2024 IEEE 37th Computer Security Foundations Symposium (CSF) | 979-8-3503-6203-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/CSF61375.2024.00032

2024 37th IEEE Computer Security Foundations Symposium (CSF)

Deciding branching hyperproperties for real time
systems

Nabarun Deka*, Minjian Zhang*, Rohit Chadha’, and Mahesh Viswanathan*
*University of Illinois at Urbana-Champaign
{ndeka2, minjian2, vmahesh} @illinois.edu
TUniversity of Missouri, Columbia
chadhar@missouri.edu

Abstract—Security properties of real-time systems often in-
volve reasoning about hyper-properties, as opposed to properties
of single executions or trees of executions. These hyper-properties
need to additionally be expressive enough to reason about real-
time constraints. Examples of such properties include information
flow, side channel attacks and service-level agreements. In this
paper we study computational problems related to a branching-
time, hyper-property extension of metric temporal logic (MTL)
that we call HCMTL*. We consider both the interval-based and
point-based semantics of this logic. The verification problem
that we consider is to determine if a given HCMTL* formula
o is true in a system represented by a timed automaton. We
show that this problem is undecidable. We then show that the
verification problem is decidable if we consider executions upto
a fixed time horizon 7. Our decidability result relies on reducing
the verification problem to the truth of an MSO formula over
reals with a bounded time interval.

I. INTRODUCTION

Unlike the traditional safety and liveness properties, security
guarantees such as non-interference desired of systems, are not
trace-based [13], [25], and instead are properties of sets of ex-
ecutions. In their seminal paper, Clarkson and Schneider [13],
called such requirements hyperproperties. Several temporal
logics have been designed to express formally and reason
about hyperproperties. By far, the most well-known of these
logics are HyperLTL and HyperCTL* [12]. HyperLTL and
HyperCTL* extend the standard temporal logics LTL [30] and
CTL* [16] respectively. While HyperLTL allows for reasoning
about linear time hyperproperties, HyperCTL* allows for rea-
soning about branching time hyperproperties !. HyperLTL and
HyperCTL* differ from LTL and CTL* by having explicit path
variables and thus allowing for quantification over multiple
executing traces simultaneously. The problems of checking a
finite-state system against HyperLTL and HyperCTL* formu-
las are shown to be decidable in [12] by showing that the
verification problem reduces to the satisfiability problem for
quantified propositional temporal logic QPTL [33]. QPTL is
a generalization of LTL, and is interpreted over (untimed)
transition systems.

While HyperLTL and HyperCTL* are able to express
hyperproperties of transition systems, they are inadequate

!In linear time hyperproperties, the different executions being quantified are
decided “in advance”, and in branching time hyperproperties, an execution
being quantified may “branch off” in the middle of the last quantified
execution.

© 2024, Nabarun Deka. Under license to IEEE.
DOI 10.1109/CSF61375.2024.00032

65

to express hyperproperties that relate “timed” executions,
namely executions that are decorated by the fime at which
each observation of the system occurs. Such hyperproperties,
henceforth referred to as timing hyperproperties, are essential
to reason about the timing behaviors of a system. Some
examples include the absence of timing leaks and timeliness
of optimistic contract signing; see Section III for examples.
The need for reasoning about timing hyperproperties has led
to the development of timed hyperlogics, such as in [7], [9],
[10], [23], [26], [31]. The real time system being analyzed in
this context is usually modeled by timed automata [4] as in [9],
[10], [23], [26]. In contrast, the logics in [7], [31] are geared
towards verifying timed properties of cryptographic properties,
and models are timed versions of the applied-pi calculus [2].
(See Section VI on Pager 13 for a detailed discussion of logics
in [7], [31].)

A timed automaton is a finite-state automaton augmented
with a finite set of clocks. The clocks progress synchronously,
and the automaton can make transitions based on their values
and reset any of its clocks during a transition. Verifying
timed systems is more challenging, even for regular, non-
hyperproperties. Thus, in [9], [10], the time model is taken
to be discrete, i.e., the timed traces are sequences of pairs
of the observed state of the system and the time observed,
where the times are non-negative integers. In contrast, [23]
considers verifying timed hyperproperties of timed automata
when the time model is taken to be continuous/dense. In
particular, they consider the point-based semantics for timed
automata [3], [6], [22]. The timed traces in the point-based
semantics are also sequences of pairs of observed states and
observed times, but unlike [9], [10], the observations may
occur at times that are arbitrary non-negative real numbers.
For specifying timing hyperproperties, [23] extends the linear-
time logic Metric Interval Temporal Logic (MITL) [5] to Hyper
Metric Interval Temporal Logic (HyperMITL) analogous to
the extension of LTL to HyperLTL. MITL is a commonly used
logic to specify properties of timed systems, and is similar to
LTL except that the temporal modalities are annotated with
non-singular’ time intervals: for example, ¢ U; 1) means that
1) must be true at some time ¢ € I units from the current time

2A non-empty interval is singular if it has exactly one element. Otherwise,
it is non-singular.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

and ¢ must hold at all times before t.

The problem of verifying timed automata against Hyper-
MITL specifications is undecidable [23]. The same paper also
establishes that the verification problem becomes decidable
when restricting to executions all of whose observations occur
before a given time-bound NN. The decidability result is estab-
lished by showing that the verification problem reduces to the
satisfaction problem of QPTL. Time-bounded verification is an
often-adapted strategy for taming the complexity of verifying
timed systems [28], [29]. Please note that even though time
of the observations may be bounded, the total number of
observations within that time-bound is not bounded.

Our contributions. In this paper we consider the problem of
verifying branching hyperproperties for timed automata. As
has also been observed in [7], [31], several security guar-
antees for timed systems are branching hyperproperties; see
Section III. In order to specify branching hyperproperties, we
define the logic HCMTL* which is obtained by first extending
the logic Metric Temporal Logic (MTL) [24]) to a branching-
time logic (analogous to the extension of LTL to CTL*)
and then considering the “hyper” version of the resulting
logic (analogous to the extension of CTL* to HyperCTL¥).
MTL itself generalizes MITL by allowing singular intervals
to annotate the temporal operators. The logic is presented
in negation-normal form where negations are pushed down
to propositions. Note that as a hyperproperty relates multiple
executions, different timed traces in the hyperproperty may run
for different times. This requires the logic to allow reasoning
at times after the end of a trace. The negation normal form
facilitates this when defining the semantics, as this allows for
both a proposition and its negation to be false in a timed trace
after it has ended. However, this means that we have to choose
the temporal operators carefully to be able to express both the
hyperproperty and its negation.

In a departure from [23], we also consider interval-based
semantics [5], [21], [32] for timed automata in addition to
point-based semantics. In the interval-based semantics, the
system modeled by a timed automaton is continuously under
observation, and the timed traces of the automaton are a
sequence of pairs of the observed state and the interval during
which the state is observed. Verifying timed automata with
interval-based semantics is more difficult than with point-
based semantics. For example, the problem of verifying timed
automata against MTL specifications is undecidable for finite
words in the interval-based semantics [22] but is decidable for
finite words in the point-based semantics [27].

We consider two verification problems for both interval-
based and point-based semantics.

Bounded Time: Given a timed automaton A, an HCMTL*
specification ¢, and a time bound NV, determine if ¢ is satisfied
by .A when we consider only executions that are observed up-
to time N.

General: Given a timed automaton .4 and an HCMTL*
specification ¢, determine if ¢ is satisfied by A.

Bounded-Time verification. Our first result is that the

66

bounded-time verification is decidable for interval-based se-
mantics. Note that as HyperMITL is a fragment of HCMTL*,
this result generalizes the results of [23] to interval-based
semantics. We make a few salient observations about the proof
of this result.

Unlike [12], [23], it is not clear that the verification problem
can be reduced to QPTL satisfaction for interval-based se-
mantics. Instead, we choose to obtain decidability by showing
the verification problem reduces to the problem of satisfaction
of the Monadic Second Order Logic with strict inequality
and successor (MSO(<, +1)), over the subset [0, N) of reals.
Specifically, we show that for each timed automaton .4 and
HCMTL* formula ¢, there is a MSO(<,+1) formula 14,
with a set of free monadic predicates MP 4 such that A
satisfies if and only if there is a model f that satisfies 1 4 .
A model of the formula v 4, hereafter referred to as a flow, is
a function from the domain [0, N) to the power-set of the set
MP 4. Intuitively, for ¢ € [0, N), f(¢) is the set of predicates
P € MP 4 that are true at ¢. In order to establish this result, we
carefully construct a one-to-one mapping from the executions
of A to the set of flows.

Our next result is that the bounded-time verification is
decidable for point-based semantics, thus generalizing the
results of [23] to branching hyperproperties for point-based
semantics. The decidability result is established by showing
that the bounded-time verification problem for point-based se-
mantics is reducible to the bounded-time verification problem
for interval-based semantics: for every timed automaton A
and HCMTL* formula @y, there is a timed automaton Aj, and
a HCMTL* formula ¢j, constructible from Ap: and ¢y such
that A4;, satisfies ¢y, in the interval-based semantics if and
only if Ap; satisfies op in the point-based semantics. The key
observation is that both timed automata and HCMTL* in the
interval-based semantics are at least as expressive as the point-
based semantics. In point-based semantics, we only consider
time points where observations occur. Thus, we need to add a
new proposition that marks these observations in the interval-
based semantics. This reduction is valid even when the time
domain is not bounded and for HyperMITL formulas.

General verification. Since verifying timed automata against
MTL semantics is already undecidable [22] for interval-based
semantics, the general verification problem for HCMTL* is
undecidable for interval-based semantics. Further, as the re-
duction of the verification problem for point-based semantics
to the verification problem for interval-based semantics is
also valid for HyperMITL formulas, and verifying timed
automata against HyperMITL specifications under point-based
semantics is undecidable [23], the undecidability carries over
to both point-based and interval-based semantics even for
HyperMITL specifications.?

Organization. The rest of the paper is organized as follows.

3The undecidability proof in [23] uses past operators. We do not have
past operators in our logic. Nevertheless, we can also show that the problem
is undecidable by reducing the universality problem of timed automata to
HyperMITL verification under point-based semantics.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

The logic HCMTL* and its interval-based semantics for timed
automata is presented in Section II. Section III discusses
examples of timed hyperproperties and their formalization
in HCMTL". Section IV presents the decidability proof of
bounded-time verification in the interval-based semantics, and
Section V presents the reduction from point-based semantics
to interval-based semantics. Related work is discussed in
Section VI, and we present our conclusions in Section VII.

Due to space constraints, we are not able to present the
proofs in their complete technical details in this paper. Instead,
we present the key ideas of the proofs and illustrate them using
examples. The complete proofs can be found in the extended
version of the paper [14].

II. THE LoGgic HCMTL*

In this section, we introduce our logic HCMTL* which
allows one to express branching hyperproperties of real time
systems. HCMTL™ is an extension of metric temporal logic
(MTL) [24] which is a linear time logic to reason about real
time constraints. Our real time systems will be modeled by
timed automata [4], which is a popular model to describe
such systems. We begin by defining the syntax of our logic,
introduce timed automata, and conclude by formally defining
what it means for a timed automaton to satisfy a formula in
HCMTL*. As is standard, we use N for natural numbers, R
for real numbers, R>y for non-negative reals, and R, for
positive real numbers.

Intervals. An interval I is of the form (¢1,t2]) where ¢1,t5 €
R U {oo} with t; < t3 (< is defined as expected for co),
and (€ {(,[} and |) € {),]}. We will denote by ¢ + (¢1, t2),
the interval (¢ + t1,¢ + tof). For I = (t1,%2)), t1 and ¢ are
the left (denoted L(I)) and right (denoted R(I)) endpoints
of I, respectively. An interval is called singular if it is of
the form [t,¢]. Two intervals I; = (¢1,¢2)) and Iy = (t3,t4])
are said to be consecutive if to = t3, to is in exactly one
of Iy or Iy, and I N I = (. For example, [1,2) and
[2,4) are consecutive intervals. An interval sequence is an
finite sequence of intervals Iy, I, Is, ..., I,, that satisfies the
following two conditions: [Initial] L(I;) =0 and 0 € I;; and
[Consecution] for each ¢ > 1, I; and I;;; are consecutive
intervals.

A. Syntax

Formulas in HCMTL* are built using atomic propositions
P, logic connectives, and modal operators. To allow one to
reason about multiple executions, it has variables representing
finite executions that can be quantified; V is the set of such
path variables. The BNF grammar for formulas in HCMTL*
is given below.

o == pr | 70 | Ve oA | Fro | Gro | oUrp | 3mp | Ve

In the grammar above, p € P is an atomic proposition, ™ €
V is a path variable, and I is an interval. As in MTL, we
allow singular intervals of the form [¢,¢] to decorate modal
operators, which distinguishes it from other logics that are
based on MITL [5]. We use HyperMITL to denote the fragment

67

of HCMTL” in which all quantifiers occur at the top-level of
the formula and all intervals are non-singular.

Before defining the formal semantics for HCMTL*, we
informally describe what formulas mean. The logic reasons
about multiple finite executions of a real time system that
are referred to by path variables. Atomic propositions capture
abstract truths that may hold at different times during an
execution. In order to distinguish between propositions in
different executions, we annotated propositions with the path
for which it is being asserted. Thus, p,. asserts that proposition
p is true in execution 7 currently. Similarly, —p, asserts that p
is false in 7. It is important to recognize that here —p, asserts
that p is false, not that p is not true. For example at a time
t that is after execution 7 ends, neither p, nor —p, hold for
p is neither true nor false as 7 has ended. Thus, the law of
excluded middle does not hold in HCMTL*. As a consequence,
negation needs to be handled carefully (see Remark 2) and
consequently HCMTL* has more modal connectives than in
typical presentations of a temporal logic.

Formulas can be combined using Boolean connectives con-
junction (A) and disjunction (V). The operators F;, Gy, and
Ur express the modal and real-time aspects of the logic.
These operators are real time extensions of the classical finally,
globally, and until operators found in LTL [30] and CTL* [16],
which constrain modal operators with time intervals requiring
obligations to hold within those intervals. The formula Fr¢
(read ‘finally ¢’) asserts that ¢ holds at a time ¢ from the
current time where ¢ is in the interval 1. Gy (read ‘globally
’) asserts that ¢ holds at all times ¢ from the current time
when ¢t is in interval I. p1Urps (read ‘pp until ¢9”) holds if
2 holds at some time ¢ units from the current time where
t € I and ¢4 holds continuously from the current time until
2 holds. For example, ¢1Ujg 2)p2 says that eventually, within
2 units of time from now, (2 is true and ¢y is true until then.

As mentioned before, HCMTL* expresses hyperproperties
through path variables that stand for finite length executions,
and quantifying over them. Jmy asserts that there is an
execution such that ¢ holds, while Ve says that ¢ holds no
matter what execution is assigned to 7. Like in other branching
temporal logics for hyperproperties [12], when executions are
quantified, the chosen execution for the variable is required to
be an extension or branch of a ‘current’ execution; the ‘current’
execution depends on the context of the larger sentences in
which a particular quantified sub-formula appears. This subtle
aspect of quantification highlighted in Example 1. The variable
7 is bound in the formulas 37y and Vrp. Any variable that
does not appear within the scope of a quantifier is said to be
free. Without loss of generality, we assume that a variable
is bound at most once and does not appear both bound
and free; these assumptions can be easily met by renaming
bound variables. Finally, due to technical reasons that will
become clear when we discuss the formal semantics, the modal
operators Fr, G, and Uy are required to always appear within
the scope of quantifier.

Example 1. As in other branching temporal logics for hyper-

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

properties [12], quantified executions are required to be ex-
tensions or branches of certain other executions. We illustrate
this through a couple of examples. The formula V7 F[y o) 3m2¢
says that for every execution m; of the system, within 1 to 2
units of time, there is an extension 7o of m; that satisfies . In
this case, the extension means that 7; and 7o must agree upto
the point in time when the obligation for the operator F' is
met. On the other hand, the formula V7 El7r2F[1’2]<p says that
for every execution 7; of the system, there exists an execution
mo of the system such that within 1 to 2 units of time, 7y and
mo satisfy ¢. Here, 71 and 7 are not required to agree (except
at the very beginning) and can be thought to be completely
independent executions.

Remark 2. Tt is typically convenient for logics to be closed
under negation. Since negation in HCMTL* is restricted to
only be applied to propositions, the logic has existential and
universal quantifiers, and additional modal operators to ensure
that negations can always be pushed inside. De Morgan’s
laws and the duality between exists and for all, allow one
to handle the usual logical operators. For the modal con-
nectives the following equivalences hold: —Frp = Gr—y,
~Gre = Frp, and ~(p1Urp2) = (Grp2) V (mp2U—01)
where J = [0, R(I)).

B. Timed Automaton

Timed automata [4] are a popular formal model to describe
real time systems. They are an extension of finite automata
that are equipped with clocks that can be individually reset
and measure time since the last reset. Clocks can be used to
enforce real time constraints during a system execution. All
clocks in a timed automaton are synchronous, and progress
in lockstep with an ambient global clock. We introduce this
model in this section.

Clock Constraints. A clock constraint over a clock z is
formula given by the following grammar.

Y ou= x| PV [YAy

where ¢ € N and ~€ {<,<,=,>,>}. We will denote by
®(x) the set of all clock constraints over z. For a set of clocks
X, ®(X) is the union of ®(x) for all z € X. A clock valuation
is a map g : X — Rsq. The satisfaction relation p |= 9 is
defined inductively as follows.

o 4z~ ciff u(x) ~ cis true.
o iYLV Yo iff p =y or p = e
o WYL AP M p =1 and p = .

Timed Automata. A timed automaton over a set of atomic

propositions P is a tuple, A = (V,Vp, o, X, 8, E, Vi), where:
o V is a finite set of states.

Vo € V is a set of initial states.

a:V — 2% is a state labeling function that labels each

state with the set of propositions that are true at that state.

X is a finite set of clocks.

B:V x X — ®(X) is a function that labels each state,

clock pair (v, z) with a clock constraint over z.

68

e ECV xV x2%X) x 2% s a set of transition edges
of the automaton. An edge (vy,vs, ¥,) is a transition
from state v to vq that satisfies all the clock constraints
in the guard ¥ and resets the clocks in v C X.

e Vr C V is the set of final states.

Runs/Executions. An execution p of A is a finite sequence

(Un, In)

Yn—1

I 71 T Y2 I
(vi, 1) \1/—> (ve, I2) \P—; (vs,I3) v

V3
1 V3

where v; € V forall ¢ € {1,2,...,n}and I1,Io,...,I, is an
interval sequence such that v; € Vj, (vi, vit1, Vi, V) € E for
each 7, and the real time constraints imposed in each state and
transition are satisfied. To define when real time constraints are
met, we need to define clock valuations at each time during the
execution. We begin by first defining the clock valuations when
first entering state v;. Let the sequence of clock valuations
11, [2, - - - fin, be inductively defined as follows: py(x) = 0 for
allx € X, and for all ¢ > 1, /,LZ'+1(.1‘) = Ml(l‘)—f—R(Iz) —L(IZ)
if x € ~;, and 0 otherwise. Next, for ¢ € I;, the clock valuation
at time ¢, yy, is given as () = p;(x)+t— L(1;). Finally, for
p to be an execution the following two conditions must hold:
[State Constraints] for every 4, clock x and t € I;, i (x)
B(v;, x), and [Guard Constraints] for every 4, clock x, and ¢ €
UiN®(x), @' (x) |= ¢, where p'(z) = pi(x) + R(I;) — L(I).

The execution p is said to be accepting if v,, € Vp. The
collection of all accepting executions of .4 will be denoted by
exec(A). We say t € |p| iff t € I; for some i. An accepting
execution p is said to be bounded by N € R if t ¢ |p| for
all ¢ > N; the set of all accepting executions bounded by N
of A will be denoted by execy(A). For t € |p|, the state at
time ¢, denoted p(t), is v; if t € I;. The prefix of p up to time
t € |p|, denoted p|;, is the execution

ﬂ) (U’ia Jt)

(v1,11) % (v, I2) % (vs, I) N7

~
1 2 4

3
where t € I; and J; = I; N [0,¢]. Two executions p; and po
are said to be equal up to time t if p1|; and ps|; are identical.

C. Semantics

We introduce the interval-based semantics here. Let us fix
a timed automaton A = (V,Vy,a,X,8,E,VEr). To define
whether a HCMTL* formula ¢ is true in A at a particular time
t, we need to know what execution is assigned to each free path
variable in ¢. This is captured by a path environment. A path
environment IT : ¥V — exec(A) is a mapping that associates
with each path variable in V an accepting execution of A; we
assume that the set of free variables of ¢ is included in V.
When V = (), the empty path environment is denoted by {}.
For a path environment II over V), a variable m, an execution
p € exec(A), II[r — p] denotes the path environment with
domain V U {7} that is identical to II, except that m is
now mapped to p. In branching hyperproperty logics like
HyperCTL* [12], when a variable is quantified, it is expected
to be assigned to an execution that is an extension/branch of
an execution that is currently assigned to a variable (also see
Example 1). Therefore, to define the semantics, we also need

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

to know which execution needs to be extended next at a future
quantification. This is captured by t which takes values in
V U {e}; when 1 = e, it indicates that the next quantified
variable is completely independent. The satisfaction relation
for HCMTL™ captures when a formula ¢ is true in a timed
automaton A at time ¢ with respect to a path environment IT
and t € VU {e}. It is denoted IL,¢,1 =4 ¢, and is defined
inductively as follows.

I, ¢, Ea pr iff ¢ € |TI(7)], and p € a(I1(7)(2)).
IL,t,1 Ea —pr iff ¢ € |TI(7)], and p & a(I1(7)(1)).
HvtaT ':.A w1V 2 iff Hvth ':.A ¥1 or H,th ':.A P2-
HataT ':A w1\ P2 iff Hat7T):.A 1 and Hat7T):.A P2-
IT, ¢, 1 =4 Fro iff there exists ¢/ > ¢ such that t' € t+1
and I ¢/, T Eaep.

IL,t,t E=a Gy iff for all ¢’ > ¢, such that t' € ¢ 4 I,
I, tla T ':.AQO

IL,t,1 Ea p1Urps iff there exists ¢ > ¢ such that
t'et+ 1 and I, ¥, 1 Ea @2, and for all ¢ <t < ¥/,
11, t/lvT ’:A P1.

I, ¢, 1 =4 Ime iff there is an execution p € exec(A)
such that II[7 — pl, ¢, m =4 ¢ and either (a) T = € and
t =0, or (b) t € |TI(1)| and p|; = TI(})];.

I, t,7 a4 Vrp iff for every execution p € exec(A),
if either (a) 1 = e and t = 0, or (b) ¢ € |II(})| and
ple = II(1)]:, then II[7 — p], t, 7 =4 .

Bounded Time Semantics. Bounded time semantics captures
the notion that a timed automaton meets a specification ¢ up
to time N € R>q. This is captured by a satisfaction relation
I, ¢, f |:ﬁ @ which is defined in manner very similar to the
definition above, except that ¢ is required to be < N, the path
environment II : VV — execy (,A) maps variables to accepting
executions bounded by N and whenever a new variable is
quantified, it is assigned an execution in execy (.A). The formal
definition is skipped due to space constraints.

Verification Problems. This paper studies two decision prob-
lems associated with HCMTL>.

[General] Given a timed automaton A and an HCMTL*
sentence ¢, determine if {},0,€ =4 .

[Bounded Time] Given a timed automaton A, an HCMTL*
sentence ¢, and a time bound N, determine if {},0,¢ =) ¢.

III. EXAMPLES

In this section, we highlight the expressive power of
HCMTL* through examples. Security specifications in these
examples demand reasoning about multiple executions, have
real-time constraints, require analyzing the branching struc-
ture, and use different quantifiers when bounding variables.
The security guarantees in the first three examples (timing
attacks, secure multi-execution, opacity) are linear hyperprop-
erties. The security guarantees in the last four examples (timed
commitments, contract signing, unlinkability, and fair reward)
are branching hyperproperties that cannot be expressed in
real-time extensions of HyperLTL. Four examples involved
quantifier alternation (opacity, contract signing, unlinkability,
and fair reward). Two examples (timed commitment and

69

contract signing) require non-trivial intervals to express the
desired security guarantees. Finally, the unlinkability and fair
reward examples are branching hyperproperties that relate
executions along different branches and, thus, would not fall
into branching time extensions of MTL. Thus the full power
of HCMTL" is used to describe all the security requirements
in these examples. Please note that in our examples below, we
will use abbreviations like implication (=) and equivalence
(<=), which can be expressed in our logic by using the usual
translation and pushing negations inside.

Timing Attacks. Programs computing over sensitive informa-
tion should not be susceptible to leaking information through
timing channels. To ensure that there are no such timing
leaks, the program needs to guarantee that any two executions
working on the same observable data (but possibly different
private data) have the same timing behavior. Let O be set
of observable inputs, and let the proposition o(a) for a € O
denote that the input a is observed. Let run be the proposition
to indicate that the program is running. Then using such
propositions, the absence of timing leaks can be written as

VmVﬂ'Q.(/\ o(a)r, <= o(a)r,) =
acO
Glo,00)(runy, <= rung,)

This formula says that for all paths 71 and ms, if they start
with the same observable inputs, then globally they should run
for the same time.

Secure Multi-Execution (SME). Non-interference requires
that low-level (observable) outputs of two executions be the
same if they are computing on the same low-level (observable)
inputs. In other words, the difference in the high security
inputs of two executions is not observable in the outputs. Se-
cure multi-execution is an approach to ensure non-interference,
where for any sequence of tasks, each task in the sequence is
executed in two ways, one is a “low copy” and other is a
“high copy”. In the low copy, the high security inputs are
set to some default values and the resulting outputs from this
computation are observable. In the high copy, computation is
carried with all the exact high security inputs, and the outputs
from this computation are kept secure and non-observable.
This ensures that any two executions operating on the same
low-level inputs, have the same observations since only the
outputs from the low copy are public which have default
high security inputs. The low and high copies are interleaved
for each task in the sequence. While SME ensures that the
computation is non-interferent in the classical sense, it is open
to timing attacks to an adversary observing the time duration
between successive low copy computations if the high copy
computations are of different length on inputs with the same
low-level input. Such timing vulnerabilities can be described
in HCMTL". Let O to be a set of observable input values and
o(a) for a € O be the proposition that low-level input a is
observed. Let Hstart, Hrun, Hend be propositions denoting
that high copy computation has started, is running, and has

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

ended, respectively. Timing vulnerability can be written as

E|7T137T2. (/\ O(a)ﬂ-1 < 0(&),-.-2) U[O,oo) ©
acO

where

@ =Hstart,;, A Hstart ,A
((Hrunz, AHrung,) Upjp,ooy (—(Hendr, <= Hendy,)))

The formula says that there executions m; and 7o that have
the same low-level inputs until time ¢ when the formula ¢
becomes true. ¢ asserts that at time ¢ high copy computations
start in 1 and 7o and the computation in either 71 or 72 ends
before the other.

Opacity. Opacity of a property 1) demands that the truth of
1) be undeterminable to an adversary. This can be formalized
by demanding that for every execution m; there is another
execution 7o that has the same observable behavior, but 1) is
true in exactly one of 7; and mo. To state this in HCMTL",
we use the following propositions: for a set of observations
O, the proposition o(a) asserts that a € O is observed; end
asserts that the computation has ended; and, 1 is property of
the last state expressed using a Boolean combination of some
propositions. Then opacity of ¥ is

W13 Ciooe) (aco o(@)r, = ofa)s,)
/\((endm /\endm) = ﬁ(wm — wﬂ'z)))

Notice that opacity requires alternation of path quantifiers in
order to express it.

Timed Commitment. Consider the problem of tossing a coin
when the caller (Alice) and the tosser (Bob) are in different
locations but have a reliable communication channel to use.
The setup is that Alice calls the toss, Bob tosses, and Alice
wins if the result of the toss is what she predicts while Bob
wins if it is not. A ndive protocol might be that Alice sends
her prediction to Bob and Bob then sends the result of the coin
toss to Alice. At this point both parties know who the winner
is. However, such a protocol is not fair to Alice as a dishonest
Bob can always report a result of a coin toss that is the opposite
of what Alice called. To circumvent this, Alice could commit
her call, instead of sending it. Bob then tosses his coin and
shares the result with Alice. At this point, Alice reveals her
commitment and now both parties know the winner. However,
such a protocol could be unfair to Bob, as a dishonest Alice
may never reveal her commitment if she realizes that she lost.
The solution that ensures fairness for both parties is to use
a timed commitment, where the commitment is revealed to
Bob after the elapse a fixed time 7" even if Alice takes no
steps towards revealing her commitment. The steps of such a
protocol are as follows: Alice commits her call within time
t., Bob has to share the result of the coin toss within time
T after Alice’s commitment, and if he does, either Alice will
reveal her call or Bob can compute what Alice committed to
after 7" units after Alice’s commitment. If Bob does not toss
a coin within time 7", Alice is released from her commitment.
Let us formally define the fairness guarantees for Alice and
Bob, which are different since the protocol is asymmetric. Let

70

the proposition c(b), for b € {H, T} denote that Alice has
committed bit b, even though b itself is not revealed to Bob.
We assume that communication is reliable and so once Alice
commits, Bob knows that she did. Proposition t(b) for b €
{H, T} denotes a state when Bob has shared the result of a
coin toss to be b. Finally r(b) asserts that Alice’s commitment
has been revealed to Bob and that call was b. Fairness for Bob
now is

Vry. G[07tc] /\ (C(b).,rl — (Vﬂ'g. F[T)Oo)r(b)m)).
be{H,T}

It says for every execution 7y, if Alice commits within time
t., then in every extension my of 71, Bob will be able to see
Alice’s commitment at some time that is 7" units after Alice’s
commitment. In addition, Bob will see the same bit that Alice
committed. Fairness for Alice can be written as

V1 Gz (€(H)m Ve(T)r) =
Vg, G[O,T]((_‘t(H)TrQ A _‘t(T)TrQ) —
(=r(H)z, A =r(T)x,)))

which says that in every execution, if Alice commits within
time t. then for the next 7" units, if Bob has not yet shared
the result of his coin toss, then Alice’s commitment is not
revealed. Notice that these properties are branching hyperprop-
erties that cannot be expressed in linear hyperproperty logics
even if they are real time.

Contract Signing. Consider a contract signing protocol me-
diated by a trusted third party (TTP) where two parties wish
to sign a contract. Each signer must have the ability to move
on in a timely manner if the other party does not complete the
signing protocol. Each signer must be able to reach an abort
state if they want or must receive a message from the TTP
that the protocol is aborted in a timely manner. For i € {1, 2},
let us consider the following propositions. start(:) means that
party ¢ has started the protocol, signed(i) means that party i
has a signed contract, abort(i) means that party ¢ is in an abort
state, and token(¢) means that the TTP has provided an abort
token to party ¢. We can now write the fairness for party ¢ as

V1. Glog (start(i),, =
(3ma. Fio,ry(signed(i) ., V abort(i),)
V token(i)r,)))-

This is once again a branching hyperproperty and it also
involves quantifier alternation.

Unlinkability. Radio Frequency Identification (RFID) is a
technology used to identify and track physical objects using
electromagnetic tags. A RFID system consists of tags attached
to objects of interest and a reader that can communicate
with the tags using electromagnetic waves to ascertain their
identity and location. A security property that is required in
such systems is unlinkability [11] i.e. when multiple rounds
of communication happens between a tag and the reader, an
adversary that is observing the communications should not
be able to link the communications to the same tag. If this
property is violated, an adversary can potentially track an
object by linking all communications between that particular

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

tag and the receiver. Consider a simple RFID system with
two tags. For ¢ € {1,2}, let comm(i) denote that tag 4
communicated with the receiver. For a set O of observations,
let the propositions o(a) denote that a € O has been observed.
We can state unlinkability of communications between tag 1
and the receiver in HCMTL* as

V1. (comm(1),, =
Go,00) (Vr23m3. Flg,ey(comm(1),,) =
F(O,e)(comm(Q)TrS /\(p))

where ¢ > 0 and

= Glo0)()\ 0(@)r, <= 0(a)r,).
acO

It says that for any execution m; where tag 1 communicates
with the receiver initially, globally, for all branches 75 where
tag 1 communicates with the receiver, there is another branch
w3 where tag 2 communicates with the receiver, such that 7o
and 73 have the same observable behaviour to an adversary.
This ensures that the adversary cannot link the two commu-
nications between tag 1 and the receiver. Observe that this is
a branching hyperproperty that relates two traces, and hence
would not be captured by a branching time extension of MTL.

Fair Reward. Consider a distributed program running on top
of a blockchain based cryptocurrency as described in [31].
The system consists of users that submit transactions in the
form of contracts to the program, which are then executed
and published by the program to the blockchain. In between a
transactions submission and publication, it becomes public to
other users, who might then choose to submit new transactions
based on this. Note that we are considering a distributed
program running on top of the blockchain and hence the sub-
missions are not necessarily published in order of submission.
The only requirement of the program is that submissions are
eventually published or returned as invalid contracts. Consider
a simple such model where a user if rewarded (monetarily)
for correctly computing the pre-image of some hashed value.
In such a system, after an honest user submits a correct
answer (in the form of a transaction), an adversary might
use the information from the transaction to submit their own
answer and if it gets published first, the adversary can steal
a promised reward from the honest user. The fair reward
property requires that the program should not be vulnerable to
such attacks. Formally, for any execution of the system, there is
another execution (called ideal execution) where submissions
are published in order and the final balances of all users in both
executions are equal. The protocol allows a setup phase for the
adversary where the adversary chooses the attack parameters.
The proposition setup indicates the end of the setup phase.
The fair reward property now requires that in any execution
of the system, once the adversary is finished setting up, there
is an ideal branch of the execution such that both executions
have the same balance for all users eventually. For a set 7 of
transactions (each transaction can be thought of as a bit string)
and a transaction = € 7, let submit(z) and publish(z) denote
that x has been submitted and published respectively. Let silent

71

denote that no transaction has been submitted or published. In
the remainder of this example, to avoid clutter, we will use the
symbols F,G,U without any interval annotation to indicate
that the interval is [0, c0). An ideal execution can be modeled

in HCMTL* as

ideal(m) = G (A <7 submit(x), A F publish(z)~
= silent,Upublish(z),).

This says that globally, if a transaction is submitted and
eventually published, then the execution is silent until the
publication. Let B be the set of all possible balance profiles
(these can be thought of as bit strings indicating the balance
of each user), and for b € B, let balance(b) be the proposition
indicating that the balance profile is described by b. Fair
reward can now be modeled in HCMTL* as

V1. G(setup,, =
37r2.idea|(7r2)/\
(Ageg Fsubmit(z),, <= I submit(x)s,)A
F (G (silent,, Asilent,,)A
Npe balance(b), <= balance(b),))

This says that for every execution 7, globally, once the
adversary is done setting up, there is a branch w9 which is an
ideal execution, and the submissions in 7r; and 7o are identical,
and eventually, when both executions become silent, they have
the same balance profiles.

IV. VERIFYING HCMTL*

In this section we present the main results related to the
verification problems for HCMTL* introduced in Section II-C.
We show that the general verification is undecidable, but the
bounded time verification problem is decidable. All the results
we present in this section are for interval-based semantics.

Theorem 3. The general verification problem for HCMTL*
is undecidable in the interval-based semantics. In fact the

verification problem is undecidable even for the fragment
HyperMITL.

The proof of Theorem 3 is deferred to Section V.

Theorem 4. The bounded time verification problem for
HCMTL* is decidable in the interval-based semantics.

Our decidabiliy result is established by reducing the
bounded time verification problem for HCMTL* to the satisfia-
bility problem for Monadic Second Order logic with < and +1
relations, denoted MSO(<, 41), over a bounded time domain.
The satisfiability problem for MSO(<, +1) is decidable over
bounded time domains [28], and our result thus follows. The
following subsections outline the decidability proof and it is
organized as follows.

1) First we introduce MSO(<,+1) and state the relevant
decidability results.

2) The first technical result in our proof shows that for any
timed automaton .4, there is an MSO(<, +1) formula
.4 whose models are exactly the accepting executions

of A.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

3) Finally, using this translation of a timed automaton
to an MSO(<,+1) formula, we reduce the bounded
time verification problem to the satisfiability problem
of MSO(<, +1).

A. Monadic Second Order Logic

Monadic Second Order logic with < and 41, denoted
MSO(<, +1), is built over a set of monadic predicates MP
and set of first order variables Vars. The BNF grammar is as
follows.

r<y| +Uz,y) | Px) | pVel|-p|3ze| 3Py

p

In the grammar above, P € MP is a monadic predicate, and
x € Vars is a first order variable.

The semantics of MSO(<,+1) is defined over a timed
domain T. We will define it over two time domains T = R>
and T = [0, N) for some fixed N € N. Let P C MP be the set
of free monadic predicates in an MSO(<, +1) formula . A
flow is a map, f : T — 2 that is finitely variable (explained
next). For any interval I C T, define the map f|; : I — 2P
as f|r(t) = f(t) i.e. it is the restriction of f to the interval I.
Now, we say a map f : T — 2P is finitely variable if for any
bounded interval I C T with finite endpoints, f|; has finitely
many discontinuities i.e. the values of the monadic predicates
change finitely many times in /. For Q C P C MP, and a
flow g : T — 2P, we will denote by g|q : T — 29 the flow
defined as g|q(t) = ¢(t) N Q. An interpretation [is a map
I : Vars — T. We will denote by I[z +— a] the interpretation
that maps « to a € T, and is same as [for all y # x. The
semantics, denoted by f, I = ¢, is defined as follows.

D filExz<yiff I(x) < I(y).

2) f,1E+1(x,y)iff I(y) =1(x)+ 1.

3) f,I E P(x)iff P e f(I(x)).

4) f7I ':@1 VQDQ lfffaI ':901 or faI ':502

5 fiITEpiff f,I e

6) f,I | Jxyp iff there exists a € T such that f,I[x —
al E .

f,I = Qe iff there is some finitely variable flow g :
T — 2PU1@} such that g|p = f and g, I = .

7)

Satisfiability Problem. Given an MSO(<,+1) formula ¢
over a set MP of free monadic predicates and free first order
variables Vars, determine if there is a flow f: T — oMP and
I :Vars — T such that f,T | .

When the time domain is bounded, i.e., T = [0,N) for
some N € R, the satisfiability problem is decidable [28].

Theorem 5 ([28]). For T [0,N) (N € Ryg), the
satisfiability problem for MSO(<,+1) is decidable.

B. Translating Timed Automata to MSO(<, +1)

We will now show that for any timed automaton .4, there
is an MSO(<,+1) formula ¢4 that is satisfied exactly by
the accepting executions of .A. The first challenge in this
translation is that MSO(<, +1) models are flows, which are
functions from T to a set of monadic predicates, which are
different from executions of a timed automaton. Hence, to

72

formally state our result, we need to construct a one-to-one
correspondence between executions of a timed automaton and
flows.

Recall that an execution p of a timed automaton A =
(V,Vo,a, X, B, E, V) is of the form

Jnoty (vn, Ip)

n—1

(v1,11) 225 (vg, I2) -2 (v3, I3)
o, w

V3
2 W3

We will encode this as a flow f: R>q — 2V over the set of
monadic predicates MP = V' as follows:
o Ift S Ii, f(t) == {’Ui}
o If ¢t & I, for any i, f(¢) = () which indicates that the run
has terminated and hence no state is present in the flow.

This is not sufficient because this does not give a one-to-one
mapping from executions to flows. As an example, consider
the following two simple executions:

P1 = (Ua [Ov 10])
p2 = (v,[0,5]) = (v, (5,10]).

These executions are different because one has a transition at
time 5 while the other does not. However, if we think of them
as a function f : [0,10] — V/, they are identical. This indicates
that in the function f, we also need to carry information
about the transitions and the clock resets that occur during an
execution. This involves some challenging subtleties that we
illustrate with an example. Consider the following execution
with two clocks x; and zo,

p=(1,00,5)) T (0n,5,10)) 125 (03, (10,12))
{2}
W3

(o1, 12,12]) L2 (04, (12, 15))
4

Observe that at time 5, a transition e; = (vq, va, ¥1, {z1}) oc-
curs and the automaton is in the target state of the transition i.e.
state vo. Let us call this type of transition a 7'~ transition. At
time 10 on the other hand, a transition e = (v, vs, Ua, {x2})
occurs and the automaton is in the source state of the transition
i.e. state vy, which we will call a Tt transition. Finally, at time
12, both kinds of transitions occur. Thus, in the function f,
we will define f(5) = {vo, T, } to say that the execution is
at state vo and a transition e; of type 7'~ occurred. Similarly
we can define f(10) = {v2, 7.1} and at time 12, and f(12)
will contain the location v; and one 7~ and T transitions.
Corresponding to each transition, some clocks are reset. Now
in a singular interval, for example time 12 in the execution
above, x5 is reset at the transition (vs,v1,VUs,{z2}) and
then z; is reset in the transition (v1,vs, ¥y, {z1}). Hence,
we also need to differentiate clock resets into two types,
resets associated to 7'~ transitions and those associated to
T7 transitions. So for each clock z € X, we will have
two monadic predicates = and x+. When a T transition
corresponding to edge e = (v1,va, W, y) occurs at time ¢, we
will add the resets 2~ for 2 € v to f(t), and similarly for 7"
transitions. The corresponding flow for the execution above
will be:

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

o f(t)={v1} forte[0,5)

° f(5) = {UQ’Te_le_}

o f(t) = {va} for t € (5,10)

o f(10) = {vo, T, 23}

o f(t) ={vs} for t € (10,12)
f(

12) = {vy, T, , 25, TF T}

o f(t) ={v4} for ¢t € (12,15)
This information is sufficient to ensure a one-to-one corre-
spondence between executions and their corresponding flows.

Using this idea, formally, we have the lemma

Lemma 6. For a timed automaton =
(V,Vo,a, X, B, E, Vi), let T (T, T+ | e € E}
and R = {ax~,2%" |z € X}. Define a set of monadic
predicates MP = V U T U R. Define F to be the set of
all flows f : R>9 — 2MP There is a one-to-one encoding
F 4 : exec(A) — F of executions p of A as flows.

A

If we consider bounded executions of .4 for some time
bound N € Ry, the same encoding gives an encoding of
bounded executions as flows f : [0, N) — 2MP,

Now, given a timed automaton .4, we want to construct
an MSO(<,+1) formula ¢4 over the monadic predicates
MP = V UT U R such that ¢4 is satisfied exactly by the
set [4(exec(.A)). The key idea behind this is that all the
properties of an execution can be expressed in MSO(<, +1).
We illustrate how certain important properties of an execution
can be expressed in MSO(<, +1).

The most basic property of an execution is that it terminates
at some time / and at any time ¢ up to time [/, the execution is
exactly in one state of the automaton. First we have a formula
US(t) (US stands for Unique state) which states that there is
exactly one state at time ¢.

A

US(t) = \/ v(t) A
01,02 €V vy #vg

veV

~(v1(t) A wa(t))

Now, using this, we can express the above property as a
disjunction of the following two formulas

AWVE(t <1 = USE))A(t>1 = Apey—w(t)))
AVE(t <l = USE)A(E>1T = Ayev—u(t)))

The first one says that for time ¢ up to and including time
l, there is exactly one state and after [there is no state. The
second one says that for time ¢ up to but not including I,
there is exactly one state and for time ¢ > [, there is no
state. In a similar manner we also say that at all times where
the execution is in some state, at most one 7. and one 7,
predicate is true.

Another important property of an execution is that if a
transition e € E of type T~ occurs at time ¢, then the
predicate 7, should be true at time ¢ and vice versa. For
each e = (v1,v2, ¥,) we have the formula
VT, (t) = wva(t)

ANyly <tAVz(y <z <t = v1(t)))).

73

This ensures that if 7 is true at time ¢, then there is transition
of the form

(Ulv (ltla t)) %) (’02’ [tthD)

at ¢. For the opposite direction, i.e. to ensure that 7 is true
only at times ¢t where a corresponding transition e occurs, for
each pair of states v; # vs, let C be the set of all edges of
the form e = (v, ve, ¥,~). We have the formula

Vi(ve(t) A y(ly < tAVz(y < z <t = v1(t)))

— \/1T-i)n N\ AT ATY)
ecC ey,e0€C:e;#ea

This formula says that if for a small open interval (y,t) the
automaton is in state v; and at time ¢ it enters state vo, then
exactly one transition of the form (vq,vs, VU,7) must have
occurred at time ¢. An important point to note here is that
the second formula is only for edges where v; # vo. This is
because if v; = wvo, i.e. the edge is a self loop, then it is not
necessary for a transition to occur. The automaton may simply
remain in state v; without making a transition at time t. We
can write similar formulas for transition of type 7.

We also need to ensure that clock resets happen only when
transitions occur. For this, first we ensure that if no transition
occurs at time ¢, then no clocks are reset at that time.

Vt(=(VeerTe (1) = ~(Vaexz™ (1))

For the other direction, we say that if a transition e
(v1,v2, ¥,) of type T~ occurs, then the corresponding clock
resets of type £~ occur.

VHTT (1) = Aveqa™ (1) [\ Augy—a™ (1))

Another property of an execution is that any time the clock
constraints of the state is satisfied. To do this, we need to
compute the value of a clock at any time ¢ of the execution.
We cleverly use the clock reset predicates R to find this value,
and then compare it with the clock constraints of the current
state. For example, if at time ¢ no transition occurs, then the
value of a clock is the time elapsed since the last time it was
reset. We can encode this as follows for each state v € V' and
clock z € X:

vi(=(\/ T, (6) VT, () Aot) =
eck

Ir(r <tA(z(r)Vat(r)
AVz(r <z <t = =(z7(2) Va't(2)))
A B(v, z)[t 7))

Here, S(v,z)[t — 7] is the clock constraint S(v,z) with z
replaced by ¢ — r. This formula says that for all time ¢, if no
transition occurs at ¢ and the execution is at location v, then
there must exist a time r before ¢, such that clock x was reset
at r and for all time z between r and ¢, x was not reset. Thus,
r is the last time clock = was reset. Finally, we require that
t — r (i.e., the current value of clock x) satisfies the clock
constraint S(v,z). The satisfaction of guards for transitions
can also be ensured using the same idea.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

A point to note here is that 3(v, z)[t — r| has inequalities
of the form ¢ — r ~ ¢ where ~€ {<,<,=,>,>}. The logic
MSO(<,+1) does not have constants, so we cannot directly
write formulas of the form ¢ — r ~ ¢. However, we can still
express this in the following manner:

« For any constant ¢, we will write a formula +c¢(r, z) such

that f, I = +c(r,x) iff I(x) = I(r) + c. For ¢ = 1, we
can write this directly in MSO(<, +1) as +1(r, x)
o Next, using the +1 relation, we can write +2 as follows:

+2(r,) = Jy(+1(r,y) A +1(y, 2)).
Similarly, we can write 43 as:
+3(r,z) = Jy(+2(r,y) A +1(y, 2)).

In this manner, we can express every +c(r,z) for any
constant ¢ using finite sized formulas in MSO(<, +1).

o Now we can rewrite t —r ~ c as t ~ r + c. This we can
write in MSO(<, +1) as

t~r+c=3x(+e(r,x) Nt < x)

In this manner, we can express all the properties of an
execution in MSO(<, +1). Formally, we have the following
lemma:

Lemma 7. Given a timed automtaton A =
(V,Vo,a, X, B, E, VF), there is a MSO(<,+1) formula
w4 over free monadic predicates MP =V UT U R, such that
1) For any execution p € exec(A), Fa(p) = ¢a.
2) For any flow f |E @4, there exists an execution p €
exec(A) such that f = Fa(p).

The lemma also holds if we consider bounded time seman-
tics with a time bound N.

C. Decidability

We now give a reduction from the bounded time verification
problem for HCMTL™ to the satisfiability problem for MSO(<
,+1) over bounded time domains.

Fix N € R.g and a timed automaton A =
(V,Vo,a, X, B, B, V). Let ¢ be an HCMTL* formula with
free path variables V. Let the variables in V be ordered as
{71, 72, ..., Tm}. Observe that the models to an HCMTL"*
formula are path environments while the models to an MSO(<
, +1) formula are flows. To reconcile this disparity, we use the
encoding of executions as flows from Lemma 6. For a path
environment IT : V — execy(A), we want to encode II as
a flow. We do this by combining the flows corresponding to
each execution II(7r;) into one single flow and distinguishing
the predicates for each execution by indexing. For each
path m; € V, we define copies of the sets V,T and R as
Vi = {v; | v € V}, and analogously for 7; and R; .
Define MP; = {V; UT; U R;} for each m; € V. For each
path variable ;, II(w;) is an execution in execy(A) and
FA(II(m;)) is a flow over the monadic predicates MP;. Define
MP = U,,eyMP;. We can lift the encoding F4 to II by
defining a flow f™: [0, N) — 2MP as:

FUt) = Unyev Fa(Il(m)) (1)

Our goal is to construct an MSO(<, +1) formula 7% that is
satisfied exactly by the flows that encode path environments
that satisfy . One of the challenges in constructing Are
is handling the last quantified path {. Since HCMTL" is a
logic for branching hyperproperties, the semantics of HCMTL*
involves the last quantified path, that we represent using the
variable . To construct AT“’, we need to encode the last
quantified path into AT, One option is to encode t as a
first order variable in “T'% that takes values in {1,2,...,m}.
However, this does not work because by the semantics of
MSO(<, +1), t can only take values in [0, V). Hence, if the
number of free path variables, m is larger than N, it will not
be possible to cover all values of 7.
We overcome this by instead having m+-1 formulas indexed
AT? fori € {0,1,2,...,m}. And the property that we preserve
is the following: for any path environment IT and ¢ € [0, N),

If 1 = ¢, then the property we preserve is
IL,0,¢ =Y o iff /1 = AT (0).

We do this by constructing the formulas AT;P induc-
tively. Translating quantifier free formulas to MSO(<, +1) is
straightforward and is identical for all ¢ € {0,1,2,...,m}.
For example, if ¢ = pg,, this means that at time ¢, m; is
in a state where the proposition p is true. The corresponding
MSO(<, +1) formula is:

Ti) =\ v

veEV:pEa(v)

Another example is ¢ = ¢1Urpo. This formula says that at
some future time y > ¢, such that y € t 4 I, the formula @9
must hold, and for all time ¢ < z < y, the formula ¢; holds.
This naturally translates to MSO(<, +1) as

AT? (2) = y(z < y A TP (y)A
Ve(z <2<y = TP (2))Ay—xel)

The construction for the 3 and V quantifiers involves the
translation of timed automata to MSO(<,+1) that we de-
scribed in lemma 7. Suppose ¢ = 3Im,,4+1¢1. The correspond-
ing MSO(<, +1) formula T should read ‘there exists an
execution that is identical to 7; up to the current time, and
the path environment II augmented with this new execution
satisfies AT,?;IH.’ Since we are quantifying over executions of
the automaton, in “T'?, we quantify over flows that satisfy the
formula ¢ 4 from Lemma 7, and this can only be done in a
second order logic. The formula AT;P is constructed as:

ATf (x) = ElVrn—&-l; Tm+17 erz+1
(SDA(VerL Tont1s Ring1)

AVY(0 <y <z = (MP;(y) <= MP,,11(y)))

A AT;fLiH(I))
Here MP;(y) <= MP,,1(y) is an abbreviation for

Npemp(Pi(y) = Pmt1(y))

74

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

i.e. the ith copy and m 4 1st copy of the predicates have the
same truth values at y.
Putting these ideas together, we have the following lemma.

Lemma 8. Fix N € Ry, an HCMTL" formula ¢ and a timed
automaton A = (V,Vo,a, X, 8, E,VF). There exist m + 1
MSO(<,+1) formulas T (x), *T¢ (), ..., T (x), each
over MP with one free first order variable x such that, for

t € [0,N) and a path environment 11,
1) Fori€{1,2,....m}, It,m =N o iff f1 = T7(t)
2) I,0,e =Y ¢ lﬁfﬂ)zAT (0).

We thus have this corollary

Corollary 9. For an HCMTL* sentence ¢, {},0,¢ =X ¢ iff
AT(0) is a valid MSO(<,+1) sentence over T = [0, N).

Thus, by the corollary, time bounded verification of an
HCMTL* sentence ¢ in the interval-based semantics reduces
to checking satisfiability of the MSO(<, +1) formula T} (0)
over the bounded time domain [0, V'), which is known to be
decidable [28]. Thus, we get our main result

Theorem 10. Bounded Time verification problem of HCMTL*
is decidable in the interval-based semantics.

Remark 11. In our presentation, we have restricted clock
constraints in timed automata to allow only comparisons with
natural numbers, and the intervals I in temporal operators
such as U; to have natural number end points. This is done
for the sake of simplicity and all the results presented here
carry over if we allow non-negative rational numbers instead
of natural numbers. In case of rational bounds, the model
checking problem can be reduced to a model checking problem
with only natural number bounds by appropriately scaling all
constants appearing the the timed automata and the HCMTL*
formula. The appropriate scaling factor will be the least
common multiple of all denominators occurring in all the
rational constants.

V. POINT-BASED SEMANTICS

We define a point-based semantics for our logic HCMTL".
We first give a point-based semantics for timed automata, then
move on to HCMTL*, and finally present our results for the
point based semantics.

A. Timed Automata

In the interval-based semantics, the system is under ob-
servation at all times. On the other hand, in the point-based
semantics, the system is observed at discrete time points when
events (marked by propositions that are true at the event) occur.
A timed automata in the point based semantics over a set of
propositions P is a tuple B = (2°, S, s, X, A, F') where

o S is a finite set of states.

e 89 € S is the start state.

o X is a finite set of clocks.

o AC S x2P x2%X) x2X x G is the transition relation.

A transition e = (s1,0, ¥, ~, s2) is a transition from state

75

51 to so on event o that satisfies the guard ¥ and resets
the clocks in 7.
e F C S is the set of final states.

For a transition e = (s1,0, U, , s2), we will call o the event
labelling e. An execution of B is a finite sequence

ea,t2

LI NN

't
n= (SO7MO) 81—1> (817M1) (Snaun)

where s; € S,e; € A for all i > 1 and p; is a clock valuation
for each ¢ such that the following hold

po(z) =0 for all z € X

For each ¢ € {1,2,...,n}, ¢; = (si-1,04, V4,7, 8;) €
A for some o;, ¥;, and ;.

For i > 1, pi(x) = pi—1(x) + (t; — t;—1) if * € ; and
pivi(z) =0 if z € ;.

Finally, p;—1 + (t;
defined to be 0).
The execution is said to be accepting if s, € F'. The duration
of the execution, denoted |n|, is defined to be ¢,. Define
execP!(BB) to be the set of all accepting executions of B. For
an execution 7, and ¢ € R>g, we will say ¢t € niff ¢t = ¢;
for some ¢. For t € 1), where t = t; define o,(t) = o;. For
t <|nl, let t; = sup{x € n|z < t}. We will say an execution

_1) E 1 for every ¢ € U; (¢ is

’ !
ex,ta €it1stite
fate, Sl (g)

t [

t
77/ = (807/1'0) 61—1>(317M1)

€ip1tipa Cmrtm

(S;+17M;+1) (5m>/14m)

with ¢, >t is an extension of 7 from ¢.

B. HCMTL* in Point-Based Semantics

Given an HCMTL* formula ¢ with free path variables V
and a timed automaton in the point-based semantics 5, a path
environment is a map I' : V — exec’'(B). We will say ¢ €
R> is an event point in T" if ¢ € T'(7) for some m € V, and
we denote this by ¢t € I'. For t € R>(, and { taking values
in V U {e}, the satisfaction relation T',t, 1" =5y is defined
inductively as follows:

t,1 " Eppy iff t € T(7) and p € op(q)(t).
I, t, 1" Ep—px iff t € () and p & o) ().

£, 1P g1 Vg iff T8, 1 P =gy or T, t, 1 P =peps.
It T v |:B<P1/\<P2 iff It T P ':3901 and I, ¢, T P ':B(PQ-
T, t, 1 " = Fyyp iff there exists ¢’ > ¢ such that t/ —¢ € I,
t el and T, ¢, 1 "' =pp.
T, t, 1" =G e iff for all ¢/ > ¢ such that ' — ¢ € I and
t'el, It 1" Egp.
T, t, 1 " =pe1Uspy iff there exists ¢/ > ¢ such that ¢/ —
tel, t' el, Tt/ t"=pps; and T,t" 1" =pp, for
all t < t” <t such that t"” € T
T, ¢, 1" |=33my iff there is an execution 7 € exec’! (B)
such that T'[w — 7], t,7 ” =3¢ and either (a) t = € and
t =0, or (b) ¢t <|I'(t)] and 7 is an extension of I'(})
from ¢.
T, t,1 7 =Yy iff for every 1 € exec?(B), if either (a)
f=eand t =0, or (b) t < |I'({)| and 7 is an extension
of I'(1) from ¢, then T'[r — 7], t, 7 " =pe.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

We can define time bounded semantics for a time bound
N € R.(in a manner similar as we did for the interval-based
semantics in Section II-C.

C. Point-Based vs Interval-Based Semantics

The first observation we make between the two semantics
is that timed automata in the interval-based semantics can
simulate timed automata in the point-based semantics. The
idea is that an execution of the automaton 5

e1,t1

vty

e2,t2 €n,tn

n= (SOa/U'O) (517,UJ1) (Sna,ufn)

can be thought of in the interval semantics as the execution

P :(80, [0,t1)), (61, [thtl])a (Sla (t17t2))> (627 [t27t2])7
ey (Snfl, (tnfl;tn)a (env [tnvtn])'

where transitions are marked by singular intervals. Here, if
t; = 0, the execution starts at (eq, [t1,t1]). To achieve this,
we construct an automaton in the interval-based semantics,
we will call it B;,, that has as its states all the states and
edges of B. Bjy alternates between states that correspond to
states of B and states that correspond to edges of B. To
ensure that this automaton remains in the edge states only for
singular intervals, we have a special clock z4;,4. This clock
gets reset whenever we enter a state corresponding to an edge,
and that state has the constraint z;,g = 0. In Bjp, the states
corresponding to edges have the clock constraints of the edge
to ensure the timing constraints of 7 are satisfied.

Given a timed automaton B = (27, 5,59, X, A, F) in the
point-based semantics, define a timed automaton B;, over the
set of propositions PUSU{#?} in the interval-based semantics
as, B, = (V, Vo, a, X', 3, E, Vi) where:

e V=SU{e|lec A}

e Vo={sotU{ee Ale=(so,0,¢,7,5)}

a(s) = {s} for all s € S and a(e) = o U {#} for
e=(s1,0,9,7,s2).

X' =X U {msing}-

B(s,z) = true for all s € S and x € X'. For e
(81,0',\11,")/, 52)7 B(e,x) = /\d)GGmw where Gz =UnN
O (z) for x € X, and B(e, Tsing) = {Tsing = 0}.

E = {(s,e, {true}, {zsng}) | €= (5,0, ¥,7,s') € A} U
{(e, s, {true},v) | e = (s,0,¥,7,s") € A}
Vr={e€Ale=(s1,0,9,7,52) and s2 € F}.

The # proposition is used to mark points where transitions
occur and is used later to reduce the verification problem in
the point-based semantics to the verification problem in the
interval-based semantics. Consider the map x : exec?(B) —
exec(Bjy) that maps an execution

e1,t1

—

(817M1) —)627262 N —>en,tn

n= (SOa,U/O) (Sny,uln)

of B to the execution

P :(SOa [O’tl))v (617 [tlvtl])v (517 (tlth))7 (62’ [t27t2])a
coy (8n—1, (tn—1,tn), (en, [tn, tn])

76

of B;,. The automaton By, simulates exactly the set of accept-
ing executions of 5 when transformed using the map y. Thus,
we have the following lemma.

Lemma 12. x is a bijection from execP!(B) to exec(Bip).

Just as timed automata in the interval-based semantics
can simulate timed automata in the point-based semantics,
HCMTL™ in the interval-based semantics is at least as expres-
sive as HCMTL" in the point-based semantics. To show this,
given an HCMTL* formula ¢ in the point-based semantics,
we will construct a formula ® which when interpreted in
the interval-based semantics, expresses exactly the set of all
path environments that satisfy ¢ under a suitable encoding of
path environments. Given a timed automaton 5 in the point-
based semantics, and a path environment I' : V — execpt(B),
we can lift the map x to I' to get a path environment
I : V — exec(By) defined as Hr(7) = x(T'(7)). Similarly,
for any path environment II : V — exec(Bj,), we get a path
environment I'ry : V — execP!(B) by lifting the map x 1. We
have the following expressiveness result:

Lemma 13. Given an HCMTL* formula ¢ in the point-based
semantics over a set of propositions P with free path variables
V, there is a formula <pib in the interval-based semantics over
P U {#} such that for any timed automaton B in the point-
based semantics and path environment T' : 'V — execP*(B),
if T,t,1"" =gy then Tp,t,1|=p,@P. Conversely, for any
path environment 11 : V — exec(By,), if ILt, T =g, @® then
FH? L, —i‘ pt':l'ﬁ’(;a

We present the construction of ¢®. ¢® is defined inductively
as follows:
e (¢ = pr. In the point-based semantics, this corresponds
to p being true at some event in execution 7 at time
t. The interval-based semantics doesn’t have a notion
of an event occurring at time ¢ since the system is
always observed. To capture the point-based semantics,
we use the proposition # which is true only when some
transition/event occurs in B. We define ¢® = #, A p;.
o = —pr. As above, we define ¢ = #. A —p;.
Inductive Cases

o Conjunction and disjunctions have the same semantics,
so we just have

(p1V @2)ib = 901ib \% <,02ib
(o1 A <P2)'b = <P1ib A 992ib

e © = Frp;. In the point-based semantics this says that
at some time t' € t + I, such that an event occurs at ¢/,
1 1is true. In the interval-based semantics, we again use
the # proposition to check the truth of ¢, only at time
points where event occurs. We define ¢ as:

Lpib = FI(\/TFEV#TF A ﬁﬁlib)-
o ¢ = Gryp;. Similar to the case of I, we define ©'® as:

<pib = GI((\/‘NEV#ﬂ) = (Plib)'

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

e 0 = 1Urps. Using the same idea as F; we have

@ib = (Vwev#w = Qolib)Uf(vﬂ'EV#Tr A 902ib)

o Quantification. The semantics of existential and univer-
sal quantification is identical in both point-based and
interval-based semantics. Hence, we have,

(3 <P1)ib =dm 901ib
(Vr cpl)'b =Vro®

This translation works even if we consider the bounded time
semantics by restricting all executions to a time bound N €
R<q. As a corollary of this, we get

Corollary 14. For any HCMTL* formula ¢ and a timed
automaton B in the point-wise semantics,

{}7076pt':l§<;0 — {},0,6)ZBib(pib.

Hence, the interval-based semantics of HCMTL* is at least
as expressive as the point-based semantics. Thus, bounded
time verification problem in point-based semantics reduces
to bounded time verification problem in the interval-based
semantics which gives us the following result.

Theorem 15. Bounded time verification problem for HCMTL*
in the point-based semantics is decidable.

It was shown by Hsi-Ming Ho et. al. [23] that model
checking HyperMITL in the point-based semantics is unde-
cidable by reducing the universality problem of timed au-
tomata to model checking HyperMITL, which is known to
be undecidable. In a similar manner, universality problem for
timed automata can be reduced to the general verification
problem of the HyperMITL fragment of HCMTL" in the point-
based semantics. Thus, HyperMITL and HCMTL* are both
undecidable in the point-based semantics. By our corollary 14,
the general verification problem for HyperMITL and HCMTL*
is undecidable in the interval-based semantics also. Hence, we
have the following result which also implies Theorem 3:

Theorem 16. The general verification problem for HCMTL*
is undecidable in both the point-based and interval-based
semantics. In fact, the verification problem is undecidable even

for the fragment HyperMITL.

VI. RELATED WORK

After Clarkson and Schneider introduced hyperproperties,
there has been an increasing interest in verifying hyperprop-
erties. Clarkson et al. proposed temporal logic HyperLTL
and HyperCTL* to describe hyperproperties and showed that
when restricted to finite Kripke structures, the model-checking
problem of HyperLTL and HyperCTL* is decidable. They
also establish complexity results for the verification problem.
Automated tools like MCHyper [19], AutoHyper [8] for model
checking and satisfiability checking, EAHyper [17] for satis-
fiability checking and RVHyper [18] for runtime monitoring
have been built.

To express security hyperproperties in a timed setting,
different hyper-timed logics have been proposed. A pioneering

77

work is [26], which extends STL with quantification over real-
time signals and is studied over cyber-physical systems.

Linear-time HyperMTL that extends MTL was introduced
in [9]. The real-time systems in [9] are modeled as timed
Kripke structures, that are Kripke structures with time elapsing
on transitions. The semantics used in [9] is point-based, and
the model of time is discrete-time. The logic is defined over
finite timed words but is syntactically different from ours. They
show that the verification problem for the logic is decidable
for a nontrivial fragment of the logic by reducing the problem
to checking untimed hyperproperties.

In [10], linear-time temporal logic Time Window Temporal
Logic (TWTL) is extended to reason about hyperproperties.
Like [9], the models are timed Kripke structures, the semantics
considered is point-based, and the model of time is discrete
time. The verification problem for the resulting logic is shown
to be undecidable, and the model-checking algorithms are
given for the alternation-free fragment of the logic.

Linear-time HyperMITL has been proposed in [23] by
extending MITL. Unlike our work, they also consider past
operators in the logic. The semantics used in [23] is point-
based, and the model of time used is continuous/dense. [23]
consider decidability for many fragments of HyperMITL, and
most of the fragments are undecidable over the unbounded
time domain. The most interesting decidability result is verify-
ing HyperMITL is decidable for bounded time domains. While
the proof is not provided, the authors hint that the proof could
be accomplished by a reduction to the satisfiability problem
for QPTL [33] which is known to be decidable [33].

Our work extends MTL to HCMTL* that allows us to
express branching hyperproperties in addition to linear-time
hyperproperties. Like [23], the model of time is taken to be
dense. However, we also consider the interval-based semantics
in addition to point-based semantics. We show that the time-
bounded verification for HCMTL* is decidable. In contrast
to [23], our decidability result is obtained by a reduction
to the satisfiability problem of MSO with order and succes-
sor. The challenge is to encode the semantics of branching
logic as well as time automaton into an MSO formula. We
also show that the decision problems for verifying HCMTL*
under point-based semantics can be reduced to the verifica-
tion problem for interval-based semantics. This allows us to
transfer decidability results under interval-based semantics to
point-based semantics, and undecidability results from point-
based semantics to interval-based semantics. One difference
from [9], [23] is that they distinguish between synchronous
and asynchronous hyperproperties. Intuitively, in synchronous
semantics, observations on all traces happen at the same
time, while in asynchronous semantics they may happen at
different times. Since our focus is interval-based semantics,
our semantics is asynchronous in principle.

HyperTidy CTL* logic is presented in [7] to reason about
timed hyperproperties of timed cryptographic protocols in the
Dolev-Yao model [15]. HyperTidy CTL* is also a branching
logic and is similar to HCMTL*, but has significant differ-
ences. First, it is interpreted over timed processes and not

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

timed automata, a variant of applied pi calculus [2] augmented
with timing constructs. The logic has special atomic construc-
tors and atomic formulas to model the attacker’s knowledge
and actions. For example, it has the atomic formula X + wu,
where X is a variable that ranges over recipes. Intuitively, a
recipe is a term in applied pi calculus [2] that represents a
computation by a Dolev-Yao attacker from the messages it
possesses, and the formula X F u represents that the message
u can be computed from the recipe assigned to X. The logic
allows quantification over recipe and message variables in
addition to the path variables. Further, the temporal operators
are not annotated explicitly with intervals, and the semantics
is equivalent to taking all intervals to be (0,00). It is shown
in [7] that the problem of checking that a process satisfies a
HyperTidy CTL* is undecidable, even for the LTL fragment.
The proof relies on the fact that the problem of checking
whether the attacker can compute a message u from a finite
set of messages is undecidable [1]. This undecidability result
is incomparable to the undecidability of HCMTL* presented
in this paper as both the models and the logic in [7] are much
richer than ours.

In [31], a variant of HyperTidy CTL* is considered. The
formula X F w is replaced by K (u), which intuitively means
that u can be computed by the attacker from its intercepted
messages using some recipe. Thus, there are no recipe vari-
ables. The quantification of message variables also takes a
restricted form. The temporal operators are now decorated
with intervals as they are needed to specify liveness properties
such as timeliness and fairness properties as discussed in
Section III. They consider the problem of verifying whether
a process satisfies a HyperTidy CTL* formula is satisfied by
a process when the number of protocol sessions is bounded
and when the cryptographic primitives are modeled using
subterm-convergent equational theories [1]. They show that the
verification problem becomes EXPSPACE complete for this
variant. The decision procedure is based on constraint solving.
Please note that this decision procedure is incomparable to
ours as we consider abstract finite timed automata and not
processes. Further, the assumption of a bounded number
of sessions means that the “transition system” underlying a
process in [31] is acyclic, and any trace necessarily has a
bounded number of actions/observations that depend on the
process being verified. We make no such assumptions, and
traces can have any number of observations. However, the
transition system underlying [31] is infinite branching; hence,
the total number of traces is still infinite in this setting. In
contrast, our transition systems are finite-branching, and the
number of traces is infinite because we allow for any number
of actions along a trace.

VII. CONCLUSIONS AND FUTURE WORK

We introduce an extension of MTL that expresses branch-
ing hyperproperties of real time systems. We investigate the
verification problems associated with this logic against timed
automata for both interval-based and point-based semantics.
We show that the problem is undecidable for both semantics

78

when the time domain is unbounded. However, when bounded
time domains are considered, the verification problem becomes
decidable for both semantics.

Complexity. The decidability result is established by reducing
the problem to checking the satisfaction problem of MSO
with ordering and successor over bounded time domains.
While this reduction establishes decidability, the complexity of
deciding MSO(<, +1) over bounded time is non-elementary
[28]. Hence, the decision procedure presented in this paper has
non-elementary complexity. By non-elementary, we mean that
the runtime cannot be bounded by a tower of exponentials
whose height is independent of the automaton’s size and
the formula’s size. Thus, our analysis might not provide a
tight complexity bound. Given that the (space) complexity
of verifying HyperLTL and HyperCTL" for untimed systems
is a tower of exponentials whose height is the alternation
depth [12], [19], it is unlikely that HCMTL* will have ele-
mentary complexity over bounded time horizon.

Thus, we plan to explore the complexity of verification in
terms of alternation depth. One potential method of obtaining
a tight complexity bound is first studying the complexity of
verification over rational time (which is still a dense time
domain). Over bounded rational time, MSO(<,+1) can be
encoded into S25, the monadic second order logic of two
successors interpreted over binary trees. Hence, the bounded
verification problem of HCMTL* over rational time can be
reduced to a satisfiability problem over S2S. Satisfiability of
525 has a decision procedure via a reduction to the emptiness
problem of alternating tree automata. This procedure has the
complexity of a tower of exponentials having a height in the
order of alternation depth in the MSO(<, +1) formula. This
implies that the complexity of bounded-time verification of
HCMTL* when the model of dense time is the set of rationals
is a tower of exponentials having height linear in alternation
depth in the HCMTL* formula. Please note that this is an
upper bound on the complexity of the verification problem,
and we plan to investigate the exact characterization of the
complexity of verifying HCMTL* over a bounded time domain
in the future.

Algorithmic implications. We plan to implement the decision
procedure presented in this paper using existing tools that im-
plement decision procedures on monadic second-order logic,
such as the MONA tool [20].

ACKNOWLEDGEMENTS

Rohit Chadha was partially supported by NSF CCF grant
1900924, and Nabarun Deka, Minjian Zhang and Mahesh
Viswanathan were partially supported by NSF SHF 1901069
and NSF CCF 2007428. We thank the anonymous reviewers
for carefully reviewing our paper and providing insightful
feedback and comments.

REFERENCES

[1] M. Abadi and V. Cortier, “Deciding knowledge in security protocols
under equational theories,” Theoretical Computer Science, vol. 387, no.
1-2, pp. 2-32, 2006.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

[2]

[3]

[4]

[5]

[6]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in 28th ACM Symp. on Principles of Programming
Languages (POPL’01), 2001, pp. 104-115.

R. Alur and T. Henzinger, “Real-time logics: Com-
plexity and expressiveness,” Information and Computation,
vol. 104, no. 1, pp. 35-77, 1993. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0890540183710254
R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Com-
puter Science, vol. 126, no. 2, pp. 183-235, 1994. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0304397594900108

R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” J. ACM, vol. 43, no. 1, p. 116-146, jan 1996. [Online].
Available: https://doi.org/10.1145/227595.227602

R. Alur and T. A. Henzinger, “A really temporal logic,” J.
ACM, vol. 41, no. 1, p. 181-203, jan 1994. [Online]. Available:
https://doi.org/10.1145/174644.174651

G. Barthe, U. Dal Lago, G. Malavolta, and I. Rakotonirina,
“Tidy: Symbolic verification of timed cryptographic protocols,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 263-276. [Online].
Available: https://doi.org/10.1145/3548606.3559343

R. Beutner and B. Finkbeiner, “Autohyper: Explicit-state model checking
for hyperltl,” in Tools and Algorithms for the Construction and Analysis
of Systems, S. Sankaranarayanan and N. Sharygina, Eds. Cham:
Springer Nature Switzerland, 2023, pp. 145-163.

B. Bonakdarpour, P. Prabhakar, and C. Sanchez, “Model checking timed
hyperproperties in discrete-time systems,” in NASA Formal Methods,
R. Lee, S. Jha, A. Mavridou, and D. Giannakopoulou, Eds. Cham:
Springer International Publishing, 2020, pp. 311-328.

E. Bonnah, L. Nguyen, and K. A. Hoque, “Model checking time
window temporal logic for hyperproperties,” in Proceedings of the 21st
ACM-IEEE International Conference on Formal Methods and Models
for System Design, se. MEMOCODE °23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 100-110. [Online].
Available: https://doi.org/10.1145/3610579.3611077

M. Brusd, K. Chatzikokolakis, S. Etalle, and J. den Hartog, “Linking
unlinkability,” in Trustworthy Global Computing, C. Palamidessi and
M. D. Ryan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 129-144.

M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sanchez, “Temporal logics for hyperproperties,” in Principles of
Security and Trust - Third International Conference. Springer, 2014,
pp. 265-284.

M. R. Clarkson and F. B. Schneider, “Hyperproperties,” in Proceedings
of the 21st IEEE Computer Security Foundations Symposium. 1EEE
Computer Society, 2008, pp. 51-65.

N. Deka, M. Zhang, R. Chadha, and M. Viswanathan, “Deciding
branching hyperproperties for real time systems,” arXiv, 2024.

D. Dolev and A. Yao, “On the security of public key protocols,” in Proc.
of the 22nd Symp. on Foundations of Computer Science. 1EEE Comp.
Soc. Press, 1981, pp. 350-357.

E. A. Emerson and J. Y. Halpern, ““Sometimes” and ‘“Not Never”
revisited: On branching versus linear time,” in Conference Record of
the Tenth Annual ACM Symposium on Principles of Programming
Languages. ACM Press, 1983, pp. 127-140.

B. Finkbeiner, C. Hahn, and M. Stenger, “Eahyper: Satisfiability, im-
plication, and equivalence checking of hyperproperties,” in Computer
Aided Verification, R. Majumdar and V. Kuncak, Eds. Cham: Springer
International Publishing, 2017, pp. 564-570.

B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “RVHyper: A
Runtime Verification Tool for Temporal Hyperproperties,” in Proceed-
ings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2018, pp. 194-200.

B. Finkbeiner, M. N. Rabe, and C. Sanchez, “Algorithms for model
checking HyperLTL and HyperCTL*,” in Computer Aided Verification
- 27th International Conference. Springer, 2015, pp. 30—48.

J. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm, “Mona: Monadic second-order logic in practice,” in
Tools and Algorithms for the Construction and Analysis of Systems, First
International Workshop, TACAS '95, LNCS 1019, 1995.

T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens, “The regular real-
time languages,” in Automata, Languages and Programming, K. G.

79

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

Larsen, S. Skyum, and G. Winskel, Eds.
Berlin Heidelberg, 1998, pp. 580-591.
T. A. Henzinger, “The temporal specification and verification of real-
time systems,” Ph.D. dissertation, Stanford, CA, USA, 1992, uMI Order
No. GAX92-06781.

H.-M. Ho, R. Zhou, and T. M. Jones, “Timed hyperproperties,” Infor-
mation and Computation, vol. 280, p. 104639, 2021.

R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time Systems, vol. 2, no. 4, pp. 255-299, 1990.

J. McLean, “Proving noninterference and functional correctness using
traces,” Journal of Computer Security, vol. 1, no. 1, pp. 37-58, 1992.
L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. Johnson,
“Hyperproperties of real-valued signals,” ser. MEMOCODE *17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
104-113. [Online]. Available: https://doi.org/10.1145/3127041.3127058
J. Ouaknine and J. Worrell, “On the decidability of metric temporal
logic,” in 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’ 05), 2005, pp. 188-197.

J. Ouaknine, A. Rabinovich, and J. Worrell, “Time-bounded verifi-
cation,” in CONCUR 2009 - Concurrency Theory, M. Bravetti and
G. Zavattaro, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 496-510.

J. Ouaknine and J. Worrell, “Towards a theory of time-bounded ver-
ification,” in Automata, Languages and Programming, S. Abramsky,
C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 22-37.
A. Pnueli, “The temporal logic of programs,” in Proceedings of the
18th Annual Symposium on Foundations of Computer Science. 1EEE
Computer Society, 1977, pp. 46-57.

I. Rakotonirina, G. Barthe, and C. Schneidewind, “Decision and
complexity of Dolev-Yao hyperproperties,” Proc. ACM Program.
Lang., vol. 8, no. POPL, jan 2024. [Online]. Available:
https://doi.org/10.1145/3632906

J.-F. Raskin and P.-Y. Schobbens, “State clock logic: A decidable real-
time logic,” in Hybrid and Real-Time Systems, O. Maler, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 33—47.

A. P. Sistla, M. Y. Vardi, and P. Wolper, “The complementation problem
for biichi automata with appplications to temporal logic,” Theoretical
Computer Science, vol. 49, pp. 217-237, 1987.

Berlin, Heidelberg: Springer

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore. Restrictions apply.

