Check for
Updates

Deciding Differential Privacy of Online Algorithms with
Multiple Variables

Rohit Chadha

chadhar@missouri.edu
University of Missouri
Columbia, Missouri, USA

Mahesh Viswanathan
vmahesh@illinois.edu
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

ABSTRACT

We consider the problem of checking the differential privacy of
online randomized algorithms that process a stream of inputs and
produce outputs corresponding to each input. This paper general-
izes an automaton model called DiP automata [10] to describe such
algorithms by allowing multiple real-valued storage variables. A
DiP automaton is a parametric automaton whose behavior depends
on the privacy budget €. An automaton A will be said to be differ-
entially private if, for some D, the automaton is De-differentially
private for all values of € > 0. We identify a precise characterization
of the class of all differentially private DiP automata. We show that
the problem of determining if a given DiP automaton belongs to this
class is PSPACE-complete. Our PSPACE algorithm also computes a
value for D when the given automaton is differentially private. The
algorithm has been implemented, and experiments demonstrating
its effectiveness are presented.

CCS CONCEPTS

« Security and privacy — Logic and verification; Formal se-
curity models.

KEYWORDS

Differential Privacy, Verification, Automata, Decision procedure

ACM Reference Format:

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal.
2023. Deciding Differential Privacy of Online Algorithms with Multiple
Variables. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS °23), November 26-30, 2023, Copenhagen,
Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3576915.3623170

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623170

1761

A. Prasad Sistla
sistla@uic.edu
University of Illinois at Chicago
Chicago, Illinois, USA

Bishnu Bhusal
bhusalb@mail. missouri.edu
University of Missouri
Columbia, Missouri, USA

1 INTRODUCTION

Differential privacy [18, 20] is a popular requirement that is de-
manded of algortihms that analyze data containing sensitive per-
sonal information of individuals. A data analysis that meets the high
bar of differential privacy guarantees the privacy of individuals.
However, ensuring differential privacy is difficult, subtle and error-
prone — relatively minor tweaks to correct algorithms can lead to
the loss of privacy as demonstrated by the examples in [19, 26].
Though the problem of checking the differential privacy of a pro-
gram is in general undecidable [2], the importance of the problem
has led to extensive investigation in the last 15 years; see Section 8
for a short overview of work in this space.

In this paper, we look at the problem of verifying the differen-
tial privacy of online algorithms. An online algorithm is one that
processes an unbounded (but finite) stream of inputs, samples from
distributions, and produces outputs in response to the inputs. The
stream of inputs is a sequence of real numbers that are answers to
queries to a database. A novel approach using automata to describe
and study such algorithms was proposed in [10]. It was shown
that checking differential privacy of algorithms described by such
automaton is in linear time. Remarkably the verification proce-
dure in [10] checks some properties of the underlying graph of the
automaton and does not explicitly reason about probabilities. How-
ever, the automaton model in [10] has one serious limitation — only
one storage variable is available, and hence only one previously
sampled value can be remembered.

Contributions. We extend the line of research initiated in [10] by
generalizing the automata model in [10] to allow for multiple real-
valued storage variables. A DiP automaton (DiPA for short) ! is a
parametric automaton (depending on privacy budget €) with finitely
many control states that process an unbounded (but finite) stream
of real values that represent answers to queries asked of a database.
A DiPA can sample real values from Laplace distributions whose
mean may depend on the value read, and DiPA has finitely many
real-valued variables in which they can store values they sample
in each step (which in turn depend on the input read). Transitions
depend on the current control state, the values stored, and the input
read, which influences the values sampled. In response to an input,

!Even though the automata model in this paper has the same name as the one in [10],
the generalization significantly extends the expressive power of the model.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

they produce an output that is either a symbol from a finite set or
a real number.

We show that, even in the case of automata with multiple storage
variables, the problem of determining whether a given DiPA A is
De-differentially private for some constant ® > 0 (independent of
€) and all € > 0, can be reduced to checking graph-theoretic condi-
tions. These conditions demand the absence of certain paths, cycles,
and interactions among them. However, unlike the single variable
automata case [10], these paths and cycles cannot be captured only
by considering the underlying graph of the automata. Instead, we
use an auxiliary graph to capture these undesirable paths and cy-
cles precisely. This is a non-trivial extension of [10]; for a more
detailed comparison with [10], see Section 8. An automaton A is
said to be well-formed if it does not have any of these undesirable
paths or cycles. We show that a well-formed DiPA is differentially
private; thus, well-formedness is a sufficient condition to guarantee
privacy. Conversely, we show that if additionally, for every state
of A, the transitions of A from that state have distinct outputs
(called output distinct), then well-formedness is also necessary to
guarantee differential privacy. In other words, a DiPA A, having
distinct outputs on transitions from any state, that is differentially
private is well-formed. These proofs of necessity and sufficiency
require novel ideas that are a significant extension of the techniques
presented in [10]; once again see Section 8 for more details.

Next, we show that there is a PSPACE algorithm that checks if
a DiPA A is well-formed. This algorithm additionally computes
a value for D that shows that A is De-differentially private for
all e. We also show that checking differential privacy of output-
distinct DiPA is PSPACE-hard, thus establishing the optimality of
our verification algorithm.

We have implemented our algorithm in a tool called DiPAut. Our
experiments show that the approach scales and that our algorithm
produces known estimates for D. It successfully proves differential
privacy and identifies violations of privacy in various examples.
The tool is evaluated for scalability with respect to both the number
of states and variables. Despite the PSPACE-hardness, the tool is
able to perform well in our experiments. We compare DiPAut with
CheckDP [29], a state-of-the-art tool to check differential privacy.
DiPAut significantly outperforms CheckDP in all our experiments.
The tool DiPAut is available to download at [7].

Organization. The rest of the paper is organized as follows. Sec-
tion 2 introduces basic notation and definitions used in the paper.
Our model of DiP automaton extended with multiple variables
is introduced in Section 3. Section 4 defines well-formed DiPA,
which is a (almost) precise characterization of differentially private
automata. We show that well-formed automata are differentially
private in Section 5; and show that checking well-formedness is
PSPACE-complete. Section 6 shows that differentially private au-
tomata that have distinct outputs on transitions are well-formed.
PSPACE-hardness of checking differential privacy is also presented
in this section. Experimental results are presented in Section 7.
Closely related work is discussed in Section 8. We discuss on the
restrictions placed on the automata and the adjacency relations
used in the paper. Finally we present our conclusions (Section 10).

For lack of space reasons, some proofs are omitted and can be
found in [11].

1762

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

2 PRELIMINARIES

The definitions and notations in this section are borrowed from [10].
Let N, Z,Q, QZO, R,R>? denote the set of natural numbers, inte-
gers, rational numbers, non-negative rationals, real numbers, and
positive real numbers, respectively. In addition, Re, will denote the
set R U {—00, 00}, where —oo is the smallest and oo is the largest
element in Re. For a real number x € R, |x| denotes its absolute
value.

Sequences. For a set X, 2* denotes the set of all finite se-
quences/strings over X. We use A to denote the empty se-
quence/string over 3. For two sequences/strings p,o € X%, we
use their juxtaposition po to indicate the sequence/string obtained
by concatenating them in order. Consider o = apa; - - - ap—1 € =*
(where a; € X). We use |o| to denote its length n and use o[i] to
denote its ith symbol a;. The substring a;a;+1 - - - aj—1 from posi-
tion i (inclusive) to j (not inclusive) will be denoted as o[i : j]; if
j < ithen ofi : j] = A. Thus, o[0 : |o|] = 0. The suffix starting
at position j will be denoted as o[j :], i.e., o[j :] = oj : |o|]. For
any partial function f : A < B, where A, B are some sets, we let
dom(f) be the set of x € A such that f(x) is defined.

Laplace Distribution. Differential privacy mechanisms often add
noise by sampling values from the Laplace distribution. The distri-
bution, denoted Lap(k,), is parameterized by two values: k > 0
which is called the scaling parameter, and p which is the mean. The
probability density function of Lap(k,), denoted fi ,, is given by

fieu(x) = %e‘klx—/”l, where e is the Euler constant.

Differential Privacy. Differential privacy [18] is a framework that
enables statistical analysis of databases containing sensitive, per-
sonal information of individuals while ensuring that the privacy of
individuals is not adversely affected by the results of the analysis.
In the differential privacy framework, a randomized algorithm, M,
called the differential privacy mechanism, mediates the interaction
between a (possibly dishonest) data analyst asking queries and a
database D responding with answers. Queries are deterministic
functions and typically include aggregate questions about the data,
like the mean etc. In response to such a sequence of queries, M
responds with a series of answers computed using the actual an-
swers from the database and random sampling, resulting in “noisy”
answers. Thus, M provides privacy at the cost of accuracy. Typically,
M’s noisy response depends on a privacy budget € > 0.
Differential privacy captures the privacy guarantees for individ-
uals whose information is in the database D. For an individual i, let
D\{i} denote the database where i’s information has been removed.
A secure mechanism M ensures that for any individual i in D, and
any sequence of possible outputs o, the probability that M outputs
0 on a sequence of queries is approximately the same whether the
interaction is with the database D or with D \ {i}. To capture this
definition formally, we need to characterize the inputs on which
M is required to behave similarly. Inputs to a differential privacy
mechanism can be seen as answers from the database to a sequence
of queries asked by the data analyst. If queries are aggregate queries,
then answers to g on D and D \ {i} (for individual i) are likely to

Deciding Differential Privacy of Online Algorithms with Multiple Variables

be away by at most 1. 2 This intuition leads to the following often-
used definition of adjacency that characterizes inputs on which the
differential privacy mechanism M is expected to behave similarly;
for example this definition is used in SVT [1, 17, 19, 20, 26] and
NumericSparse [20].> We assume that at each step, the differential
privacy mechanism either gets a real number as input (answer to
an aggregate query) or is asked to respond without an answer from
the database which is encoded as 7.

Definition 1. Sequences p, o € (RU{r})" are adjacent if |p| = ||
and for each i < |p| (a) p[i] € Riff o[i] € R and (b) if p[i] € R then
Iplil - ofil] < 1.

We are now ready to formally define the notion of privacy which
uses Definition 1. In response to a sequence of inputs, a differential
privacy mechanism produces a sequence of outputs from the set
(say) I'. Since a differential privacy mechanism M is a randomized
algorithm, it will induce a probability distribution on I'*.

Definition 2 (e-differential privacy). A randomized algorithm M
with input in (RU{r})* and output in I'* is said to be e-differentially
private if for all measurable sets S C I'* and adjacent p,c € R*
(Definition 1),

Prob[M(p) € S] < e Prob[M(c) € S].

Input: g[1 : N]
Output: out[1: N]

low « Lap(%,Ty)
high « Lap(§,Ty)
fori < 1to N do
o Lap(§.qli)
if (r = low) A (r < high) then
| out[i] « L
else if (r > low) A (r > high) then
‘ outli] « T
exit
else if (r < low) A (r < high) then
‘ outli] « T»
exit
end

end

Algorithm 1: Range query algorithm

Example 1. Consider the following problem. Given a sequence of
answers to queries (array g[1 : N]) and an interval [T¢, Ty,) given
by thresholds Ty and Ty,, determine the first time a query answer
lies outside this interval; indicate (through the output) whether
the query answer is > T, or < Ty at this point. A differentially
private algorithm to solve this problem is shown as Algorithm 1.
The algorithm starts by adding noise to both Ty and T;, to get a
perturbed interval defined by numbers low and high. After that the

2The difference in general can be bounded by a constant A.

3Please see the discussion of SVT on pages 56 and 57 of [20] and its description on
pages 58, 62, and 64. For simplicity, it is assumed that these queries are 1-sensitive.
So, by considering SVT as an algorithm that works directly on the sequence of the
outputs of queries, we get naturally the adjacency relation used here.

1763

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

algorithm perturbs each query answer and stores the result in r, and
then checks if r lies between low and high. If it does, the algorithm
outputs L and processes the next query answer. Otherwise, if r is
larger than both low and high it outputs T1 and stops. On the other
hand, if r is less than both low and high then it outputs T, and
halts. The algorithm’s behavior depends on the value of €. It can be
shown that for each value of ¢, the algorithm for that value of ¢ is
e-differentially private.

3 DIPA

DiP (Differentially Private) automata (DiPAs for short) are an
automata-based model introduced in [10] to describe some dif-
ferential privacy mechanisms. They process an input string o €
(R U {r})* by sampling values from the Laplace distribution, using
real variables to store information during the computation, and
producing a sequence of outputs. The model introduced in [10] had
only one storage variable. In this paper, we generalize this model
naturally to allow multiple real-valued storage variables. However,
as discussed in Section 8, both the characterization of differentially
private algorithms described by them and the proofs of decidability
are a non-trivial extension of the single variable model.

3.1 Syntax

A DiP automaton is a parametric automaton whose behavior de-
pends on a parameter € (the privacy budget). It has finitely many
control states and finitely many real-valued variables x1, X2, . . . Xg
that are used to store information during the computation. At each
step, the automaton freshly samples two real values from Laplace
distributions whose parameters depend on €, and these sampled val-
ues are stored in the (additional) variables insample and insample’.
Given an input o € (RU {r})*, a DiPA does the following in each
step.

(1) Two values are drawn from the distributions Lap(de, p)
and Lap(d’e, p’) and stored in the variables insample and
insample’, respectively. The scaling factors d, d’ and means
u, 1’ of these distributions depend on the current state.

The states of the automaton are partitioned into input states
and non-input states. At a non-input state, the automaton
expects to read 7 from the input. On the other hand, at an
input state, it expects to read a real number, say a, and it
updates insample and insample’ by adding a to them. The
properties of the Laplacian distribution imply that the dis-
tribution of insample + a (insample’ + a) is the same as the
distribution of Lap(de, p + a) (Lap(de, pi” + a) respectively).
A transition changes the control state and outputs a value.
The value output could either be a symbol from a finite set
or one of the two real numbers insample and insample’ that
are sampled in this step. At an input state, the transition is
guarded by a Boolean condition that depends on the result
of comparing the sampled value insample with the stored
values x; (1 < i < k). It is possible that for certain values of
xi (1 < i £ k) and insample, no transition is enabled from
the current state. In such a case, the computation ends.
Finally, the automaton may choose to store the sampled
value insample in any of the variables x; (1 < i < k).

—
N
=

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

We now formally define DiP automaton capturing the above in-
tuition. First, some necessary notation. Let G’ be the set of con-
straints defined as G’ = {insample > x; |1 < i < k} U {insample <
xi | 1 < i < k}. Let G” be the set of conditions formed by tak-
ing conjunctions of two or more constraints in G’ such that both
insample > x; and insample < x; don’t appear for any 1 < i < k.
Finally, let G = {true} U G’ U G”/; these are the constraints that
guard transitions in a DiPA.4

Definition 3 (DiPA). A DiP automaton A = (Q,T, ginit, X, P,)
where

e (is a finite set of states partitioned into two sets: the set of
input states Qj, and the set of non-input states Qnon,

T is a finite output alphabet,

® ginit € Q is the initial state,

e X = {insample,insample’} U {x; | 1 < i < k} is the set of
variables; we will use stor = {x; | 1 < i < k} to denote the
storage variables,

P:Q — Q2% x Q x Q=% x Q is the parameter function that
assigns to each state a 4-tuple (d, i, d’, i), where insample
is sampled from Lap(de,) and insample’ is sampled from
Lap(d’e, i),

and § : (Q X G) — (Q x (T U {insample, insample’}) x
{true, false}¥) is the transition (partial) function that given
acurrent state and the result of comparing each x; (1 < i < k)
with insample, determines the next state, the output, and
whether the variables x; should be updated to store insample.
The output could either be a symbol from T or the values
insample and insample’ that were sampled.

In addition, the transition function § satisfies the following two
conditions.

Determinism: For any state q € Q, if §(q, ¢) and §(g, ¢’) are defined
for c,c’ € G then either ¢ = ¢/ or ¢ A ¢’ is unsatisfiable. That is,
from any state, at most one transition is enabled at any time.

Non-input transitions: From any g € Qnon, if (g, ¢) is defined,
then ¢ = true; that is, there is at most one transition from a non-
input state which is always enabled.

Remark. Although insample’ is never used in comparisons, it is nev-
ertheless needed to model examples such as NUM-SPARSE (See [20]).
insample’ is often used in algorithms when we want to output the
noisy input value in a differentially private fashion. Outputting
insample instead of insample’ can violate differential privacy, as
insample may have been used in other comparisons: See the defini-
tion of privacy violating path (Definition 11 in Section 4); also [26].

Before concluding this section, it is useful to introduce some no-
tation and terminology for transitions. A quintuple ¢ = (g, ¢, ¢’, 0, b)
denotes a transition of A if 6(g,c) = (q’,0,b), where b =
(b1, ba, ... by) € {true, false}*. For such a transition, src(t) = q
denotes the source, trg(t) = ¢’ the target, out(t) = o € T U
{insample, insample’} the output, and guard(t) = c the guard.
Based on the guard ¢ and the Booleans b, we can associate the

4We could also allow guards of the form insample > x; and insample < x;. However,
we chose to keep the presentation simple. As all random variables in a DiPA are noisy,
the equality happens with probability 0.

1764

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

g2, T1
(false, false)

g1, L

(false, false)

(false, false)

(false, true)
true, L

-

, 0

(true, false)

el

Figure 1: DiPA A ange modeling Algorithm 1. Threshold Ty is set to 0 (sampling
mean of insample in go) and T, is set to 1 (sampling mean of insample in g;).
The guards g; = (insample > x;) A (insample < xz), g2 = (insample > x;) A
(insample > x3), and g3 = (insample < x1) A (insample < xz).

following sets of variables with transition ¢.
smallv(t) = {x € stor | insample > x is a conjunct of ¢}
largev(t) = {x € stor | insample < x is a conjunct of c}
usedv(t) = smallv(t) U largev(t)
assignv(t) = {x; | b; = true}
nonassignv(t) = {x; | b; = false}

Intuitively, smallv(t) (largev(t)) are the storage variables that lower
bound (upper bound) insample if the guard is satisfied; usedv(t) are
the storage variables that are referenced in the guard of ¢; assignv(t)
are the variables that are set by ¢; and nonassignv(t) are the vari-
ables that are left unchanged by ¢. For any i, if x; € assignv(t) then
t sets x; = insample during the transition and hence ¢ is an assign-
ment transition for variable x;. Finally, if src(t) = q¢ € Qj, then t
is said to be input transition and if ¢ € Qnon then t is a non-input
transition.

Example 2. The differential privacy mechanism in Example 1 can
be modeled as a DiPA. This is shown in Figure 1. We will use these
conventions when drawing DiPAs in this paper. Input states will
be represented as circles, while non-input states will be drawn
as rectangles. The name of each state is written above the line,
while the scaling factor d and mean y of the distribution used to
sample insample is written below the line. The parameters d’ and
y’ for sampling insample’ are not shown in the figures, but will
be mentioned in the caption and text when they are important;
they are relevant only when insample’ is output on a transition.
Edges will be labeled with the guard of the transition, followed by
the output, and a vector of Booleans to indicate which variables
insample is stored in.

The working of Arange in Fig. 1 can be explained as follows. Since
insample’ is not output in any step, the parameters associated with
sampling insample” are not reported. The thresholds T, and T, are
hard-coded as 0 and 1, respectively, as the distribution means for
the non-input states g and q;. The transition from g to g1 perturbs
Ty (= 0) and sets this to variable x;; thus, x; corresponds to the
variable low in Algorithm 1. The transition from g; to g2 perturbs

Deciding Differential Privacy of Online Algorithms with Multiple Variables

Ty (= 1) and stores it in x2. Thus, x2 corresponds to variable high in
Algorithm 1. State g2 is an input state. Transitions from gz perturb
the query answer given as input storing it in insample, compare
insample to the values stored in x; and xg, and output the right
value accordingly. State g3 is a halting state where no transitions
are enabled.

We conclude this example by illustrating the definitions as-
sociated with transitions. The transition ¢ from ¢qo to g; can be
denoted by the quintuple (qo, true, q1, L, (true, false)). For ¢, we
have src(t) = qo, trg(t) q1, out(t) = L, guard(t) true,
smallv(t) = largev(t) = usedv(t) = 0, assignv(t) = {x1}, and
nonassignv(t) = {xz}. In this case ¢ is a non-input, assignment
transition for variable x;. In contrast, the transition ¢’ from g3 to
itself, is an input transition that is not an assignment transition for
any variable. Here we have smallv(t’) = {x1}, largev(t’) = {x2},
and usedv(t’) = {x1,x2}.

3.2 Semantics

An execution/run of a DiPA A (Q.T, qinit, X, P,), p
tot1 -+ - tn—1, is a sequence of transitions ¢; such that for every
0 < i< n,trg(ti—1) = src(t;) (i.e., the sequence p corresponds to a
path in the “graph” of A). We extend the notation of length, the ith
transition, sub-sequence and suffix from (general) sequences: thus,
lpl = n, pli]l = ti, pli : jl = ti---tj—1 and p[j :] = tjtje1 - tn-1.
We also extend the notion for source and target from transitions to
arun — src(p) = src(tp) and trg(p) = trg(tp—1). Using the notation
developed for transitions, guard(p[i]) is the guard of the ith transi-
tion t; of p. A run p is a cycle if src(p) = trg(p), i.e., the run begins
and ends in the same state. Finally, given two runs p; and p3 such
that trg(p1) = src(p2), p1p2 is the run which is the concatenation
of p; followed by p».

Recall that transitions of DiPA (A compare values stored in the
variables x; (1 < i < k) and insample. Thus, to define the semantics
of the DiPA, we need to make sure that the value of variable x; is
defined before it is used in a comparison in the guard of a transition.
Therefore, we make the technical assumption that on every run
starting from the initial state gjyj¢, a variable is assigned a value
before it is referenced in a guard. We assume that all DiPA A
considered in this paper are initialized as defined formally below.

Initialization: We say that a DiPA A = (Q, T, ginit, X, P, d) is ini-
tialized if for any run p starting from the initial state gjnj¢ (i.e.,
src(p) = qinit), if guard(p[i]) references variable x, (i.e., xp €
usedv(p[i])) then there is j < i such that p[j] is an assignment
transition for x, (i.e., x¢ € assignv(p[j])).

We need to define one more concept associated with a run p.
For any storage variable x and position j € {0,1,... | p|}, the last
position when x was assigned before j is the maximum index i < j
such that x was assigned on transition p[i]. More precisely,

Iastassignp(x,j) =max{i | i < j, x € assignv(p[i])}. >

When the run p is clear from the context, we will drop the subscript
and simply refer to the last assigned position before j for x as
lastassign(x, j).

To define the semantics of a DiPA A, we need to define the
probability of “executions”. But runs, as defined above, do not have

5As always max) = —co and min @) = co.

1765

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

all the information we need. For example, the real numbers read
as input determine the values of insample and insample’, which in
turn determine whether a transition is enabled and what is stored
in the variables. Next, on transitions where either insample or
insample’ are output, to define a meaningful measure space, we
need to associate an interval (v, w) in which the output value lies.
Thus, we define when a run corresponds to a certain sequence of
inputs and outputs.

Definition 4 (Computation). Consider DiPA A =
(O,T, ginit, X, P,8) and a run p of A. Let 0 € (R U {r})* be
an input sequence and y € (I' U (Roo X Reo))* be an output sequence.
We say that p is a run on o producing output y if the following
conditions hold.
1) lpl = lal =1yl
(2) For any i, oi] = 7 iff src(p[i]) € QOnon. That is, symbol 7 is
only read in non-input states.
(3) For any i, y[i] € T iff out(p[i]) € T. Further for such i,
out(p[i]) = yli]. That is, outputs in p “match” outputs in
v, with the only difference being that when insample or
insample’ is output in p, the corresponding position in y is
an interval (v, w) € R%..
When p is a run on o producing y, the tuple k = (p, o, y) will be
called a computation.

For a computation k = (p, 0, y) of DiPA A, the suffix starting
at position j is x[j :] = (plj :), olj :], y[J :]). Notice that «[; :] (for
any j) is also a computation of A since p[j :] is a run on o[j :]
producing y[j :]. Also, we use length of k, |k| to be |p| (= |o| = |y]),
the length of the run p.

Probability of Computations. We will now define what the probabil-
ity of each computation is. Recall that in each step, the automaton
samples two values from Laplace distributions, and if the transition
is from an input state, it adds the read input value to the sampled
values and compares the result with the values stored in the vari-
ables x;, 1 < i < k. The step also outputs a value, and if the value
output is one of the two sampled values, the computation requires
it to belong to the interval that appears in the output sequence. The
probability of such a transition thus is the probability of drawing a
sample that satisfies the guard of the transition and (if the output
is a real value) producing a number that lies in the interval in the
output label. This intuition is formalized in a precise definition.

Let us fix a computation (p,o,y) of DIiPA A
(O, T, ginit, X, P, §). Recall that stor = {x; | 1 < i < k}. Since the pa-
rameters of the Laplace distribution that is used to sample insample
and insample’ depend on the privacy budget e, the probability of
will also depend on €. In addition, the values stored in the variables
X;j € stor at the start of the computation also influence the behavior
of A. Let n : stor — R be the evaluation that defines the values of
Xi, 1 < i <k, initially. The probability of k depends on both € and
n and is denoted as Pr[e, 1, k]. We define this inductively on |x|. For
any € and any computation x with |k| = 0, Pr[e, n, k] = 1.

Let us now consider the case when |x| > 0. Before defining the
probability in this case, we define the parameters that we will need.
Let P(src(k[0])) = (d, u, d’, p’). Define the value ag as follows — if
o[0] € R then ag = ¢[0], and if o[0] = 7 then ap = 0. Next, let
us define the values ¢ and u. If y[0] € T then £ = —co and u = co.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Otherwise, if y[0] = (v, w) then £ = v and u = w. Finally, for a
parameter z, let 7, be the evaluation that modifies 1 by setting all
the variables assigned by p[0] to z. In other words,

na(x) = {U(X)

z

if x € nonassignv(p[0])
if x € assignv(p[0])

We are now ready to define Pr[e, 5, k] based on whether out(p[0]) =
insample’ or not.

Case out(p[0]) = insample’: Set £ = max{n(x) | x € smallv(p[0])}
and ¥’ = min{n(x) | x € largev(p[0])}. Also define p to be the
probability that insample’ € (£, u) = (v, w) = y[0], i.e.,

u g
p= / d_ee—d'f\Z—#'—aoldz
¢ 2

Then,
u’ d
Prle, 1, k] :p/ (?ee_de‘z_'”_“o') Prle, nz, k(1 :]]dz.
o

Case out(p[0]) # insample’: In other words, either out(p[0]) € T
or out(p[0]) = insample. In this case set £/ = max({n(x) | x €

smallv(p[0])} U {¢}) and v’ = min({n(x) | x € largev(p[0])} U {u}).

p
P%%ﬂ=/(%f“W”mF%MJWW1
(/

In the special case when assignv(p[0]) = 0 (i.e., the first transi-
tion of the run does not change the assignment to any variable),
observe that n, = 1. Hence, Pr[e, 2, [1 :]]-term on the right hand
side of both equations can be pulled out of the integral, and the
expression can be simplified. We will abuse notation and use Pr(-]
to also refer to the function Pr[n,] := € — Pr[e, n, x]. Notice that
when p starts from gj,jt, because of the initialization condition of
DiPA, the value of Pr[-] does not depend on the valuation 5. For
such computations, we may drop the valuation 7 from the argument
list of Pr[-] to reduce notational overhead. Even though we plan to
use the same function name, the number of arguments to Pr[-] will
disambiguate what we mean.

In this paper we study the computational problem of checking
differential privacy for DiPAs. We conclude with a precise definition
of this problem. We start by specializing the definition of differential
privacy to the setting of DiPA. For a DiPA A, an input sequence
o € (RU{r})" and an output sequence y € (T U (Reo X Reo))*, let
Runs(o, y) be the set of all runs p of A starting from the initial
state gjnjt such that p is a run on o producing y.

Definition 5. A DiPA A is De-differentially private (for © > 0,
€ > 0) iff for every 01,02 € RU {r})* and y € T U (Reo X Reo))*
such that o7 and oy are adjacent 6

peRuns(z,y)

peRuns(a1,y)

Prle, (p, o1,7)] < €*° Prle. (p, o2.7)].

Differential Privacy Problem: A DiPA A is said to be differen-
tially private if there exists a constant ® > 0 (independent of €)
such that A is De-differentially private, Ve > 0. The differential
privacy problem is the problem of determining if a given DiPA A
is differentially private.

%See Definition 1 on Page 3.

1766

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

Remark. A DiPA A is a parametric automaton (with parameter €),
and the probability of each of its executions on a sequence of input
varies with €. Thus, considering its semantics, using A(e) to refer
to the automaton may be more appropriate. However, we shall use
A to reduce the notational overhead.

4 WELL FORMED DIPA

The main goal of the paper is to solve the differential privacy prob-
lem described in Section 3: Given a DiPA A determine if there is a
D > 0 such that for all € > 0, A is De-differentially private. In this
section, we define the sub-class of well-formed DiPA that help char-
acterize precisely the class of DiPA that are differentially private.
Well-formed DiPA are automata that don’t have four properties
that lead to the violation of privacy: (a) leaking cycles, (b) leaking
pairs, (c) disclosing cycles, and (d) privacy violating paths. We will
define what these types of cycles and paths are in this section.

Dependency Graph of a Run. Consider a run p of a DiPA A. Guards
on transitions and decisions to store insample in storage variables,
demand that if A follows the run p, then the values sampled as
insample at different steps must be ordered in a certain way to
ensure that guards are satisfied. This partial order on the sampled
values demanded by a run is conveniently captured as a directed
graph that we call the dependency graph.

Definition 6 (Dependency Graph). Let A = (Q,T, ginit, X, P,)
be a DiPA and let p = tyt1 - - - tn—1 be a run of A. The dependency
graph of p is the directed graph G, = (V, E) where

e V={i|0<i<n} and

e Eis defined as E’ N (V x V) where

E' ={(, Iastassignp(x,j)) |j €V, x € largev(t;)}
v {(lastassignp(x,j),j) |j €V, x €smallv(tj)}.

Notice that E E’ n (V x V) ensures that an edge
U, Iastassignp(x,j)) (or (Iastassignp(x,j),j)) is present only when
lastassignp(x,j) # —oo (i.e., when x is assigned before position

Jj)- Also observe that an edge (i,) in G, means that, to satisfy
the guards, insample at position i in the run p must be less than
insample at position j.

Given the intuition that the dependency graph G, captures the
ordering constraints imposed by the guards in p, one can conclude
that a cycle in G, means that p places contradictory demands
on the values sampled and is therefore not a valid execution of
the DiPA. We define a run p of DiPA A to be feasible iff G, is
acyclic. Feasibility is consistent with our semantic intuitions — if p
is feasible then there is some evaluation 5 such that for any € > 0,
any input sequence ¢ and any output sequence y in which all output
intervals are given by the interval (—oo, 00), for which p is a run on
o that produces y, Prle, n, (p, o,y)] > 0.

Let us consider a feasible run p = tot; - - - tp—1 of DiPA A. Let
qi = src(t;) and let P(src(t;)) = (dy, pii, d}, jtj). We say that p is
strongly feasible if in addition whenever there is a path from i
to jin Gp and q;,qj € QOnon then p; < pj. Thus, p is strongly
feasible if whenever guards require two insample values on non-
input transitions to be ordered, the corresponding means of the
Laplace distributions are ordered in the same way. We only consider
DiPA that satisfy the following strong feasibility assumption.

Deciding Differential Privacy of Online Algorithms with Multiple Variables

0 0
A Ny ol

Figure 2: Dependency graphs for runs p; and p; from Example 3. G, is on the
left and G, is on the right.

Strong Feasibility: All feasible runs from the initial state gj,j; are
strongly feasible.

Example 3. Let us look at two example runs of length 3.
p1 =(qo, true, g1, L, (true, false))(q1, insample < x1, g2, L, (false, true))
(g2, insample > x; A insample < xz, g3, L, (false, false))
p2 =(qo, true, q1, L, (true, false))(qi, insample > x1, g2, L, (false, true))

(g2, insample > x; A insample < xz, g3, L, (false, false))

The only difference between p; and py is the guard on the second
transition, which goes from state q; to g;. Their dependency graphs
are shown in Figure 2. Gy, is on the left and can be explained as
follows. Transition 0 sets variable x; and transition 1 sets variable
xz2. The guard insample < x; in transition 1 results in the edge from
1to 0. The conjunct insample > x; in transition 2 results in an edge
from 0 to 2, and the conjunct insample < x3 results in the edge
from 2 to 1. Gp, is cyclic which means that p; is not feasible. Graph
G), on the right in Figure 2 is similar but the guard insample > x;
in transition 1 results in an edge from 0 to 1 (instead of from 1 to 0
in G,,) which removes the cycle. Thus, p; is feasible.

Leaking cycle. We are now ready to present the first graph theoretic
condition on DiPA that demonstrates a violation of differential
privacy.

Definition 7 (Leaking cycle). A run p of A = (Q,T, ginit, X, P,)

from the initial state gjnj; (i-e., src(p) = ginit) is said to be a leaking

cycle if there is an index 0 < j < |p| and a storage variable x € stor

such that the following conditions hold.

Cycle: C = p[j :] is a cycle.

Leak: There are indices iy and i in C (i.e., j < iy,i2) such that
x € assignv(p[i1]) and x € usedv(p[iz]).

Repeatability: C can be repeated arbitrarily many times. That is,
for every m > 0, the run pC™ is feasible. 7

Intuitively, the condition Leak in Definition 7 is to ensure that
variable x is assigned a value in the cycle C that is later tested against
in a guard. 8 The main effect of the 3 conditions in Definition 7, is to
identify two transitions (namely, those corresponding to assignment
and test) that can be taken arbitrarily many times (since they are on
arepeatable cycle) such that the insample values sampled in the two
transitions are ordered in the same way each time the transitions
are taken. This property leads to a “leaking” of the privacy budget,
as shall be explained when we sketch the proof.

A cycle C that does not satisfy the condition Leak will be said to
be non-leaking.

7C™ denotes the m-fold concatenation of C with C% = A.

8Definition 7 does not require i; < iy. Therefore, strictly speaking the assignment
in i; may not be before the test in i,. But this can be easily addressed by taking C?
instead of C as the cycle.

1767

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Definition 8 (Non-leaking cycle). A run C is a non-leaking cycle
if C is a cycle and for every x € stor and i, if x € usedv(C?[i]) then
lastassign2(x, i) = —o9, i.e, x is not assigned a value in C. Here c?
is the concatenation of C with itself.

In Definition 8, we use the run C2 to ensure that we also account
for the case when x is assigned after it is used in C. One important
property about non-leaking cycle is that it is always repeatable;
this is the content of the next proposition. Thus repeatability is a
non-trivial requirement only for cycles that have a leak.

Proposition 1. Let p be a feasible run of A = (Q, T, ginit, X, P,)
from the initial state qjnjt such that C = pli : j| (for some 0 < i <
Jj < |pl) is a non-leaking cycle. Then for every m > 0, p[0 : i](p[i :
JD™plj] is feasible.

Leaking pair. Recall that the key property of a leaking cycle that
leads to the violation of differential privacy is finding two tran-
sitions that can be repeated arbitrarily many times such that the
insample value sampled in the two transitions is ordered every time
they are taken. Leaking cycles achieve this by finding both transi-
tions on a cycle that can be repeated. However, that is not the only
way such a pair of transitions can arise — the two transitions could
be on two different cycles that can each be repeated. This leads to
the definition of a leaking pair. The definition of a leaking pair is
subtle and we will discuss its details after presenting it formally.

Definition 9 (Leaking pair). A feasible run p of A

(Q.T, ginit, X, P,) from the initial state gjnj; is a leaking pair if

there are indices 0 < i1 < j; < |p|and 0 < iy < j2 < |p| such that

the following conditions hold.

Cycles: C1 = pliy : j1] and Cz2 = pliz : j2] are both non-leaking
cycles.

Disjointness: Either j; < iy or jo < i1. That is, C; and Cy are
non-overlapping subsequences of p.

Order: There is a path k1, ko, . . . ki in the dependency graph G,
such that i1 < k1 < j1 (k1 ison Cq), i2 < ki < jo (kp is on
Cz), kz < k1 and km71 < km.

As mentioned before Definition 9, the motivation behind leaking
pairs is to identify a pair of transitions ¢ and ¢’ that can be executed
multiple times and such that the insample value each time ¢ is taken
is smaller than the insample value each time ¢’ is taken. Such a
pair of transitions represents a “leak” of the privacy budget that
can be exploited to prove that DiPA is not differentially private.
Definition 9 achieves this goal in the following manner. The desired
transitions ¢ and ¢’ are p[k;] and p[k,], respectively. The fact that
t and ¢’ are on cycles C; and C, which are disjoint (in p) and non-
leaking, ensures that they can be repeated thanks to Proposition 1.
The condition Order in Definition 9 is the most subtle. The fact that
ko < k1 and (k1, k2) is an edge in G, means that there is a storage
variable x € stor such that x is assigned in p[kz] and insample < x
is one of the conjuncts in guard(p[k]). Further since C; is non-
leaking, x is not updated within C; and hence p[k;] is taken before
Cy. Similar conclusions can be drawn about k,;,—1 and k;,, — there
is a variable y € stor that is assigned in p[ky,—1] which is taken
before Cz, and insample > y is a conjunct in guard(p[ky,]). Finally,
the path from k; to k,, means that the insample value sampled in
plki] is less than the value assigned to x in p[k2], which in turn is

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

S —
ol

, 0
g3, T

(false, false)

g4, L
(false, false)

g2, L

(false, false)

N

g1, T

(false, false) true, L

(false, true)

true, L

' 90 I (true, false)

Figure 3: DiPA Ajeakp from Example 4. Ajeqkp has two variables, x; and x,
assigned in the first and the second transition, respectively. The guards
a9 (insample > x1), go = (insample < x;), g3 = (insample < xz),
gs = (insample < x1) A (insample > x3).

less than the value assigned to y in p[k;,—1] and that is less than the
insample value sampled in p[k;,]. p[k2] is before C; which means
that the value assigned to x in p[kz] does not change no matter
how many times C; and C, are repeated. Next, p[kp,—1] is before
Cy. It is possible that p[k;;—1] is on Cy, in which case the value
assigned to y changes when C; is repeated. However, one can show
by induction, that the presence of a path in the dependency graph
from p[kz] to plkm-1] and an edge from p[k;;,—1] to p[k;,] means
that when C; and C; are repeated, there will be a path from p[k2]
and the last instance of p[k;,—1] and the last value assigned to y in
plkm—-1] will be less than every insample value sampled in p[ky,].
Thus, every insample value sampled in p[k1] will be less than every
insample value sampled in p[k;,], no matter how many times C;
and C are repeated.

Example 4. Consider the automaton Ajeakp in Figure 3. The au-
tomaton is drawn following the convention outlined in Example
2. The automaton has two real variables x; and xz, assigned in
the first and the second transition, respectively. For states g;, g;
of Aleakps let ti;j denote the unique transition of Ajeqyp from state
gi to gj. Observe that ty; and t33 are cycles. Consider the run
p1 = tort1ztaate3tss that visits both the cycles tyo and t33 and its
extension py = pit34. Their dependency graphs for these runs are
shown in Figure 4. The nodes 2 and 4 correspond to the cycle tran-
sitions ty3 and t33 respectively. Considering just the run pq, these
cycles do not constitute a leaking pair. However, when we consider
the extended run, py, we see that these cycles form a leaking pair
via thepath4 -1 —>5—0— 2.

Before moving onto the other two properties needed to define
well-formed DiPA, it is useful to remark that the cycles C; and
C in Definition 9 may be the “same cycle”, i.e., C; and Cy could,
respectively, be the first and second iterations of the same sequence
of A transitions.

Disclosing cycle. Real valued outputs present another avenue
through which private information in the input can be leaked. The
condition identified by leaking cycles and leaking pairs do not ac-
count for such violations because they are agnostic to the type of
output produced by the DiPA. Our next condition disclosing cycle,

1768

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

Figure 4: Dependency graphs for runs p; and p; from Example 4. G, is
on the top and G, is on the bottom. The nodes are numbered according
to the order in which the corresponding transition appears in the run.

identifies a transition that can be executed repeatedly, and which
outputs a pertubed input.

Definition 10 (Disclosing cycle). A feasible run p of A

(Q,T, ginit, X, P, 8) from the initial state gjnjt is a disclosing cycle

if there are indices 0 < j < i < |p| such that the following condi-

tions hold.

Cycle: C = p[j :] is a non-leaking cycle.

Disclosing: pl[i] is an input transition that outputs a real value,
i.e., src(p[i]) € Qjn with out(p[i]) € {insample, insample’}.

Observe that in Definition 10, p[i] is a transition that is on cycle
C. Moreover, since C is non-leaking cycle, by Proposition 1, the run
pC™ is feasible for every m > 0. Thus, the transition p[i] can be
executed repeatedly. Since p[i] is an input transition that outputs
a real-value, each time it is executed it reveals some information
about the input which results in a loss of privacy.

Privacy violating path. We now present the last property needed to
define well formed DiPA. This last property also concerns privacy
violations that arise from real valued outputs. Leaking cycles and
leaking pairs identify a transition that is executed arbitrarily many
times where the sampled insample value is bounded by values
sampled in another transition (that is also executed many times) on
the same run. However, with real valued outputs, we could have a
situation where this bound is revealed once, explicitly in an output.
This is captured in our next definition.

Definition 11 (Privacy violating path). A feasible run p of A =

(Q.T, ginit, X, P,) from the initial state gjnj; is a privacy violating

path if there are indices 0 < i < j < |p| such that the following

conditions hold.

Cycle: C = p[i : j] is a non-leaking cycle.

Privacy Violation: There is a path ki, kg, ...kp in the depen-
dency graph G, such that either (a) out(p[k1]) = insample,
km-1 < km,and i < kp, < j, e, plkm] is on cycle C,
or (b)i < k1 < j (plk1] is on cycle C), ko < ki, and
out(plkm]) = insample.

It is useful to see how Definition 11 captures the intuitions laid
out before. The path from k; to k;, in G, ensures that the insample

Deciding Differential Privacy of Online Algorithms with Multiple Variables

value sampled in p[ki] is less than the insample value sampled
in plkm,]. Moreover, since C is non-leaking, by Proposition 1, it
is repeatable. Condition (a) in (Privacy Violation) says that p[kp,]
is a transition on C, and the edge (km-1,km) in G, along with
km—-1 < km means that there is a variable x € stor that is set in
plkm-1] and insample > x is in guard(p[kn,]). Moreover, since C
is non-leaking, x is not updated in C and hence ky,_1 is before C.
Thus, the presence of the path means that the value output in p[k1]
is less than the insample value sampled in p[ky,—1] which in turn
is less than the insample value sampled in p[kp,] every time C is
repeated. Therefore, there is a lower bound, which is output in
plki], for arbitrary many insample values that are generated in
plkm]. Condition (b) in (Privacy Violation) is similar but dual. Here
plki]is on C, p[kz] is before C and sets a variable x that is an upper
bound on the values sampled in p[k;], and finally, p[k,] outputs
a value that upper bounds all these values, no matter how many
times p[ki] is executed by repeating C.

Well-formed DiPA. The properties defined in this section identify
witnesses for the violation of privacy. The class of well-formed
automata are those that do not suffer from these deficiencies.

Definition 12 (Well-formed DiPA). A DiPA A is said to be well-
formed if A does not have any leaking cycles, leaking pairs, dis-
closing cycles, and privacy violating paths.

Our main results are: (i) a well-formed DiPA is differentially
private; (ii) if a DiPA satisfying the output distinction property (see
Definition 13) is differentially private then it must be well-formed.
We will also show that there is an effective procedure for checking
if a DiPA is well-formed. These observations together will provide
a decidability result for solving the differential privacy problem for
DiPA that satisfy output distinction property.

5 WELL-FORMED DIPA ARE
DIFFERENTIALLY PRIVATE

One of our main results, which we call the sufficiency theorem, is
that well-formed DiPAs are differentially private.

Theorem 2. Let A be a DiPA. If A is well-formed then there is
a® > 0 such that for every e > 0, A is De-differentially private.
Further, such a © can be computed in time exponential in the size of
the automaton A.

Proor SKETCH. Let A be a well-formed DiPA. Given a feasible
run p =ty - - -t of A from the initial state, fix computations k;
(p, 0i,y) for i = 1,2 such that o1 and oy are adjacent. For each
Jj» let Itj be the “less than” relation on stor imposed by the prefix
pl0: j—1] — (x,x") € lt; if there is a path of non-zero length from
Iastassignp(x,j) to Iastassignp(x’,j). Similarly, eq; is the “equality”
relation on stor imposed by the prefix p[0 : j — 1] — (x,x’) € eq; if

Iastassignp(x,j) = lastassignp(x’,j).
We can show that there are numbers wt; and functions m; :
stor — {-1,0, 1} such that

(1) For any valuations 71, n2 such that n2 = 1 + mj, °

Proble, 12, k2l] < et~ “Proble, 1, k[-]

“For functions f, g : A — R, f + g is the function that adds the result of f and g for
each argument, i.e., (f + g)(a) = f(a) + g(a).

1769

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

g1, T
false
n n g2, T
19 v false
true, T
true

Figure 5: DiPA A, with one variable x is not well-formed but differentially
private. The guards g; = (insample > x) and g, = (insample < x).

(2) It tj, = tj,, Itj, = Itj, and eq; = eqj, for j1 < jo then
wtj =0
(3) wtj < 2d; + d]'. where d; and d]'. are such that P(src(t;)) =
(CINT TR
Observe that the last two conditions imply that there is a number
D independent of p such that Z;’;}l wty < D. Note that as p is a
run from initial state then Prob[e, 1;, ;] is independent of ;. The
above observations imply that

Proble, k2] < e®Prob[e, x1].

This shows that A is De-differentially private. To carry out the for-
mal proof, we construct an augmented automaton aug(A), whose
states are triples of the form (g, It, eq) where q is a state of A, It, and
eq are strict partial orders and equivalence relations on stor. The
value for D is also computed using the augmented automaton. O

The problem of checking well-formedness can be shown to be
in PSPACE.

Theorem 3. The problem of checking whether a DiPA is well-formed
is in PSPACE. When the number of variables is taken to be a constant
k, then the problem of checking whether a DiPA is well-formed is
decidable in polynomial time.

6 DIFFERENTIALLY PRIVATE DIPA ARE
WELL-FORMED

While well-formedness is sufficient for ensuring differential privacy,
it is not a necessary condition for differential privacy as illustrated
by the following example.

Example 5. Consider the DiPA A, with one variable insample
given in Figure 5. The automaton is drawn following the convention
outlined in Example 2. As each transition outputs T, Apwf, on any
input of length n, outputs the string T" with probability 1. Thus,
Anws is trivially differentially private. However, Apws is not well-
formed as it has a leaking cycle, t,t}, where t, is the transition from
qo to g1 and t}, is the transition from q; to qo.

We show, however, that differentially private DiPA that satisfy an
additional technical property of output distinction are well-formed.
Thus, for DiPA satisfying this property, well-formedness is a precise
characterization of when they are differentially private. Before
presenting this restricted necessity theorem and proof sketch, let us
define what it means for a DiPA to satisfy the condition of output
distinction.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Definition 13 (Output Distinction). A DiPA A =
(Q,T, ginit, X, P, 8) satisfies output distinction if the following holds:
If t; and t; are distinct transitions of A such that src(t1) = src(tz)

then out(t;) # out(tz) and {out(t1), out(t2)} NT # 0.

Output Distinction demands that distinct outgoing transitions
from a state have different outputs and at most one of the outgoing
transitions outputs a real value. In particular, there cannot be two
transitions out of a state g that output insample and insample’.
Distinct outputs on transitions ensure that given a starting state g
and an output sequence y, there is at most one run p starting from ¢
that can produce y. Observe that the automaton of Figure 5 does not
satisfy output distinction property. The necessity proof proceeds
by showing that if A is not well-formed, then given D, there are
computations (p, o1, y) and (p, 02, y) with the same run p such that
p outputs y, o1, 02 are adjacent and the ratio of the probability
measures of these computations is > e®¢ for sufficiently large
€. Output distinction guarantees that p is the only run on oy, 02
that outputs y, allowing us to conclude that A is not differentially
private for non-well formed A. Without output distinction, the
deficit in probability measures of y can be made up by other paths.
The output distinction property is also needed in [10] for the case
of a single variable. We are now ready to present the main result of
this section.

Theorem 4. Let A be a DiPA that satisfies the output distinction
property. If A is not well-formed, then it is not differentially private.

PRroOF SKETCH. Let us fix a DiPA A = (Q, T, ginit, X, P, J) that
satisfies the output distinction property. Recall that the output
distinction property ensures that for any input sequence o and
output sequence y, |[Runs(o,y)| < 1. We sketch the main ideas
behind the proof; the full details can be found in [11]. Assume that
A is not well-formed. Now, for each value of D and ¢, the proof
identifies a run p, an output sequence y, and a pair of adjacent input
sequences a and f such that the computations (p, @, y) and (p, f, y)
demonstrate a violation of differential privacy (Definition 5). The
construction of witnesses is based on the following sequence of
observations.

(1) Let us fix a run p from gjnjt and an output sequence y consistent
with p. Observe that the number read in an input transition de-
termines the mean of the distributions from which insample and
insample’ are drawn in that step. Let us call an input sequence
o strongly compliant with p and y, if the sampling means satisfy
the constraints imposed by p and y. This has two requirements.
First, whenever there is a path from i to j in G, the sample mean
at step i is less than the sample mean at step j. Notice that strong
feasibility ensures this when i and j are non-input transitions, and
here we are requiring this to hold when either i or j is an input
transition in which case the mean is determined by o. Second, if
out(p[i]) € {insample, insample’} (real outputs), the sample mean
at step i is in the interval y[i]. Intuitively, for a strongly compliant
input sequence o, the probability of computation (p, o, y) is likely
to be “high”. On the flip side, let us call an input sequence o non-
compliant at i, if the sample mean set by o at step i either violates
an order constraint or an output constraint. Again intuitively, one
can imagine that, as the number of non-compliant transitions in-
crease in o, the probability of the computation (p, o, y) decreases.

1770

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

Now one can prove that if we consider two input sequences oy,
which is strongly compliant, and o2, which has non-compliant
transitions, then the ratio of the probabilities of (p, o1,y) and
(p, 02, y) grows as the number of non-compliant transitions in
(p, 02, y) increases.

(2) Observations in (1) above provide a template for how to identify
witnesses for differential privacy violation: the presence of a leak-
ing cycle, leaking pair, disclosing cycle, or privacy violating path
help identify a run, and we then construct two input sequences a,
which is strongly compliant, and f which has many non-compliant
steps. Observe that each witness to non-well-formedness is a run
containing a cycle that can be repeated arbitrarily many times
and contains a transition that will be made non-compliant in the
input sequence . The intuitions laid out in Section 4 for defining
well-formed DiPA will be used and we spell this out in each case.
A leaking cycle has a transition with index i; (see Definition 7)
that sets a variable which is then used later in the transition in-
dexed iy. Since the guard of iy is not true, it is an input transition.
We will construct the run p by repeating the cycle as many times
as needed (based on ® and ¢), and in f the sample mean at step
iz will be in the wrong order with respect to i; in each repeti-
tion, making it non-compliant. In a leaking pair (Definition 9)
there is a pair of transitions indexed k1 and kj, on cycles that can
be repeated, and whose sampled values need to be ordered each
time they are executed. Moreover, transitions kq and kp, are input
transitions because their guards are not true (see discussion after
Definition 9). Thus, in we will flip the order of the sample means
at these steps to create an arbitrary number of non-compliant
steps. The transition indexed i in a disclosing cycle (Definition 10)
is an input transition on a cycle that can be repeated. To create
non-compliant steps in we will set the mean of these transitions
to not be in the output interval given for this step. Finally, in a
privacy violating path (Definition 11) there is an input transition
with index ky, for case (a) (or k1 for case (b)) that is on a repeatable
cycle whose sampled value is required to be larger than (smaller
than in case (b)) the value output in step k1 (step k, for case (b)).
To construct the input sequence 5, we set the input for each time
km (k1 in case (b)) is taken to be smaller than the value output in
k1, and thereby creating arbitrarily many non-compliant steps.

(3) The general principles behind constructing the input sequences
a and f are laid out in (2). However, one key requirement for «
and f to constitute a witness to privacy violation is that they be
adjacent (Definition 1) which demands that the values in ¢ and
B be not too far apart. One challenge is carrying this out is the
presence of non input transitions, where the sample means are
fixed. This can be overcome by carefully analyzing the dependency
graph G, and the parameters decorating the states appearing in
the run p. O

In Section 5, we showed that there is a PSPACE algorithm to
determine if an output-distinct DiPA A is well-formed (Theorem 3).
This complexity bound is tight; we show that the problem of deter-
mining if a DiPA is differentially private is PSPACE-hard. (See [11]
for the proof.)

Theorem 5. Given an output-distinct DiPA A, the problem of deter-
mining if there is a © > 0 such that for all e, A is De-differentially
private, is PSPACE-hard.

Deciding Differential Privacy of Online Algorithms with Multiple Variables

7 EXPERIMENTS

We implemented the algorithm that checks whether a DiPA A
is well-formed. In case A is well-formed, it computes a bound D,
which we call the weight of the automaton, such that A is De-
differentially private for all €. The software tool, DiPAut, is built in
Python 3.9.5 and is available for download at [7]. It uses the PLY
package [6] for parsing the program and the 1GRAPH package [14]
to store the input automaton as a graph. The IGRAPH package is also
used to perform graph-theoretic operations on the input automaton.

DiPAut has three major components. The first component, called
core, tokenizes and parses the input using PLY. The second compo-
nent, builders, constructs the augmentation of the input automaton.
The augmentation is built using a breadth-first-search of the (im-
plicit) graph of the augmentation. The relations It and eq are stored
as dictionaries during augmentation. To prepare for checking of
leaking pair and privacy violating path, the automaton also builds
an “enhanced” augmentation. For example, it also builds the graphs
that include assignments to the variables V; and V; in the algo-
rithm for checking leaking pair (See the proof of Theorem 3). The
third component DP tests, implements the finals checks for leak-
ing cycle, leaking pair, privacy violating path and disclosing cycle
from the augmentations. If the automaton is well-formed, it also
computes the weight of the automaton. If it is not well-formed, it
further checks if it is output-distinct. In that case, we report that
the automaton is not differentially private.

DiPAut was evaluated against a suite of examples (See Table 1),
which we describe briefly.

7.1 Description of Examples

The first examples we consider are the standard Sparse Vector
Technique (SVT) [19] and the Numeric Sparse (NUM-SPARSE) [20].
These algorithms use one variable. Detailed discussion of these
algorithms can be found in [19, 20]. Apart from SVT and Num-
SPARSE, all other examples use more than one variable.

We also designed new examples, described below. The first set of
examples was designed to ensure that the tests of well-formedness
were implemented correctly. A second set of examples were de-
signed to evaluate the scalability of our tool. They include k-MiIN-
Max (for each k > 0) and m-RANGE (for each m > 0). The 1-RANGE
is the range query algorithm given in Example 1.

Examples LC-ExampLe and DC-ExampLE. The algorithm LC-
ExampLE and DC-EXAMPLE are variants of 1-RANGE. The algorithm
LC-ExAaMPLE is designed to have a leaking cycle and DC-EXAMPLE
is designed to have a disclosing cycle. A detailed description of the
algorithms can be found in [11].

Examples NUM-RANGE-1 and Num-RANGE-2. The algorithm Num-
RANGE-1 is the variant of 1-Range which outputs insample (instead
of T) when the sampled value g[i] is greater than high. The algo-
rithm NuM-RANGE-2 on the other hand outputs insample’. Num-
RANGE-2 is well-formed, output-distinct and hence differentially
private but NumM-RANGE-1 has a privacy-violating path. A detailed
description of the algorithms can be found in [11].

Examples Two-RANGE-T and Two-RANGE-2. TWO-RANGE-1 is a vari-
ant of 1-RANGE. In both algorithms, at the beginning, three thresh-
olds, Ty, Tr,, and Ty, are perturbed by adding noise sampled from

1771

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

the Laplace distribution. The algorithms then proceed to process
the queries, checking if the remaining noisy queries are between
the noisy Ty and Ty, . If at some point the input noisy query exceeds
the noisy T, Two-RANGE-1 checks that the remaining queries
are in between the noisy T, and the noisy Ty. In contrast, the
algorithm Two-RANGE-2 resamples Ty, before checking that the
remaining queries are in between the noisy Ty, and the noisy Tj,.
Two-RANGE-1 has a leaking pair and is not differentially privacy.
Two-RANGE-2, on the other hand, is well-formed, output distinct,
and hence differentially private Two-RANGE-1 and Two-RANGE-2
are described in detail in [11].

Input: g[1: N]
Output: out[1 : N]|

min, max < Lap(;z, q[1]))
fori < 2tok do
r — Lap(5, qlil)
if (r > max) A (r > min) then
‘ max « r
else if (r < min) A (r < max) then
‘ min < r
end
out[i] « read
end
fori — k+1to N do
r — Lap(g, qli])
if (r > min) A (r < max) then
| out[i] « L
else if (r > min) A (r > max) then
‘ out[i] — T
exit
else if (r < min) A (r < max) then
‘ out[i] « L
exit
end

end

Algorithm 2: k-MIN-Max algorithm. k-MIN-MAx is differ-
entially private.

Example k-Min-Max. One set of examples designed to check scala-
bility of our algorithm is k-MIN-Max (k > 2). Initially, k-MIN-MAx
reads k-queries, adds noise from the Laplace distribution at each
step, remembering the maximum and minimum amongst the per-
turbed queries. During this phase, the outputs do not inform the
observer whether the noisy query being processed updates the
maximum or minimum.

After reading the first k-queries, each subsequent query is per-
turbed by adding noise, and the algorithm checks if the noisy query
is between the maximum and minimum found in the first k-noisy
queries. It continues processing the queries as long as it is between
those two. Otherwise, it quits. Observe that k-MIN-MAX is a para-
metric set of examples, one for each value of k. For each k, the DiPA
modeling k-MIN-MAx has two variables, has k + 2 states and 3k + 1
transitions. Further, k-MIN-Max does not satisfy output distinction

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

Benchmarks DiPAut CheckDP [29]

Example v s trans | wtcalc total differentially D time (s) Counterexample
time (s) time (s) private? Validated?

SVT 1 3 3 0.00046 0.238 v 5/4 29.92 N.A.
NUM-SPARSE 1 3 3 0.00045 0.249 v 7/4 52.43 N.A.
DC-ExAMPLE 2 4 5 N.A. 0.237 X, DC N.A. 43.59 T.O.
Num-RANGE-1 2 4 4 N.A. 0.234 X, PV N.A 316.05 T.O.
NuMm-RANGE-2 2 4 4 0.00078 0.231 v 5/4 1909.43 T.O.
LC-EXAMPLE 2 4 4 N.A. 0.231 X, LC N.A T.O.
Two-RANGE-1 3 6 10 N.A. 0.239 X, LP N.A. T.O.
Two-RANGE-2 3 7 11 0.00258 0.277 v 2 T.O.
2-MiN-Max 2 4 7 0.00065 0.220 v 1 T.O.
10-MIN-Max 2 12 31 0.00221 0.230 v 1 ME.
20-MIN-Max 2 22 61 0.00434 0.248 v 1 ME.
100-MIN-MAx 2 102 301 0.0291 0.409 v 1 ME.
200-MIN-MAx 2 202 601 0.0803 0.643 v 1 M.E.
1-RANGE 2 4 5 0.00083 0.227 v 1 T.O.
10-RANGE 20 31 50 0.00797 0.611 v 1 ME.
20-RANGE 40 61 100 0.0212 3.469 v 1 ME.
40-RANGE 80 121 200 0.06242 35.89 v 1 ME.
80-RANGE 160 241 400 0.25867 506.3 v 1 M.E.

Table 1: Summary of experimental results for DiPAut and comparison with CheckDP. The columns in the table are as follows. v is the number of variables in the
automaton. s is the number of states in the automaton. trans is the number of transitions in the automaton. The weight calculation time and total time taken
by DiPAut averaged over six executions are reported next, and are measured in seconds. Differentially private indicates if the automaton is differentially private
or not. In case, it is not, we report the reason detected by the tool: DC/PV/LC/LP means that disclosing cycle/privacy-violating path/leaking cycle/leaking pair,
respectively is detected. D is the weight of the automaton computed by the algorithm in case it is differentially private. For CheckDP, the time column indicates
the running time for CheckDP measured in seconds. The last column indicates the time taken for counterexample validation by PSI in case a counterexample is

generated. T.O. denotes that the tool did not finish in 30 minutes. M.E. indicates that CheckDP reported a memory error.

for any k as the outputs do not distinguish whether maximum or
minimum is being updated in the first phase. However, it is well-
formed and e-differentially private. Psuedocode for k-MIN-MAX is
shown as Algorithm 2.

Examples m-Range. Another set of examples for scalability is m-
RANGE (for each m). m-RANGE is the m-dimensional version of
RANGE. It repeatedly checks whether a sequence of points in the
m-dimensional space is contained in a m-dimensional rectangle.
The rectangle is specified by giving the upper and lower threshold
for each coordinate of the rectangle. The algorithm initially adds
Laplacian noise to each of these 2m thresholds, then processes the
points by adding noise to each coordinate and checking that each
noisy coordinate is within the noisy thresholds for that coordinate.
Observe that m-RANGE is a set of examples, one for each m. For
each m, the DiPA modeling m-RANGE has 2m variables, has 3m + 1
states and 5m transitions. For each m, m-RANGE satisfies output
distinction, is well-formed, and is e-differentially private. m-RANGE
is given in Algorithm 3. Here the arrays T1 and T store the m-
lower and m-upper thresholds, respectively. The arrays low and
high store the noisy version of the lower and upper thresholds. In
the experiments, T is taken to be all 0s, and T3 is taken to be all 1s.

7.2 Summary of experimental results

The experimental results are summarized in Table 1. All experi-
ments were run on a macOS computer with a 1.4 GHz Quad-Core
Intel Core i5 CPU processor with 8GB RAM. The running time is
benchmarked using PYPERF [21], which runs each example 6 times
and takes the average over the 6 instances. Figure 6 plots the run-
ning time of our implementation for k-MIN-Max. As predicted, the
tool confirms that k-MIN-Max is e-differentially private. A close
examination of the algorithm for checking well-formedness reveals
that the algorithm can check the well-formedness of k-MIN-MAax
in time that is linear in k. This observation is confirmed by the

Input: g[1 : m]
Output: out[1 : Nm]

for j «— 1 tomdo
low[j] < Lap(z5;. T1ljD)
highlj] < Lap(35. T2Li])
out[j] « cont
end
fori < 1to N do
forj «— 1tomdo
r — Lap(g, glm(i—1) +]])
if (r > low[j]) A (r < high[j]) then
‘ out[m(i — 1) + j] « cont
else if ((r > low[j]) A (r > high[j])) then
‘ outfm(i—1)+jl < T
exit
end
else if ((r < low[j]) A (r < high[j])) then
‘ outfm(i—1)+j] « L
exit
end

end
end

Algorithm 3: m-RANGE algorithm. m-Range is differentially
private.

experimental results. Note that the size of the DiPA modeling k-
MIN-Max is linear in k, and hence the running time is also linear in
the size of DiPA. In contrast, a careful analysis reveals that the al-
gorithm checking well-formedness takes time that is cubic in m for
m-RANGE. This observation is also confirmed by the experimental
results. (See Figure 7). As predicted, the tool confirms that m-RANGE

1772

Deciding Differential Privacy of Online Algorithms with Multiple Variables

Performance
—-= k-min-max
/
0.6 4 e
7
-
Rd
7
7

0.5 4 s

M .
7
£ _
g 7
€ 044 -
2 e
s
7/
-
-
0.3 -
-
R
-
~
e
-
0.2
0 25 50 75 100 125 150 175 200

Figure 6: Running time for k-MIN-Max. The y-axis gives the running time
measured in seconds, while the x-axis gives k. The size of the DiPA is linear
in k. k-MiIN-Max is differentially private with weight 1.

Performance

500 { —— m-range

400

running time
w
&
5]

N
=]
)

100

30 50 60 70 80

Figure 7: Running time for m-RANGE. The y-axis gives the running time mea-
sured in seconds, while the x-axis gives m. The size of the DiPA is linear in
m. m-RANGE is differentially private with weight 1.

is e-differentially private. Note that the number of variables in m-

RANGE is 2m, implying a quartic dependence on the number of

variables as well. Data used to generate the graphs is given in [11].
Salient observations about our tool are as follows:

(1) DiPAut is able to check whether the algorithm described by
a DiPA is well-formed in reasonable time.

(2) In case the automaton A is well-formed, it is able to compute
aweight D that A is De-differentially private. The computed
values match the theoretical values. Further, the computation
of weight has little overhead.

(3) As predicted by the theory, the number of variables plays a
crucial role in performance. While the theory predicts that
this dependence is exponential (since the augmentation can
be of exponential size), nevertheless, there are interesting
examples in which the dependence is polynomial and not
exponential.

DiPAut is not only able to verify differential privacy for

examples but also find violations of privacy in a reasonable

time, as shown in Table 1.

4

1773

CCS 23, November 26-30, 2023, Copenhagen, Denmark

Comparison with CheckDP. We compare the performance of our
tool, DiPAut with CheckDP [29]. CheckDP employs the random-
ness alignment technique and attempts to prove differential privacy.
If it fails to prove differential privacy, it generates a potential coun-
terexample that must be validated using the PSI probabilistic model
checker [24]. The key differences between CheckDP and DiPAut
are as follows: (1) CheckDP supports other arithmetic operations
besides comparison operators. (2) However, CheckDP is sound but
incomplete and may fail to prove or disprove differential privacy.
(3) CheckDP checks if a program is De differentially private for a
given D. DiPAut, on the other hand, computes a D for which the
program is De differentially private. (4) DiPAut operates as a stan-
dalone tool, assessing the differential privacy of a given mechanism.
The results of the comparison are summarized in Table 1. Apart
from SVT and Num-Sprarse, CheckDP times out on all other ex-
amples. For those two examples, DiPAut significantly outperforms
CheckDP.

8 RELATED WORK

Online Programs and Comparison with [10]. The results in this paper
are an extension of those presented in [10]. However, the automaton
model proposed in [10] has only one storage variable, whereas we
consider the generalization where the automaton has finitely many
real-valued storage variables. Even though we use the same name
for the automata model and for the conditions characterizing well-
formed DiPA, the generalization to handle multiple real-valued
storage variables is a significant extension. Defining leaking cycles,
leaking pairs, privacy violating paths and disclosing cycles, requires
a careful analysis of the ordering constraints imposed on values
sampled in a run based on what gets stored in variables and the
Boolean constraints that guard transitions. These concepts cannot
be defined using just the underlying graph of the DiPA as in [10];
they require introducing the notion of a dependency graph of a
run. Even with dependency graphs, the definition of these graph-
theoretic conditions is subtle. For example, two cycles contained in
a run may not form a leaking pair. However, they may become a
leaking pair in an extension of the run as the additional transitions
in the extension introduce new dependencies in the dependency
graph (see Example 4 on Page 8). In the case of a single variable [10],
such a situation does not arise.

Next, even though the proof showing that well-formedness is
necessary for an output-distinct DiPA to be differentially private
uses a strategy similar to the case for one variable [10], it is signifi-
cantly more involved. For example, in showing that a leaking cycle
is a witness to privacy violation, complications arise due to the need
to track the dependency between multiple storage variables and
the presence of non-input transitions. When constructing a pair of
adjacent inputs that witness the violation of privacy, intervals of
real numbers called bands need to be carefully identified, where the
input of certain transitions is restricted to lie (see [11]). The proof
that a leaking pair is a witness to privacy violation uses new ideas.
In [10], the proof constructs, given D, two adjacent computations
whose ratio is > €€ for each € > 0. In this paper, the adjacent
computations have a ratio > e®¢ only for sufficiently large €.

The proof showing that a well-formed DiPA is differentially
private is also innovative. In [10], the proof is by induction on the

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

number of assignments to the stored variable in a run. In contrast,
here the induction is on the number of transitions in a run, and the
induction hypothesis is constructed by classifying the dependency
graph nodes as gcycle_node or Icycle_node.

Privacy proof construction. Techniques based on type systems have
been proposed in many papers [15, 16, 22, 27, 29, 31] for generating
proofs of differential privacy. Some of these methods such as [15, 16,
22, 27] employ linear dependent types, for which the type-checking
and type-inference may be challenging. In [1, 3-5] methods based
on probabilistic couplings and random alignment arguments have
been employed for proving differential privacy. Shadow execution-
based method was introduced in [30]. Probabilistic I/O automata are
used in [28] to model interactive differential privacy algorithms and
simulation-based methods are used to verify differential privacy,
but these methods have not been shown to be complete.

Counterexample generation. Automated techniques to search for
privacy violations by generating counter examples have been pro-
posed in [8, 17, 29]. Techniques include the use of statistical hy-
pothesis testing [17], optimization techniques and symbolic differ-
entiation [8] and program analysis [29]. These methods search over
a bounded number of inputs.

Model-checking/Markov Chain approaches. Probabilistic model
checking approach for verifying e-differential privacy is employed
in [12, 13, 25], where it is assumed that the program is given as a
finite Markov Chain. These approaches do not allow for sampling
from continuous random variables.

Decision Procedures. The decision problem of checking whether
a randomized program is differentially private is studied in [2],
where it is shown to be undecidable for programs with a single
input and single output, assuming that the program can sample
from Laplacian distributions. A decidable sub-class is identified
where the inputs and outputs are constrained to be from a finite
domain and have bounded length.

Complexity. Gaboardi et. al [23] study the complexity of deciding
differential privacy for randomized Boolean circuits, and show
that the problem is coNP*P-complete. The results are extended to
Boolean programs [9] for which the verification problem is PSPACE-
complete. In this line of work, programs have a finite number of
inputs, the only probabilistic choices are fair coin tosses, and €€ is
taken to be a fixed rational number.

9 DISCUSSION

We discuss the restrictions used in various definitions in this paper.

Strong feasability. From the theoretical point of view, strong feasi-
bility is used only to prove the necessity of well-formedness (The-
orem 4). The sufficiency proof (Theorem 2) does not require the
condition of strong feasibility. Nevertheless, we believe that all
differential privacy mechanisms are strongly feasible. We have not
encountered examples that violate the strong feasibility condition.
Our intuition for this belief is as follows. First, any DiPA that does
not have any non-input states is, by definition, strongly feasible. For
DiPA with non-input states, the condition implies that the mean
of the distribution at any two non-input states respects the order

1774

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

given by the dependency graph of a run. Let us consider the “de-
terministic” version of the automaton in which no noise is added.
Intuitively, the “deterministic” version captures the behavior of the
automaton in the limit as the privacy budget € tends to infinity,
i.e.,, becomes unlimited. A strongly feasible run implies that we can
choose inputs such that the probability of that run tends to 1 as €
tends to co and is executable in the “deterministic” version. A path
that is not strongly feasible implies that the probability of this path
tends to 0 as € tends to oo, irrespective of the choice of inputs, and
will never be executed in the "deterministic version" because the
insample values stored at the non-input states do not follow the
order given by the dependency graph. The deterministic version
of the automaton is relevant as a differentially private algorithm
is often the noisy version of a deterministic algorithm (with noise
added to make the automaton differentially private).

Output-distinction. Some examples do not meet the condition out-
put distinction. For example, the k-MIN-Max (See Section 7.1) and
NoisyMAx [20] are not output distinct. However, other examples
(m-Range, SVT, NumericSparse) are output distinct. The output
distinction condition is only needed to establish necessity but not
for sufficiency. In other words, if an automaton is well-formed, it is
differentially private, even if it is not output distinct. This is true for
the k-MIN-Max examples. However, the traditional No1sYMAX is
neither well-formed nor output distinct, and hence our technique
does not establish its differential privacy. Some variants of Noisy-
Max (like checking if the kth input is maximum) are well-formed
and hence can be handled by our techniques.

Adjaceny Relations. For algorithms working on a sequence of an-
swers to queries on a database like SVT and NUM-SPARSE (see [20],
pages 56 and 57), the assumption that queries are I-sensitive is com-
mon; here 1-sensitive means that adding or removing a member
from a database can cause a difference of at most 1 in the output of
each query. This assumption is satisfied by all counting queries and
can be found in Algorithms 1, 2, 3 in [20] on pages 58, 62, 64, first
paragraph on page 5 of [1] and third paragraph of Section 4 in [17].

More generally, our results also apply to a sequence of queries
each of which is A-sensitive. The computation of © will change, but
the theorems of the sufficiency of well-formedness and necessity
for well-formedness for output distinct DiPA remain true.

Boolean Guards on transitions in leaking cycle. In the definition of
a leaking cycle (see Definition 8), it is possible that the constraint
involving x in the guard of p[iz] is superfluous. When this happens,
there have to be other variables in the guard of p[iz]. However, we
can show that after removing all superfluous checks from pliz],
either the original cycle will be a leaking cycle for some (possibly
different) variable, or the leaking cycle gives rise to a leaking pair
when repeated twice. Therefore, in principle, even a superfluous
test does leak information (though indirectly).

The expressiveness of multi-variable DiPA vs one-variable DiPA. We
can prove that multi-variable DiPA are strictly more expressive
than one-variable DiPA. For example, we can formally show that
the DiPA Apance (See Figure 1) cannot be modeled using single-
variable DiPA.

Deciding Differential Privacy of Online Algorithms with Multiple Variables

10 CONCLUSIONS

We extended the DiP automaton model introduced in [10] for mod-
eling online algorithms that process a stream of unbounded real
values representing answers to queries and, in response, produce a
sequence of real or discrete output values. In the extended model, a
DiPA A may use multiple storage variables to store noisy input val-
ues when executing transitions that are used in Boolean conditions
that guard transitions. Our main contribution is a precise charac-
terization of when DiPAs are differentially private using the notion
of well-formed automata. The definition of well-formed automata
is subtle and complicated, and requires the use of new graph struc-
tures associated with the runs of the automata, called dependency
graphs. Well-formed DiPAs are shown to be differentially private
and DiPAs satisfying the condition of output distinction that are
differentially private are necessarily well-formed. The problem of
checking well-formedness is PSPACE-complete. The algorithm for
checking differential privacy has been implemented in a tool called
DiPAut, and our experimental results demonstrate its promise.

As future work, it will be interesting to identify necessary condi-
tions for classes of automata that do not satisfy the output distinc-
tion property. Extending DiPAs to allow a richer class of compar-
isons in the guards and a richer class of assignments, like using ex-
pressions involving additions of storage variables and/or constants
in the guard conditions, is left for future exploration. Computing
the optimal weight D is another open problem.

Acknowledgements. The authors would like to thank Lipsy Gupta
and the anonymous reviewers for their interesting and valuable
comments. Rohit Chadha was partially supported by NSF CNS
1553548 and NSF CCF 1900924. A. Prasad Sistla was partially sup-
ported by NSF CCF 1901069, Mahesh Viswanathan was partially
supported by NSF CCF 1901069 and NSF CCF 2007428, and Bishnu
Bhusal was partially supported by NSF CCF 1900924.

REFERENCES

[1] Aws Albarghouti and Justin Hsu. 2018. Synthesizing coupling proofs of differ-
ential privacy. In Proceedings of the ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL). 58:1-58:30.

Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh
Viswanathan. 2020. Deciding Differential Privacy for Programs with Finite
Inputs and Outputs. In 35th Annual ACM/IEEE Symposium on Logic in Computer
Science. 141-154.

Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu,
and Pierre-Yves Strub. 2016. Advanced Probabilistic Couplings for Differential
Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS). 55-67.

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
Strub. 2016. Proving differential privacy via probabilistic couplings. In IEEE
Symposium on Logic in Computer Science (LICS). 749-758.

Gilles Barthe, Boris Kopf, Federico Olmedo, and Santiago Zanella-Béguelin. 2013.
Probabilistic Relational Reasoning for Differential Privacy. ACM Transactions on
Programming Languages and Systems 35, 3 (2013), 9.

David Beazley. 2022. GitHub - dabeaz/ply: Python Lex-Yacc — github.com. https:
//github.com/dabeaz/ply. [Accessed 24-Jan-2023].

Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. 2023.
bhusalb/DiPAut: Version 1.0.1. https://doi.org/10.5281/zenodo.8332275
Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, and Mar-
tin T. Vechev. 2018. DP-Finder: Finding Differential Privacy Violations by Sam-
pling and Optimization. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS). 508-524.

Mark Bun, Marco Gaboardi, and Ludmila Glinskih. 2022. The Complexity of
Verifying Boolean Programs as Differentially Private. In 2022 IEEE 35th Com-
puter Security Foundations Symposium (CSF). 396-411. https://doi.org/10.1109/
CSF54842.2022.9919653

1775

[10

[11

[12

(13

(14]

[15

[16

[17]

oy
&

[19

[20

[21

[22]

~
&

[24

[25

[26

[27

[28

[29

[30

™
=

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. 2021. On Linear Time
Decidability of Differential Privacy for Programs with Unbounded Inputs. In 36th
Annual IEEE Symposium on Logic in Computer Science (LICS). 1-13.

Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal. 2023.
Deciding Differential Privacy of Online Algorithms with Multiple Variables.
http://arxiv.org/

Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu.
2014. Generalized Bisimulation Metrics. In 35th International Conference on
Concurrency Theory (CONCUR). 32-46.

Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser. 2020.
The Big-O Problem for Labelled Markov Chains and Weighted Automata. In
31st International Conference on Concurrency Theory (CONCUR) (LIPIcs), Vol. 171.
41:1-41:19.

Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex
network research. InterJournal Complex Systems (2006), 1695. https://igraph.org
Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jestus Gallego Arias, and
Justin Hsu. 2014. Really Natural Linear Indexed Type Checking. In 26th 2014 Inter-
national Symposium on Implementation and Application of Functional Languages
(IFL). 5:1-5:12.

Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata.
2019. Probabilistic Relational Reasoning via Metrics. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). 1-19.

Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer.
2018. Detecting Violations of Differential Privacy. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS). 475-489.
Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing noise to sensitivity in private data analysis. In IACR Theory of Cryptography
Conference (TCC). 265-284.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vad-
han. 2009. On the complexity of differentially private data release: efficient
algorithms and hardness results. In ACM SIGACT Symposium on Theory of Com-
puting (STOC). 381-390.

Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-
tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211-407.

Python Software Foundation. 2023. pyperf: A toolkit to write, run and analyze
benchmarks. https://github.com/psf/pyperf. Accessed on 24-Jan-2023.

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C
Pierce. 2013. Linear dependent types for differential privacy. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). 357-370.
Marco Gaboardi, Kobbi Nissim, and David Purser. 2020. The Complexity of
Verifying Loop-Free Programs as Differentially Private. In 47th International
Colloquium on Automata, Languages, and Programming, (ICALP) (LIPIcs), Vol. 168.
129:1-129:17.

Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic
Inference for Probabilistic Programs. In International Conference on Computer
Aided Verification. Springer, 62-83.

Depeng Liu, Bow-Yaw Wang, and Lijun Zhang. 2018. Model Checking Differ-
entially Private Properties. In Programming Languages and Systems - 16th Asian
Symposium, (APLAS) (Lecture Notes in Computer Science), Vol. 11275. 394-414.
Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the Sparse Vector
Technique for Differential Privacy. Proceedings of VLDB 10, 6 (2017), 637-648.
Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow
Stronger: A Calculus for Differential Privacy. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming (ICFP). 157-168.
Michael Carl Tschantz, Dilsun Kirli Kaynar, and Anupam Datta. 2011. Formal
Verification of Differential Privacy for Interactive Systems (Extended Abstract).
In 27th Conference on the Mathematical Foundations of Programming Semantics
(MFPS) (Electronic Notes in Theoretical Computer Science), Vol. 276. 61-79.

Yuxin Wang, Zeyu Ding, Daniel Kifer, and Danfeng Zhang. 2020. CheckDP: An
Automated and Integrated Approach for Proving Differential Privacy or Finding
Precise Counterexamples. In 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS). 919-938.

Yuxin Wang, Zeyu Ding, Guanhong Wang, Daniel Kifer, and Danfeng Zhang. 2019.
Proving differential privacy with shadow execution. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
(PLDI). 655-669.

Danfeng Zhang and Daniel Kifer. 2017. LightDP: towards automating differential
privacy proofs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL). 888-901.

	Abstract
	1 Introduction
	2 Preliminaries
	3 DiPA
	3.1 Syntax
	3.2 Semantics

	4 Well Formed DiPA
	5 Well-formed DiPA are Differentially Private
	6 Differentially Private DiPA are well-formed
	7 Experiments
	7.1 Description of Examples
	7.2 Summary of experimental results

	8 Related Work
	9 Discussion
	10 Conclusions
	References

