the numerics. Since the 9 discretization
is equispaced in the spectral code, the first integral reduces to a sum over boundary points. To
compute integrals over the fluid region numerically, consider the integral |’ n x> dA, for some
general function . The first step is to change to the coordinates used in the spectral method,
that is to the variables r and ¥J). This is done using the scale factors 7 = ae’, so that

21 Tmax
/ x> dA = / / 2h? drdd = / / a*x*e* drdy. (77)
A 0 0

The discretization in 4 is trivial since it simply becomes a sum over each point,

2T prmg n Fima
max max 2
/ / a\*e¥drdd) ~ Z/ a* (x (r,0))? e¥drl. (78)
o Jo =170 n

For the radial discretization, we invert the appropriate differentiation matrices.

With the resolution used, the energy starts to diverge around Nt =22 (see figure 5). This
can be removed by increasing the resolution. The implication is that computation of the fluid
properties is more sensitive to the numerical resolution than the motion of the solid cylinder.
Calculating the energy balance of the system hence gives an indication of when it is necessary
to increase the resolution.
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Figure 5. Left: the solid line is the energy transferred from the cylinder (AE)} the

dashed line is the negative of the energy transferred from the fluid (AE){:V, and the dotted
line is energy passing through the boundary (from the Reynolds transport terms), and
should be equal to the time derivative of the total energy curve shown on the right. Right:
total energy. The dotted line is the total energy of the system, dashed lines are kinetic

energies, while solid lines are potential energies. The thick lines correspond to the fluid,
while the thin lines are for the solid cylinder.

The total energy of the solid decreases in time, while that of the fluid initially increases,
then levels off as expected. Finally, the total energy of the system remains relatively constant,
but does decrease slightly in time, due to the radiation of energy through the outer boundary.

Extending this analysis to the case of an ellipse is straightforward for the most part. The
integrals have different scale factors, and the integrals themselves now go around the boundary
of an ellipse. One also needs account for the rotational energy. These extra terms come from
the rotational equation, and are given by a kinetic term and a potential term,

1 1
Ej = 5 IO and E,= §N2 (a* — b*) sin 0. (79)

In addition there is also an amount of this energy which is transferred to the fluid, computed
via the integral

(AE)" = / QGPdA. (80)

3.4. Results

After these checks we examine motion with varying 6. We begin with small initial inclinations
to compare to the previously determined approximate solution for this case. This approxima-
tion is very close up to 6; = 5° and fairly close up to 6; = 10°. The results shown in figure 3,
are indistinguishable when 0; = 5°.

Typical results for intermediate values of 6; and A are shown in figure 6. Both 6 and Y are
decaying oscillatory functions. Results for larger values of these two variables are shown in
figure 7.

We note the following behaviors of the falling ellipse. First, as in figures 2 and 3, the ellipse
does not fall (or rotate as the case may be) below the neutrally buoyant position on the first cycle
for large enough values of A. Further increasing A results in this being more prominent. For
cases when the ellipse was inclined initially, the motion is more complicated. However, we did

15
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Figure 6. Numerical results for (a) A =1.5 and §; = 7/6, (b) A=1.5 and 6; = 7/3,
(c) A=3and 0; =7/6,(d) A =3 and 6; = /3. Dashed line is 6, solid line is ¥, and
dotted line is X.
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Figure 7. Numerical results for §; = 75°. (a) A = 10, (b) A = 1.25. Dashed line is 6,
solid line is Y, and dotted line is X.

not observe a tumbling regime. Presumably such motions depends on nonlinear interactions,
which are not present in the current formulation.

We examine the parameter space in figure 8. It can be seen in figure 8(a) that there is almost
a linear relation between A and the time at which the ellipse first drops below its neutrally
buoyant position. This is most obvious at larger values of A. At smaller values, there are dis-
crete jumps, which amount to a local minimum being above the plane ¥ = 0. This occurs for
the larger values as well, but in these cases only one data point lies within each division, since
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Figure 8. Examination of the parameter space of the numerical results. (a) Time at which
the solution of the vertical motion first becomes negative with ; = 0, as a function of
A. This corresponds to the first instant at which the ellipse drops below its neutrally
buoyant position, as in figure 2. (b) Time at which the solution of the rotational motion
first becomes negative as a function of A, for small initial inclination as in figure 3. (c)
Time at which the vertical motion first becomes negative as a function of A for various
values of 0;. (d) Maximum deviation of the horizontal motion of the ellipse, that is, the
maximum value of X as a function of A for various values of 6;.

the values of A which were analyzed were clustered near the smaller values. These jumps occur
at roughly A =~ 2.5,3.9,5.1,6.4,..., as can be seen in figure 2. Similar behaviour is seen in
(2.17) and figures 2(a), (c), (e), (g) and (i) of Voisin (2024a). In figure 8(b), we can see similar
behaviour for the rotational motion, although there are some differences. For instance, there
are fewer jumps over the same interval of A, with them now occurring at A =~ 5.1,7.7,10.3,....
Another difference is in the behaviour at smaller values of A. Whereas the time remained rel-
atively constant over the intervals for the vertical motion, it can be seen that this is not the
case for the rotational motion, most noticeably in the first interval when A < 5. This, however,
is expected as it is clear from figure 3 that the frequency of oscillation is dependent upon A,
which was not the case in figure 2.

The real challenge of this analysis comes when the initial inclination angle is not restricted
to be small. This is the case in parts (c) and (d) of figure 8. The first of these shows the first
time at which the ellipse falls below the neutrally buoyant position as a function of both A and
0;. It can be seen that increasing 6; beyond 50° basically assures that the ellipse will fall below
its neutrally buoyant position in its first cycle. The type of motions encountered in these cases
is similar to that shown in figure 7(a). It is also interesting to note that these times decrease
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Figure 9. Numerical results for A = 8 and 6; = 30°. Dashed line is 6, solid line is ¥,
and dotted line is X/10 (renormalized for clarity).

as A is increased for certain values of 6;, most notably 20° and 30°. To get a better idea as to
what exactly is happening in these cases, the results for A = 8 and 6; = 30 degrees are plotted
in figure 9 (where the magnitude of the horizontal motion has been decreased by a factor of
10 to better show the other motions).

It seems reasonable to expect the maximum horizontal deviations to come at intermediate
values of 6;, and large values of A. Figure 8(d) reinforces this notion, although there are some
interesting behaviors present. First of all, we can see that there is no horizontal motion for the
cases #; = 0 or 90 degrees, as expected. Also, for smaller values of A, higher values of 6; (70
and 80 degrees) produce larger values of X,x. As A is increased (between 2 and 6), we see
the intermediate value of 6; (40 and 50 degrees) produce the largest deviations, as postulated.
However, as A is increased further, §; = 30 and then 20 degrees begin to produce the largest
horizontal motion. The larger values of #; begin to drop off as A is increased, and that they
even begin to oscillate.

4. Conclusion

The motion of an ellipse in a stratified fluid was determined analytically for a variety of orient-
ations. In addition numerical results were obtained using a spectral method in the cases where
it was not possible to determine analytic solutions. It was found that this method produced
accurate results when compared to analytic solutions.

Hurlen (2006) presented laboratory experiments that were carried out to compare to the
analytic results. These consist of vertically displacing an elliptic cylinder from its neutrally
buoyant position in salt stratified water, holding it fixed with its major axis inclined at an angle
with respect to the horizontal while the fluid comes to rest, and then releasing it so that it can
oscillate and rotate freely as it falls. The subsequent motion was recorded, from which data
about the motion was extracted.
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These experiments yielded encouraging results as the general trends agreed, but the motion
in the experiments was damped in comparison to the theory. The experimental results oscillate
and decay quicker than their numerical counterparts. The discrepancy is presumably in our
linear and inviscid assumptions, as well as in the finite size of the tank, but was not quantified.
New experiments with more sophisticated equipment would help in understanding the motion
and comparing it to the present results.

Unlike the case of translating objects, here the body has no imposed velocity, and will emit
waves as it starts to fall, suggesting that the influence of wave drag should dominate over form
drag. In the present formulation, the linear (added mass) component of form draft is present,
but nonlinear effects are not included. Comparisons to experiments or simulations would be
needed to assess their size.

One way to quantify the inaccuracies would be to add viscosity and non-linearity to the
present analysis. With the current setup this is possible conceptually, but difficult in practice.
Viscosity and density diffusion lead to extra terms on the right-hand side of the field equations,
giving

V3 = oy + 4V, (81)
6 =—N*)+ kV?0, (82)
Vip=QViy +o,, (83)

where v and k represent the viscosity and diffusivity respectively. The first difficulty is that
the no-slip boundary condition increases the order of the differential equations, and the exact
results for buoyancy in § 2 come from simple solutions of the Laplace’s equation, which is
no longer appropriate. Voisin (2024a) developed a model in which the viscous damping of the
oscillations is caused by viscous dissipation in the oscillatory boundary layer, which compared
favorably with experiments in the literature. Defining a Stokes number St = Na? /v, the model
is valid for St < 100 say, with viscosity negligible for Sz > 1000 say.

Adding in non-linear terms makes the problem much more difficult. Such an effort enters
the realm of DNS, as in Torres et al (2000), but also including coupling beween fluid and
solid, for example using an Immersed Boundary Method approach, e.g. as applied by More
et al (2021) to the free fall of a spheroid.

Our results provide a start to understanding the motion of asymmetric objects falling in
stratified fluids. Possible applications include processes ranging from ocean sediments and
seed dispersal to vehicle dynamics. With such considerations in mind, we leave more accurate
experiments and DNS for future work
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Appendix. Relation between laboratory and co-moving coordinates

Denote the coordinates in the laboratory frame by x = (x,y)” and in the co-moving frame by
X0 = (x0,0)”. The two are related by

x=R(f)xo+X(r) =R() [X0+Xo(l)], (A.1)
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Figure A1. Relationship between 6 and axes (x,y) (laboratory frame) and (xo,yo) (co-
moving frame).

where R(¢) is an orthogonal rotation matrix such that R"R = RR” = |, where | is the identity
matrix. The vector X(¢) is the position vector of the centre of the co-moving frame in the
laboratory frame, while Xo(7) is the same vector in the co-moving frame. The two are related
by X(7) = R(#)X(?). The transformation law (A.1) is appropriate for the motion of a rigid
body.

Now differentiate (A.1) with respect to time, considering all terms as functions of time. This
corresponds to calculating the Lagrangian velocity and subsequently acceleration of a particle.
Now there is a distinction between velocity with respect to inertial space in the laboratory
frame, u = Dx /D, and velocity with respect to non-inertial space in the co-moving frame,
uy = Dx(/Dt. We have

u= R[llo-i-Uo-‘rO(Xo +Xo>], (A2)

where O = R”R is the angular velocity matrix, and R = RR’R = RO and X, = Uj. Since R

is orthogonal, we have R'R + RTR = 0, which shows that O is antisymmetric and hence acts
as a cross product: Oa = €2 x a, where € is the angular velocity vector (given by € = 6k in
two dimensions), for an arbitrary vector a.

The acceleration comes from

D D . .
Eltl =R |:Dut0 +Up+20 <UO+U0) +O(X0 +Xo> +02 (X0+X0):| . (A3

Here we can identify the standard translational, Coriolis, transverse, and centripetal terms asso-
ciated with accelerated coordinate systems. In two dimensions we have

R<c0s9 —sin9>7 Oé((l) —é), O =%, (A4

sind cosf

where 0 is the angle that the co-moving frame makes with the inertial frame (see figure A1). For
further reference we have the operator V given by Vo = (0y,,9,,)" = R'V = R"(9,,8,)".
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