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Abstract—Security properties of real-time systems often in-
volve reasoning about hyper-properties, as opposed to properties
of single executions or trees of executions. These hyper-properties
need to additionally be expressive enough to reason about real-
time constraints. Examples of such properties include information
flow, side channel attacks and service-level agreements. In this
paper we study computational problems related to a branching-
time, hyper-property extension of metric temporal logic (MTL)
that we call HCMTL*. We consider both the interval-based and
point-based semantics of this logic. The verification problem
that we consider is to determine if a given HCMTL* formula
φ is true in a system represented by a timed automaton. We
show that this problem is undecidable. We then show that the
verification problem is decidable if we consider executions upto
a fixed time horizon T . Our decidability result relies on reducing
the verification problem to the truth of an MSO formula over
reals with a bounded time interval.

I. INTRODUCTION

Unlike the traditional safety and liveness properties, security

guarantees such as non-interference desired of systems, are not

trace-based [13], [25], and instead are properties of sets of ex-

ecutions. In their seminal paper, Clarkson and Schneider [13],

called such requirements hyperproperties. Several temporal

logics have been designed to express formally and reason

about hyperproperties. By far, the most well-known of these

logics are HyperLTL and HyperCTL* [12]. HyperLTL and

HyperCTL* extend the standard temporal logics LTL [30] and

CTL* [16] respectively. While HyperLTL allows for reasoning

about linear time hyperproperties, HyperCTL* allows for rea-

soning about branching time hyperproperties 1. HyperLTL and

HyperCTL* differ from LTL and CTL* by having explicit path

variables and thus allowing for quantification over multiple

executing traces simultaneously. The problems of checking a

finite-state system against HyperLTL and HyperCTL* formu-

las are shown to be decidable in [12] by showing that the

verification problem reduces to the satisfiability problem for

quantified propositional temporal logic QPTL [33]. QPTL is

a generalization of LTL, and is interpreted over (untimed)

transition systems.

While HyperLTL and HyperCTL* are able to express

hyperproperties of transition systems, they are inadequate

1In linear time hyperproperties, the different executions being quantified are
decided “in advance”, and in branching time hyperproperties, an execution
being quantified may “branch off” in the middle of the last quantified
execution.

to express hyperproperties that relate “timed” executions,

namely executions that are decorated by the time at which

each observation of the system occurs. Such hyperproperties,

henceforth referred to as timing hyperproperties, are essential

to reason about the timing behaviors of a system. Some

examples include the absence of timing leaks and timeliness

of optimistic contract signing; see Section III for examples.

The need for reasoning about timing hyperproperties has led

to the development of timed hyperlogics, such as in [7], [9],

[10], [23], [26], [31]. The real time system being analyzed in

this context is usually modeled by timed automata [4] as in [9],

[10], [23], [26]. In contrast, the logics in [7], [31] are geared

towards verifying timed properties of cryptographic properties,

and models are timed versions of the applied-pi calculus [2].

(See Section VI on Pager 13 for a detailed discussion of logics

in [7], [31].)

A timed automaton is a finite-state automaton augmented

with a finite set of clocks. The clocks progress synchronously,

and the automaton can make transitions based on their values

and reset any of its clocks during a transition. Verifying

timed systems is more challenging, even for regular, non-

hyperproperties. Thus, in [9], [10], the time model is taken

to be discrete, i.e., the timed traces are sequences of pairs

of the observed state of the system and the time observed,

where the times are non-negative integers. In contrast, [23]

considers verifying timed hyperproperties of timed automata

when the time model is taken to be continuous/dense. In

particular, they consider the point-based semantics for timed

automata [3], [6], [22]. The timed traces in the point-based

semantics are also sequences of pairs of observed states and

observed times, but unlike [9], [10], the observations may

occur at times that are arbitrary non-negative real numbers.

For specifying timing hyperproperties, [23] extends the linear-

time logic Metric Interval Temporal Logic (MITL) [5] to Hyper

Metric Interval Temporal Logic (HyperMITL) analogous to

the extension of LTL to HyperLTL. MITL is a commonly used

logic to specify properties of timed systems, and is similar to

LTL except that the temporal modalities are annotated with

non-singular2 time intervals: for example, ϕ UI ψ means that

ψ must be true at some time t ∈ I units from the current time

2A non-empty interval is singular if it has exactly one element. Otherwise,
it is non-singular.
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and ϕ must hold at all times before t.

The problem of verifying timed automata against Hyper-

MITL specifications is undecidable [23]. The same paper also

establishes that the verification problem becomes decidable

when restricting to executions all of whose observations occur

before a given time-bound N. The decidability result is estab-

lished by showing that the verification problem reduces to the

satisfaction problem of QPTL. Time-bounded verification is an

often-adapted strategy for taming the complexity of verifying

timed systems [28], [29]. Please note that even though time

of the observations may be bounded, the total number of

observations within that time-bound is not bounded.

Our contributions. In this paper we consider the problem of

verifying branching hyperproperties for timed automata. As

has also been observed in [7], [31], several security guar-

antees for timed systems are branching hyperproperties; see

Section III. In order to specify branching hyperproperties, we

define the logic HCMTL* which is obtained by first extending

the logic Metric Temporal Logic (MTL) [24]) to a branching-

time logic (analogous to the extension of LTL to CTL*)

and then considering the “hyper” version of the resulting

logic (analogous to the extension of CTL* to HyperCTL*).

MTL itself generalizes MITL by allowing singular intervals

to annotate the temporal operators. The logic is presented

in negation-normal form where negations are pushed down

to propositions. Note that as a hyperproperty relates multiple

executions, different timed traces in the hyperproperty may run

for different times. This requires the logic to allow reasoning

at times after the end of a trace. The negation normal form

facilitates this when defining the semantics, as this allows for

both a proposition and its negation to be false in a timed trace

after it has ended. However, this means that we have to choose

the temporal operators carefully to be able to express both the

hyperproperty and its negation.

In a departure from [23], we also consider interval-based

semantics [5], [21], [32] for timed automata in addition to

point-based semantics. In the interval-based semantics, the

system modeled by a timed automaton is continuously under

observation, and the timed traces of the automaton are a

sequence of pairs of the observed state and the interval during

which the state is observed. Verifying timed automata with

interval-based semantics is more difficult than with point-

based semantics. For example, the problem of verifying timed

automata against MTL specifications is undecidable for finite

words in the interval-based semantics [22] but is decidable for

finite words in the point-based semantics [27].

We consider two verification problems for both interval-

based and point-based semantics.

Bounded Time: Given a timed automaton A, an HCMTL*

specification φ, and a time bound N , determine if φ is satisfied

by A when we consider only executions that are observed up-

to time N .

General: Given a timed automaton A and an HCMTL*

specification φ, determine if φ is satisfied by A.

Bounded-Time verification. Our first result is that the

bounded-time verification is decidable for interval-based se-

mantics. Note that as HyperMITL is a fragment of HCMTL*,

this result generalizes the results of [23] to interval-based

semantics. We make a few salient observations about the proof

of this result.

Unlike [12], [23], it is not clear that the verification problem

can be reduced to QPTL satisfaction for interval-based se-

mantics. Instead, we choose to obtain decidability by showing

the verification problem reduces to the problem of satisfaction

of the Monadic Second Order Logic with strict inequality

and successor (MSO(<,+1)), over the subset [0, N) of reals.

Specifically, we show that for each timed automaton A and

HCMTL* formula φ, there is a MSO(<,+1) formula ψA,φ

with a set of free monadic predicates MPA such that A
satisfies φ if and only if there is a model f that satisfies ψA,φ.

A model of the formula ψA,φ, hereafter referred to as a flow, is

a function from the domain [0, N) to the power-set of the set

MPA. Intuitively, for t ∈ [0, N), f(t) is the set of predicates

P ∈ MPA that are true at t. In order to establish this result, we

carefully construct a one-to-one mapping from the executions

of A to the set of flows.

Our next result is that the bounded-time verification is

decidable for point-based semantics, thus generalizing the

results of [23] to branching hyperproperties for point-based

semantics. The decidability result is established by showing

that the bounded-time verification problem for point-based se-

mantics is reducible to the bounded-time verification problem

for interval-based semantics: for every timed automaton Apt

and HCMTL* formula φpt, there is a timed automaton Aib and

a HCMTL* formula φib constructible from Apt and φpt such

that Aib satisfies φib in the interval-based semantics if and

only if Apt satisfies φpt in the point-based semantics. The key

observation is that both timed automata and HCMTL* in the

interval-based semantics are at least as expressive as the point-

based semantics. In point-based semantics, we only consider

time points where observations occur. Thus, we need to add a

new proposition that marks these observations in the interval-

based semantics. This reduction is valid even when the time

domain is not bounded and for HyperMITL formulas.

General verification. Since verifying timed automata against

MTL semantics is already undecidable [22] for interval-based

semantics, the general verification problem for HCMTL* is

undecidable for interval-based semantics. Further, as the re-

duction of the verification problem for point-based semantics

to the verification problem for interval-based semantics is

also valid for HyperMITL formulas, and verifying timed

automata against HyperMITL specifications under point-based

semantics is undecidable [23], the undecidability carries over

to both point-based and interval-based semantics even for

HyperMITL specifications.3

Organization. The rest of the paper is organized as follows.

3The undecidability proof in [23] uses past operators. We do not have
past operators in our logic. Nevertheless, we can also show that the problem
is undecidable by reducing the universality problem of timed automata to
HyperMITL verification under point-based semantics.
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The logic HCMTL* and its interval-based semantics for timed

automata is presented in Section II. Section III discusses

examples of timed hyperproperties and their formalization

in HCMTL*. Section IV presents the decidability proof of

bounded-time verification in the interval-based semantics, and

Section V presents the reduction from point-based semantics

to interval-based semantics. Related work is discussed in

Section VI, and we present our conclusions in Section VII.

Due to space constraints, we are not able to present the

proofs in their complete technical details in this paper. Instead,

we present the key ideas of the proofs and illustrate them using

examples. The complete proofs can be found in the extended

version of the paper [14].

II. THE LOGIC HCMTL*

In this section, we introduce our logic HCMTL* which

allows one to express branching hyperproperties of real time

systems. HCMTL* is an extension of metric temporal logic

(MTL) [24] which is a linear time logic to reason about real

time constraints. Our real time systems will be modeled by

timed automata [4], which is a popular model to describe

such systems. We begin by defining the syntax of our logic,

introduce timed automata, and conclude by formally defining

what it means for a timed automaton to satisfy a formula in

HCMTL*. As is standard, we use N for natural numbers, R

for real numbers, R≥0 for non-negative reals, and R>0 for

positive real numbers.

Intervals. An interval I is of the form (|t1, t2|) where t1, t2 ∈
R ∪ {∞} with t1 ≤ t2 (≤ is defined as expected for ∞),

and (| ∈ {(, [} and |) ∈ {), ]}. We will denote by t+ (|t1, t2|),
the interval (|t + t1, t + t2|). For I = (|t1, t2|), t1 and t2 are

the left (denoted L(I)) and right (denoted R(I)) endpoints

of I , respectively. An interval is called singular if it is of

the form [t, t]. Two intervals I1 = (|t1, t2|) and I2 = (|t3, t4|)
are said to be consecutive if t2 = t3, t2 is in exactly one

of I1 or I2, and I1 ∩ I2 = ∅. For example, [1, 2) and

[2, 4) are consecutive intervals. An interval sequence is an

finite sequence of intervals I1, I2, I3, . . . , In that satisfies the

following two conditions: [Initial] L(I1) = 0 and 0 ∈ I1; and

[Consecution] for each i ≥ 1, Ii and Ii+1 are consecutive

intervals.

A. Syntax

Formulas in HCMTL* are built using atomic propositions

P , logic connectives, and modal operators. To allow one to

reason about multiple executions, it has variables representing

finite executions that can be quantified; V is the set of such

path variables. The BNF grammar for formulas in HCMTL*

is given below.

φ ::= pπ | ¬pπ | φ∨φ | φ∧φ | FIφ |GIφ | φUIφ | ∃πφ | ∀πφ

In the grammar above, p ∈ P is an atomic proposition, π ∈
V is a path variable, and I is an interval. As in MTL, we

allow singular intervals of the form [t, t] to decorate modal

operators, which distinguishes it from other logics that are

based on MITL [5]. We use HyperMITL to denote the fragment

of HCMTL* in which all quantifiers occur at the top-level of

the formula and all intervals are non-singular.

Before defining the formal semantics for HCMTL*, we

informally describe what formulas mean. The logic reasons

about multiple finite executions of a real time system that

are referred to by path variables. Atomic propositions capture

abstract truths that may hold at different times during an

execution. In order to distinguish between propositions in

different executions, we annotated propositions with the path

for which it is being asserted. Thus, pπ asserts that proposition

p is true in execution π currently. Similarly, ¬pπ asserts that p

is false in π. It is important to recognize that here ¬pπ asserts

that p is false, not that p is not true. For example at a time

t that is after execution π ends, neither pπ nor ¬pπ hold for

p is neither true nor false as π has ended. Thus, the law of

excluded middle does not hold in HCMTL*. As a consequence,

negation needs to be handled carefully (see Remark 2) and

consequently HCMTL* has more modal connectives than in

typical presentations of a temporal logic.

Formulas can be combined using Boolean connectives con-

junction (∧) and disjunction (∨). The operators FI , GI , and

UI express the modal and real-time aspects of the logic.

These operators are real time extensions of the classical finally,

globally, and until operators found in LTL [30] and CTL* [16],

which constrain modal operators with time intervals requiring

obligations to hold within those intervals. The formula FIφ

(read ‘finally φ’) asserts that φ holds at a time t from the

current time where t is in the interval I . GIφ (read ‘globally

φ’) asserts that φ holds at all times t from the current time

when t is in interval I . φ1UIφ2 (read ‘φ1 until φ2’) holds if

φ2 holds at some time t units from the current time where

t ∈ I and φ1 holds continuously from the current time until

φ2 holds. For example, φ1U[0,2]φ2 says that eventually, within

2 units of time from now, φ2 is true and φ1 is true until then.

As mentioned before, HCMTL* expresses hyperproperties

through path variables that stand for finite length executions,

and quantifying over them. ∃πφ asserts that there is an

execution such that φ holds, while ∀πφ says that φ holds no

matter what execution is assigned to π. Like in other branching

temporal logics for hyperproperties [12], when executions are

quantified, the chosen execution for the variable is required to

be an extension or branch of a ‘current’ execution; the ‘current’

execution depends on the context of the larger sentences in

which a particular quantified sub-formula appears. This subtle

aspect of quantification highlighted in Example 1. The variable

π is bound in the formulas ∃πφ and ∀πφ. Any variable that

does not appear within the scope of a quantifier is said to be

free. Without loss of generality, we assume that a variable

is bound at most once and does not appear both bound

and free; these assumptions can be easily met by renaming

bound variables. Finally, due to technical reasons that will

become clear when we discuss the formal semantics, the modal

operators FI , GI , and UI are required to always appear within

the scope of quantifier.

Example 1. As in other branching temporal logics for hyper-
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properties [12], quantified executions are required to be ex-

tensions or branches of certain other executions. We illustrate

this through a couple of examples. The formula ∀π1F[1,2]∃π2φ
says that for every execution π1 of the system, within 1 to 2
units of time, there is an extension π2 of π1 that satisfies φ. In

this case, the extension means that π1 and π2 must agree upto

the point in time when the obligation for the operator F is

met. On the other hand, the formula ∀π1∃π2F[1,2]φ says that

for every execution π1 of the system, there exists an execution

π2 of the system such that within 1 to 2 units of time, π1 and

π2 satisfy φ. Here, π1 and π2 are not required to agree (except

at the very beginning) and can be thought to be completely

independent executions.

Remark 2. It is typically convenient for logics to be closed

under negation. Since negation in HCMTL* is restricted to

only be applied to propositions, the logic has existential and

universal quantifiers, and additional modal operators to ensure

that negations can always be pushed inside. De Morgan’s

laws and the duality between exists and for all, allow one

to handle the usual logical operators. For the modal con-

nectives the following equivalences hold: ¬FIφ ≡ GI¬φ,

¬GIφ ≡ FI¬φ, and ¬(φ1UIφ2) ≡ (GI¬φ2) ∨ (¬φ2UJ¬φ1)
where J = [0, R(I)).

B. Timed Automaton

Timed automata [4] are a popular formal model to describe

real time systems. They are an extension of finite automata

that are equipped with clocks that can be individually reset

and measure time since the last reset. Clocks can be used to

enforce real time constraints during a system execution. All

clocks in a timed automaton are synchronous, and progress

in lockstep with an ambient global clock. We introduce this

model in this section.

Clock Constraints. A clock constraint over a clock x is

formula given by the following grammar.

ψ ::= x ∼ c | ψ ∨ ψ | ψ ∧ ψ

where c ∈ N and ∼∈ {<,≤,=,≥, >}. We will denote by

Φ(x) the set of all clock constraints over x. For a set of clocks

X , Φ(X) is the union of Φ(x) for all x ∈ X . A clock valuation

is a map µ : X → R≥0. The satisfaction relation µ |= ψ is

defined inductively as follows.

• µ |= x ∼ c iff µ(x) ∼ c is true.

• µ |= ψ1 ∨ ψ2 iff µ |= ψ1 or µ |= ψ2.

• µ |= ψ1 ∧ ψ2 iff µ |= ψ1 and µ |= ψ2.

Timed Automata. A timed automaton over a set of atomic

propositions P is a tuple, A = (V, V0, α,X, β,E, VF ), where:

• V is a finite set of states.

• V0 ⊆ V is a set of initial states.

• α : V → 2P is a state labeling function that labels each

state with the set of propositions that are true at that state.

• X is a finite set of clocks.

• β : V ×X → Φ(X) is a function that labels each state,

clock pair (v, x) with a clock constraint over x.

• E ⊆ V × V × 2Φ(X) × 2X is a set of transition edges

of the automaton. An edge (v1, v2,Ψ, γ) is a transition

from state v1 to v2 that satisfies all the clock constraints

in the guard Ψ and resets the clocks in γ ⊆ X .

• VF ⊆ V is the set of final states.

Runs/Executions. An execution ρ of A is a finite sequence

(v1, I1)
γ1
−−→
Ψ1

(v2, I2)
γ2
−−→
Ψ2

(v3, I3)
γ3
−−→
Ψ3

. . .
γn−1

−−−→
Ψn−1

(vn, In)

where vi ∈ V for all i ∈ {1, 2, . . . , n} and I1, I2, . . . , In is an

interval sequence such that v1 ∈ V0, (vi, vi+1,Ψi, γi) ∈ E for

each i, and the real time constraints imposed in each state and

transition are satisfied. To define when real time constraints are

met, we need to define clock valuations at each time during the

execution. We begin by first defining the clock valuations when

first entering state vi. Let the sequence of clock valuations

µ1, µ2, . . . µn be inductively defined as follows: µ1(x) = 0 for

all x ∈ X , and for all i ≥ 1, µi+1(x) = µi(x)+R(Ii)−L(Ii)
if x ̸∈ γi, and 0 otherwise. Next, for t ∈ Ii, the clock valuation

at time t, µt, is given as µt(x) = µi(x)+t−L(Ii). Finally, for

ρ to be an execution the following two conditions must hold:

[State Constraints] for every i, clock x and t ∈ Ii, µt(x) |=
β(vi, x), and [Guard Constraints] for every i, clock x, and ψ ∈
Ψi∩Φ(x), µ′(x) |= ψ, where µ′(x) = µi(x)+R(Ii)−L(Ii).

The execution ρ is said to be accepting if vn ∈ VF . The

collection of all accepting executions of A will be denoted by

exec(A). We say t ∈ |ρ| iff t ∈ Ii for some i. An accepting

execution ρ is said to be bounded by N ∈ R if t ̸∈ |ρ| for

all t ≥ N ; the set of all accepting executions bounded by N

of A will be denoted by execN (A). For t ∈ |ρ|, the state at

time t, denoted ρ(t), is vi if t ∈ Ii. The prefix of ρ up to time

t ∈ |ρ|, denoted ρ|t, is the execution

(v1, I1)
γ1
−−→
Ψ1

(v2, I2)
γ2
−−→
Ψ2

(v3, I3)
γ3
−−→
Ψ3

. . .
γi−1

−−−→
Ψi−1

(vi, Jt)

where t ∈ Ii and Jt = Ii ∩ [0, t]. Two executions ρ1 and ρ2
are said to be equal up to time t if ρ1|t and ρ2|t are identical.

C. Semantics

We introduce the interval-based semantics here. Let us fix

a timed automaton A = (V, V0, α,X, β,E, VF ). To define

whether a HCMTL* formula φ is true in A at a particular time

t, we need to know what execution is assigned to each free path

variable in φ. This is captured by a path environment. A path

environment Π : V → exec(A) is a mapping that associates

with each path variable in V an accepting execution of A; we

assume that the set of free variables of φ is included in V .

When V = ∅, the empty path environment is denoted by {}.

For a path environment Π over V , a variable π, an execution

ρ ∈ exec(A), Π[π 7→ ρ] denotes the path environment with

domain V ∪ {π} that is identical to Π, except that π is

now mapped to ρ. In branching hyperproperty logics like

HyperCTL* [12], when a variable is quantified, it is expected

to be assigned to an execution that is an extension/branch of

an execution that is currently assigned to a variable (also see

Example 1). Therefore, to define the semantics, we also need
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to know which execution needs to be extended next at a future

quantification. This is captured by † which takes values in

V ∪ {ϵ}; when † = ϵ, it indicates that the next quantified

variable is completely independent. The satisfaction relation

for HCMTL* captures when a formula φ is true in a timed

automaton A at time t with respect to a path environment Π
and † ∈ V ∪ {ϵ}. It is denoted Π, t, † |=A φ, and is defined

inductively as follows.

• Π, t, † |=A pπ iff t ∈ |Π(π)|, and p ∈ α(Π(π)(t)).
• Π, t, † |=A ¬pπ iff t ∈ |Π(π)|, and p ̸∈ α(Π(π)(t)).
• Π, t, † |=A φ1 ∨ φ2 iff Π, t, † |=A φ1 or Π, t, † |=A φ2.

• Π, t, † |=A φ1 ∧ φ2 iff Π, t, † |=A φ1 and Π, t, † |=A φ2.

• Π, t, † |=A FIφ iff there exists t′ > t such that t′ ∈ t+ I
and Π, t′, † |=Aφ.

• Π, t, † |=A GIφ iff for all t′ > t, such that t′ ∈ t + I ,

Π, t′, † |=Aφ.

• Π, t, † |=A φ1UIφ2 iff there exists t′ > t such that

t′ ∈ t + I and Π, t′, † |=A φ2, and for all t < t′′ < t′,

Π, t′′, † |=A φ1.

• Π, t, † |=A ∃πφ iff there is an execution ρ ∈ exec(A)
such that Π[π 7→ ρ], t, π |=A φ and either (a) † = ϵ and

t = 0, or (b) t ∈ |Π(†)| and ρ|t = Π(†)|t.
• Π, t, † |=A ∀πφ iff for every execution ρ ∈ exec(A),

if either (a) † = ϵ and t = 0, or (b) t ∈ |Π(†)| and

ρ|t = Π(†)|t, then Π[π 7→ ρ], t, π |=A φ.

Bounded Time Semantics. Bounded time semantics captures

the notion that a timed automaton meets a specification φ up

to time N ∈ R≥0. This is captured by a satisfaction relation

Π, t, † |=NA φ which is defined in manner very similar to the

definition above, except that t is required to be < N , the path

environment Π : V → execN (A) maps variables to accepting

executions bounded by N and whenever a new variable is

quantified, it is assigned an execution in execN (A). The formal

definition is skipped due to space constraints.

Verification Problems. This paper studies two decision prob-

lems associated with HCMTL*.

[General] Given a timed automaton A and an HCMTL*

sentence φ, determine if {}, 0, ϵ |=A φ.

[Bounded Time] Given a timed automaton A, an HCMTL*

sentence φ, and a time bound N , determine if {}, 0, ϵ |=NA φ.

III. EXAMPLES

In this section, we highlight the expressive power of

HCMTL* through examples. Security specifications in these

examples demand reasoning about multiple executions, have

real-time constraints, require analyzing the branching struc-

ture, and use different quantifiers when bounding variables.

The security guarantees in the first three examples (timing

attacks, secure multi-execution, opacity) are linear hyperprop-

erties. The security guarantees in the last four examples (timed

commitments, contract signing, unlinkability, and fair reward)

are branching hyperproperties that cannot be expressed in

real-time extensions of HyperLTL. Four examples involved

quantifier alternation (opacity, contract signing, unlinkability,

and fair reward). Two examples (timed commitment and

contract signing) require non-trivial intervals to express the

desired security guarantees. Finally, the unlinkability and fair

reward examples are branching hyperproperties that relate

executions along different branches and, thus, would not fall

into branching time extensions of MTL. Thus the full power

of HCMTL* is used to describe all the security requirements

in these examples. Please note that in our examples below, we

will use abbreviations like implication ( =⇒ ) and equivalence

( ⇐⇒ ), which can be expressed in our logic by using the usual

translation and pushing negations inside.

Timing Attacks. Programs computing over sensitive informa-

tion should not be susceptible to leaking information through

timing channels. To ensure that there are no such timing

leaks, the program needs to guarantee that any two executions

working on the same observable data (but possibly different

private data) have the same timing behavior. Let O be set

of observable inputs, and let the proposition o(a) for a ∈ O
denote that the input a is observed. Let run be the proposition

to indicate that the program is running. Then using such

propositions, the absence of timing leaks can be written as

∀π1∀π2.(
∧

a∈O

o(a)π1
⇐⇒ o(a)π2

) =⇒

G[0,∞)(runπ1
⇐⇒ runπ2

)

This formula says that for all paths π1 and π2, if they start

with the same observable inputs, then globally they should run

for the same time.

Secure Multi-Execution (SME). Non-interference requires

that low-level (observable) outputs of two executions be the

same if they are computing on the same low-level (observable)

inputs. In other words, the difference in the high security

inputs of two executions is not observable in the outputs. Se-

cure multi-execution is an approach to ensure non-interference,

where for any sequence of tasks, each task in the sequence is

executed in two ways, one is a “low copy” and other is a

“high copy”. In the low copy, the high security inputs are

set to some default values and the resulting outputs from this

computation are observable. In the high copy, computation is

carried with all the exact high security inputs, and the outputs

from this computation are kept secure and non-observable.

This ensures that any two executions operating on the same

low-level inputs, have the same observations since only the

outputs from the low copy are public which have default

high security inputs. The low and high copies are interleaved

for each task in the sequence. While SME ensures that the

computation is non-interferent in the classical sense, it is open

to timing attacks to an adversary observing the time duration

between successive low copy computations if the high copy

computations are of different length on inputs with the same

low-level input. Such timing vulnerabilities can be described

in HCMTL*. Let O to be a set of observable input values and

o(a) for a ∈ O be the proposition that low-level input a is

observed. Let Hstart, Hrun, Hend be propositions denoting

that high copy computation has started, is running, and has
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ended, respectively. Timing vulnerability can be written as

∃π1∃π2. (
∧

a∈O

o(a)π1
⇐⇒ o(a)π2

) U[0,∞) φ

where

φ =Hstartπ1
∧ Hstartπ2

∧
((Hrunπ1

∧ Hrunπ2
) U[0,∞) (¬(Hendπ1

⇐⇒ Hendπ2
)))

The formula says that there executions π1 and π2 that have

the same low-level inputs until time t when the formula φ

becomes true. φ asserts that at time t high copy computations

start in π1 and π2 and the computation in either π1 or π2 ends

before the other.

Opacity. Opacity of a property ψ demands that the truth of

ψ be undeterminable to an adversary. This can be formalized

by demanding that for every execution π1 there is another

execution π2 that has the same observable behavior, but ψ is

true in exactly one of π1 and π2. To state this in HCMTL*,

we use the following propositions: for a set of observations

O, the proposition o(a) asserts that a ∈ O is observed; end

asserts that the computation has ended; and, ψ is property of

the last state expressed using a Boolean combination of some

propositions. Then opacity of ψ is

∀π1∃π2. G[0,∞) ((
∧
a∈O o(a)π1

⇐⇒ o(a)π2
)

∧((endπ1
∧ endπ2

) =⇒ ¬(ψπ1
⇐⇒ ψπ2

)))

Notice that opacity requires alternation of path quantifiers in

order to express it.

Timed Commitment. Consider the problem of tossing a coin

when the caller (Alice) and the tosser (Bob) are in different

locations but have a reliable communication channel to use.

The setup is that Alice calls the toss, Bob tosses, and Alice

wins if the result of the toss is what she predicts while Bob

wins if it is not. A näive protocol might be that Alice sends

her prediction to Bob and Bob then sends the result of the coin

toss to Alice. At this point both parties know who the winner

is. However, such a protocol is not fair to Alice as a dishonest

Bob can always report a result of a coin toss that is the opposite

of what Alice called. To circumvent this, Alice could commit

her call, instead of sending it. Bob then tosses his coin and

shares the result with Alice. At this point, Alice reveals her

commitment and now both parties know the winner. However,

such a protocol could be unfair to Bob, as a dishonest Alice

may never reveal her commitment if she realizes that she lost.

The solution that ensures fairness for both parties is to use

a timed commitment, where the commitment is revealed to

Bob after the elapse a fixed time T even if Alice takes no

steps towards revealing her commitment. The steps of such a

protocol are as follows: Alice commits her call within time

tc, Bob has to share the result of the coin toss within time

T after Alice’s commitment, and if he does, either Alice will

reveal her call or Bob can compute what Alice committed to

after T units after Alice’s commitment. If Bob does not toss

a coin within time T , Alice is released from her commitment.

Let us formally define the fairness guarantees for Alice and

Bob, which are different since the protocol is asymmetric. Let

the proposition c(b), for b ∈ {H,T} denote that Alice has

committed bit b, even though b itself is not revealed to Bob.

We assume that communication is reliable and so once Alice

commits, Bob knows that she did. Proposition t(b) for b ∈
{H,T} denotes a state when Bob has shared the result of a

coin toss to be b. Finally r(b) asserts that Alice’s commitment

has been revealed to Bob and that call was b. Fairness for Bob

now is

∀π1. G[0,tc]

∧

b∈{H,T}

(c(b)π1
=⇒ (∀π2. F[T,∞)r(b)π2

)).

It says for every execution π1, if Alice commits within time

tc, then in every extension π2 of π1, Bob will be able to see

Alice’s commitment at some time that is T units after Alice’s

commitment. In addition, Bob will see the same bit that Alice

committed. Fairness for Alice can be written as

∀π1. G[0,tc] ((c(H)π1
∨ c(T)π1

) =⇒
∀π2. G[0,T ]((¬t(H)π2

∧ ¬t(T)π2
) =⇒

(¬r(H)π2
∧ ¬r(T)π2

)))

which says that in every execution, if Alice commits within

time tc then for the next T units, if Bob has not yet shared

the result of his coin toss, then Alice’s commitment is not

revealed. Notice that these properties are branching hyperprop-

erties that cannot be expressed in linear hyperproperty logics

even if they are real time.

Contract Signing. Consider a contract signing protocol me-

diated by a trusted third party (TTP) where two parties wish

to sign a contract. Each signer must have the ability to move

on in a timely manner if the other party does not complete the

signing protocol. Each signer must be able to reach an abort

state if they want or must receive a message from the TTP

that the protocol is aborted in a timely manner. For i ∈ {1, 2},

let us consider the following propositions. start(i) means that

party i has started the protocol, signed(i) means that party i

has a signed contract, abort(i) means that party i is in an abort

state, and token(i) means that the TTP has provided an abort

token to party i. We can now write the fairness for party i as

∀π1. G[0,t] (start(i)π1
=⇒

(∃π2. F[0,T ](signed(i)π2
∨ abort(i)π2

)
∨ token(i)π2

))).

This is once again a branching hyperproperty and it also

involves quantifier alternation.

Unlinkability. Radio Frequency Identification (RFID) is a

technology used to identify and track physical objects using

electromagnetic tags. A RFID system consists of tags attached

to objects of interest and a reader that can communicate

with the tags using electromagnetic waves to ascertain their

identity and location. A security property that is required in

such systems is unlinkability [11] i.e. when multiple rounds

of communication happens between a tag and the reader, an

adversary that is observing the communications should not

be able to link the communications to the same tag. If this

property is violated, an adversary can potentially track an

object by linking all communications between that particular
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tag and the receiver. Consider a simple RFID system with

two tags. For i ∈ {1, 2}, let comm(i) denote that tag i

communicated with the receiver. For a set O of observations,

let the propositions o(a) denote that a ∈ O has been observed.

We can state unlinkability of communications between tag 1
and the receiver in HCMTL* as

∀π1.(comm(1)π1
=⇒

G[0,∞)(∀π2∃π3. F(0,ϵ)(comm(1)π2
) =⇒

F(0,ϵ)(comm(2)π3
) ∧ φ)).

where ϵ > 0 and

φ = G[0,∞)(
∧

a∈O

o(a)π2
⇐⇒ o(a)π3

).

It says that for any execution π1 where tag 1 communicates

with the receiver initially, globally, for all branches π2 where

tag 1 communicates with the receiver, there is another branch

π3 where tag 2 communicates with the receiver, such that π2
and π3 have the same observable behaviour to an adversary.

This ensures that the adversary cannot link the two commu-

nications between tag 1 and the receiver. Observe that this is

a branching hyperproperty that relates two traces, and hence

would not be captured by a branching time extension of MTL.

Fair Reward. Consider a distributed program running on top

of a blockchain based cryptocurrency as described in [31].

The system consists of users that submit transactions in the

form of contracts to the program, which are then executed

and published by the program to the blockchain. In between a

transactions submission and publication, it becomes public to

other users, who might then choose to submit new transactions

based on this. Note that we are considering a distributed

program running on top of the blockchain and hence the sub-

missions are not necessarily published in order of submission.

The only requirement of the program is that submissions are

eventually published or returned as invalid contracts. Consider

a simple such model where a user if rewarded (monetarily)

for correctly computing the pre-image of some hashed value.

In such a system, after an honest user submits a correct

answer (in the form of a transaction), an adversary might

use the information from the transaction to submit their own

answer and if it gets published first, the adversary can steal

a promised reward from the honest user. The fair reward

property requires that the program should not be vulnerable to

such attacks. Formally, for any execution of the system, there is

another execution (called ideal execution) where submissions

are published in order and the final balances of all users in both

executions are equal. The protocol allows a setup phase for the

adversary where the adversary chooses the attack parameters.

The proposition setup indicates the end of the setup phase.

The fair reward property now requires that in any execution

of the system, once the adversary is finished setting up, there

is an ideal branch of the execution such that both executions

have the same balance for all users eventually. For a set T of

transactions (each transaction can be thought of as a bit string)

and a transaction x ∈ T , let submit(x) and publish(x) denote

that x has been submitted and published respectively. Let silent

denote that no transaction has been submitted or published. In

the remainder of this example, to avoid clutter, we will use the

symbols F,G,U without any interval annotation to indicate

that the interval is [0,∞). An ideal execution can be modeled

in HCMTL* as

ideal(π) = G (
∧
x∈T submit(x)π ∧ F publish(x)π

=⇒ silentπUpublish(x)π).

This says that globally, if a transaction is submitted and

eventually published, then the execution is silent until the

publication. Let B be the set of all possible balance profiles

(these can be thought of as bit strings indicating the balance

of each user), and for b ∈ B, let balance(b) be the proposition

indicating that the balance profile is described by b. Fair

reward can now be modeled in HCMTL* as

∀π1. G( setupπ1
=⇒

∃π2. ideal(π2)∧
(
∧
x∈T F submit(x)π1

⇐⇒ F submit(x)π2
)∧

F (G (silentπ1
∧ silentπ2

)∧∧
b∈B balance(b)π1

⇐⇒ balance(b)π2
))

This says that for every execution π1, globally, once the

adversary is done setting up, there is a branch π2 which is an

ideal execution, and the submissions in π1 and π2 are identical,

and eventually, when both executions become silent, they have

the same balance profiles.

IV. VERIFYING HCMTL*

In this section we present the main results related to the

verification problems for HCMTL* introduced in Section II-C.

We show that the general verification is undecidable, but the

bounded time verification problem is decidable. All the results

we present in this section are for interval-based semantics.

Theorem 3. The general verification problem for HCMTL*

is undecidable in the interval-based semantics. In fact the

verification problem is undecidable even for the fragment

HyperMITL.

The proof of Theorem 3 is deferred to Section V.

Theorem 4. The bounded time verification problem for

HCMTL* is decidable in the interval-based semantics.

Our decidabiliy result is established by reducing the

bounded time verification problem for HCMTL* to the satisfia-

bility problem for Monadic Second Order logic with < and +1
relations, denoted MSO(<,+1), over a bounded time domain.

The satisfiability problem for MSO(<,+1) is decidable over

bounded time domains [28], and our result thus follows. The

following subsections outline the decidability proof and it is

organized as follows.

1) First we introduce MSO(<,+1) and state the relevant

decidability results.

2) The first technical result in our proof shows that for any

timed automaton A, there is an MSO(<,+1) formula

φA whose models are exactly the accepting executions

of A.
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3) Finally, using this translation of a timed automaton

to an MSO(<,+1) formula, we reduce the bounded

time verification problem to the satisfiability problem

of MSO(<,+1).

A. Monadic Second Order Logic

Monadic Second Order logic with < and +1, denoted

MSO(<,+1), is built over a set of monadic predicates MP

and set of first order variables Vars. The BNF grammar is as

follows.

φ ::= x < y | + 1(x, y) | P (x) | φ ∨ φ | ¬φ | ∃xφ | ∃Pφ

In the grammar above, P ∈ MP is a monadic predicate, and

x ∈ Vars is a first order variable.

The semantics of MSO(<,+1) is defined over a timed

domain T. We will define it over two time domains T = R≥0

and T = [0, N) for some fixed N ∈ N. Let P ⊆ MP be the set

of free monadic predicates in an MSO(<,+1) formula φ. A

flow is a map, f : T → 2P that is finitely variable (explained

next). For any interval I ⊆ T, define the map f |I : I → 2P

as f |I(t) = f(t) i.e. it is the restriction of f to the interval I .

Now, we say a map f : T → 2P is finitely variable if for any

bounded interval I ⊆ T with finite endpoints, f |I has finitely

many discontinuities i.e. the values of the monadic predicates

change finitely many times in I . For Q ⊆ P ⊆ MP, and a

flow g : T → 2P , we will denote by g|Q : T → 2Q the flow

defined as g|Q(t) = g(t) ∩ Q. An interpretation I is a map

I : Vars → T. We will denote by I[x 7→ a] the interpretation

that maps x to a ∈ T, and is same as I for all y ̸= x. The

semantics, denoted by f, I |= φ, is defined as follows.

1) f, I |= x < y iff I(x) < I(y).
2) f, I |= +1(x, y) iff I(y) = I(x) + 1.

3) f, I |= P (x) iff P ∈ f(I(x)).
4) f, I |= φ1 ∨ φ2 iff f, I |= φ1 or f, I |= φ2.

5) f, I |= ¬φ iff f, I ̸|= φ.

6) f, I |= ∃xφ iff there exists a ∈ T such that f, I[x →
a] |= φ.

7) f, I |= ∃Qφ iff there is some finitely variable flow g :
T → 2P∪{Q} such that g|P = f and g, I |= φ.

Satisfiability Problem. Given an MSO(<,+1) formula φ

over a set MP of free monadic predicates and free first order

variables Vars, determine if there is a flow f : T → 2MP and

I : Vars → T such that f, I |= φ.

When the time domain is bounded, i.e., T = [0, N) for

some N ∈ R>0, the satisfiability problem is decidable [28].

Theorem 5 ( [28]). For T = [0, N) (N ∈ R>0), the

satisfiability problem for MSO(<,+1) is decidable.

B. Translating Timed Automata to MSO(<,+1)

We will now show that for any timed automaton A, there

is an MSO(<,+1) formula φA that is satisfied exactly by

the accepting executions of A. The first challenge in this

translation is that MSO(<,+1) models are flows, which are

functions from T to a set of monadic predicates, which are

different from executions of a timed automaton. Hence, to

formally state our result, we need to construct a one-to-one

correspondence between executions of a timed automaton and

flows.

Recall that an execution ρ of a timed automaton A =
(V, V0, α,X, β,E, VF ) is of the form

(v1, I1)
γ1
−−→
Ψ1

(v2, I2)
γ2
−−→
Ψ2

(v3, I3)
γ3
−−→
Ψ3

. . .
γn−1

−−−→
Ψn−1

(vn, In)

We will encode this as a flow f : R≥0 → 2V over the set of

monadic predicates MP = V as follows:

• If t ∈ Ii, f(t) = {vi}
• If t ̸∈ Ii for any i, f(t) = ∅ which indicates that the run

has terminated and hence no state is present in the flow.

This is not sufficient because this does not give a one-to-one

mapping from executions to flows. As an example, consider

the following two simple executions:

ρ1 = (v, [0, 10])

ρ2 = (v, [0, 5])
γ
−→
Ψ

(v, (5, 10]).

These executions are different because one has a transition at

time 5 while the other does not. However, if we think of them

as a function f : [0, 10] → V , they are identical. This indicates

that in the function f , we also need to carry information

about the transitions and the clock resets that occur during an

execution. This involves some challenging subtleties that we

illustrate with an example. Consider the following execution

with two clocks x1 and x2,

ρ = (v1, [0, 5))
{x1}
−−−→
Ψ1

(v2, [5, 10])
{x2}
−−−→
Ψ2

(v3, (10, 12))

{x2}
−−−→
Ψ3

(v1, [12, 12])
{x1}
−−−→
Ψ4

(v4, (12, 15))

Observe that at time 5, a transition e1 = (v1, v2,Ψ1, {x1}) oc-

curs and the automaton is in the target state of the transition i.e.

state v2. Let us call this type of transition a T− transition. At

time 10 on the other hand, a transition e2 = (v2, v3,Ψ2, {x2})
occurs and the automaton is in the source state of the transition

i.e. state v2, which we will call a T+ transition. Finally, at time

12, both kinds of transitions occur. Thus, in the function f ,

we will define f(5) = {v2, T
−
e1
} to say that the execution is

at state v2 and a transition e1 of type T− occurred. Similarly

we can define f(10) = {v2, T
+
e2
} and at time 12, and f(12)

will contain the location v1 and one T− and T+ transitions.

Corresponding to each transition, some clocks are reset. Now

in a singular interval, for example time 12 in the execution

above, x2 is reset at the transition (v3, v1,Ψ3, {x2}) and

then x1 is reset in the transition (v1, v4,Ψ4, {x1}). Hence,

we also need to differentiate clock resets into two types,

resets associated to T− transitions and those associated to

T+ transitions. So for each clock x ∈ X , we will have

two monadic predicates x− and x+. When a T+ transition

corresponding to edge e = (v1, v2,Ψ, γ) occurs at time t, we

will add the resets x− for x ∈ γ to f(t), and similarly for T+

transitions. The corresponding flow for the execution above

will be:
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• f(t) = {v1} for t ∈ [0, 5)
• f(5) = {v2, T

−
e1
, x−1 }

• f(t) = {v2} for t ∈ (5, 10)
• f(10) = {v2, T

+
e2
, x+2 }

• f(t) = {v3} for t ∈ (10, 12)
• f(12) = {v1, T

−
e3
, x−2 , T

+
e4
, x+1 }

• f(t) = {v4} for t ∈ (12, 15)

This information is sufficient to ensure a one-to-one corre-

spondence between executions and their corresponding flows.

Using this idea, formally, we have the lemma

Lemma 6. For a timed automaton A =
(V, V0, α,X, β,E, VF ), let T = {T−

e , T
+
e | e ∈ E}

and R = {x−, x+ | x ∈ X}. Define a set of monadic

predicates MP = V ∪ T ∪ R. Define F to be the set of

all flows f : R≥0 → 2MP. There is a one-to-one encoding

FA : exec(A) → F of executions ρ of A as flows.

If we consider bounded executions of A for some time

bound N ∈ R>0, the same encoding gives an encoding of

bounded executions as flows f : [0, N) → 2MP.

Now, given a timed automaton A, we want to construct

an MSO(<,+1) formula φA over the monadic predicates

MP = V ∪ T ∪ R such that φA is satisfied exactly by the

set FA(exec(A)). The key idea behind this is that all the

properties of an execution can be expressed in MSO(<,+1).
We illustrate how certain important properties of an execution

can be expressed in MSO(<,+1).

The most basic property of an execution is that it terminates

at some time l and at any time t up to time l, the execution is

exactly in one state of the automaton. First we have a formula

US(t) (US stands for Unique state) which states that there is

exactly one state at time t.

US(t) =
∨

v∈V

v(t) ∧
∧

v1,v2∈V :v1 ̸=v2

¬(v1(t) ∧ v2(t))

Now, using this, we can express the above property as a

disjunction of the following two formulas

∃l∀t((t ≤ l =⇒ US(t)) ∧ (t > l =⇒ ∧v∈V ¬v(t)))

∃l∀t((t < l =⇒ US(t)) ∧ (t ≥ l =⇒ ∧v∈V ¬v(t)))

The first one says that for time t up to and including time

l, there is exactly one state and after l there is no state. The

second one says that for time t up to but not including l,

there is exactly one state and for time t ≥ l, there is no

state. In a similar manner we also say that at all times where

the execution is in some state, at most one T−
e and one T+

e

predicate is true.

Another important property of an execution is that if a

transition e ∈ E of type T− occurs at time t, then the

predicate T−
e should be true at time t and vice versa. For

each e = (v1, v2,Ψ, γ) we have the formula

∀t(T−
e (t) =⇒ v2(t)

∧ ∃y(y < t ∧ ∀z(y < z < t =⇒ v1(t)))).

This ensures that if T−
e is true at time t, then there is transition

of the form

(v1, (|t1, t))
γ
−→
Ψ

(v2, [t, t2|))

at t. For the opposite direction, i.e. to ensure that T−
e is true

only at times t where a corresponding transition e occurs, for

each pair of states v1 ̸= v2, let C be the set of all edges of

the form e = (v1, v2,Ψ, γ). We have the formula

∀t(v2(t) ∧ ∃y(y < t ∧ ∀z(y < z < t =⇒ v1(t)))

=⇒
∨

e∈C

T−
e (t) ∧

∧

e1,e2∈C:e1 ̸=e2

¬(T−
e1

∧ T−
e2
))

This formula says that if for a small open interval (y, t) the

automaton is in state v1 and at time t it enters state v2, then

exactly one transition of the form (v1, v2,Ψ, γ) must have

occurred at time t. An important point to note here is that

the second formula is only for edges where v1 ̸= v2. This is

because if v1 = v2, i.e. the edge is a self loop, then it is not

necessary for a transition to occur. The automaton may simply

remain in state v1 without making a transition at time t. We

can write similar formulas for transition of type T+.

We also need to ensure that clock resets happen only when

transitions occur. For this, first we ensure that if no transition

occurs at time t, then no clocks are reset at that time.

∀t(¬(∨e∈ET
−
e (t)) =⇒ ¬(∨x∈Xx

−(t)))

For the other direction, we say that if a transition e =
(v1, v2,Ψ, γ) of type T− occurs, then the corresponding clock

resets of type x− occur.

∀t(T−
e (t) =⇒ ∧x∈γx

−(t)
∧

∧x ̸∈γ¬x
−(t))

Another property of an execution is that any time the clock

constraints of the state is satisfied. To do this, we need to

compute the value of a clock at any time t of the execution.

We cleverly use the clock reset predicates R to find this value,

and then compare it with the clock constraints of the current

state. For example, if at time t no transition occurs, then the

value of a clock is the time elapsed since the last time it was

reset. We can encode this as follows for each state v ∈ V and

clock x ∈ X:

∀t(¬(
∨

e∈E

T−
e (t) ∨ T+

e (t)) ∧ v(t) =⇒

∃r(r < t ∧ (x−(r) ∨ x+(r))

∧ ∀z(r < z < t =⇒ ¬(x−(z) ∨ x+(z)))

∧ β(v, x)[t− r])

Here, β(v, x)[t − r] is the clock constraint β(v, x) with x

replaced by t− r. This formula says that for all time t, if no

transition occurs at t and the execution is at location v, then

there must exist a time r before t, such that clock x was reset

at r and for all time z between r and t, x was not reset. Thus,

r is the last time clock x was reset. Finally, we require that

t − r (i.e., the current value of clock x) satisfies the clock

constraint β(v, x). The satisfaction of guards for transitions

can also be ensured using the same idea.
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A point to note here is that β(v, x)[t − r] has inequalities

of the form t − r ∼ c where ∼∈ {<,≤,=,≥, >}. The logic

MSO(<,+1) does not have constants, so we cannot directly

write formulas of the form t − r ∼ c. However, we can still

express this in the following manner:

• For any constant c, we will write a formula +c(r, x) such

that f, I |= +c(r, x) iff I(x) = I(r) + c. For c = 1, we

can write this directly in MSO(<,+1) as +1(r, x)
• Next, using the +1 relation, we can write +2 as follows:

+2(r, x) = ∃y(+1(r, y) ∧+1(y, x)).

Similarly, we can write +3 as:

+3(r, x) = ∃y(+2(r, y) ∧+1(y, x)).

In this manner, we can express every +c(r, x) for any

constant c using finite sized formulas in MSO(<,+1).
• Now we can rewrite t− r ∼ c as t ∼ r+ c. This we can

write in MSO(<,+1) as

t ∼ r + c ≡ ∃x(+c(r, x) ∧ t < x)

In this manner, we can express all the properties of an

execution in MSO(<,+1). Formally, we have the following

lemma:

Lemma 7. Given a timed automtaton A =
(V, V0, α,X, β,E, VF ), there is a MSO(<,+1) formula

φA over free monadic predicates MP = V ∪T ∪R, such that

1) For any execution ρ ∈ exec(A), FA(ρ) |= φA.

2) For any flow f |= φA, there exists an execution ρ ∈
exec(A) such that f = FA(ρ).

The lemma also holds if we consider bounded time seman-

tics with a time bound N .

C. Decidability

We now give a reduction from the bounded time verification

problem for HCMTL* to the satisfiability problem for MSO(<
,+1) over bounded time domains.

Fix N ∈ R>0 and a timed automaton A =
(V, V0, α,X, β,E, VF ). Let φ be an HCMTL* formula with

free path variables V . Let the variables in V be ordered as

{π1, π2, . . . , πm}. Observe that the models to an HCMTL*

formula are path environments while the models to an MSO(<
,+1) formula are flows. To reconcile this disparity, we use the

encoding of executions as flows from Lemma 6. For a path

environment Π : V → execN (A), we want to encode Π as

a flow. We do this by combining the flows corresponding to

each execution Π(πi) into one single flow and distinguishing

the predicates for each execution by indexing. For each

path πi ∈ V , we define copies of the sets V, T and R as

Vi = {vi | v ∈ V }, and analogously for Ti and Ri .

Define MPi = {Vi ∪ Ti ∪ Ri} for each πi ∈ V . For each

path variable πi, Π(πi) is an execution in execN (A) and

FA(Π(πi)) is a flow over the monadic predicates MPi. Define

MP = ∪πi∈VMPi. We can lift the encoding FA to Π by

defining a flow fΠ : [0, N) → 2MP as:

fΠ(t) = ∪πi∈VFA(Π(πi))(t)

Our goal is to construct an MSO(<,+1) formula ATφ that is

satisfied exactly by the flows that encode path environments

that satisfy φ. One of the challenges in constructing ATφ

is handling the last quantified path †. Since HCMTL* is a

logic for branching hyperproperties, the semantics of HCMTL*

involves the last quantified path, that we represent using the

variable †. To construct ATφ, we need to encode the last

quantified path into ATφ. One option is to encode † as a

first order variable in ATφ that takes values in {1, 2, . . . ,m}.

However, this does not work because by the semantics of

MSO(<,+1), † can only take values in [0, N). Hence, if the

number of free path variables, m is larger than N , it will not

be possible to cover all values of †.

We overcome this by instead having m+1 formulas indexed
AT

φ
i for i ∈ {0, 1, 2, . . . ,m}. And the property that we preserve

is the following: for any path environment Π and t ∈ [0, N),

Π, t, πi |=
N
A φ iff fΠ |= AT

φ
i (t).

If † = ϵ, then the property we preserve is

Π, 0, ϵ |=NA φ iff fΠ |= AT
φ
0 (0).

We do this by constructing the formulas AT
φ
i induc-

tively. Translating quantifier free formulas to MSO(<,+1) is

straightforward and is identical for all i ∈ {0, 1, 2, . . . ,m}.

For example, if φ = pπj
, this means that at time t, πj is

in a state where the proposition p is true. The corresponding

MSO(<,+1) formula is:

AT
φ
i (x) =

∨

v∈V :p∈α(v)

vj(x)

Another example is φ = φ1UIφ2. This formula says that at

some future time y > t, such that y ∈ t + I , the formula φ2

must hold, and for all time t < z < y, the formula φ1 holds.

This naturally translates to MSO(<,+1) as

AT
φ
i (x) = ∃y(x < y ∧ AT

φ2

i (y)∧

∀z(x < z < y =⇒ AT
φ1

i (z)) ∧ y − x ∈ I)

The construction for the ∃ and ∀ quantifiers involves the

translation of timed automata to MSO(<,+1) that we de-

scribed in lemma 7. Suppose φ = ∃πm+1φ1. The correspond-

ing MSO(<,+1) formula AT
φ
i should read ‘there exists an

execution that is identical to πi up to the current time, and

the path environment Π augmented with this new execution

satisfies AT
φ1

m+1.’ Since we are quantifying over executions of

the automaton, in ATφ, we quantify over flows that satisfy the

formula φA from Lemma 7, and this can only be done in a

second order logic. The formula AT
φ
i is constructed as:

AT
φ
i (x) = ∃Vm+1, Tm+1, Rm+1

(φA(Vm+1, Tm+1, Rm+1)

∧ ∀y(0 ≤ y ≤ x =⇒ (MPi(y) ⇐⇒ MPm+1(y)))

∧ AT
φ1

m+1(x))

Here MPi(y) ⇐⇒ MPm+1(y) is an abbreviation for

∧p∈MP(pi(y) ⇐⇒ pm+1(y))

74

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 10,2024 at 16:56:05 UTC from IEEE Xplore.  Restrictions apply. 



i.e. the ith copy and m+ 1st copy of the predicates have the

same truth values at y.

Putting these ideas together, we have the following lemma.

Lemma 8. Fix N ∈ R>0, an HCMTL* formula φ and a timed

automaton A = (V, V0, α,X, β,E, VF ). There exist m + 1
MSO(<,+1) formulas AT

φ
0 (x), ATφ1 (x), . . . , ATφm(x), each

over MP with one free first order variable x such that, for

t ∈ [0, N) and a path environment Π,

1) For i ∈ {1, 2, . . . ,m}, Π, t, πi |=
N
A φ iff fΠ |= AT

φ
i (t)

2) Π, 0, ϵ |=NA φ iff fΠ |= AT
φ
0 (0).

We thus have this corollary

Corollary 9. For an HCMTL* sentence φ, {}, 0, ϵ |=NA φ iff
AT

φ
0 (0) is a valid MSO(<,+1) sentence over T = [0, N).

Thus, by the corollary, time bounded verification of an

HCMTL* sentence φ in the interval-based semantics reduces

to checking satisfiability of the MSO(<,+1) formula AT
φ
0 (0)

over the bounded time domain [0, N), which is known to be

decidable [28]. Thus, we get our main result

Theorem 10. Bounded Time verification problem of HCMTL*

is decidable in the interval-based semantics.

Remark 11. In our presentation, we have restricted clock

constraints in timed automata to allow only comparisons with

natural numbers, and the intervals I in temporal operators

such as UI to have natural number end points. This is done

for the sake of simplicity and all the results presented here

carry over if we allow non-negative rational numbers instead

of natural numbers. In case of rational bounds, the model

checking problem can be reduced to a model checking problem

with only natural number bounds by appropriately scaling all

constants appearing the the timed automata and the HCMTL*

formula. The appropriate scaling factor will be the least

common multiple of all denominators occurring in all the

rational constants.

V. POINT-BASED SEMANTICS

We define a point-based semantics for our logic HCMTL*.

We first give a point-based semantics for timed automata, then

move on to HCMTL*, and finally present our results for the

point based semantics.

A. Timed Automata

In the interval-based semantics, the system is under ob-

servation at all times. On the other hand, in the point-based

semantics, the system is observed at discrete time points when

events (marked by propositions that are true at the event) occur.

A timed automata in the point based semantics over a set of

propositions P is a tuple B = (2P , S, s0, X,∆, F ) where

• S is a finite set of states.

• s0 ∈ S is the start state.

• X is a finite set of clocks.

• ∆ ⊆ S × 2P × 2Φ(X) × 2X ×S is the transition relation.

A transition e = (s1, σ,Ψ, γ, s2) is a transition from state

s1 to s2 on event σ that satisfies the guard Ψ and resets

the clocks in γ.

• F ⊆ S is the set of final states.

For a transition e = (s1, σ,Ψ, γ, s2), we will call σ the event

labelling e. An execution of B is a finite sequence

η = (s0, µ0)
e1,t1
−−−→ (s1, µ1)

e2,t2
−−−→ . . .

en,tn
−−−→ (sn, µn)

where si ∈ S, ei ∈ ∆ for all i ≥ 1 and µi is a clock valuation

for each i such that the following hold

• µ0(x) = 0 for all x ∈ X

• For each i ∈ {1, 2, . . . , n}, ei = (si−1, σi,Ψi, γi, si) ∈
∆ for some σi,Ψi, and γi.

• For i ≥ 1, µi(x) = µi−1(x) + (ti − ti−1) if x ̸∈ γi and

µi+1(x) = 0 if x ∈ γi.

• Finally, µi−1 + (ti − ti−1) |= ψ for every ψ ∈ Ψi (t0 is

defined to be 0).

The execution is said to be accepting if sn ∈ F . The duration

of the execution, denoted |η|, is defined to be tn. Define

execpt(B) to be the set of all accepting executions of B. For

an execution η, and t ∈ R≥0, we will say t ∈ η iff t = ti
for some i. For t ∈ η, where t = ti define ση(t) = σi. For

t ≤ |η|, let ti = sup{x ∈ η |x ≤ t}. We will say an execution

η′ = (s0, µ0)
e1,t1
−−−→(s1, µ1)

e2,t2
−−−→ . . .

ei,ti
−−−→ (si, µi)

e′i+1,t
′

i+1

−−−−−−→

(s′i+1, µ
′
i+1)

e′i+1,t
′

i+1

−−−−−−→ . . .
e′m,t

′

m−−−−→ (sm, µm)

with t′i+1 > t is an extension of η from t.

B. HCMTL* in Point-Based Semantics

Given an HCMTL* formula φ with free path variables V
and a timed automaton in the point-based semantics B, a path

environment is a map Γ : V → execpt(B). We will say t ∈
R≥0 is an event point in Γ if t ∈ Γ(π) for some π ∈ V , and

we denote this by t ∈ Γ. For t ∈ R≥0, and † taking values

in V ∪ {ϵ}, the satisfaction relation Γ, t, † pt|=Bφ is defined

inductively as follows:

• Γ, t, † pt|=Bpπ iff t ∈ Γ(π) and p ∈ σΓ(π)(t).

• Γ, t, † pt|=B¬pπ iff t ∈ Γ(π) and p ̸∈ σΓ(π)(t).

• Γ, t, † pt|=Bφ1 ∨ φ2 iff Γ, t, † pt|=Bφ1 or Γ, t, † pt|=Bφ2.

• Γ, t, † pt|=Bφ1∧φ2 iff Γ, t, † pt|=Bφ1 and Γ, t, † pt|=Bφ2.

• Γ, t, † pt|=BFIφ iff there exists t′ > t such that t′−t ∈ I ,

t′ ∈ Γ and Γ, t′, † pt|=Bφ.

• Γ, t, † pt|=BGIφ iff for all t′ > t such that t′− t ∈ I and

t′ ∈ Γ, Γ, t′, † pt|=Bφ.

• Γ, t, † pt|=Bφ1UIφ2 iff there exists t′ > t such that t′ −
t ∈ I , t′ ∈ Γ, Γ, t′, † pt|=Bφ2; and Γ, t′′, † pt|=Bφ1 for

all t < t′′ < t′ such that t′′ ∈ Γ.

• Γ, t, † pt|=B∃πφ iff there is an execution η ∈ execpt(B)
such that Γ[π 7→ η], t, π

pt|=Bφ and either (a) † = ϵ and

t = 0, or (b) t ≤ |Γ(†)| and η is an extension of Γ(†)
from t.

• Γ, t, † pt|=B∀πφ iff for every η ∈ execpt(B), if either (a)

† = ϵ and t = 0, or (b) t ≤ |Γ(†)| and η is an extension

of Γ(†) from t, then Γ[π 7→ η], t, π
pt|=Bφ.
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We can define time bounded semantics for a time bound

N ∈ R>0 in a manner similar as we did for the interval-based

semantics in Section II-C.

C. Point-Based vs Interval-Based Semantics

The first observation we make between the two semantics

is that timed automata in the interval-based semantics can

simulate timed automata in the point-based semantics. The

idea is that an execution of the automaton B

η = (s0, µ0)
e1,t1
−−−→ (s1, µ1)

e2,t2
−−−→ . . .

en,tn
−−−→ (sn, µn)

can be thought of in the interval semantics as the execution

ρ =(s0, [0, t1)), (e1, [t1, t1]), (s1, (t1, t2)), (e2, [t2, t2]),

. . . , (sn−1, (tn−1, tn), (en, [tn, tn]).

where transitions are marked by singular intervals. Here, if

t1 = 0, the execution starts at (e1, [t1, t1]). To achieve this,

we construct an automaton in the interval-based semantics,

we will call it Bib, that has as its states all the states and

edges of B. Bib alternates between states that correspond to

states of B and states that correspond to edges of B. To

ensure that this automaton remains in the edge states only for

singular intervals, we have a special clock xsing . This clock

gets reset whenever we enter a state corresponding to an edge,

and that state has the constraint xsing = 0. In Bib, the states

corresponding to edges have the clock constraints of the edge

to ensure the timing constraints of η are satisfied.

Given a timed automaton B = (2P , S, s0, X,∆, F ) in the

point-based semantics, define a timed automaton Bib over the

set of propositions P ∪S∪{#} in the interval-based semantics

as, Bib = (V, V0, α,X
′, β, E, VF ) where:

• V = S ∪ {e | e ∈ ∆}.

• V0 = {s0} ∪ {e ∈ ∆ | e = (s0, σ, ψ, γ, s
′)}.

• α(s) = {s} for all s ∈ S and α(e) = σ ∪ {#} for

e = (s1, σ,Ψ, γ, s2).
• X ′ = X ∪ {xsing}.

• β(s, x) = true for all s ∈ S and x ∈ X ′. For e =
(s1, σ,Ψ, γ, s2), β(e, x) = ∧ψ∈Gx

ψ where Gx = Ψ ∩
Φ(x) for x ∈ X , and β(e, xsing) = {xsing = 0}.

• E = {(s, e, {true}, {xsing}) | e = (s, σ,Ψ, γ, s′) ∈ ∆} ∪
{(e, s′, {true}, γ) | e = (s, σ,Ψ, γ, s′) ∈ ∆}.

• VF = {e ∈ ∆ | e = (s1, σ,Ψ, γ, s2) and s2 ∈ F}.

The # proposition is used to mark points where transitions

occur and is used later to reduce the verification problem in

the point-based semantics to the verification problem in the

interval-based semantics. Consider the map χ : execpt(B) →
exec(Bib) that maps an execution

η = (s0, µ0)
e1,t1
−−−→ (s1, µ1)

e2,t2
−−−→ . . .

en,tn
−−−→ (sn, µn)

of B to the execution

ρ =(s0, [0, t1)), (e1, [t1, t1]), (s1, (t1, t2)), (e2, [t2, t2]),

. . . , (sn−1, (tn−1, tn), (en, [tn, tn])

of Bib. The automaton Bib simulates exactly the set of accept-

ing executions of B when transformed using the map χ. Thus,

we have the following lemma.

Lemma 12. χ is a bijection from execpt(B) to exec(Bib).

Just as timed automata in the interval-based semantics

can simulate timed automata in the point-based semantics,

HCMTL* in the interval-based semantics is at least as expres-

sive as HCMTL* in the point-based semantics. To show this,

given an HCMTL* formula φ in the point-based semantics,

we will construct a formula φib which when interpreted in

the interval-based semantics, expresses exactly the set of all

path environments that satisfy φ under a suitable encoding of

path environments. Given a timed automaton B in the point-

based semantics, and a path environment Γ : V → execpt(B),
we can lift the map χ to Γ to get a path environment

ΠΓ : V → exec(Bib) defined as ΠΓ(π) = χ(Γ(π)). Similarly,

for any path environment Π : V → exec(Bib), we get a path

environment ΓΠ : V → execpt(B) by lifting the map χ−1. We

have the following expressiveness result:

Lemma 13. Given an HCMTL* formula φ in the point-based

semantics over a set of propositions P with free path variables

V , there is a formula φib in the interval-based semantics over

P ∪ {#} such that for any timed automaton B in the point-

based semantics and path environment Γ : V → execpt(B),
if Γ, t, † pt|=Bφ then ΠΓ, t, † |=Bib

φib. Conversely, for any

path environment Π : V → exec(Bib), if Π, t, † |=Bib
φib then

ΓΠ, t, †
pt|=Bφ.

We present the construction of φib. φib is defined inductively

as follows:

• φ = pπ . In the point-based semantics, this corresponds

to p being true at some event in execution π at time

t. The interval-based semantics doesn’t have a notion

of an event occurring at time t since the system is

always observed. To capture the point-based semantics,

we use the proposition # which is true only when some

transition/event occurs in B. We define φib = #π ∧ pπ .

• φ = ¬pπ . As above, we define φib = #π ∧ ¬pπ .

Inductive Cases

• Conjunction and disjunctions have the same semantics,

so we just have

(φ1 ∨ φ2)
ib
= φ1

ib ∨ φ2
ib

(φ1 ∧ φ2)
ib
= φ1

ib ∧ φ2
ib

• φ = FIφ1. In the point-based semantics this says that

at some time t′ ∈ t + I , such that an event occurs at t′,

φ1 is true. In the interval-based semantics, we again use

the # proposition to check the truth of φ1 only at time

points where event occurs. We define φib as:

φib = FI(∨π∈V#π ∧ φ1
ib).

• φ = GIφ1. Similar to the case of FI , we define φib as:

φib = GI((∨π∈V#π) =⇒ φ1
ib).
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• φ = φ1UIφ2. Using the same idea as FI we have

φib = (∨π∈V#π =⇒ φ1
ib)UI(∨π∈V#π ∧ φ2

ib)

• Quantification. The semantics of existential and univer-

sal quantification is identical in both point-based and

interval-based semantics. Hence, we have,

(∃π φ1)
ib
= ∃π φ1

ib

(∀π φ1)
ib
= ∀π φ1

ib

This translation works even if we consider the bounded time

semantics by restricting all executions to a time bound N ∈
R>0. As a corollary of this, we get

Corollary 14. For any HCMTL* formula φ and a timed

automaton B in the point-wise semantics,

{}, 0, ϵ pt|=Bφ ⇐⇒ {}, 0, ϵ |=Bib
φib.

Hence, the interval-based semantics of HCMTL* is at least

as expressive as the point-based semantics. Thus, bounded

time verification problem in point-based semantics reduces

to bounded time verification problem in the interval-based

semantics which gives us the following result.

Theorem 15. Bounded time verification problem for HCMTL*

in the point-based semantics is decidable.

It was shown by Hsi-Ming Ho et. al. [23] that model

checking HyperMITL in the point-based semantics is unde-

cidable by reducing the universality problem of timed au-

tomata to model checking HyperMITL, which is known to

be undecidable. In a similar manner, universality problem for

timed automata can be reduced to the general verification

problem of the HyperMITL fragment of HCMTL* in the point-

based semantics. Thus, HyperMITL and HCMTL* are both

undecidable in the point-based semantics. By our corollary 14,

the general verification problem for HyperMITL and HCMTL*

is undecidable in the interval-based semantics also. Hence, we

have the following result which also implies Theorem 3:

Theorem 16. The general verification problem for HCMTL*

is undecidable in both the point-based and interval-based

semantics. In fact, the verification problem is undecidable even

for the fragment HyperMITL.

VI. RELATED WORK

After Clarkson and Schneider introduced hyperproperties,

there has been an increasing interest in verifying hyperprop-

erties. Clarkson et al. proposed temporal logic HyperLTL

and HyperCTL* to describe hyperproperties and showed that

when restricted to finite Kripke structures, the model-checking

problem of HyperLTL and HyperCTL* is decidable. They

also establish complexity results for the verification problem.

Automated tools like MCHyper [19], AutoHyper [8] for model

checking and satisfiability checking, EAHyper [17] for satis-

fiability checking and RVHyper [18] for runtime monitoring

have been built.

To express security hyperproperties in a timed setting,

different hyper-timed logics have been proposed. A pioneering

work is [26], which extends STL with quantification over real-

time signals and is studied over cyber-physical systems.

Linear-time HyperMTL that extends MTL was introduced

in [9]. The real-time systems in [9] are modeled as timed

Kripke structures, that are Kripke structures with time elapsing

on transitions. The semantics used in [9] is point-based, and

the model of time is discrete-time. The logic is defined over

finite timed words but is syntactically different from ours. They

show that the verification problem for the logic is decidable

for a nontrivial fragment of the logic by reducing the problem

to checking untimed hyperproperties.

In [10], linear-time temporal logic Time Window Temporal

Logic (TWTL) is extended to reason about hyperproperties.

Like [9], the models are timed Kripke structures, the semantics

considered is point-based, and the model of time is discrete

time. The verification problem for the resulting logic is shown

to be undecidable, and the model-checking algorithms are

given for the alternation-free fragment of the logic.

Linear-time HyperMITL has been proposed in [23] by

extending MITL. Unlike our work, they also consider past

operators in the logic. The semantics used in [23] is point-

based, and the model of time used is continuous/dense. [23]

consider decidability for many fragments of HyperMITL, and

most of the fragments are undecidable over the unbounded

time domain. The most interesting decidability result is verify-

ing HyperMITL is decidable for bounded time domains. While

the proof is not provided, the authors hint that the proof could

be accomplished by a reduction to the satisfiability problem

for QPTL [33] which is known to be decidable [33].

Our work extends MTL to HCMTL* that allows us to

express branching hyperproperties in addition to linear-time

hyperproperties. Like [23], the model of time is taken to be

dense. However, we also consider the interval-based semantics

in addition to point-based semantics. We show that the time-

bounded verification for HCMTL* is decidable. In contrast

to [23], our decidability result is obtained by a reduction

to the satisfiability problem of MSO with order and succes-

sor. The challenge is to encode the semantics of branching

logic as well as time automaton into an MSO formula. We

also show that the decision problems for verifying HCMTL*

under point-based semantics can be reduced to the verifica-

tion problem for interval-based semantics. This allows us to

transfer decidability results under interval-based semantics to

point-based semantics, and undecidability results from point-

based semantics to interval-based semantics. One difference

from [9], [23] is that they distinguish between synchronous

and asynchronous hyperproperties. Intuitively, in synchronous

semantics, observations on all traces happen at the same

time, while in asynchronous semantics they may happen at

different times. Since our focus is interval-based semantics,

our semantics is asynchronous in principle.

HyperTidy CTL* logic is presented in [7] to reason about

timed hyperproperties of timed cryptographic protocols in the

Dolev-Yao model [15]. HyperTidy CTL* is also a branching

logic and is similar to HCMTL*, but has significant differ-

ences. First, it is interpreted over timed processes and not
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timed automata, a variant of applied pi calculus [2] augmented

with timing constructs. The logic has special atomic construc-

tors and atomic formulas to model the attacker’s knowledge

and actions. For example, it has the atomic formula X ⊢ u,

where X is a variable that ranges over recipes. Intuitively, a

recipe is a term in applied pi calculus [2] that represents a

computation by a Dolev-Yao attacker from the messages it

possesses, and the formula X ⊢ u represents that the message

u can be computed from the recipe assigned to X . The logic

allows quantification over recipe and message variables in

addition to the path variables. Further, the temporal operators

are not annotated explicitly with intervals, and the semantics

is equivalent to taking all intervals to be (0,∞). It is shown

in [7] that the problem of checking that a process satisfies a

HyperTidy CTL* is undecidable, even for the LTL fragment.

The proof relies on the fact that the problem of checking

whether the attacker can compute a message u from a finite

set of messages is undecidable [1]. This undecidability result

is incomparable to the undecidability of HCMTL* presented

in this paper as both the models and the logic in [7] are much

richer than ours.

In [31], a variant of HyperTidy CTL* is considered. The

formula X ⊢ u is replaced by K(u), which intuitively means

that u can be computed by the attacker from its intercepted

messages using some recipe. Thus, there are no recipe vari-

ables. The quantification of message variables also takes a

restricted form. The temporal operators are now decorated

with intervals as they are needed to specify liveness properties

such as timeliness and fairness properties as discussed in

Section III. They consider the problem of verifying whether

a process satisfies a HyperTidy CTL* formula is satisfied by

a process when the number of protocol sessions is bounded

and when the cryptographic primitives are modeled using

subterm-convergent equational theories [1]. They show that the

verification problem becomes EXPSPACE complete for this

variant. The decision procedure is based on constraint solving.

Please note that this decision procedure is incomparable to

ours as we consider abstract finite timed automata and not

processes. Further, the assumption of a bounded number

of sessions means that the “transition system” underlying a

process in [31] is acyclic, and any trace necessarily has a

bounded number of actions/observations that depend on the

process being verified. We make no such assumptions, and

traces can have any number of observations. However, the

transition system underlying [31] is infinite branching; hence,

the total number of traces is still infinite in this setting. In

contrast, our transition systems are finite-branching, and the

number of traces is infinite because we allow for any number

of actions along a trace.

VII. CONCLUSIONS AND FUTURE WORK

We introduce an extension of MTL that expresses branch-

ing hyperproperties of real time systems. We investigate the

verification problems associated with this logic against timed

automata for both interval-based and point-based semantics.

We show that the problem is undecidable for both semantics

when the time domain is unbounded. However, when bounded

time domains are considered, the verification problem becomes

decidable for both semantics.

Complexity. The decidability result is established by reducing

the problem to checking the satisfaction problem of MSO

with ordering and successor over bounded time domains.

While this reduction establishes decidability, the complexity of

deciding MSO(<,+1) over bounded time is non-elementary

[28]. Hence, the decision procedure presented in this paper has

non-elementary complexity. By non-elementary, we mean that

the runtime cannot be bounded by a tower of exponentials

whose height is independent of the automaton’s size and

the formula’s size. Thus, our analysis might not provide a

tight complexity bound. Given that the (space) complexity

of verifying HyperLTL and HyperCTL* for untimed systems

is a tower of exponentials whose height is the alternation

depth [12], [19], it is unlikely that HCMTL* will have ele-

mentary complexity over bounded time horizon.

Thus, we plan to explore the complexity of verification in

terms of alternation depth. One potential method of obtaining

a tight complexity bound is first studying the complexity of

verification over rational time (which is still a dense time

domain). Over bounded rational time, MSO(<,+1) can be

encoded into S2S, the monadic second order logic of two

successors interpreted over binary trees. Hence, the bounded

verification problem of HCMTL* over rational time can be

reduced to a satisfiability problem over S2S. Satisfiability of

S2S has a decision procedure via a reduction to the emptiness

problem of alternating tree automata. This procedure has the

complexity of a tower of exponentials having a height in the

order of alternation depth in the MSO(<,+1) formula. This

implies that the complexity of bounded-time verification of

HCMTL* when the model of dense time is the set of rationals

is a tower of exponentials having height linear in alternation

depth in the HCMTL* formula. Please note that this is an

upper bound on the complexity of the verification problem,

and we plan to investigate the exact characterization of the

complexity of verifying HCMTL* over a bounded time domain

in the future.

Algorithmic implications. We plan to implement the decision

procedure presented in this paper using existing tools that im-

plement decision procedures on monadic second-order logic,

such as the MONA tool [20].
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