
On-Robot Bayesian Reinforcement Learning for POMDPs

Hai Nguyen1∗, Sammie Katt1, Yuchen Xiao1, Christopher Amato1

Abstract— Robot learning is often difficult due to the ex-
pense of gathering data. The need for large amounts of data
can, and should, be tackled with effective algorithms and
leveraging expert information on robot dynamics. Bayesian
reinforcement learning (BRL), thanks to its sample efficiency
and ability to exploit prior knowledge, is uniquely positioned
as such a solution method. Unfortunately, the application of
BRL has been limited due to the difficulties of representing
expert knowledge as well as solving the subsequent inference
problem. This paper advances BRL for robotics by proposing
a specialized framework for physical systems. In particular,
we capture this knowledge in a factored representation, then
demonstrate the posterior factorizes in a similar shape, and
ultimately formalize the model in a Bayesian framework. We
then introduce a sample-based online solution method, based
on Monte-Carlo tree search and particle filtering, specialized
to solve the resulting model. This approach can, for example,
utilize typical low-level robot simulators and handle uncertainty
over unknown dynamics of the environment. We empirically
demonstrate its efficiency by performing on-robot learning
in two human-robot interaction tasks with uncertainty about
human behavior, achieving near-optimal performance after only
a handful of real-world episodes. A video of learned policies is
at https://youtu.be/H9xp60ngOes.

I. INTRODUCTION
Mainstream reinforcement learning (RL) techniques [1]–

[3] are not sample efficient enough for online applications
in physical systems: long training hours or unguided explo-
ration can wear out or break fragile, expensive robot systems.
Instead, the common approach for policy learning in robotics
is to use simulators, and transfer learned policies to the
real hardware (sim2real). However, simulators cannot capture
the real world exactly; therefore, additional techniques are
required for successful transfers, such as online system iden-
tification [4] or domain randomization [5]. These approaches
have shown success, but the research question is far from
solved, and transfers fail when the sim2real gap is large.
Moreover, none of these approaches can, in principle, exploit
prior (expert) knowledge, which is useful for faster learning
and often exists in most robotics problems. In our view, the
ideal approach should learn directly on physical hardware
(on-robot) while leveraging prior knowledge.

Bayesian Reinforcement Learning (BRL) has great po-
tential for on-robot learning. BRL is sample-efficient and
provides a principled solution to the exploration-exploitation
trade-off by explicitly incorporating uncertainty into the
decision-making process. Furthermore, BRL allows expert
knowledge to be easily integrated into the learning process
as “priors”, allowing the agent to exploit knowledge it would

1Khoury College of Computer Sciences, Northeastern
University, Boston, MA 02115, USA. ∗Corresponding author
nguyen.hai1@northeastern.edu.

otherwise have needed many precious samples to learn.
Despite its promise, previous attempts at BRL for on-robot
learning have been limited, even for the fully observable
settings. This can be explained by the scaling issues of BRL
methods and the difficulty of representing the complex expert
knowledge available in physical systems. In particular, these
methods typically assume straightforward priors, such as a
single large Dirichlet table or neural networks [6], [7], but
rarely provide tools to tackle more sophisticated applications.

This paper presents a Bayesian approach incorporating
expert knowledge for efficient on-robot learning under par-
tial observability. We first identify typical and reasonable
assumptions in physical systems, including some inspired
by mixed observability Markov decision processes [8], and
translate them to a Bayesian setting. The next step derives
the corresponding Bayesian inference problem, showing how
the nature of the prior that we discovered shapes the posterior
over the unknown quantities of the problem. This leads to the
formalization of a Bayes-adaptive (BA) model specialized for
robotics systems. Finally, we propose a method for solving
this model by specializing Monte-Carlo tree search and
particle filtering, which provides an efficient and principled
solution to the original learning problem. We empirically
demonstrate its efficiency with on-robot learning in two
human-robot interaction tasks with uncertainty about human
behavior, achieving near-optimal performance after only a
handful of real-world episodes.

II. RELATED WORK

A. Bayesian RL under Partial Observability

Bayesian RL involves maintaining a probability distribu-
tion over an augmented state, including both the environment
dynamics and the environment state, as proposed by the BA-
POMDP framework [7]. State-of-the-art BRL methods [6],
[9], [10] for partially observable domains have improved on
the BA-POMDP by incorporating the Partially Observable
Monte Carlo Planning (POMCP) [11], an efficient online
planner for large POMDPs. While earlier methods [9], [10]
are only applicable to small discrete POMDPs or ones
with factorizable dynamics, Bayes-adaptive deep dropout
RL (BADDr) [6] was introduced to tackle more com-
plex domains. BADDr leverages the representation power
of dropout networks [12] to capture priors, making BRL
scalable to larger domains while being considerably more
sample-efficient than pure RL methods. In this paper, we also
use dropout networks to construct (parts of) a specialized
dynamics model, leveraging assumptions about the factored
dynamics and full observability of the robot state.

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 1-5, 2023. Detroit, USA

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 9480

20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

91
90

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S5

55
52

.2
02

3.
10

34
21

14

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

B. On-Robot Reinforcement Learning

Recently, many methods have performed learning directly
on physical hardware. In [13], multiple robot workers are
used to collect data for online training of a robot arm to open
a door autonomously. [14] used human feedback to learn
manipulation tasks in 1-4 hours. Meanwhile, [15] combined
RL and contrastive learning [16] to learn manipulation tasks
online from pixels. In addition, [17], [18] used symmetry-
aware neural networks to encode domain symmetries to
perform online learning manipulation tasks within several
hours, while [19], [20] conducted online learning for locomo-
tion tasks on legged robots. Nevertheless, unlike ours, none
of these works addresses partially observable domains or
employs a Bayesian approach directly to a physical system.

III. BACKGROUND

A. Partially Observable MDP (POMDP)

A POMDP [21] is formally defined by the tuple
(S,A,Ω, T,O,R, ps0), where S,A,Ω are respectively the
state, action, and observation spaces; T : S×A → ∆(S), O :
S × A → ∆(Ω), and R : S × A → R are respectively the
transition, observation, and reward functions; ps0 = ∆(S) is
the prior about the initial state s0. The goal is to find a se-
quence of actions to maximize the discounted return defined
as E[

∑∞
t=0 γ

trt] [22] with some discount factor γ ∈ [0, 1].
An action a taken in state s will result in a state s′, sampled
from the transition function T (s, a, s′) = p(s′ | s, a). In a
POMDP, the agent can only observe o ∈ Ω, indirectly related
to s′ via the observation function O(s′, a, o) = p(o | s′, a).
This implies that the agent might need to use the entire
action-observation history, which grows with the episode
length, to act optimally. Alternatively, acting optimally can
rely on a belief (posterior probability distribution) b ∈ ∆(S)
over possible states, where b(s) denotes the probability that
the environment’s true state is s. Given a new action a and
observation o, a new belief b′ can be calculated as:

b′(s′) ∝ O(s′, a, o)
∑
s∈S

T (s, a, s′)b(s). (1)

Equation (1) indicates that explicitly belief tracking (and
therefore planning) must rely on access to the known dynam-
ics T (s, a, s′) of the system. When these are unknown, we
must turn to learning-based approaches instead. This work
adopts the Bayesian perspective.

B. General Bayes-Adaptive POMDP (GBA-POMDP)

BRL assumes that, instead of access to the system’s
dynamics D, we have a parameterized prior probability
distribution p(D; θ). On a high level, our agent will maintain
a belief b̄ ∈ ∆(S,Θ) over the dynamics and the state and
pick actions that optimize future return with respect to this
belief. Technically, this Bayesian framework constructs a
“belief” POMDP: an augmented POMDP of which the state
space (and dynamics) include parameters that describe the
dynamics of the underlying system. Even if the dynamics of
the original system are unknown, it is now again possible to
plan and track beliefs in the larger POMDP instead.

Definition 1 (GBA-POMDP): Given a dynamics prior θ ∈
Θ, and a parameter update function U , then a gen-
eral BA-POMDP is a POMDP defined by the tuple
(S̄,A,Ω, D̄, O,R, ps̄0) with augmented state space S̄ =
S×Θ and prior ps̄0 = (ps0 , θ0). Denote δx as the Kronecker-
delta function, which is zero everywhere except at x, then
the update function U determines the augmented dynamics
model D̄(s′, θ′, o | s, θ, a), specified as:

D̄ = p(s′, o | s, a; θ)δθ′(U(θ, s, a, s′, o)) , (2)

where p(s′, o | s, a; θ) is the dynamics according to a model
parameterized by θ.

Since the GBA-POMDP is a POMDP, it can be solved
through belief tracking and planning. Unfortunately, the state
space is very large, and we need to reach for approximation
techniques instead, which will be covered next.

Algorithm 1 Online Belief Tracking (b, a, o, P)

Require: belief b = {s, θ}P , action a, and observation o
1: b′ ← ∅ ▷ Empty next belief
2: while sizeof(b′) < P do
3: (s, θ) ∼ b ▷ Sample augmented state
4: (s′, θ′, õ) ∼ D̄(s, θ, a) ▷ Use GBA-POMDP

dynamics
5: if õ = o then ▷ Compare with real observation
6: Add (s′, θ′) to b′

7: end if
8: end while
9: return b′

1) Belief Tracking: Belief tracking is approximated with
particle filtering, in this case, rejection sampling (algo-
rithm 1). Given a current belief b = p(s, θ) and new
action-observation pair (a, o), rejection sampling repeatedly
samples, updates, and accepts/rejects particles. In particular,
each iteration samples an augmented state from the belief
(s, θ) ∼ b and proposes a next augmented state using the
dynamics (s′, θ′, õ) ∼ D̄(s, θ, a). The proposal is accepted
and added to the new belief when the simulated observation
matches the real observation õ = o, and otherwise rejected.
The process repeats until we have P particles to represent b′.
Note that the updated parameters θ are preserved throughout
(not reset in-between episodes) so that the dynamics are
continuously learned through episodes.

2) Online Planning: Algorithm 2 shows how Partially
Observable Monte Carlo Planning (POMCP) [11], a Monte-
Carlo tree search method, is used for action selection by
building a look-ahead tree to evaluate the expected return of
each action. The tree is incrementally built through simula-
tions by calling a Simulate function Ns times, each starting
with a sampled augmented state from the current belief
(represented by P particles). When the tree is completed, the
action with the largest value is selected. At the next timestep
of action selection, the tree will be discarded and built anew.
For more details on modifying POMCP for GBA-POMDP,
please refer to [9].

9481

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 POMCP (b,Ns, P)

Require: Current belief b = {s, θ}P
Require: Number of simulations Ns

1: h0 ← ∅ ▷ Empty history
2: for i = 1→ Ns do
3: (s, θ) ∼ b ▷ Sample augmented state
4: Simulate(s, θ, h0) ▷ Build a tree
5: end for
6: Return argmaxb Q(h0b) ▷ Greedy action selection

C. Bayes-Adaptive Deep Dropout RL (BADDr)

The previous section described the GBA-POMDP as a
recipe that constructs a belief POMDP from a prior θ0 and
parameter update U . BADDr [6] is a realization of GBA-
POMDP that uses dropout neural networks [12] to represent
the dynamics. In particular, it assumes that the prior over
the dynamics is captured by a parameter set w ∈ W (e.g.,
w can be neural network weights) and chooses the update
function to be stochastic gradient descent with dropout
(SGD) [23], which can be interpreted as an approximation
of Bayesian inference over neural network parameters [24].
Consequently, BADDr is a POMDP with augmented state
space S̄ = S ×W and dynamics:

D̄(s̄′, o | s̄, a) = p(s′, o | s, a;w)δw′(U(w, s, a, s′, o)) , (3)
U = w −∇L((s, a), (s′, o);w) , (4)

where L((s, a), (s′, o);w) = − log p(s′, o | s, a;w) is the
cross-entropy loss between the predicted and true next state
and observation.

1) Prior Construction: The initial state distribution of
BADDr ps̄ ∈ ∆(S,D) is the product of the (given) initial
POMDP state distribution ps and a prior over the dynamics.
BADDr parameterizes this prior pD with parameters wT

and wO, representing the transition and observation models,
respectively. In general, it is unclear how to set network
parameters to reflect prior knowledge, so a data-centric
approach is taken instead. In particular, we sample POMDPs
from the (assumed given) prior over the dynamics pD, which
in turn are used to generate transitions (s, a, s′, o) with,
for example, a random policy. The prior networks wT and
wO are trained using eq. (4) on transitions generated from
the simulators. After training, pD is represented with an
ensemble of N parameter sets {(wT , wO)}N .

2) Online Adaptation: A solution to BADDr is, as in any
(GBA-)POMDP, a combination of belief tracking and online
planning. After picking an action with POMCP and receiving
observation, the agent updates its belief over both the current
POMDP state and its dynamics according to BADDr’s dy-
namics. As a result, the belief over (the dynamics) parameters
wT and wO are updated like in eq. (4). This time, however,
uses a single sample with the real observation from the
environment (line 4-6 in algorithm 1).

IV. BAYSIAN INFERENCE IN ROBOTIC SYSTEMS

The Bayes-adaptive models described in the background
are powerful in their ability to capture a broad class of
problems. In practice, however, we have more intricate prior
knowledge than previous literature can capture. For example,
we may be confident enough in our understanding of the
sensors that there is no need to learn a model of them or
have a reliable low-level (physics) simulator. On the other
hand, certain aspects of the real world will be unknown, such
as preferences of collaborating humans, and encoding prior
knowledge (that can be updated during execution) over them
will be important. This knowledge can not be expressed with,
for example, BADDr, which assumes a single set of param-
eters to describe the prior as a distribution. Similarly, most
robots come with a reliable low-level (physics) simulator,
which would be unrealistic to try to represent with Dirichlet
distributions or even neural networks. In short, there is a
need to incorporate mixed and partial prior knowledge from
real-world applications to Bayesian methods.

A. Prior Knowledge in Robotic Systems

Typical assumptions include:
• There is a high-fidelity simulator of the state of the robot
• The (internal) state of the robot is fully observable
• Some high-level system behavior is unknown
• The model of the sensors is somewhat known
Expert knowledge in robotic tasks typically includes a

physical simulator of the robot in which we can simulate
actions. Similarly, the internal of the robot state is observable
in most systems. What is likely unknown, and over which
we may only have a distribution, is some high-level element
of the dynamics of the environment in which the robot will
be deployed. In this work, this is the human behavior in
a human-robot setting. Other assumptions may apply for
different applications, but we hope that most classes of
assumptions have been covered here and that it will be
relatively straightforward to adapt to future requirements.

Transition Model Observation Model

Fig. 1: By assuming that part of the dynamics Tr(sr, a, s
′
r)

is known and part of the state (or) computed from the state
through Or is fully observable, we only need to learn smaller
transition (Th) and observation (Oh) models (blue boxes).

We observe that, without loss of generalization, the state
can be divided into internal (robot sr) and external (here
“human’s” sh) parts: s = (sr, sh) (see fig. 1). Then we
denote Tr(sr, a, s

′
r) as the accurate but low-level simulator in

which we can accurately predict the agent’s internal state by
unrolling a controller. On the other hand, the dynamics of the
environment Th(s, a, s

′
h) are unknown before deployment.

9482

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

We make a similar distinction in the observation and divide
it into an internal (robot) or and external (human) oh part
o = (or, oh). We assume that the internal state or (can
be computed from the state through a given function Or:
s′ → or) is fully observable (note that a similar assumption
is formalized in the mixed observability MDP [8]). The
observation function over the variable oh, Oh(s

′, a, oh), may
or may not be given depending on our understanding of the
robot’s sensors.

B. Factored Bayesian Inference

The GBA-POMDP does not provide the tools to capture
the expert knowledge we discussed above or how to do fur-
ther inference over. Instead, we derive a more sophisticated
framework starting from the assumptions stated above.

a) Priors: For simplicity, let us consider only the state
transition model and note that the state space consists of
features S = (Sr,Sh). According to our assumptions, the
transition model T can be factorized into each feature:
T (s, a, s′) = Tr(sr, a, s

′
r)Th(s, a, s

′
h). Indeed, our prior

knowledge is factored this way: p(T) = p(Tr)p(Th). Specif-
ically, the dynamics over the internal robot state are assumed
known (i.e., a physics simulator f), represented with the
Kronecker-delta distribution p(Tr) = δf (Tr).

b) Posteriors: In the interest of updating our belief
over the dynamics, we consider the shape of the posterior
p(T |{s, a, s′, o}). Given the transition sas′o = {s, a, s′, o},
we first apply Bayes’ rule and notice an interesting but
crucial property:

p(Tr, Th | sas′o) = p(Tr | sas′o)p(Th |��Tr, sas
′o)

= p(Tr | sas′o)p(Th | sas′o). (5)

Equation (5) indicates that the transition functions are inde-
pendent of each other given the transition, Th ⊥⊥ Tr|sas′o.
This, first, implies that the posterior is also factored. Second,
as a result, Bayesian inference can be made in separate
computations, one for each factor of the prior! In this
instance, due to knowing Tr, the posterior simplifies to
δf (Tr)p(Th | sas′o), where the last term depends on the
prior representation p(Th).

C. Formal Definition as a Specialized Bayesian Model

Here we leverage the shape of the posterior derived above
to define a Bayesian framework for robotics. In particular, we
use the factorization of the posterior computation to construct
a model with a factorization of the parameter update rule U
— one for each factor.

The transition posterior computation, for example, is de-
fined by an update rule for the distribution over the physics
simulator and one for the distribution over the human dy-
namics. The update rule that corresponds to the Kronecker-
delta function is simply its identity U(Tr, s, a, s

′, o) = Tr.
The posterior parameters of the human dynamics depend
on the choice of the prior model p(Th), which in this
case will be neural networks whT with the corresponding
dropout SGD update rule U(whT , s, a, s

′, o) as in eq. (4). For

example, eq. (5) can be (re-)written with a factored parameter
update rule:

eq. (5) = U(δf (Tr), s, a, s
′, o)U(whT , s, a, s

′, o)

= δf (Tr)SGD(whT , s, a, s
′, o) , (6)

and we apply the same approach to the observation function.
The prior of known components (e.g., Tr and Or) are, as

discussed before, encoded by Kronecker-delta distributions.
Priors over other parts of the dynamics, such as the human’s
dynamics Th and observations Oh, are a design choice,
and here are assumed to be represented by some network
parameters (whT , whO).

Definition 2: Formally, the resulting Bayes model is a
POMDP with state space S̄ = (Sr,Sh,WhT ,WhO) and
dynamics:

D̄(s′r, s′h,w′
hT , w

′
hO, or, oh | sr, sh, whT , whO, a) = (7)

(state) p(s′r | sr, a;Tr)p(s
′
h | s, a;whT)×

(obs) p(or | s′;Or)p(oh | s′, a;whO)×
(params) δw′

hT
(UhT (whT , s, a, s

′
h))×

δw′
hO

(UhO(whO, s
′, a, oh)) ,

where the updates of the known components are omitted for
brevity, and those of the neural network parameter are:

UhT = whT −∇L((s, a), s′h;whT) (8)
UhO = whO −∇L((s′, a), oh);whO). (9)

D. Solving the Bayesian Model
Starting with the problem definition of a general robotic

system, we have developed a belief POMDP that captures
typical expert prior knowledge and allows for Bayesian
inference over unknown parts of the dynamics. To solve
the resulting problem, however, we require efficient action
selection and belief approximation. In particular, the belief
space is far too large to either apply naive planning or exact
inference. Instead, we propose to combine: a specialized
POMCP algorithm, a particle filtering approximation tech-
nique, and a targeted prior construction.

First, we train networks on the priors we have over the
unknown dynamic terms (e.g., {whT } ≈ p(Th)). Then we
initialize our belief b0 by sampling particles (s, whT , whO)
from our joint prior (s ∼ ps0 , and (whT , whO) ∼
{whT , whO}). At each time step, our planner builds a look-
ahead tree, as POMCP does, but where each simulation starts
with sampling an augmented state ∼ b and using dynamics
in eq. (7) to generate trajectories. For belief tracking, we use
a new type of rejection sampling. This algorithm samples
particles (s, whT , whO), proposes the next augmented states
(again with dynamics in eq. (7)) and accepts those that
generated the perceived observation.

This approach, first, can do approximate belief tracking
through particle filtering in our specialized Bayes model and,
second, pick actions efficiently with respect to our most up-
to-date understanding of the environment. The result is a
quick and feasible online algorithm that manages to both be
sample efficient and capable of exploiting expert knowledge
directly into the initial belief in a principled manner.

9483

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

Tool Delivery Spot

Tool Reception Spot

Working Step

Work Room

Tool Room

Tool Table

Fetch R
obot

Turtlebot

Start

Turtlebot

Tool Reception Spot

Tool Delivery Spot 0

Tool Delivery Spot 1

Start

Tool Room

Work Room 1

Work Room 0

Basket

Basket

a) Ordered-Tools-Delivery (OTD)
 b) Speedy-Tools-Delivery (STD)

Working Step

Working Step

Fetch R
obot

Fig. 2: Two human-robot interaction domains are used in our experiments.

V. EXPERIMENTS
We experiment on two human-robot interaction domains

in which the agent needs to learn the tool order and working
speeds of human collaborators that cannot be directly ob-
served. Fortunately (and per usual), the robots come with
extensive simulators and need not learn this part of the
dynamics. However, before deployment, the robots have no
idea in what order or how quickly these tools must be
delivered. Instead, they have a uniform prior over these
unknowns and must learn these factors online.

A. Ordered-Tools-Delivery (OTD)
A Turtlebot must deliver T tools to a human in an un-

known order to complete an assembly task (fig. 2a). Turtlebot
can carry multiple tools in its basket at once, and the tools are
stored in a tool room while the human works in a work room.
Each time the human worker receives a correct tool, he needs
a fixed number of timesteps to use it before needing another.
When a correct tool is delivered, the human’s working step
(located in the top right corner) increases by one.
State. A state includes the 2D coordinate xcoord of Turtlebot,
the tools currently carried tcarry , and the currently needed
tool tneed. The coordinates are internal and known to the
robot, while the next needed tool is not. Moreover, even
tcarry is known to the robot, we consider it as a component
of sh because tcarry cannot be determined just using the
previous (xcoord, tcarry) and the action. For instance, with
Deliver actions, determining tcarry requires extra informa-
tion, such as whether the human workers are waiting for a
tool. Therefore, s = (sr, sh), where

sr = xcoord sh = (tcarry, tneed). (10)

Observation. The agent can observe the current room loca-
tion xroom (work or tool room), the tool it is carrying tcarry ,
and the current working step of the human wstep, which is
only observable in the work room. The location and tools it is
carrying are a function of the robot’s known internals (e.g.,
coordinates), whereas the human working step is external,
i.e., o = (or, oh), where

or = (xroom, tcarry) oh = wstep. (11)

In this experiment, we consider the observation function
known a-priori:

Or(s) := (xroom, tcarry) (12)

Oh(s) :=

{
wstep, if xroom = work room
∅ if xroom = tool room

(13)

Actions/Controllers. The action space consists of two types
of actions. Get-Tool(i) with i ∈ {0, 1, . . . , T − 1} moves
Turtlebot to a tool reception spot in the tool room, where it
can receive tool i from a Fetch robot that would get the tool
from a table. Deliver moves Turtlebot to a tool delivery spot
in the work room, where the human can take the tool that
he needs if it is currently carried by the Turtlebot.

The navigation and tool pickup transitions are known a-
priori (sr=xcoord ∼ Tr(sr, a), while the human behavior
(sh=(tcarry, tneed) ∼ Th(s, a) is not.
Reward. The agent is rewarded +100 for delivering a tool.
To encourage the agent to achieve the task as quickly as
possible, each timestep is given a step reward of −1. The cost
of Get-Tool(i) tools depends on the time it takes for Fetch
to pick and place items and for the Turtlebot to navigate.
Episode Initialization. An episode starts with Turtlebot (not
carrying any tool) at the blue spot; all tools are placed on
the tool table; and the human begins with wstep = 0.

B. Speedy-Tools-Delivery (STD)
In this domain, the Turtlebot must deliver tools to two

human workers (Human-0 and Human-1) in separate rooms
(fig. 2b). Importantly, given the same tool, one of the workers
works faster than the other. The table now holds two identical
sets of tools, each containing three tools, and each human
requires one set to complete the task. The tool order is
the same for both workers and assumed to be known, i.e.,
Tool 0→ 1→ 2.
State. In this domain, the state additionally includes a speed
bit bspeed, which is 1 if Human-0 works faster than Human-
1 and 0 otherwise. Moreover, tneed is now the tools needed
by two humans, and for the same reason described in OTD,
tcarry is unknown, making s = (sr, sh), where

sr = xcoord sh = (tcarry, tneed, bspeed). (14)

9484

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

Observation. Unlike OTD, the agent additionally can observe
the unused tools on the table ttable when it is in the tool
room, and wstep is the working steps of two humans (only
observable in the corresponding work rooms). Adding ttable
to the observation is necessary because there are two identi-
cal sets of tools. Consequently, the complete observation is
o = (or, oh), where

or = (xroom, tcarry) oh = (wstep, ttable). (15)

Like before, we also assume a known observation function:

Or(s) := (xroom, tcarry) (16)

Oh(s) :=

{
(wstep,∅), if xroom = work room
(∅, ttable), if xroom = tool room

(17)

Action/Controllers. Similar to OTD, Get-Tool(i) with i ∈
{0, 1, 2} will get tool i from the table. However, Deliver(j)
with j ∈ {0, 1} will deliver tools for Human-j by mov-
ing to the delivery spot of the corresponding work room.
Like before, the navigation and tool pick-up transition is
known (sr=xcoord ∼ Tr(sr, a), whereas the human factors
(sh=(tcarry, tneed, bspeed) ∼ Th(s, a) must be learned.
Reward. We apply the same reward for a correct tool
delivery and use the same cost for Get-Tool(i). Apart from
a step reward of −1, a step penalty of −30 and −10 are
incurred if the faster and the slower human must wait,
respectively. These additional rewards are necessary for the
agent to learn to prioritize the faster worker.
Episode Initialization. Like OTD, Turtlebot starts at the
blue spot with no tool. The two tool sets are placed on the
table, and the two humans begin with wstep = {0, 0}.

C. Priors

In OTD, the transition prior assumes a uniform distribution
over T ! possible delivery orders for T tools. Assuming a
correct observation model, we represent these priors using
T ! parameter sets (whT , whO). To generate training data for
training a parameter set, we pair a random tool order with the
correct observation model to sample the dynamics. We then
use a random policy to interact with the resulting dynamics
to generate the data.

In STD, we consider a set S consisting of |S| possible
working speeds. Because the speeds are different (one human
worker works faster than the other worker), |S|2 − |S|
possible different speed combinations are possible. Over
these combinations, we assume a uniform transition prior,
which is defined using |S|2−|S| parameter sets (whT , whO).
Similar to OTD, to generate training data for training a
parameter set, we pair a random speed combination with a
correct observation model and the correct tool order to create
the dynamics and then use a random policy to interact.

D. Real-World Experiments

Set-up. The experiments take place in a rectangular
workspace that measures 5.0 × 7.0 meters and contains
two tables that represent work rooms (see fig. 3). Two
identical sets of tools are available, each including a clamp,

Turtlebot

Fetch

0 0 1 1 2 2

Work-Room-0

Work-Room-1

Tools

Fig. 3: The lab workspace to perform experiments.

a sandpaper package, and a tape measure. Only one set of
tools is used for the OTD task.
Experiment Scenarios. We perform experiments in two
scenarios for each domain:

• OTD. The number of tools T = 3 and the correct tool
orders are Tool 0→ 1→ 2 and Tool 0→ 2→ 1.

• STD. The set of possible speeds S = {10, 20, 30}, and
the true speeds are (10, 20) and (20, 10).

Evaluation Metrics. We report the mean discounted return
with γ = 0.95, averaged over five runs. Each run lasts 10
and 20 episodes for OTD and STD, respectively. We also
visualize the one standard error area around the mean.

(a) OTD Real (b) STD Real

Fig. 4: Real-world results in OTD with three tools and STD
with two speed combinations. The dotted lines indicate the
upper bound of POMCP [11] using the true POMDP. Results
averaged over five seeds with shaded one standard error.

Results. Figure 4a shows that our method can reach near-
optimal performance within ten episodes in both domains.
Such performance will unlikely be achievable by pure RL
methods (see a comparison in section V-E). We will later
show in section V-F that our approach also outperforms
BADDr, given the same amount of initial training for the
prior networks.

In OTD, our agent nearly reaches the performance of
POMCP running on the true POMDP after three episodes.
During the first episode of OTD, the agent relies solely on the
initial prior, as the dynamics parameters have not yet been
updated. The observed behavior of the agent is to gather all
three tools and then deliver them. While this strategy yields
a reasonable outcome, it is sub-optimal as the worker only
requires a tool once they have finished using the current one.
In the second episode, the agent performs better by only
taking two tools in two consecutive actions, delivering them,

9485

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

and then returning later for the third tool. In the third episode,
it learns to retrieve one tool at a time and deliver it until all
tools have been supplied, which is optimal. In order to see
the robot in action, please see our video.
STD seems more challenging as the agent needs more

episodes to perform well. Specifically, fig. 4b indicates that
our agent can reach the performance of POMCP within ten
episodes by delivering all tools in the correct order for both
tested working speed combinations. The final policy involves
taking two tools of the same type (e.g., tool 0) and delivering
them one by one, starting with the faster worker and then
moving on to the slower worker. This strategy allows the
agent to leverage the close distance between the two work
rooms. Please see our video for the learned policy.
Simulating Tr(sr, a, s

′
r). We first build a map of the ex-

periment area and import it to a commonly used simulator
of Turtlebot in Gazebo. This simulator then acts as Tr,
where we can set the 2D coordinate xcoord of Turtlebot, send
moving actions, and retrieve the next coordinates x′

coord.
Obtaining Observations. Tools on table ttable are deter-
mined using the RGB image of the tool table taken by
Fetch’s head camera. The human workers’ working steps
wstep are the number of times the minimum depth in the
image from Turtlebot’s depth camera falls below a certain
threshold, indicating that a human is approaching to pick up
a tool. The room location xroom is determined by comparing
xcoord with the rooms’ dimensions. During an episode, tcarry
is calculated by keeping track of ttable and wstep.
Other Implementation Details. Get-Tool(i) actions of Fetch
are pre-recorded using a multi-step process. First, point
cloud data from the head camera is projected into an Open-
RAVE [25] environment. Then, the OMPL [26] library is
used for motion planning. Fetch and Turtlebot are controlled
through a ROS [27] node, which sends observations to a
planning node via a ROS service. The planning node, allowed
Ns = 1024 simulations, responds with the computed action
after about 2.5 seconds of planning. The prior networks
implemented in PyTorch are three-layered with 128 neurons
per layer and Tanh activation function with a dropout rate
of 0.1. They are trained for 2,000 epochs using SGD with a
learning rate 0.1, then switched to 0.001 for online learning.

E. Non-Bayesian RL Comparison in Simulation

Baselines. To further investigate the sample efficiency of
our method, we compare it against several non-Bayesian RL
baselines in simulation: DRQN [28] is a recurrent version
of Deep Q-Networks (DQN) [1] and is a classical baseline
for POMDPs. R-PPO is the recurrent version of Proximal
Policy Optimization (PPO) [3]. Discriminative Particle Filter
RL (DPFRL) [29] is a model-based RL POMDP method that
performs reinforcement learning on the features from a dif-
ferentiable particle filter. DreamerV2 [30] is a strong model-
based agent which alternates between learning a recurrent
world model (therefore can tackle POMDPs) and performing
RL using imagined data. It outperformed strong model-free
baselines such as [31] in the Atari benchmark. Finally, like

before, we also include POMCP running on the true POMDP
as an upper bound performance.

(a) OTD Sim (b) STD Sim

Fig. 5: Simulation results against RL baselines. Averaged
five seeds with shaded one standard error.

Results. In fig. 5, our method (barely seen in the top
left corner) exhibits significantly greater sample efficiency
compared to RL baselines in both domains. Additionally, our
approach outperforms from the beginning due to leveraging
prior information. Specifically, in the OTD domain, Dream-
erV2 requires approximately 1,000 episodes to achieve the
performance our method attains in just five episodes. In the
more challenging STD domain, the numbers are 2,500 and
10, respectively. Among baselines, DreamerV2 performs best
in OTD while DRQN performs best in STD. Regardless,
these baselines sometimes act suboptimally at the end of the
training (see spikes in their learning curves). For instance, in
OTD, DreamerV2 still sometimes outputs a redundant Get-
Tool action instead of delivering its current tool to the waiting
human. And, in STD, DRQN occasionally prioritizes the
slower human worker first. In contrast, R-PPO exhibits better
convergence performance in both domains.

F. Ablation Studies in Simulation

To ablate our agent, we perform experiments in simulation
with the OTD task with three tools.
Effect of Factored Models. We conducted an experiment
where we provided the same initial training for the prior
networks (all trained for 2,000 epochs) and compared the
proposed approach (Ours) with its variants, namely, no fac-
torizations used (i.e., the original BADDr), factored transition
model only (Trans), and factored observation model only
(Obs). Figure 6a indicates that our method and Obs perform
best. Obs likely performs well because Or in OTD is rela-
tively small, resulting in a slight performance improvement
when using the factored observation model. Conversely, we
anticipate a more substantial performance improvement in
domains where Or is a significant component.
Using Imperfect Observation Models. Here, we investigate
how our approach performs against DRQN and DreamerV2
(best RL baselines in section V-E) when we do not assume a
correct observation model. For this purpose, we add stochas-
ticity while observing the currently carried tools tcarry ,
which is now only correctly observable with a probability
pcorrect = 0.85. However, the data for initially training the
prior observation model is obtained with pcorrect = 0.5.

9486

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

(a) Effect of Factored Models (b) Imperfect Obs. Model

Fig. 6: Ablation studies in OTD with three tools.

In this case, fig. 6b still confirms the sample efficiency
superiority of our approach over the baselines.

VI. CONCLUSIONS

To our knowledge, this work presents the first on-robot
Bayesian RL method for partially observable scenarios.
By employing factored dynamics and mixed observability
assumptions, our method can rapidly acquire high-quality
behavior in long-horizon, real-world tasks within a minimal
number of episodes, outperforming pure RL approaches.
Although our tasks are relatively simple, the results clearly
demonstrate the potential of a Bayesian approach for effec-
tive learning directly on physical hardware. One limitation of
the approach is a slow inference speed, as the agent needs
time to search for the next action. This weakness can be
overcome using an RL agent to mimic our agent’s actions,
as previously investigated in [32].

ACKNOWLEDGMENTS

We thank Trung-Hieu Nguyen, Minh Nguyen, Van Anh
Tran, and Yunus Terzioglu for helping in the robot ex-
periments. This work is supported by the Army Research
Office under award number W911NF20-1-0265 and NSF
grant 2024790.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[4] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:
Learning a universal policy with online system identification,” arXiv
preprint arXiv:1702.02453, 2017.

[5] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[6] S. Katt, H. Nguyen, F. A. Oliehoek, and C. Amato, “Baddr: Bayes-
adaptive deep dropout rl for pomdps,” in Proceedings of the 21st Inter-
national Conference on Autonomous Agents and Multiagent Systems,
2022, pp. 723–731.

[7] S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann, “A bayesian
approach for learning and planning in partially observable markov
decision processes.” Journal of Machine Learning Research, vol. 12,
no. 5, 2011.

[8] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Pomdps for robotic
tasks with mixed observability.” in Robotics: Science and systems,
vol. 5, 2009, p. 4.

[9] S. Katt, F. A. Oliehoek, and C. Amato, “Learning in pomdps with
monte carlo tree search,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1819–1827.

[10] ——, “Bayesian reinforcement learning in factored pomdps,” in Pro-
ceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, 2019, pp. 7–15.

[11] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,”
Advances in neural information processing systems, vol. 23, 2010.

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[13] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[14] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-
end robotic reinforcement learning without reward engineering,” arXiv
preprint arXiv:1904.07854, 2019.

[15] A. Zhan, P. Zhao, L. Pinto, P. Abbeel, and M. Laskin, “A framework
for efficient robotic manipulation,” arXiv preprint arXiv:2012.07975,
2020.

[16] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[17] D. Wang, M. Jia, X. Zhu, R. Walters, and R. Platt, “On-robot learning
with equivariant models,” in Conference on robot learning, 2022.

[18] X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt, “Sample
efficient grasp learning using equivariant models,” arXiv preprint
arXiv:2202.09468, 2022.

[19] L. Smith, I. Kostrikov, and S. Levine, “A walk in the park: Learning
to walk in 20 minutes with model-free reinforcement learning,” arXiv
preprint arXiv:2208.07860, 2022.

[20] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel, “Day-
dreamer: World models for physical robot learning,” arXiv preprint
arXiv:2206.14176, 2022.

[21] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT press, 2018.

[23] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[24] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in International
conference on machine learning, 2016, pp. 1050–1059.

[25] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, vol. 79, 2008.

[26] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[27] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[28] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in 2015 aaai fall symposium series, 2015.

[29] X. Ma, P. Karkus, D. Hsu, W. S. Lee, and N. Ye, “Discriminative
particle filter reinforcement learning for complex partial observations,”
arXiv preprint arXiv:2002.09884, 2020.

[30] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with
discrete world models,” arXiv preprint arXiv:2010.02193, 2020.

[31] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Proceed-
ings of the AAAI conference on artificial intelligence, vol. 32, no. 1,
2018.

[32] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning
for real-time atari game play using offline monte-carlo tree search
planning,” Advances in neural information processing systems, vol. 27,
2014.

9487

Authorized licensed use limited to: Northeastern University. Downloaded on December 10,2024 at 17:04:06 UTC from IEEE Xplore. Restrictions apply.

