

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

they produce an output that is either a symbol from a �nite set or

a real number.

We show that, even in the case of automata with multiple storage

variables, the problem of determining whether a given DiPA A is

Dϵ-di�erentially private for some constant D > 0 (independent of

ϵ) and all ϵ > 0, can be reduced to checking graph-theoretic condi-

tions. These conditions demand the absence of certain paths, cycles,

and interactions among them. However, unlike the single variable

automata case [10], these paths and cycles cannot be captured only

by considering the underlying graph of the automata. Instead, we

use an auxiliary graph to capture these undesirable paths and cy-

cles precisely. This is a non-trivial extension of [10]; for a more

detailed comparison with [10], see Section 8. An automaton A is

said to be well-formed if it does not have any of these undesirable

paths or cycles. We show that a well-formed DiPA is di�erentially

private; thus, well-formedness is a su�cient condition to guarantee

privacy. Conversely, we show that if additionally, for every state

of A, the transitions of A from that state have distinct outputs

(called output distinct), then well-formedness is also necessary to

guarantee di�erential privacy. In other words, a DiPA A, having

distinct outputs on transitions from any state, that is di�erentially

private is well-formed. These proofs of necessity and su�ciency

require novel ideas that are a signi�cant extension of the techniques

presented in [10]; once again see Section 8 for more details.

Next, we show that there is a PSPACE algorithm that checks if

a DiPA A is well-formed. This algorithm additionally computes

a value for D that shows that A is Dϵ-di�erentially private for

all ϵ . We also show that checking di�erential privacy of output-

distinct DiPA is PSPACE-hard, thus establishing the optimality of

our veri�cation algorithm.

We have implemented our algorithm in a tool called DiPAut. Our

experiments show that the approach scales and that our algorithm

produces known estimates for D. It successfully proves di�erential

privacy and identi�es violations of privacy in various examples.

The tool is evaluated for scalability with respect to both the number

of states and variables. Despite the PSPACE-hardness, the tool is

able to perform well in our experiments. We compare DiPAut with

CheckDP [29], a state-of-the-art tool to check di�erential privacy.

DiPAut signi�cantly outperforms CheckDP in all our experiments.

The tool DiPAut is available to download at [7].

Organization. The rest of the paper is organized as follows. Sec-

tion 2 introduces basic notation and de�nitions used in the paper.

Our model of DiP automaton extended with multiple variables

is introduced in Section 3. Section 4 de�nes well-formed DiPA,

which is a (almost) precise characterization of di�erentially private

automata. We show that well-formed automata are di�erentially

private in Section 5; and show that checking well-formedness is

PSPACE-complete. Section 6 shows that di�erentially private au-

tomata that have distinct outputs on transitions are well-formed.

PSPACE-hardness of checking di�erential privacy is also presented

in this section. Experimental results are presented in Section 7.

Closely related work is discussed in Section 8. We discuss on the

restrictions placed on the automata and the adjacency relations

used in the paper. Finally we present our conclusions (Section 10).

For lack of space reasons, some proofs are omitted and can be

found in [11].

2 PRELIMINARIES

The de�nitions and notations in this section are borrowed from [10].

Let N,Z,Q,Q≥0,R,R>0 denote the set of natural numbers, inte-

gers, rational numbers, non-negative rationals, real numbers, and

positive real numbers, respectively. In addition, R∞ will denote the

set R ∪ {−∞,∞}, where −∞ is the smallest and ∞ is the largest

element in R∞. For a real number x ∈ R, |x | denotes its absolute

value.

Sequences. For a set Σ, Σ
∗ denotes the set of all �nite se-

quences/strings over Σ. We use λ to denote the empty se-

quence/string over Σ. For two sequences/strings ρ,σ ∈ Σ
∗, we

use their juxtaposition ρσ to indicate the sequence/string obtained

by concatenating them in order. Consider σ = a0a1 · · ·an−1 ∈ Σ
∗

(where ai ∈ Σ). We use |σ | to denote its length n and use σ [i] to

denote its ith symbol ai . The substring aiai+1 · · ·aj−1 from posi-

tion i (inclusive) to j (not inclusive) will be denoted as σ [i : j]; if

j ≤ i then σ [i : j] = λ. Thus, σ [0 : |σ |] = σ . The su�x starting

at position j will be denoted as σ [j :], i.e., σ [j :] = σ [j : |σ |]. For

any partial function f : A ↪→ B, where A,B are some sets, we let

dom(f) be the set of x ∈ A such that f (x) is de�ned.

Laplace Distribution. Di�erential privacy mechanisms often add

noise by sampling values from the Laplace distribution. The distri-

bution, denoted Lap(k, µ), is parameterized by two values: k ≥ 0

which is called the scaling parameter, and µ which is the mean. The

probability density function of Lap(k, µ), denoted fk ,µ , is given by

fk ,µ (x) =
k
2 e
−k |x−µ |, where e is the Euler constant.

Di�erential Privacy. Di�erential privacy [18] is a framework that

enables statistical analysis of databases containing sensitive, per-

sonal information of individuals while ensuring that the privacy of

individuals is not adversely a�ected by the results of the analysis.

In the di�erential privacy framework, a randomized algorithm, M ,

called the di�erential privacy mechanism, mediates the interaction

between a (possibly dishonest) data analyst asking queries and a

database D responding with answers. Queries are deterministic

functions and typically include aggregate questions about the data,

like the mean etc. In response to such a sequence of queries, M

responds with a series of answers computed using the actual an-

swers from the database and random sampling, resulting in “noisy”

answers. Thus,M provides privacy at the cost of accuracy. Typically,

M’s noisy response depends on a privacy budget ϵ > 0.

Di�erential privacy captures the privacy guarantees for individ-

uals whose information is in the database D. For an individual i , let

D\{i} denote the database where i’s information has been removed.

A secure mechanismM ensures that for any individual i in D, and

any sequence of possible outputs o, the probability thatM outputs

o on a sequence of queries is approximately the same whether the

interaction is with the database D or with D \ {i}. To capture this

de�nition formally, we need to characterize the inputs on which

M is required to behave similarly. Inputs to a di�erential privacy

mechanism can be seen as answers from the database to a sequence

of queries asked by the data analyst. If queries are aggregate queries,

then answers to q on D and D \ {i} (for individual i) are likely to

Deciding Di�erential Privacy of Online Algorithms with Multiple Variables CCS ’23, November 26–30, 2023, Copenhagen, Denmark

be away by at most 1. 2 This intuition leads to the following often-

used de�nition of adjacency that characterizes inputs on which the

di�erential privacy mechanismM is expected to behave similarly;

for example this de�nition is used in SVT [1, 17, 19, 20, 26] and

NumericSparse [20].3 We assume that at each step, the di�erential

privacy mechanism either gets a real number as input (answer to

an aggregate query) or is asked to respond without an answer from

the database which is encoded as τ .

De�nition 1. Sequences ρ,σ ∈ (R∪ {τ })∗ are adjacent if |ρ | = |σ |

and for each i ≤ |ρ | (a) ρ[i] ∈ R i� σ [i] ∈ R and (b) if ρ[i] ∈ R then

|ρ[i] − σ [i]| ≤ 1.

We are now ready to formally de�ne the notion of privacy which

uses De�nition 1. In response to a sequence of inputs, a di�erential

privacy mechanism produces a sequence of outputs from the set

(say) Γ. Since a di�erential privacy mechanismM is a randomized

algorithm, it will induce a probability distribution on Γ
∗.

De�nition 2 (ϵ-di�erential privacy). A randomized algorithmM

with input in (R∪{τ })∗ and output in Γ
∗ is said to be ϵ-di�erentially

private if for all measurable sets S ⊆ Γ
∗ and adjacent ρ,σ ∈ R∗

(De�nition 1),

Prob[M(ρ) ∈ S] ≤ eϵ Prob[M(σ) ∈ S].

Input: q[1 : N]

Output: out[1 : N]

low← Lap(ϵ4 ,Tℓ)

high← Lap(ϵ4 ,Tu)

for i ← 1 to N do

r← Lap(ϵ4 ,q[i])

if (r ≥ low) ∧ (r < high) then
out[i] ← ⊥

else if (r ≥ low) ∧ (r ≥ high) then

out[i] ← ⊤1
exit

else if (r < low) ∧ (r < high) then

out[i] ← ⊤2
exit

end

end

Algorithm 1: Range query algorithm

Example 1. Consider the following problem. Given a sequence of

answers to queries (array q[1 : N]) and an interval [Tℓ,Tu) given

by thresholds Tℓ and Tu , determine the �rst time a query answer

lies outside this interval; indicate (through the output) whether

the query answer is ≥ Tu or ≤ Tℓ at this point. A di�erentially

private algorithm to solve this problem is shown as Algorithm 1.

The algorithm starts by adding noise to both Tℓ and Tu to get a

perturbed interval de�ned by numbers low and high. After that the

2The di�erence in general can be bounded by a constant ∆.
3Please see the discussion of SVT on pages 56 and 57 of [20] and its description on
pages 58, 62, and 64. For simplicity, it is assumed that these queries are 1-sensitive.
So, by considering SVT as an algorithm that works directly on the sequence of the
outputs of queries, we get naturally the adjacency relation used here.

algorithm perturbs each query answer and stores the result in r, and

then checks if r lies between low and high. If it does, the algorithm

outputs ⊥ and processes the next query answer. Otherwise, if r is

larger than both low and high it outputs ⊤1 and stops. On the other

hand, if r is less than both low and high then it outputs ⊤2 and

halts. The algorithm’s behavior depends on the value of ϵ . It can be

shown that for each value of ϵ , the algorithm for that value of ϵ is

ϵ-di�erentially private.

3 DIPA

DiP (Di�erentially Private) automata (DiPAs for short) are an

automata-based model introduced in [10] to describe some dif-

ferential privacy mechanisms. They process an input string σ ∈

(R ∪ {τ })∗ by sampling values from the Laplace distribution, using

real variables to store information during the computation, and

producing a sequence of outputs. The model introduced in [10] had

only one storage variable. In this paper, we generalize this model

naturally to allow multiple real-valued storage variables. However,

as discussed in Section 8, both the characterization of di�erentially

private algorithms described by them and the proofs of decidability

are a non-trivial extension of the single variable model.

3.1 Syntax

A DiP automaton is a parametric automaton whose behavior de-

pends on a parameter ϵ (the privacy budget). It has �nitely many

control states and �nitely many real-valued variables x1, x2, . . . xk
that are used to store information during the computation. At each

step, the automaton freshly samples two real values from Laplace

distributions whose parameters depend on ϵ , and these sampled val-

ues are stored in the (additional) variables insample and insample′.

Given an input σ ∈ (R ∪ {τ })∗, a DiPA does the following in each

step.

(1) Two values are drawn from the distributions Lap(dϵ, µ)

and Lap(d ′ϵ, µ ′) and stored in the variables insample and

insample′, respectively. The scaling factors d,d ′ and means

µ, µ ′ of these distributions depend on the current state.

(2) The states of the automaton are partitioned into input states

and non-input states. At a non-input state, the automaton

expects to read τ from the input. On the other hand, at an

input state, it expects to read a real number, say a, and it

updates insample and insample′ by adding a to them. The

properties of the Laplacian distribution imply that the dis-

tribution of insample + a (insample′ + a) is the same as the

distribution of Lap(dϵ, µ + a) (Lap(dϵ, µ ′ + a) respectively).

(3) A transition changes the control state and outputs a value.

The value output could either be a symbol from a �nite set

or one of the two real numbers insample and insample′ that

are sampled in this step. At an input state, the transition is

guarded by a Boolean condition that depends on the result

of comparing the sampled value insample with the stored

values xi (1 ≤ i ≤ k). It is possible that for certain values of

xi (1 ≤ i ≤ k) and insample, no transition is enabled from

the current state. In such a case, the computation ends.

(4) Finally, the automaton may choose to store the sampled

value insample in any of the variables xi (1 ≤ i ≤ k).

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

We now formally de�ne DiP automaton capturing the above in-

tuition. First, some necessary notation. Let G′ be the set of con-

straints de�ned as G′ = {insample ≥ xi | 1 ≤ i ≤ k}∪ {insample <

xi | 1 ≤ i ≤ k}. Let G′′ be the set of conditions formed by tak-

ing conjunctions of two or more constraints in G′ such that both

insample ≥ xi and insample < xi don’t appear for any 1 ≤ i ≤ k .

Finally, let G = {true} ∪ G′ ∪ G′′; these are the constraints that

guard transitions in a DiPA.4

De�nition 3 (DiPA). A DiP automaton A = (Q, Γ,qinit,X , P, δ)

where

• Q is a �nite set of states partitioned into two sets: the set of

input states Qin and the set of non-input states Qnon,

• Γ is a �nite output alphabet,

• qinit ∈ Q is the initial state,

• X = {insample, insample′} ∪ {xi | 1 ≤ i ≤ k} is the set of

variables; we will use stor = {xi | 1 ≤ i ≤ k} to denote the

storage variables,

• P : Q → Q≥0 × Q × Q≥0 × Q is the parameter function that

assigns to each state a 4-tuple (d, µ,d ′, µ ′), where insample

is sampled from Lap(dϵ, µ) and insample′ is sampled from

Lap(d ′ϵ, µ ′),

• and δ : (Q × G) ↪→ (Q × (Γ ∪ {insample, insample′}) ×

{true, false}k) is the transition (partial) function that given

a current state and the result of comparing each xi (1 ≤ i ≤ k)

with insample, determines the next state, the output, and

whether the variables xi should be updated to store insample.

The output could either be a symbol from Γ or the values

insample and insample′ that were sampled.

In addition, the transition function δ satis�es the following two

conditions.

Determinism: For any stateq ∈ Q , if δ (q, c) and δ (q, c ′) are de�ned

for c, c ′ ∈ G then either c = c ′ or c ∧ c ′ is unsatis�able. That is,

from any state, at most one transition is enabled at any time.

Non-input transitions: From any q ∈ Qnon, if δ (q, c) is de�ned,

then c = true; that is, there is at most one transition from a non-

input state which is always enabled.

Remark. Although insample′ is never used in comparisons, it is nev-

ertheless needed to model examples such as Num-Sparse (See [20]).

insample′ is often used in algorithms when we want to output the

noisy input value in a di�erentially private fashion. Outputting

insample instead of insample′ can violate di�erential privacy, as

insample may have been used in other comparisons: See the de�ni-

tion of privacy violating path (De�nition 11 in Section 4); also [26].

Before concluding this section, it is useful to introduce some no-

tation and terminology for transitions. A quintuple t = (q, c,q′,o,b)

denotes a transition of A if δ (q, c) = (q′,o,b), where b =

(b1,b2, . . .bk) ∈ {true, false}
k . For such a transition, src(t) = q

denotes the source, trg(t) = q′ the target, out(t) = o ∈ Γ ∪

{insample, insample′} the output, and guard(t) = c the guard.

Based on the guard c and the Booleans b, we can associate the

4We could also allow guards of the form insample > xi and insample ≤ xi . However,
we chose to keep the presentation simple. As all random variables in a DiPA are noisy,
the equality happens with probability 0.

q0

1
4 , 0

q1

1
4 , 1

q2

1
4 , 0

q3

1
4 , 0

true, ⊥

(true, false)

true, ⊥

(false, true)

д1, ⊥

(false, false)

д2, ⊤1

(false, false)

д3, ⊤2

(false, false)

Figure 1:DiPAArange modelingAlgorithm 1. ThresholdTℓ is set to 0 (sampling

mean of insample in q0) and Tu is set to 1 (sampling mean of insample in q1).
The guards д1 = (insample ≥ x1) ∧ (insample < x2), д2 = (insample ≥ x1) ∧
(insample ≥ x2), and д3 = (insample < x1) ∧ (insample < x2).

following sets of variables with transition t .

smallv(t) = {x ∈ stor | insample ≥ x is a conjunct of c}

largev(t) = {x ∈ stor | insample < x is a conjunct of c}

usedv(t) = smallv(t) ∪ largev(t)

assignv(t) = {xi | bi = true}

nonassignv(t) = {xi | bi = false}

Intuitively, smallv(t) (largev(t)) are the storage variables that lower

bound (upper bound) insample if the guard is satis�ed; usedv(t) are

the storage variables that are referenced in the guard of t ; assignv(t)

are the variables that are set by t ; and nonassignv(t) are the vari-

ables that are left unchanged by t . For any i , if xi ∈ assignv(t) then

t sets xi = insample during the transition and hence t is an assign-

ment transition for variable xi . Finally, if src(t) = q ∈ Qin then t

is said to be input transition and if q ∈ Qnon then t is a non-input

transition.

Example 2. The di�erential privacy mechanism in Example 1 can

be modeled as a DiPA. This is shown in Figure 1. We will use these

conventions when drawing DiPAs in this paper. Input states will

be represented as circles, while non-input states will be drawn

as rectangles. The name of each state is written above the line,

while the scaling factor d and mean µ of the distribution used to

sample insample is written below the line. The parameters d ′ and

µ ′ for sampling insample′ are not shown in the �gures, but will

be mentioned in the caption and text when they are important;

they are relevant only when insample′ is output on a transition.

Edges will be labeled with the guard of the transition, followed by

the output, and a vector of Booleans to indicate which variables

insample is stored in.

Theworking ofArange in Fig. 1 can be explained as follows. Since

insample′ is not output in any step, the parameters associated with

sampling insample′ are not reported. The thresholds Tℓ and Tu are

hard-coded as 0 and 1, respectively, as the distribution means for

the non-input states q0 and q1. The transition from q0 to q1 perturbs

Tℓ (= 0) and sets this to variable x1; thus, x1 corresponds to the

variable low in Algorithm 1. The transition from q1 to q2 perturbs

Deciding Di�erential Privacy of Online Algorithms with Multiple Variables CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Tu (= 1) and stores it in x2. Thus, x2 corresponds to variable high in

Algorithm 1. State q2 is an input state. Transitions from q2 perturb

the query answer given as input storing it in insample, compare

insample to the values stored in x1 and x2, and output the right

value accordingly. State q3 is a halting state where no transitions

are enabled.

We conclude this example by illustrating the de�nitions as-

sociated with transitions. The transition t from q0 to q1 can be

denoted by the quintuple (q0, true,q1,⊥, (true, false)). For t , we

have src(t) = q0, trg(t) = q1, out(t) = ⊥, guard(t) = true,

smallv(t) = largev(t) = usedv(t) = ∅, assignv(t) = {x1}, and

nonassignv(t) = {x2}. In this case t is a non-input, assignment

transition for variable x1. In contrast, the transition t ′ from q2 to

itself, is an input transition that is not an assignment transition for

any variable. Here we have smallv(t ′) = {x1}, largev(t
′) = {x2},

and usedv(t ′) = {x1, x2}.

3.2 Semantics

An execution/run of a DiPA A = (Q, Γ,qinit,X , P, δ), ρ =

t0t1 · · · tn−1, is a sequence of transitions ti such that for every

0 < i < n, trg(ti−1) = src(ti) (i.e., the sequence ρ corresponds to a

path in the “graph” ofA). We extend the notation of length, the ith

transition, sub-sequence and su�x from (general) sequences: thus,

|ρ | = n, ρ[i] = ti , ρ[i : j] = ti · · · tj−1 and ρ[j :] = tj tj+1 · · · tn−1.

We also extend the notion for source and target from transitions to

a run — src(ρ) = src(t0) and trg(ρ) = trg(tn−1). Using the notation

developed for transitions, guard(ρ[i]) is the guard of the ith transi-

tion ti of ρ. A run ρ is a cycle if src(ρ) = trg(ρ), i.e., the run begins

and ends in the same state. Finally, given two runs ρ1 and ρ2 such

that trg(ρ1) = src(ρ2), ρ1ρ2 is the run which is the concatenation

of ρ1 followed by ρ2.

Recall that transitions of DiPA A compare values stored in the

variables xi (1 ≤ i ≤ k) and insample. Thus, to de�ne the semantics

of the DiPA, we need to make sure that the value of variable xi is

de�ned before it is used in a comparison in the guard of a transition.

Therefore, we make the technical assumption that on every run

starting from the initial state qinit, a variable is assigned a value

before it is referenced in a guard. We assume that all DiPA A

considered in this paper are initialized as de�ned formally below.

Initialization:We say that a DiPA A = (Q, Γ,qinit,X , P, δ) is ini-

tialized if for any run ρ starting from the initial state qinit (i.e.,

src(ρ) = qinit), if guard(ρ[i]) references variable xℓ (i.e., xℓ ∈

usedv(ρ[i])) then there is j < i such that ρ[j] is an assignment

transition for xℓ (i.e., xℓ ∈ assignv(ρ[j])).

We need to de�ne one more concept associated with a run ρ.

For any storage variable x and position j ∈ {0, 1, . . . | ρ |}, the last

position when x was assigned before j is the maximum index i < j

such that x was assigned on transition ρ[i]. More precisely,

lastassignρ (x, j) = max{i | i < j, x ∈ assignv(ρ[i])}. 5

When the run ρ is clear from the context, we will drop the subscript

and simply refer to the last assigned position before j for x as

lastassign(x, j).

To de�ne the semantics of a DiPA A, we need to de�ne the

probability of “executions”. But runs, as de�ned above, do not have

5As always max ∅ = −∞ and min ∅ = ∞.

all the information we need. For example, the real numbers read

as input determine the values of insample and insample′, which in

turn determine whether a transition is enabled and what is stored

in the variables. Next, on transitions where either insample or

insample′ are output, to de�ne a meaningful measure space, we

need to associate an interval (v,w) in which the output value lies.

Thus, we de�ne when a run corresponds to a certain sequence of

inputs and outputs.

De�nition 4 (Computation). Consider DiPA A =

(Q, Γ,qinit,X , P, δ) and a run ρ of A. Let σ ∈ (R ∪ {τ })∗ be

an input sequence and γ ∈ (Γ ∪ (R∞ × R∞))
∗ be an output sequence.

We say that ρ is a run on σ producing output γ if the following

conditions hold.

(1) |ρ | = |σ | = |γ |.

(2) For any i , σ [i] = τ i� src(ρ[i]) ∈ Qnon. That is, symbol τ is

only read in non-input states.

(3) For any i , γ [i] ∈ Γ i� out(ρ[i]) ∈ Γ. Further for such i ,

out(ρ[i]) = γ [i]. That is, outputs in ρ “match” outputs in

γ , with the only di�erence being that when insample or

insample′ is output in ρ, the corresponding position in γ is

an interval (v,w) ∈ R2∞.

When ρ is a run on σ producing γ , the tuple κ = (ρ,σ ,γ) will be

called a computation.

For a computation κ = (ρ,σ ,γ) of DiPA A, the su�x starting

at position j is κ[j :] = (ρ[j :],σ [j :],γ [j :]). Notice that κ[j :] (for

any j) is also a computation of A since ρ[j :] is a run on σ [j :]

producing γ [j :]. Also, we use length of κ, |κ | to be |ρ | (= |σ | = |γ |),

the length of the run ρ.

Probability of Computations. We will now de�ne what the probabil-

ity of each computation is. Recall that in each step, the automaton

samples two values from Laplace distributions, and if the transition

is from an input state, it adds the read input value to the sampled

values and compares the result with the values stored in the vari-

ables xi , 1 ≤ i ≤ k . The step also outputs a value, and if the value

output is one of the two sampled values, the computation requires

it to belong to the interval that appears in the output sequence. The

probability of such a transition thus is the probability of drawing a

sample that satis�es the guard of the transition and (if the output

is a real value) producing a number that lies in the interval in the

output label. This intuition is formalized in a precise de�nition.

Let us �x a computation κ = (ρ,σ ,γ) of DiPA A =

(Q, Γ,qinit,X , P, δ). Recall that stor = {xi | 1 ≤ i ≤ k}. Since the pa-

rameters of the Laplace distribution that is used to sample insample

and insample′ depend on the privacy budget ϵ , the probability of κ

will also depend on ϵ . In addition, the values stored in the variables

xi ∈ stor at the start of the computation also in�uence the behavior

of A. Let η : stor→ R be the evaluation that de�nes the values of

xi , 1 ≤ i ≤ k , initially. The probability of κ depends on both ϵ and

η and is denoted as Pr[ϵ,η,κ]. We de�ne this inductively on |κ |. For

any ϵ and any computation κ with |κ | = 0, Pr[ϵ,η,κ] = 1.

Let us now consider the case when |κ | > 0. Before de�ning the

probability in this case, we de�ne the parameters that we will need.

Let P(src(κ[0])) = (d, µ,d ′, µ ′). De�ne the value a0 as follows — if

σ [0] ∈ R then a0 = σ [0], and if σ [0] = τ then a0 = 0. Next, let

us de�ne the values ℓ and u. If γ [0] ∈ Γ then ℓ = −∞ and u = ∞.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

Otherwise, if γ [0] = (v,w) then ℓ = v and u = w . Finally, for a

parameter z, let ηz be the evaluation that modi�es η by setting all

the variables assigned by ρ[0] to z. In other words,

ηz (x) =

{

η(x) if x ∈ nonassignv(ρ[0])

z if x ∈ assignv(ρ[0])

We are now ready to de�ne Pr[ϵ,η,κ] based on whether out(ρ[0]) =

insample′ or not.

Case out(ρ[0]) = insample′: Set ℓ′ = max{η(x) | x ∈ smallv(ρ[0])}

and u ′ = min{η(x) | x ∈ largev(ρ[0])}. Also de�ne p to be the

probability that insample′ ∈ (ℓ,u) = (v,w) = γ [0], i.e.,

p =

∫ u

ℓ

d ′ϵ

2
e−d

′ϵ |z−µ′−a0 |dz

Then,

Pr[ϵ,η,κ] = p

∫ u′

ℓ′

(

dϵ

2
e−dϵ |z−µ−a0 |

)

Pr[ϵ,ηz ,κ[1 :]]dz.

Case out(ρ[0]) , insample′: In other words, either out(ρ[0]) ∈ Γ

or out(ρ[0]) = insample. In this case set ℓ′ = max({η(x) | x ∈

smallv(ρ[0])} ∪ {ℓ}) and u ′ = min({η(x) | x ∈ largev(ρ[0])} ∪ {u}).

Pr[ϵ,η,κ] =

∫ u′

ℓ′

(

dϵ

2
e−dϵ |z−µ−a0 |

)

Pr[ϵ,ηz ,κ[1 :]]dz.

In the special case when assignv(ρ[0]) = ∅ (i.e., the �rst transi-

tion of the run does not change the assignment to any variable),

observe that ηz = η. Hence, Pr[ϵ,ηz ,κ[1 :]]-term on the right hand

side of both equations can be pulled out of the integral, and the

expression can be simpli�ed. We will abuse notation and use Pr[·]

to also refer to the function Pr[η,κ] B ϵ 7→ Pr[ϵ,η,κ]. Notice that

when ρ starts from qinit, because of the initialization condition of

DiPA, the value of Pr[·] does not depend on the valuation η. For

such computations, we may drop the valuation η from the argument

list of Pr[·] to reduce notational overhead. Even though we plan to

use the same function name, the number of arguments to Pr[·] will

disambiguate what we mean.

In this paper we study the computational problem of checking

di�erential privacy for DiPAs.We conclude with a precise de�nition

of this problem.We start by specializing the de�nition of di�erential

privacy to the setting of DiPA. For a DiPA A, an input sequence

σ ∈ (R ∪ {τ })∗ and an output sequence γ ∈ (Γ ∪ (R∞ × R∞))
∗, let

Runs(σ ,γ) be the set of all runs ρ of A starting from the initial

state qinit such that ρ is a run on σ producing γ .

De�nition 5. A DiPA A is Dϵ-di�erentially private (for D > 0,

ϵ > 0) i� for every σ1,σ2 ∈ (R ∪ {τ })
∗ and γ ∈ (Γ ∪ (R∞ × R∞))

∗

such that σ1 and σ2 are adjacent
6,

∑

ρ ∈Runs(σ1,γ)

Pr[ϵ, (ρ,σ1,γ)] ≤ eDϵ
∑

ρ ∈Runs(σ2,γ)

Pr[ϵ, (ρ,σ2,γ)].

Di�erential Privacy Problem: A DiPA A is said to be di�eren-

tially private if there exists a constant D > 0 (independent of ϵ)

such that A is Dϵ-di�erentially private, ∀ϵ > 0. The di�erential

privacy problem is the problem of determining if a given DiPA A

is di�erentially private.

6See De�nition 1 on Page 3.

Remark. A DiPA A is a parametric automaton (with parameter ϵ),

and the probability of each of its executions on a sequence of input

varies with ϵ . Thus, considering its semantics, using A(ϵ) to refer

to the automaton may be more appropriate. However, we shall use

A to reduce the notational overhead.

4 WELL FORMED DIPA

The main goal of the paper is to solve the di�erential privacy prob-

lem described in Section 3: Given a DiPA A determine if there is a

D > 0 such that for all ϵ > 0, A is Dϵ-di�erentially private. In this

section, we de�ne the sub-class of well-formed DiPA that help char-

acterize precisely the class of DiPA that are di�erentially private.

Well-formed DiPA are automata that don’t have four properties

that lead to the violation of privacy: (a) leaking cycles, (b) leaking

pairs, (c) disclosing cycles, and (d) privacy violating paths. We will

de�ne what these types of cycles and paths are in this section.

Dependency Graph of a Run. Consider a run ρ of a DiPAA. Guards

on transitions and decisions to store insample in storage variables,

demand that if A follows the run ρ, then the values sampled as

insample at di�erent steps must be ordered in a certain way to

ensure that guards are satis�ed. This partial order on the sampled

values demanded by a run is conveniently captured as a directed

graph that we call the dependency graph.

De�nition 6 (Dependency Graph). Let A = (Q, Γ,qinit,X , P, δ)

be a DiPA and let ρ = t0t1 · · · tn−1 be a run of A. The dependency

graph of ρ is the directed graph Gρ = (V , E) where

• V = {i | 0 ≤ i < n}, and

• E is de�ned as E ′ ∩ (V ×V) where

E ′ ={(j, lastassignρ (x, j)) | j ∈ V , x ∈ largev(tj)}

∪ {(lastassignρ (x, j), j) | j ∈ V , x ∈ smallv(tj)}.

Notice that E = E ′ ∩ (V × V) ensures that an edge

(j, lastassignρ (x, j)) (or (lastassignρ (x, j), j)) is present only when

lastassignρ (x, j) , −∞ (i.e., when x is assigned before position

j). Also observe that an edge (i, j) in Gρ means that, to satisfy

the guards, insample at position i in the run ρ must be less than

insample at position j.

Given the intuition that the dependency graph Gρ captures the

ordering constraints imposed by the guards in ρ, one can conclude

that a cycle in Gρ means that ρ places contradictory demands

on the values sampled and is therefore not a valid execution of

the DiPA. We de�ne a run ρ of DiPA A to be feasible i� Gρ is

acyclic. Feasibility is consistent with our semantic intuitions — if ρ

is feasible then there is some evaluation η such that for any ϵ > 0,

any input sequence σ and any output sequenceγ in which all output

intervals are given by the interval (−∞,∞), for which ρ is a run on

σ that produces γ , Pr[ϵ,η, (ρ,σ ,γ)] > 0.

Let us consider a feasible run ρ = t0t1 · · · tn−1 of DiPA A. Let

qi = src(ti) and let P(src(ti)) = (di , µi ,d
′
i , µ
′
i). We say that ρ is

strongly feasible if in addition whenever there is a path from i

to j in Gρ and qi ,qj ∈ Qnon then µi < µ j . Thus, ρ is strongly

feasible if whenever guards require two insample values on non-

input transitions to be ordered, the corresponding means of the

Laplace distributions are ordered in the same way. We only consider

DiPA that satisfy the following strong feasibility assumption.

Deciding Di�erential Privacy of Online Algorithms with Multiple Variables CCS ’23, November 26–30, 2023, Copenhagen, Denmark

0

2

1 0

2

1

Figure 2:Dependency graphs for runs ρ1 and ρ2 from Example 3.Gρ1 is on the

left and Gρ2 is on the right.

Strong Feasibility: All feasible runs from the initial state qinit are

strongly feasible.

Example 3. Let us look at two example runs of length 3.

ρ1 =(q0, true, q1, ⊥, (true, false))(q1, insample < x1, q2, ⊥, (false, true))

(q2, insample ≥ x1 ∧ insample < x2, q3, ⊥, (false, false))

ρ2 =(q0, true, q1, ⊥, (true, false))(q1, insample ≥ x1, q2, ⊥, (false, true))

(q2, insample ≥ x1 ∧ insample < x2, q3, ⊥, (false, false))

The only di�erence between ρ1 and ρ2 is the guard on the second

transition, which goes from state q1 to q2. Their dependency graphs

are shown in Figure 2. Gρ1 is on the left and can be explained as

follows. Transition 0 sets variable x1 and transition 1 sets variable

x2. The guard insample < x1 in transition 1 results in the edge from

1 to 0. The conjunct insample ≥ x1 in transition 2 results in an edge

from 0 to 2, and the conjunct insample < x2 results in the edge

from 2 to 1.Gρ1 is cyclic which means that ρ1 is not feasible. Graph

Gρ2 on the right in Figure 2 is similar but the guard insample ≥ x1
in transition 1 results in an edge from 0 to 1 (instead of from 1 to 0

in Gρ2) which removes the cycle. Thus, ρ2 is feasible.

Leaking cycle. We are now ready to present the �rst graph theoretic

condition on DiPA that demonstrates a violation of di�erential

privacy.

De�nition 7 (Leaking cycle). A run ρ of A = (Q, Γ,qinit,X , P, δ)

from the initial state qinit (i.e., src(ρ) = qinit) is said to be a leaking

cycle if there is an index 0 ≤ j < |ρ | and a storage variable x ∈ stor

such that the following conditions hold.

Cycle: C = ρ[j :] is a cycle.

Leak: There are indices i1 and i2 in C (i.e., j ≤ i1, i2) such that

x ∈ assignv(ρ[i1]) and x ∈ usedv(ρ[i2]).

Repeatability: C can be repeated arbitrarily many times. That is,

for everym ≥ 0, the run ρCm is feasible. 7

Intuitively, the condition Leak in De�nition 7 is to ensure that

variable x is assigned a value in the cycleC that is later tested against

in a guard. 8 The main e�ect of the 3 conditions in De�nition 7, is to

identify two transitions (namely, those corresponding to assignment

and test) that can be taken arbitrarily many times (since they are on

a repeatable cycle) such that the insample values sampled in the two

transitions are ordered in the same way each time the transitions

are taken. This property leads to a “leaking” of the privacy budget,

as shall be explained when we sketch the proof.

A cycleC that does not satisfy the condition Leak will be said to

be non-leaking.

7Cm denotes them-fold concatenation of C with C0
= λ.

8De�nition 7 does not require i1 < i2 . Therefore, strictly speaking the assignment

in i1 may not be before the test in i2 . But this can be easily addressed by taking C2

instead of C as the cycle.

De�nition 8 (Non-leaking cycle). A run C is a non-leaking cycle

if C is a cycle and for every x ∈ stor and i , if x ∈ usedv(C2[i]) then

lastassignC2 (x, i) = −∞, i.e, x is not assigned a value in C . Here C2

is the concatenation of C with itself.

In De�nition 8, we use the runC2 to ensure that we also account

for the case when x is assigned after it is used in C . One important

property about non-leaking cycle is that it is always repeatable;

this is the content of the next proposition. Thus repeatability is a

non-trivial requirement only for cycles that have a leak.

Proposition 1. Let ρ be a feasible run of A = (Q, Γ,qinit,X , P, δ)

from the initial state qinit such that C = ρ[i : j] (for some 0 ≤ i <

j ≤ |ρ |) is a non-leaking cycle. Then for everym > 0, ρ[0 : i](ρ[i :

j])mρ[j :] is feasible.

Leaking pair. Recall that the key property of a leaking cycle that

leads to the violation of di�erential privacy is �nding two tran-

sitions that can be repeated arbitrarily many times such that the

insample value sampled in the two transitions is ordered every time

they are taken. Leaking cycles achieve this by �nding both transi-

tions on a cycle that can be repeated. However, that is not the only

way such a pair of transitions can arise — the two transitions could

be on two di�erent cycles that can each be repeated. This leads to

the de�nition of a leaking pair. The de�nition of a leaking pair is

subtle and we will discuss its details after presenting it formally.

De�nition 9 (Leaking pair). A feasible run ρ of A =

(Q, Γ,qinit,X , P, δ) from the initial state qinit is a leaking pair if

there are indices 0 ≤ i1 < j1 ≤ |ρ | and 0 ≤ i2 < j2 ≤ |ρ | such that

the following conditions hold.

Cycles: C1 = ρ[i1 : j1] and C2 = ρ[i2 : j2] are both non-leaking

cycles.

Disjointness: Either j1 ≤ i2 or j2 ≤ i1. That is, C1 and C2 are

non-overlapping subsequences of ρ.

Order: There is a path k1,k2, . . .km in the dependency graph Gρ

such that i1 ≤ k1 < j1 (k1 is on C1), i2 ≤ km < j2 (km is on

C2), k2 < k1 and km−1 < km .

As mentioned before De�nition 9, the motivation behind leaking

pairs is to identify a pair of transitions t and t ′ that can be executed

multiple times and such that the insample value each time t is taken

is smaller than the insample value each time t ′ is taken. Such a

pair of transitions represents a “leak” of the privacy budget that

can be exploited to prove that DiPA is not di�erentially private.

De�nition 9 achieves this goal in the following manner. The desired

transitions t and t ′ are ρ[k1] and ρ[km], respectively. The fact that

t and t ′ are on cycles C1 and C2 which are disjoint (in ρ) and non-

leaking, ensures that they can be repeated thanks to Proposition 1.

The condition Order in De�nition 9 is the most subtle. The fact that

k2 < k1 and (k1,k2) is an edge in Gρ means that there is a storage

variable x ∈ stor such that x is assigned in ρ[k2] and insample < x

is one of the conjuncts in guard(ρ[k1]). Further since C1 is non-

leaking, x is not updated within C1 and hence ρ[k2] is taken before

C1. Similar conclusions can be drawn about km−1 and km — there

is a variable y ∈ stor that is assigned in ρ[km−1] which is taken

beforeC2, and insample ≥ y is a conjunct in guard(ρ[km]). Finally,

the path from k1 to km means that the insample value sampled in

ρ[k1] is less than the value assigned to x in ρ[k2], which in turn is

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

q0

1
4 , 1

q1

1
4 , 0

q2

1
4 , 0

q3

1
4 , 0

q4

1
4 , 0

true, ⊥

(true, false)

true, ⊥

(false, true)

д1, ⊤

(false, false)

д2, ⊥

(false, false)

д3, ⊤

(false, false)

д4, ⊥

(false, false)

Figure 3:DiPAAleakp fromExample 4.Aleakp has two variables, x1 and x2,
assigned in the �rst and the second transition, respectively. The guards
д1 = (insample ≥ x1), д2 = (insample < x1), д3 = (insample < x2),
д4 = (insample < x1) ∧ (insample ≥ x2).

0 1 2 3 4

210 3 4 5

Figure 4: Dependency graphs for runs ρ1 and ρ2 from Example 4. Gρ1 is

on the top andGρ2 is on the bottom. The nodes are numbered according

to the order in which the corresponding transition appears in the run.

less than the value assigned to y in ρ[km−1] and that is less than the

insample value sampled in ρ[km]. ρ[k2] is before C1 which means

that the value assigned to x in ρ[k2] does not change no matter

how many times C1 and C2 are repeated. Next, ρ[km−1] is before

C2. It is possible that ρ[km−1] is on C1, in which case the value

assigned to y changes whenC1 is repeated. However, one can show

by induction, that the presence of a path in the dependency graph

from ρ[k2] to ρ[km−1] and an edge from ρ[km−1] to ρ[km] means

that when C1 and C2 are repeated, there will be a path from ρ[k2]

and the last instance of ρ[km−1] and the last value assigned to y in

ρ[km−1] will be less than every insample value sampled in ρ[km].

Thus, every insample value sampled in ρ[k1]will be less than every

insample value sampled in ρ[km], no matter how many times C1

and C2 are repeated.

Example 4. Consider the automaton Aleakp in Figure 3. The au-

tomaton is drawn following the convention outlined in Example

2. The automaton has two real variables x1 and x2, assigned in

the �rst and the second transition, respectively. For states qi ,qj
of Aleakp, let ti j denote the unique transition of Aleakp from state

qi to qj . Observe that t22 and t33 are cycles. Consider the run

ρ1 = t01t12t22t23t33 that visits both the cycles t22 and t33 and its

extension ρ2 = ρ1t34. Their dependency graphs for these runs are

shown in Figure 4. The nodes 2 and 4 correspond to the cycle tran-

sitions t22 and t33 respectively. Considering just the run ρ1, these

cycles do not constitute a leaking pair. However, when we consider

the extended run, ρ2, we see that these cycles form a leaking pair

via the path 4→ 1→ 5→ 0→ 2.

Before moving onto the other two properties needed to de�ne

well-formed DiPA, it is useful to remark that the cycles C1 and

C2 in De�nition 9 may be the “same cycle”, i.e., C1 and C2 could,

respectively, be the �rst and second iterations of the same sequence

of A transitions.

Disclosing cycle. Real valued outputs present another avenue

through which private information in the input can be leaked. The

condition identi�ed by leaking cycles and leaking pairs do not ac-

count for such violations because they are agnostic to the type of

output produced by the DiPA. Our next condition disclosing cycle,

identi�es a transition that can be executed repeatedly, and which

outputs a pertubed input.

De�nition 10 (Disclosing cycle). A feasible run ρ of A =

(Q, Γ,qinit,X , P, δ) from the initial state qinit is a disclosing cycle

if there are indices 0 ≤ j ≤ i < |ρ | such that the following condi-

tions hold.

Cycle: C = ρ[j :] is a non-leaking cycle.

Disclosing: ρ[i] is an input transition that outputs a real value,

i.e., src(ρ[i]) ∈ Qin with out(ρ[i]) ∈ {insample, insample′}.

Observe that in De�nition 10, ρ[i] is a transition that is on cycle

C . Moreover, sinceC is non-leaking cycle, by Proposition 1, the run

ρCm is feasible for everym ≥ 0. Thus, the transition ρ[i] can be

executed repeatedly. Since ρ[i] is an input transition that outputs

a real-value, each time it is executed it reveals some information

about the input which results in a loss of privacy.

Privacy violating path. We now present the last property needed to

de�ne well formed DiPA. This last property also concerns privacy

violations that arise from real valued outputs. Leaking cycles and

leaking pairs identify a transition that is executed arbitrarily many

times where the sampled insample value is bounded by values

sampled in another transition (that is also executed many times) on

the same run. However, with real valued outputs, we could have a

situation where this bound is revealed once, explicitly in an output.

This is captured in our next de�nition.

De�nition 11 (Privacy violating path). A feasible run ρ of A =

(Q, Γ,qinit,X , P, δ) from the initial state qinit is a privacy violating

path if there are indices 0 ≤ i ≤ j ≤ |ρ | such that the following

conditions hold.

Cycle: C = ρ[i : j] is a non-leaking cycle.

Privacy Violation: There is a path k1,k2, . . .km in the depen-

dency graph Gρ such that either (a) out(ρ[k1]) = insample,

km−1 < km , and i ≤ km < j, i.e., ρ[km] is on cycle C ,

or (b) i ≤ k1 < j (ρ[k1] is on cycle C), k2 < k1, and

out(ρ[km]) = insample.

It is useful to see how De�nition 11 captures the intuitions laid

out before. The path from k1 to km inGρ ensures that the insample

Deciding Di�erential Privacy of Online Algorithms with Multiple Variables CCS ’23, November 26–30, 2023, Copenhagen, Denmark

value sampled in ρ[k1] is less than the insample value sampled

in ρ[km]. Moreover, since C is non-leaking, by Proposition 1, it

is repeatable. Condition (a) in (Privacy Violation) says that ρ[km]

is a transition on C , and the edge (km−1,km) in Gρ along with

km−1 < km means that there is a variable x ∈ stor that is set in

ρ[km−1] and insample ≥ x is in guard(ρ[km]). Moreover, since C

is non-leaking, x is not updated in C and hence km−1 is before C .

Thus, the presence of the path means that the value output in ρ[k1]

is less than the insample value sampled in ρ[km−1] which in turn

is less than the insample value sampled in ρ[km] every time C is

repeated. Therefore, there is a lower bound, which is output in

ρ[k1], for arbitrary many insample values that are generated in

ρ[km]. Condition (b) in (Privacy Violation) is similar but dual. Here

ρ[k1] is onC , ρ[k2] is beforeC and sets a variable x that is an upper

bound on the values sampled in ρ[k1], and �nally, ρ[km] outputs

a value that upper bounds all these values, no matter how many

times ρ[k1] is executed by repeating C .

Well-formed DiPA. The properties de�ned in this section identify

witnesses for the violation of privacy. The class of well-formed

automata are those that do not su�er from these de�ciencies.

De�nition 12 (Well-formed DiPA). A DiPA A is said to be well-

formed if A does not have any leaking cycles, leaking pairs, dis-

closing cycles, and privacy violating paths.

Our main results are: (i) a well-formed DiPA is di�erentially

private; (ii) if a DiPA satisfying the output distinction property (see

De�nition 13) is di�erentially private then it must be well-formed.

We will also show that there is an e�ective procedure for checking

if a DiPA is well-formed. These observations together will provide

a decidability result for solving the di�erential privacy problem for

DiPA that satisfy output distinction property.

5 WELL-FORMED DIPA ARE
DIFFERENTIALLY PRIVATE

One of our main results, which we call the su�ciency theorem, is

that well-formed DiPAs are di�erentially private.

Theorem 2. Let A be a DiPA. If A is well-formed then there is

a D > 0 such that for every ϵ > 0, A is Dϵ-di�erentially private.

Further, such a D can be computed in time exponential in the size of

the automaton A.

Proof Sketch. Let A be a well-formed DiPA. Given a feasible

run ρ = t0 · · · tn of A from the initial state, �x computations κi =

(ρ,σi ,γ) for i = 1, 2 such that σ1 and σ2 are adjacent. For each

j, let ltj be the “less than” relation on stor imposed by the pre�x

ρ[0 : j − 1] — (x, x′) ∈ ltj if there is a path of non-zero length from

lastassignρ (x, j) to lastassignρ (x
′, j). Similarly, eqj is the “equality”

relation on stor imposed by the pre�x ρ[0 : j − 1] — (x, x′) ∈ eqj if

lastassignρ (x, j) = lastassignρ (x
′, j).

We can show that there are numbers wtj and functions mj :

stor→ {−1, 0, 1} such that

(1) For any valuations η1,η2 such that η2 = η1 +mj ,
9

Prob[ϵ,η2,κ2[j :]] ≤ e
∑n−1

ℓ=j wtℓProb[ϵ,η1,κ1[j :]].
9For functions f , д : A→ R, f + д is the function that adds the result of f and д for
each argument, i.e., (f + д)(a) = f (a) + д(a).

q0

1
4 , 0

q1

1
4 , 1

true, ⊤

true

д1, ⊤

false

д2, ⊤

false

Figure 5: DiPA Anwf with one variable x is not well-formed but di�erentially
private. The guards д1 = (insample ≥ x) and д2 = (insample < x).

(2) If tj1 = tj2 , ltj1 = ltj2 and eqj1 = eqj2 for j1 ≤ j2 then

wtj1 = 0

(3) wtj ≤ 2dj + d
′
j where dj and d ′j are such that P(src(tj)) =

(dj , µ j ,d
′
j , µ
′
j).

Observe that the last two conditions imply that there is a number

D independent of ρ such that
∑n−1

ℓ=j
wtℓ < D. Note that as ρ is a

run from initial state then Prob[ϵ,ηi ,κi] is independent of ηi . The

above observations imply that

Prob[ϵ,κ2] ≤ eDProb[ϵ,κ1].

This shows thatA isDϵ-di�erentially private. To carry out the for-

mal proof, we construct an augmented automaton aug(A), whose

states are triples of the form (q, lt, eq)where q is a state ofA, lt, and

eq are strict partial orders and equivalence relations on stor. The

value for D is also computed using the augmented automaton. □

The problem of checking well-formedness can be shown to be

in PSPACE.

Theorem 3. The problem of checking whether a DiPA is well-formed

is in PSPACE. When the number of variables is taken to be a constant

k , then the problem of checking whether a DiPA is well-formed is

decidable in polynomial time.

6 DIFFERENTIALLY PRIVATE DIPA ARE
WELL-FORMED

While well-formedness is su�cient for ensuring di�erential privacy,

it is not a necessary condition for di�erential privacy as illustrated

by the following example.

Example 5. Consider the DiPA Anwf with one variable insample

given in Figure 5. The automaton is drawn following the convention

outlined in Example 2. As each transition outputs ⊤, Anwf , on any

input of length n, outputs the string ⊤n with probability 1. Thus,

Anwf is trivially di�erentially private. However, Anwf is not well-

formed as it has a leaking cycle, tatb where ta is the transition from

q0 to q1 and tb is the transition from q1 to q0.

We show, however, that di�erentially private DiPA that satisfy an

additional technical property of output distinction are well-formed.

Thus, for DiPA satisfying this property, well-formedness is a precise

characterization of when they are di�erentially private. Before

presenting this restricted necessity theorem and proof sketch, let us

de�ne what it means for a DiPA to satisfy the condition of output

distinction.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

De�nition 13 (Output Distinction). A DiPA A =

(Q, Γ,qinit,X , P, δ) satis�es output distinction if the following holds:

If t1 and t2 are distinct transitions of A such that src(t1) = src(t2)

then out(t1) , out(t2) and {out(t1), out(t2)} ∩ Γ , ∅.

Output Distinction demands that distinct outgoing transitions

from a state have di�erent outputs and at most one of the outgoing

transitions outputs a real value. In particular, there cannot be two

transitions out of a state q that output insample and insample′.

Distinct outputs on transitions ensure that given a starting state q

and an output sequence γ , there is at most one run ρ starting from q

that can produceγ . Observe that the automaton of Figure 5 does not

satisfy output distinction property. The necessity proof proceeds

by showing that if A is not well-formed, then given D, there are

computations (ρ,σ1,γ) and (ρ,σ2,γ) with the same run ρ such that

ρ outputs γ , σ1,σ2 are adjacent and the ratio of the probability

measures of these computations is > eDϵ for su�ciently large

ϵ . Output distinction guarantees that ρ is the only run on σ1,σ2
that outputs γ , allowing us to conclude that A is not di�erentially

private for non-well formed A. Without output distinction, the

de�cit in probability measures of γ can be made up by other paths.

The output distinction property is also needed in [10] for the case

of a single variable. We are now ready to present the main result of

this section.

Theorem 4. Let A be a DiPA that satis�es the output distinction

property. If A is not well-formed, then it is not di�erentially private.

Proof Sketch. Let us �x a DiPA A = (Q, Γ,qinit,X , P, δ) that

satis�es the output distinction property. Recall that the output

distinction property ensures that for any input sequence σ and

output sequence γ , |Runs(σ ,γ)| ≤ 1. We sketch the main ideas

behind the proof; the full details can be found in [11]. Assume that

A is not well-formed. Now, for each value of D and ϵ , the proof

identi�es a run ρ, an output sequence γ , and a pair of adjacent input

sequences α and β such that the computations (ρ,α,γ) and (ρ, β,γ)

demonstrate a violation of di�erential privacy (De�nition 5). The

construction of witnesses is based on the following sequence of

observations.

(1) Let us �x a run ρ from qinit and an output sequence γ consistent

with ρ. Observe that the number read in an input transition de-

termines the mean of the distributions from which insample and

insample′ are drawn in that step. Let us call an input sequence

σ strongly compliant with ρ and γ , if the sampling means satisfy

the constraints imposed by ρ and γ . This has two requirements.

First, whenever there is a path from i to j inGρ , the sample mean

at step i is less than the sample mean at step j. Notice that strong

feasibility ensures this when i and j are non-input transitions, and

here we are requiring this to hold when either i or j is an input

transition in which case the mean is determined by σ . Second, if

out(ρ[i]) ∈ {insample, insample′} (real outputs), the samplemean

at step i is in the interval γ [i]. Intuitively, for a strongly compliant

input sequence σ , the probability of computation (ρ,σ ,γ) is likely

to be “high”. On the �ip side, let us call an input sequence σ non-

compliant at i , if the sample mean set by σ at step i either violates

an order constraint or an output constraint. Again intuitively, one

can imagine that, as the number of non-compliant transitions in-

crease in σ , the probability of the computation (ρ,σ ,γ) decreases.

Now one can prove that if we consider two input sequences σ1,

which is strongly compliant, and σ2, which has non-compliant

transitions, then the ratio of the probabilities of (ρ,σ1,γ) and

(ρ,σ2,γ) grows as the number of non-compliant transitions in

(ρ,σ2,γ) increases.

(2) Observations in (1) above provide a template for how to identify

witnesses for di�erential privacy violation: the presence of a leak-

ing cycle, leaking pair, disclosing cycle, or privacy violating path

help identify a run, and we then construct two input sequences α ,

which is strongly compliant, and β which hasmany non-compliant

steps. Observe that each witness to non-well-formedness is a run

containing a cycle that can be repeated arbitrarily many times

and contains a transition that will be made non-compliant in the

input sequence β . The intuitions laid out in Section 4 for de�ning

well-formed DiPA will be used and we spell this out in each case.

A leaking cycle has a transition with index i1 (see De�nition 7)

that sets a variable which is then used later in the transition in-

dexed i2. Since the guard of i2 is not true, it is an input transition.

We will construct the run ρ by repeating the cycle as many times

as needed (based on D and ϵ), and in β the sample mean at step

i2 will be in the wrong order with respect to i1 in each repeti-

tion, making it non-compliant. In a leaking pair (De�nition 9)

there is a pair of transitions indexed k1 and km on cycles that can

be repeated, and whose sampled values need to be ordered each

time they are executed. Moreover, transitions k1 and km are input

transitions because their guards are not true (see discussion after

De�nition 9). Thus, in β we will �ip the order of the sample means

at these steps to create an arbitrary number of non-compliant

steps. The transition indexed i in a disclosing cycle (De�nition 10)

is an input transition on a cycle that can be repeated. To create

non-compliant steps in β we will set the mean of these transitions

to not be in the output interval given for this step. Finally, in a

privacy violating path (De�nition 11) there is an input transition

with index km for case (a) (or k1 for case (b)) that is on a repeatable

cycle whose sampled value is required to be larger than (smaller

than in case (b)) the value output in step k1 (step km for case (b)).

To construct the input sequence β , we set the input for each time

km (k1 in case (b)) is taken to be smaller than the value output in

k1, and thereby creating arbitrarily many non-compliant steps.

(3) The general principles behind constructing the input sequences

α and β are laid out in (2). However, one key requirement for α

and β to constitute a witness to privacy violation is that they be

adjacent (De�nition 1) which demands that the values in α and

β be not too far apart. One challenge is carrying this out is the

presence of non input transitions, where the sample means are

�xed. This can be overcome by carefully analyzing the dependency

graph Gρ and the parameters decorating the states appearing in

the run ρ. □

In Section 5, we showed that there is a PSPACE algorithm to

determine if an output-distinct DiPAA is well-formed (Theorem 3).

This complexity bound is tight; we show that the problem of deter-

mining if a DiPA is di�erentially private is PSPACE-hard. (See [11]

for the proof.)

Theorem 5. Given an output-distinct DiPAA, the problem of deter-

mining if there is a D > 0 such that for all ϵ , A is Dϵ-di�erentially

private, is PSPACE-hard.

Deciding Di�erential Privacy of Online Algorithms with Multiple Variables CCS ’23, November 26–30, 2023, Copenhagen, Denmark

7 EXPERIMENTS

We implemented the algorithm that checks whether a DiPA A

is well-formed. In case A is well-formed, it computes a bound D,

which we call the weight of the automaton, such that A is Dϵ-

di�erentially private for all ϵ . The software tool, DiPAut, is built in

Python 3.9.5 and is available for download at [7]. It uses the PLY

package [6] for parsing the program and the igraph package [14]

to store the input automaton as a graph. The igraph package is also

used to perform graph-theoretic operations on the input automaton.

DiPAut has three major components. The �rst component, called

core, tokenizes and parses the input using PLY. The second compo-

nent, builders, constructs the augmentation of the input automaton.

The augmentation is built using a breadth-�rst-search of the (im-

plicit) graph of the augmentation. The relations lt and eq are stored

as dictionaries during augmentation. To prepare for checking of

leaking pair and privacy violating path, the automaton also builds

an “enhanced” augmentation. For example, it also builds the graphs

that include assignments to the variables V1 and V2 in the algo-

rithm for checking leaking pair (See the proof of Theorem 3). The

third component DP tests, implements the �nals checks for leak-

ing cycle, leaking pair, privacy violating path and disclosing cycle

from the augmentations. If the automaton is well-formed, it also

computes the weight of the automaton. If it is not well-formed, it

further checks if it is output-distinct. In that case, we report that

the automaton is not di�erentially private.

DiPAut was evaluated against a suite of examples (See Table 1),

which we describe brie�y.

7.1 Description of Examples

The �rst examples we consider are the standard Sparse Vector

Technique (SVT) [19] and the Numeric Sparse (Num-Sparse) [20].

These algorithms use one variable. Detailed discussion of these

algorithms can be found in [19, 20]. Apart from SVT and Num-

Sparse, all other examples use more than one variable.

We also designed new examples, described below. The �rst set of

examples was designed to ensure that the tests of well-formedness

were implemented correctly. A second set of examples were de-

signed to evaluate the scalability of our tool. They include k-Min-

Max (for each k > 0) andm-Range (for eachm > 0). The 1-Range

is the range query algorithm given in Example 1.

Examples LC-Example and DC-Example. The algorithm LC-

Example and DC-Example are variants of 1-Range. The algorithm

LC-Example is designed to have a leaking cycle and DC-Example

is designed to have a disclosing cycle. A detailed description of the

algorithms can be found in [11].

Examples Num-Range-1 and Num-Range-2. The algorithm Num-

Range-1 is the variant of 1-Range which outputs insample (instead

of ⊤) when the sampled value q[i] is greater than high. The algo-

rithm Num-Range-2 on the other hand outputs insample′. Num-

Range-2 is well-formed, output-distinct and hence di�erentially

private but Num-Range-1 has a privacy-violating path. A detailed

description of the algorithms can be found in [11].

Examples Two-Range-1 and Two-Range-2. Two-Range-1 is a vari-

ant of 1-Range. In both algorithms, at the beginning, three thresh-

olds, Tℓ , Tm , and Tu , are perturbed by adding noise sampled from

the Laplace distribution. The algorithms then proceed to process

the queries, checking if the remaining noisy queries are between

the noisyTℓ andTm . If at some point the input noisy query exceeds

the noisy Tm , Two-Range-1 checks that the remaining queries

are in between the noisy Tm and the noisy Tu . In contrast, the

algorithm Two-Range-2 resamples Tm before checking that the

remaining queries are in between the noisy Tm and the noisy Tu .

Two-Range-1 has a leaking pair and is not di�erentially privacy.

Two-Range-2, on the other hand, is well-formed, output distinct,

and hence di�erentially private Two-Range-1 and Two-Range-2

are described in detail in [11].

Input: q[1 : N]

Output: out[1 : N]

min,max← Lap(ϵ
4k
,q[1]))

for i ← 2 to k do

r← Lap(ϵ
4k
,q[i])

if (r > max) ∧ (r > min) then

max← r

else if (r < min) ∧ (r < max) then

min← r

end

out[i] ← read
end

for i ← k + 1 to N do

r← Lap(ϵ4 ,q[i])

if (r ≥ min) ∧ (r < max) then
out[i] ← ⊥

else if (r ≥ min) ∧ (r ≥ max) then

out[i] ← ⊤

exit
else if (r < min) ∧ (r < max) then

out[i] ← ⊥

exit
end

end

Algorithm 2: k-Min-Max algorithm. k-Min-Max is di�er-

entially private.

Example k-Min-Max. One set of examples designed to check scala-

bility of our algorithm is k-Min-Max (k ≥ 2). Initially, k-Min-Max

reads k-queries, adds noise from the Laplace distribution at each

step, remembering the maximum and minimum amongst the per-

turbed queries. During this phase, the outputs do not inform the

observer whether the noisy query being processed updates the

maximum or minimum.

After reading the �rst k-queries, each subsequent query is per-

turbed by adding noise, and the algorithm checks if the noisy query

is between the maximum and minimum found in the �rst k-noisy

queries. It continues processing the queries as long as it is between

those two. Otherwise, it quits. Observe that k-Min-Max is a para-

metric set of examples, one for each value of k . For each k , the DiPA

modeling k-Min-Max has two variables, has k + 2 states and 3k + 1

transitions. Further, k-Min-Max does not satisfy output distinction

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

Benchmarks DiPAut CheckDP [29]
Example v s trans wt calc

time (s)
total
time (s)

di�erentially
private?

D time (s) Counterexample
Validated?

SVT 1 3 3 0.00046 0.238 ✓ 5/4 29.92 N.A.
Num-Sparse 1 3 3 0.00045 0.249 ✓ 7/4 52.43 N.A.
DC-Example 2 4 5 N.A. 0.237 ×, DC N.A. 43.59 T.O.
Num-Range-1 2 4 4 N.A. 0.234 ×, PV N.A. 316.05 T.O.
Num-Range-2 2 4 4 0.00078 0.231 ✓ 5/4 1909.43 T.O.
LC-Example 2 4 4 N.A. 0.231 ×, LC N.A. T.O.
Two-Range-1 3 6 10 N.A. 0.239 ×, LP N.A. T.O.
Two-Range-2 3 7 11 0.00258 0.277 ✓ 2 T.O.
2-Min-Max 2 4 7 0.00065 0.220 ✓ 1 T.O.
10-Min-Max 2 12 31 0.00221 0.230 ✓ 1 M.E.
20-Min-Max 2 22 61 0.00434 0.248 ✓ 1 M.E.
100-Min-Max 2 102 301 0.0291 0.409 ✓ 1 M.E.
200-Min-Max 2 202 601 0.0803 0.643 ✓ 1 M.E.
1-Range 2 4 5 0.00083 0.227 ✓ 1 T.O.
10-Range 20 31 50 0.00797 0.611 ✓ 1 M.E.
20-Range 40 61 100 0.0212 3.469 ✓ 1 M.E.
40-Range 80 121 200 0.06242 35.89 ✓ 1 M.E.
80-Range 160 241 400 0.25867 506.3 ✓ 1 M.E.

Table 1: Summary of experimental results for DiPAut and comparison with CheckDP. The columns in the table are as follows. v is the number of variables in the
automaton. s is the number of states in the automaton. trans is the number of transitions in the automaton. The weight calculation time and total time taken
by DiPAut averaged over six executions are reported next, and are measured in seconds. Di�erentially private indicates if the automaton is di�erentially private
or not. In case, it is not, we report the reason detected by the tool: DC/PV/LC/LP means that disclosing cycle/privacy-violating path/leaking cycle/leaking pair,
respectively is detected. D is the weight of the automaton computed by the algorithm in case it is di�erentially private. For CheckDP, the time column indicates
the running time for CheckDP measured in seconds. The last column indicates the time taken for counterexample validation by PSI in case a counterexample is
generated. T.O. denotes that the tool did not �nish in 30minutes. M.E. indicates that CheckDP reported a memory error.

for any k as the outputs do not distinguish whether maximum or

minimum is being updated in the �rst phase. However, it is well-

formed and ϵ-di�erentially private. Psuedocode for k-Min-Max is

shown as Algorithm 2.

Examples m-Range. Another set of examples for scalability is m-

Range (for each m). m-Range is the m-dimensional version of

Range. It repeatedly checks whether a sequence of points in the

m-dimensional space is contained in a m-dimensional rectangle.

The rectangle is speci�ed by giving the upper and lower threshold

for each coordinate of the rectangle. The algorithm initially adds

Laplacian noise to each of these 2m thresholds, then processes the

points by adding noise to each coordinate and checking that each

noisy coordinate is within the noisy thresholds for that coordinate.

Observe thatm-Range is a set of examples, one for eachm. For

eachm, the DiPA modelingm-Range has 2m variables, has 3m + 1

states and 5m transitions. For each m, m-Range satis�es output

distinction, is well-formed, and is ϵ-di�erentially private.m-Range

is given in Algorithm 3. Here the arrays T1 and T2 store the m-

lower and m-upper thresholds, respectively. The arrays low and

high store the noisy version of the lower and upper thresholds. In

the experiments, T1 is taken to be all 0s, and T2 is taken to be all 1s.

7.2 Summary of experimental results

The experimental results are summarized in Table 1. All experi-

ments were run on a macOS computer with a 1.4 GHz Quad-Core

Intel Core i5 CPU processor with 8GB RAM. The running time is

benchmarked using pyperf [21], which runs each example 6 times

and takes the average over the 6 instances. Figure 6 plots the run-

ning time of our implementation for k-Min-Max. As predicted, the

tool con�rms that k-Min-Max is ϵ-di�erentially private. A close

examination of the algorithm for checking well-formedness reveals

that the algorithm can check the well-formedness of k-Min-Max

in time that is linear in k . This observation is con�rmed by the

Input: q[1 :m]

Output: out[1 : Nm]

for j ← 1 tom do

low[j] ← Lap(ϵ4m ,T1[j])

high[j] ← Lap(ϵ4m ,T2[j])

out[j] ← cont

end

for i ← 1 to N do

for j ← 1 tom do

r← Lap(ϵ4 ,q[m(i − 1) + j])

if (r ≥ low[j]) ∧ (r < high[j]) then

out[m(i − 1) + j] ← cont

else if ((r ≥ low[j]) ∧ (r > high[j])) then

out[m(i − 1) + j] ← ⊤

exit
end

else if ((r < low[j]) ∧ (r < high[j])) then

out[m(i − 1) + j] ← ⊥

exit
end

end

end

Algorithm 3:m-Range algorithm.m-Range is di�erentially

private.

experimental results. Note that the size of the DiPA modeling k-

Min-Max is linear in k , and hence the running time is also linear in

the size of DiPA. In contrast, a careful analysis reveals that the al-

gorithm checking well-formedness takes time that is cubic inm for

m-Range. This observation is also con�rmed by the experimental

results. (See Figure 7). As predicted, the tool con�rms thatm-Range

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

number of assignments to the stored variable in a run. In contrast,

here the induction is on the number of transitions in a run, and the

induction hypothesis is constructed by classifying the dependency

graph nodes as gcycle_node or lcycle_node.

Privacy proof construction. Techniques based on type systems have

been proposed in many papers [15, 16, 22, 27, 29, 31] for generating

proofs of di�erential privacy. Some of these methods such as [15, 16,

22, 27] employ linear dependent types, for which the type-checking

and type-inference may be challenging. In [1, 3–5] methods based

on probabilistic couplings and random alignment arguments have

been employed for proving di�erential privacy. Shadow execution-

based method was introduced in [30]. Probabilistic I/O automata are

used in [28] to model interactive di�erential privacy algorithms and

simulation-based methods are used to verify di�erential privacy,

but these methods have not been shown to be complete.

Counterexample generation. Automated techniques to search for

privacy violations by generating counter examples have been pro-

posed in [8, 17, 29]. Techniques include the use of statistical hy-

pothesis testing [17], optimization techniques and symbolic di�er-

entiation [8] and program analysis [29]. These methods search over

a bounded number of inputs.

Model-checking/Markov Chain approaches. Probabilistic model

checking approach for verifying ϵ-di�erential privacy is employed

in [12, 13, 25], where it is assumed that the program is given as a

�nite Markov Chain. These approaches do not allow for sampling

from continuous random variables.

Decision Procedures. The decision problem of checking whether

a randomized program is di�erentially private is studied in [2],

where it is shown to be undecidable for programs with a single

input and single output, assuming that the program can sample

from Laplacian distributions. A decidable sub-class is identi�ed

where the inputs and outputs are constrained to be from a �nite

domain and have bounded length.

Complexity. Gaboardi et. al [23] study the complexity of deciding

di�erential privacy for randomized Boolean circuits, and show

that the problem is coNP#P-complete. The results are extended to

Boolean programs [9] for which the veri�cation problem is PSPACE-

complete. In this line of work, programs have a �nite number of

inputs, the only probabilistic choices are fair coin tosses, and eϵ is

taken to be a �xed rational number.

9 DISCUSSION

We discuss the restrictions used in various de�nitions in this paper.

Strong feasability. From the theoretical point of view, strong feasi-

bility is used only to prove the necessity of well-formedness (The-

orem 4). The su�ciency proof (Theorem 2) does not require the

condition of strong feasibility. Nevertheless, we believe that all

di�erential privacy mechanisms are strongly feasible. We have not

encountered examples that violate the strong feasibility condition.

Our intuition for this belief is as follows. First, any DiPA that does

not have any non-input states is, by de�nition, strongly feasible. For

DiPA with non-input states, the condition implies that the mean

of the distribution at any two non-input states respects the order

given by the dependency graph of a run. Let us consider the “de-

terministic” version of the automaton in which no noise is added.

Intuitively, the “deterministic” version captures the behavior of the

automaton in the limit as the privacy budget ϵ tends to in�nity,

i.e., becomes unlimited. A strongly feasible run implies that we can

choose inputs such that the probability of that run tends to 1 as ϵ

tends to∞ and is executable in the “deterministic” version. A path

that is not strongly feasible implies that the probability of this path

tends to 0 as ϵ tends to∞, irrespective of the choice of inputs, and

will never be executed in the "deterministic version" because the

insample values stored at the non-input states do not follow the

order given by the dependency graph. The deterministic version

of the automaton is relevant as a di�erentially private algorithm

is often the noisy version of a deterministic algorithm (with noise

added to make the automaton di�erentially private).

Output-distinction. Some examples do not meet the condition out-

put distinction. For example, the k-Min-Max (See Section 7.1) and

NoisyMax [20] are not output distinct. However, other examples

(m-Range, SVT, NumericSparse) are output distinct. The output

distinction condition is only needed to establish necessity but not

for su�ciency. In other words, if an automaton is well-formed, it is

di�erentially private, even if it is not output distinct. This is true for

the k-Min-Max examples. However, the traditional NoisyMax is

neither well-formed nor output distinct, and hence our technique

does not establish its di�erential privacy. Some variants of Noisy-

Max (like checking if the kth input is maximum) are well-formed

and hence can be handled by our techniques.

Adjaceny Relations. For algorithms working on a sequence of an-

swers to queries on a database like SVT and Num-Sparse (see [20],

pages 56 and 57), the assumption that queries are 1-sensitive is com-

mon; here 1-sensitive means that adding or removing a member

from a database can cause a di�erence of at most 1 in the output of

each query. This assumption is satis�ed by all counting queries and

can be found in Algorithms 1, 2, 3 in [20] on pages 58, 62, 64, �rst

paragraph on page 5 of [1] and third paragraph of Section 4 in [17].

More generally, our results also apply to a sequence of queries

each of which is ∆-sensitive. The computation ofDwill change, but

the theorems of the su�ciency of well-formedness and necessity

for well-formedness for output distinct DiPA remain true.

Boolean Guards on transitions in leaking cycle. In the de�nition of

a leaking cycle (see De�nition 8), it is possible that the constraint

involving x in the guard of ρ[i2] is super�uous. When this happens,

there have to be other variables in the guard of ρ[i2]. However, we

can show that after removing all super�uous checks from ρ[i2],

either the original cycle will be a leaking cycle for some (possibly

di�erent) variable, or the leaking cycle gives rise to a leaking pair

when repeated twice. Therefore, in principle, even a super�uous

test does leak information (though indirectly).

The expressiveness of multi-variable DiPA vs one-variable DiPA. We

can prove that multi-variable DiPA are strictly more expressive

than one-variable DiPA. For example, we can formally show that

the DiPA ARange (See Figure 1) cannot be modeled using single-

variable DiPA.

Deciding Di�erential Privacy of Online Algorithms with Multiple Variables CCS ’23, November 26–30, 2023, Copenhagen, Denmark

10 CONCLUSIONS

We extended the DiP automaton model introduced in [10] for mod-

eling online algorithms that process a stream of unbounded real

values representing answers to queries and, in response, produce a

sequence of real or discrete output values. In the extended model, a

DiPAA may usemultiple storage variables to store noisy input val-

ues when executing transitions that are used in Boolean conditions

that guard transitions. Our main contribution is a precise charac-

terization of when DiPAs are di�erentially private using the notion

of well-formed automata. The de�nition of well-formed automata

is subtle and complicated, and requires the use of new graph struc-

tures associated with the runs of the automata, called dependency

graphs. Well-formed DiPAs are shown to be di�erentially private

and DiPAs satisfying the condition of output distinction that are

di�erentially private are necessarily well-formed. The problem of

checking well-formedness is PSPACE-complete. The algorithm for

checking di�erential privacy has been implemented in a tool called

DiPAut, and our experimental results demonstrate its promise.

As future work, it will be interesting to identify necessary condi-

tions for classes of automata that do not satisfy the output distinc-

tion property. Extending DiPAs to allow a richer class of compar-

isons in the guards and a richer class of assignments, like using ex-

pressions involving additions of storage variables and/or constants

in the guard conditions, is left for future exploration. Computing

the optimal weight D is another open problem.

Acknowledgements. The authors would like to thank Lipsy Gupta

and the anonymous reviewers for their interesting and valuable

comments. Rohit Chadha was partially supported by NSF CNS

1553548 and NSF CCF 1900924. A. Prasad Sistla was partially sup-

ported by NSF CCF 1901069, Mahesh Viswanathan was partially

supported by NSF CCF 1901069 and NSF CCF 2007428, and Bishnu

Bhusal was partially supported by NSF CCF 1900924.

REFERENCES
[1] Aws Albarghouti and Justin Hsu. 2018. Synthesizing coupling proofs of di�er-

ential privacy. In Proceedings of the ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL). 58:1–58:30.

[2] Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh
Viswanathan. 2020. Deciding Di�erential Privacy for Programs with Finite
Inputs and Outputs. In 35th Annual ACM/IEEE Symposium on Logic in Computer
Science. 141–154.

[3] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu,
and Pierre-Yves Strub. 2016. Advanced Probabilistic Couplings for Di�erential
Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS). 55–67.

[4] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
Strub. 2016. Proving di�erential privacy via probabilistic couplings. In IEEE
Symposium on Logic in Computer Science (LICS). 749–758.

[5] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-Béguelin. 2013.
Probabilistic Relational Reasoning for Di�erential Privacy. ACM Transactions on
Programming Languages and Systems 35, 3 (2013), 9.

[6] David Beazley. 2022. GitHub - dabeaz/ply: Python Lex-Yacc — github.com. https:
//github.com/dabeaz/ply. [Accessed 24-Jan-2023].

[7] Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. 2023.
bhusalb/DiPAut: Version 1.0.1. https://doi.org/10.5281/zenodo.8332275

[8] Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, and Mar-
tin T. Vechev. 2018. DP-Finder: Finding Di�erential Privacy Violations by Sam-
pling and Optimization. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS). 508–524.

[9] Mark Bun, Marco Gaboardi, and Ludmila Glinskih. 2022. The Complexity of
Verifying Boolean Programs as Di�erentially Private. In 2022 IEEE 35th Com-
puter Security Foundations Symposium (CSF). 396–411. https://doi.org/10.1109/
CSF54842.2022.9919653

[10] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. 2021. On Linear Time
Decidability of Di�erential Privacy for Programs with Unbounded Inputs. In 36th
Annual IEEE Symposium on Logic in Computer Science (LICS). 1–13.

[11] Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal. 2023.
Deciding Di�erential Privacy of Online Algorithms with Multiple Variables.
http://arxiv.org/

[12] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu.
2014. Generalized Bisimulation Metrics. In 35th International Conference on
Concurrency Theory (CONCUR). 32–46.

[13] Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser. 2020.
The Big-O Problem for Labelled Markov Chains and Weighted Automata. In
31st International Conference on Concurrency Theory (CONCUR) (LIPIcs), Vol. 171.
41:1–41:19.

[14] Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex
network research. InterJournal Complex Systems (2006), 1695. https://igraph.org

[15] Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jesús Gallego Arias, and
Justin Hsu. 2014. Really Natural Linear Indexed Type Checking. In 26th 2014 Inter-
national Symposium on Implementation and Application of Functional Languages
(IFL). 5:1–5:12.

[16] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata.
2019. Probabilistic Relational Reasoning via Metrics. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). 1–19.

[17] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer.
2018. Detecting Violations of Di�erential Privacy. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS). 475–489.

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing noise to sensitivity in private data analysis. In IACR Theory of Cryptography
Conference (TCC). 265–284.

[19] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vad-
han. 2009. On the complexity of di�erentially private data release: e�cient
algorithms and hardness results. In ACM SIGACT Symposium on Theory of Com-
puting (STOC). 381–390.

[20] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Di�eren-
tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3–4 (2014),
211–407.

[21] Python Software Foundation. 2023. pyperf: A toolkit to write, run and analyze
benchmarks. https://github.com/psf/pyperf. Accessed on 24-Jan-2023.

[22] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C
Pierce. 2013. Linear dependent types for di�erential privacy. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL). 357–370.

[23] Marco Gaboardi, Kobbi Nissim, and David Purser. 2020. The Complexity of
Verifying Loop-Free Programs as Di�erentially Private. In 47th International
Colloquium on Automata, Languages, and Programming, (ICALP) (LIPIcs), Vol. 168.
129:1–129:17.

[24] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic
Inference for Probabilistic Programs. In International Conference on Computer
Aided Veri�cation. Springer, 62–83.

[25] Depeng Liu, Bow-Yaw Wang, and Lijun Zhang. 2018. Model Checking Di�er-
entially Private Properties. In Programming Languages and Systems - 16th Asian
Symposium, (APLAS) (Lecture Notes in Computer Science), Vol. 11275. 394–414.

[26] Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the Sparse Vector
Technique for Di�erential Privacy. Proceedings of VLDB 10, 6 (2017), 637–648.

[27] Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow
Stronger: A Calculus for Di�erential Privacy. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming (ICFP). 157–168.

[28] Michael Carl Tschantz, Dilsun Kirli Kaynar, and Anupam Datta. 2011. Formal
Veri�cation of Di�erential Privacy for Interactive Systems (Extended Abstract).
In 27th Conference on the Mathematical Foundations of Programming Semantics
(MFPS) (Electronic Notes in Theoretical Computer Science), Vol. 276. 61–79.

[29] Yuxin Wang, Zeyu Ding, Daniel Kifer, and Danfeng Zhang. 2020. CheckDP: An
Automated and Integrated Approach for Proving Di�erential Privacy or Finding
Precise Counterexamples. In 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS). 919–938.

[30] YuxinWang, Zeyu Ding, GuanhongWang, Daniel Kifer, and Danfeng Zhang. 2019.
Proving di�erential privacy with shadow execution. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
(PLDI). 655–669.

[31] Danfeng Zhang and Daniel Kifer. 2017. LightDP: towards automating di�erential
privacy proofs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL). 888–901.

	Abstract
	1 Introduction
	2 Preliminaries
	3 DiPA
	3.1 Syntax
	3.2 Semantics

	4 Well Formed DiPA
	5 Well-formed DiPA are Differentially Private
	6 Differentially Private DiPA are well-formed
	7 Experiments
	7.1 Description of Examples
	7.2 Summary of experimental results

	8 Related Work
	9 Discussion
	10 Conclusions
	References

