
Rust for Embedded Systems: Current State and Open Problems

Ayushi Sharma∗

Purdue University
West Lafayette, USA

sharm616@purdue.edu

Shashank Sharma∗

Purdue University
West Lafayette, USA

sharm611@purdue.edu

Sai Ritvik Tanksalkar
Purdue University
West Lafayette, USA
stanksal@purdue.edu

Santiago Torres-Arias
Purdue University
West Lafayette, USA
torresar@purdue.edu

Aravind Machiry
Purdue University
West Lafayette, USA
amachiry@purdue.edu

Abstract

Embedded software is used in safety-critical systems such as medi-

cal devices and autonomous vehicles, where software defects, in-

cluding security vulnerabilities, have severe consequences. Most

embedded codebases are developed in unsafe languages, specifically

C/C++, and are riddled with memory safety vulnerabilities. To pre-

vent such vulnerabilities, Rust, a performant memory-safe systems

language, provides an optimal choice for developing embedded

software. Rust interoperability enables developing Rust applica-

tions on top of existing C codebases. Despite this, even the most

resourceful organizations continue to develop embedded software

in C/C++.

This paper performs the first systematic study to holistically un-

derstand the current state and challenges of using Rust for embed-

ded systems. Our study is organized across three research questions.

We collected a dataset of 6,408 Rust embedded software spanning

various categories and 6 Static Application Security Testing (SAST)

tools. We performed a systematic analysis of our dataset and sur-

veys with 225 developers to investigate our research questions. We

found that existing Rust software support is inadequate, SAST

tools cannot handle certain features of Rust embedded software,

resulting in failures, and the prevalence of advanced types in exist-

ing Rust software makes it challenging to engineer interoperable

code. In addition, we found various challenges faced by developers

in using Rust for embedded systems development.

CCS Concepts

• Security and privacy→ Embedded systems security; • Com-

puter systems organization → Embedded software; Real-time

operating systems; • Hardware → Safety critical systems.

Keywords

Rust, Deep Embedded Systems, Security

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690275

ACM Reference Format:

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-

Arias, and Aravind Machiry. 2024. Rust for Embedded Systems: Current

State and Open Problems . In Proceedings of the 2024 ACM SIGSAC Conference

on Computer and Communications Security (CCS ’24), October 14ś18, 2024,

Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.

org/10.1145/3658644.3690275

1 Introduction

Our dependence on embedded devices (e.g., IoT devices), has sig-

nificantly increased, controlling various aspects of our daily lives,

including homes [11], transportation [9], traffic management [130],

and the distribution of vital resources like food [102] and power [97].

The adoption of these devices has seen rapid and extensive growth,

with an estimated count of over 50 billion devices [8]. Vulnerabil-

ities in these devices have far-reaching consequences [4, 14] due

to the pervasive and interconnected nature of these devices, as

exemplified by the infamous Mirai botnet [83].

Most embedded software are developed in łunsafež (i.e., not

memory-safe) languages, specifically C/C++, because of the low

memory footprint, good performance, and the availability of ex-

tensive support software. It is well-known that software developed

in unsafe languages is prone to security vulnerabilities, especially

memory safety vulnerabilities [25, 89, 135]. Likewise, embedded

systems are riddled with security vulnerabilities [7, 13, 62, 136].

The most recent URGENT/11 [15] vulnerabilities in VxWorks that

affected millions of medical [56], SCADA systems [142], and in-

dustrial controllers [22] are all because of memory safety (spa-

tial) violations. It is important to ensure that embedded systems

do not contain memory-safety issues. Automated memory-safety

retrofitting techniques [32, 48, 64, 92, 93, 131] based on compile-

time instrumentation add significant overhead (both space and

runtime) and are inapplicable to resource-constrained embedded

systems.

Our analysis (details in Our Extended Report [126]) of security

vulnerabilities in various Real Time Operating Systems (RTOSes)

(an important class of embedded software) for the past ten years

shows that 59 (54.2%) of them are memory corruption vulnerabili-

ties, i.e., spatial or temporal memory issues. It is important to use

memory-safe languages to prevent such vulnerabilities. Further-

more, recently, the White House released a report [140] requiring

future software to be developed in memory-safe languages. Tradi-

tional memory-safe languages, such as Java, have high overhead

2296

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

and are not suitable for embedded systems. Rust [121] is a memory-

safe language that is shown to have comparable performance as

native code. Furthermore, Rust can easily interoperate with exist-

ing unsafe codebases [61], enabling incremental adoption. Rust

team has a special focus on embedded systems [112], and several

works [74, 75] demonstrate the feasibility of engineering a complete

embedded software stack in Rust. Furthermore, Rust popularity

is rising [101], and it is now adopted in Linux kernel [79] and An-

droid [108]. Unfortunately, embedded systems are continuing to be

developed in C. Even the most resourceful organizations, such as

Microsoft, continue to develop embedded systems in C, as demon-

strated by their recent Azure RTOS [18]. Previous works [55, 145]

investigated the challenges of adopting Rust for regular software.

However, no work tries to understand factors affecting the use

of Rust for embedded systems development.

In this paper, we perform the first systematic study to holisti-

cally understand the issues in using Rust for developing embedded

systems. Specifically, we explored the following research questions:

• RQ1: Software Support. How effective (quantity and quality)

is the existing Rust software support for embedded system de-

velopment?

• RQ2: Interoperability of Rust. Given that most of the existing

embedded systems are in C, how well can Rust interoperate with

existing C codebases? and what are the challenges specific to

embedded codebases?

• RQ3: Developers Perspective. What challenges do developers

face in using Rust for embedded system development?

We collected a dataset of 6,408 Rust embedded software packages

(or crates) spanning various categories and 6 SAST tools. We per-

formed a systematic analysis of our dataset and surveys with 225

developers to investigate our research questions. Our study re-

vealed several interesting findings (16), drawbacks of existing tools

on embedded crates, and open problems (8) to increase the adop-

tion of Rust for embedded systems. A few interesting findings

include the following: Embedded crates use more (∼2X) unsafe

blocks than non-embedded crates, significantly increasing the pos-

sibility of memory safety issues. However, existing techniques to

isolate unsafe blocks are not applicable to embedded systems. Ex-

isting developer support tools related to Rust, such as c2rust, fail

on majority of embedded codebases, as these tools fail to handle

the diverse build systems and execution semantics of embedded

systems. The state-of-the-art Rust SAST tools perform poorly on

embedded crates. The superior type-system of Rust makes it chal-

lenging to engineer interoperable embedded systems code. Our

observations are in line with the developer survey, and many de-

velopers consider the Rust documentation for embedded systems

poorly organized and want the documentation to contain more

examples. In summary, the following are our contributions:

• Software Study: We perform a systematic study of the Rust

software ecosystem to support the use of Rust for embedded

applications and highlight opportunity areas for adoption.

• Tool Study: We systematically studied the effectiveness of var-

ious (9) Rust related tools, i.e., SAST tools, quality checking,

and conversion tools, on embedded crates and identified various

weaknesses specific to embedded systems.

• Developer Aspects: We performed a large-scale developer sur-

vey (with 225 developers) that highlights the challenges for slow

adoption of Rust for embedded applications.

• Dataset, Findings, and Open Problems 1: We curated a set

of 6,408 embedded Rust crates cataloged into various categories

along with the necessary infrastructure to run analysis tools. Our

findings shed light on challenges in adopting Rust for embed-

ded systems, insights into open problems, and possible research

directions.

2 Background

This section provides the necessary background information for

the rest of our work.

2.1 Embedded Systems

Embedded systems are designed to perform a designated set of tasks

in a resource-constrained environment and on battery-powered

devices. There are several ways to categorize embedded systems.

Previous work [91] categorizes embedded systems based on under-

lying Operating System (OS).

(a) Type-1 systems have feature-rich general-purpose OSes retro-

fitted for embedded systems.

(b) Type-2 systems or constrained devices [26] use specialized

embedded OSes, which are usually designed as Real Time Oper-

ating System (RTOS), e.g.,WEMO Light controller [138] running

FreeRTOS [52].

(c) Type-3 systems do not use OS abstractions and are rarely

used in commercial products.

Previous work [11] shows consumer IoT devices, such as door

knobs and temperature controllers, are mostly Type-2, which we

primarily focus on. Type-2 systems execute on battery-powered and

resource-constrained Microcontroller Units (MCUs). These systems

have a lot of diversity in terms of hardware (MCU and peripherals)

and supported software [91, 139]. For instance, there are 31 dif-

ferent RTOSes [98]. To handle this diversity, Type-2 systems have

a layered design [128] (illustrated in our Extended Report [126]).

Application logic is implemented in tasks managed by an RTOS.

Execution Semantics. The application and all the layers are com-

piled into a single monolithic binary and flashed onto the on-chip

flash memory. On reset, the contents of the memory are loaded into

RAM, and execution starts from a pre-defined address, i.e., start or

reset address. The tasks get scheduled per the scheduling policy,

and handlers get triggered on corresponding events.

2.2 Rust

Rust is a programming language created by Mozilla to build ef-

ficient and safe low-level software [27, 68, 71, 121, 124]. Rust is

targeted to achieve performance comparable to programs writ-

ten in C while avoiding many safety issues in C, including con-

currency and memory safety bugs. This section provides a brief

overview of Rust’s safety features. We recommend the Rust’s

official book [121] for a comprehensive understanding of these

features.

1https://zenodo.org/records/12775715

2297

Rust for Embedded Systems: Current State and Open Problems CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

Features and Safety Guarantees. Rust has several features, such

as scopes, borrowing rules [120], single ownership [118], and life-

times [115], which force developers to follow certain practices

enabling verification of memory safety properties (mostly) at com-

pile time. For instance, all read-write variables should be explicitly

marked as mutable (i.e., mut). Rust provides both spatial and tem-

poral memory safety. We provide a discussion of these guarantees

in Our Extended Report [126]

Unsafe Rust. Rust features can be too restrictive in a few cases.

For instance, Rust requires all global variables to be read-only, i.e.,

disallows mut. Similarly, we may need to call a C library function,

which is also not allowed. Rust provides unsafe blocks [119] to re-

lax these restrictions and enable interaction with external language

(or foreign) functions. Arbitrary regions of code can be enclosed

in an unsafe directive, and such code will be permitted certain

(otherwise disallowed) actions, such as modifying a mutable global

variable, dereferencing a raw pointer, calling an unsafe or external

method, etc.

Foreign Function Interface (FFI) Support. Rust supports easy

interaction with functions written in foreign languages through

its Foreign Function Interface (FFI) [61]. Specifically, such functions

need to be annotatedwith special attributes, which enables the Rust

compiler to generate appropriate code respecting the ABI of the

target language.

Build System and Package Management. Rust uses an inte-

grated and easy-to-use build system and package manager called

Cargo [110], which downloads library packages, called crates, as

needed, during builds. Developers specify the build configuration

along with all dependencies in a .toml file [133] Ð an organized

key-value text file. Rust has an official community package registry

called crates.io [36], which (as of 29 April 2024) has more than 144K

crates (i.e., libraries) ś a 200% increase over the last two years.

Rust Compilation Attributes. Rust supports attributes or con-

figurations that enable compilation specialization. These attributes

can be at various levels, e.g., crate level, file level, function level,

etc. no_std attribute [46] is a crate-level attribute that avoids

linking the entire standard module and results in small binaries.

Embedded software in Rust should use this attribute to produce

a self-contained binary independent of OS abstractions. A no_std

compatible crate should also have all its dependencies to be no_std

compatible too.

3 Study Methodology

Our study aims to perform a holistic analysis to understand various

aspects regarding usage of Rust for embedded systems. We aim to

answer the following research questions:

• RQ1: Software Support (§4): How good is the software support

for developing Rust based embedded systems?

• RQ2: Interoperability (§5): How effective is the interoperabil-

ity support of Rust to deal with existing C based embedded

codebases?

• RQ3: Developers Perspective (§6): What is developers’ per-

spective on using Rust for embedded systems?

3.1 Embedded Software Dataset

Our goal is to collect Rust crates that are applicable to embedded

systems, i.e., no_std compatible, and can be built using one of

the embedded toolchains. We also want to identify the necessary

compilation steps for all the collected crates.

3.1.1 Crates collection. As mentioned in §2.2, crates.io is the offi-

cial repository for all Rust crates (i.e., libraries). However, there are

other well-known sources, such as Rust-embedded project [113]

and arewertosyet.com, that also contain embedded Rust projects.

We used a two-pronged approach to collect our embedded Rust

dataset.

• Crawling crates.io: We crawled crates.io (in Feb 2024) and got

all the crates that are no_std compatible. This is not trivial as

crates can declare no_std compatibility at various levels. For in-

stance, arduino_nano_connect v0.6.0 [34] crate declares no_std

compatibility at the crate level (i.e., in lib.rs file). In contrast,

futures-executor v0.3.30 [39] crate uses cfg attribute to have

only selected code blocks compile for no_std environment. We

perform lightweight static analysis to identify all such crates.

• Well-known Sources: We collected additional crates by crawl-

ing otherwell-known sources, specificallyRust-embedded project

and arewertosyet.com.

After deduplication, we collected 11,002 unique crates.

3.1.2 Identifying Stable Crates. We tried to build crates using a

stable version of Rust and the corresponding compiler. However,

we identified that 2,025 (18.4%) embedded crates depend on unsta-

ble Rust versions, specifically nightly versions [2]. These versions

contain unstable Rust features and might pose threats to the secu-

rity guarantees of Rust. This is also reflected in one of the concerns

(in §6.3) raised by developers in using Rust for embedded systems.

We only considered those that build on the stable version of Rust,

specifically 1.77.2. This resulted in 8,977 crates.

3.1.3 Compilation Validation. The no_std compatibility alone is

a necessary condition but not sufficient for a crate to be usable

on embedded systems. For instance, oc-wasm-futures [41] crate

is no_std compatible but is for WebAssembly target, which is not

an embedded architecture.

In this step, our goal is to validate crates to check for their

applicability to embedded targets and identify the corresponding

build commands.

Identifying Build Command: All crates can be built using cargo build,

which uses the default configuration specified in the crate’s cargo.toml

file. However, not all crates have their default configuration to

be no_std, i.e., the default build step (cargo build) may not build no_std

compatible version. Such crates require special configuration flags

to be passed to the build command, e.g., we need to use

cargo build --no-default-features --features no_std to build no_std

variant of async_cell. Developers specify such flags through Rust’s

conditional compilation attributes [1] (cfg_attr) as a propositional

logic formula.

For instance, #![cfg_attr(all(feature = "no_std",

not(feature = "std")), no_std)] (in resize v0.8.4 crate)

indicates that we need to pass no_std flag and not pass std to build

for no_std.

2298

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

We use a lightweight static analysis technique to identify the

appropriate build command. First, we identify all cfg_attr directly

corresponding to no_std (i.e., containing #![cfg_attr(..., no_std)])

Second, we analyze the propositional formula to identify the flags

that must be enabled or disabled for no_std. Our technique was

able to find the build commands for 8,148 (90.77%) of crates.

The rest 9.23% failed because of the following reasons: (i) In-

correct attributes: Here, crates have an incorrect cfg_attr speci-

fication. For instance, zero-crypto v0.1.11 crate has wrong flag

name (featusre = "std") (Correct: (feature = "std")); (ii) Incor-

rect dependencies: As mentioned in §2, for a crate to be no_std

compatible all its dependencies should also be no_std. However,

few crates use dependencies that are either not no_std compatible

or incorrectly configured. For instance, linux-kvm v0.2.0 crate de-

pends on linux-io v0.6.0 crate, which is not no_std compatible.;

(iii) Complex attributes specification: In our analysis, we consider

only directly related flags, i.e., those specified along with no-std

in cfg_attr. However, there could be conditional compilation flags

that are indirectly related. For instance, ab_glyph v0.2.23 crate

requires --features="libm" flag. As we explain in Our Extended

Report [126], this flag dependency is specified indirectly and accu-

rately identifying such flags is a combinatorial problem [6].

Open Problem P0.1: We need techniques to automatically iden-

tify embedded system specific (i.e.,no_std compatible) build con-

figurations for Rust crates Ð this also enables identifyingmistakes

in build configurations (a prevalent problem). One possible ap-

proach is to map the dependencies into a boolean formula for

constraint solver and use the solution to derive the appropriate

flags.

3.1.4 Embedded Targets Filtering. There are 23 embedded targets

(85 total targets) supported by the latest stable version of rustc (ver-

sion: 1.77.2). For all the crates for which we identified the build com-

mands, we further filtered out crates that did not build for any of the

embedded targets. For instance, the no_std variant of winapi v0.3.9

crate is excluded because it requires an underlying operating sys-

tem environment, which is not present in embedded targets. This

resulted in a total of 6,408 crates after filtering out 2,569 crates.

Although our study focuses on type-2 systems, our crates are not ex-

clusively type-2. For instance, type-1 systems exist for aarch64-cpu,

one of our targets.

3.1.5 Categorization. Based on the functionality, we categorize

each embedded crate into eight categories (Tbl. 1). We will present

details of these categories in §4.1. We created a Multi-class Random

Forest (MCRF) classifier [28] to categorize a given crate. We man-

ually categorized 2000 crates into various categories. Using this

as ground truth, we created an MCRF classifier with an F1-score

of 82%. We used our MCRF classifier to categorize the rest of the

crates.

Summary. We collected a total of 6,408 embedded crates along

with appropriate build commands that produce no_std compatible

binary.

4 RQ1: Software Support

In this research question, we want to assess the existing software

support for engineering embedded systems in Rust. We plan to

investigate the categories of support software that aid in common

software engineering activities. Specifically:

• (For Development) Libraries and Support Software: As ex-

plained in §2, applications in embedded systems are developed

atop an RTOS and need necessary libraries that enable commu-

nicating with peripherals and provide certain common function-

ality (e.g., network protocols).

• (For Testing) SAST Tools: These are an integral part of software

development [107]. We need to have effective SAST tools to

ensure the quality of newly developed Rust based embedded

systems.

• (ToHandle ExistingCodebases) C toRustConversionTools:

Given that most existing embedded codebases are in C, we should

have tools to convert C to Rust effectively.

4.1 Libraries and Support Software

The available software support, i.e., crates, can be broadly catego-

rized into hardware support crates and utility crates.

Table 1: Categorization of all available embedded crates.

Category

Abbr
Type

Crates

Total
Wrapper

Crates (%Total)

Rtos RTOS Crates 6 2 (33.33%)

Dr Driver Crates 466 31 (6.65%)

Hal HAL Crates 57 29 (50.88%)

Bsp Board Support Package 114 100 (87.72%)

Pac Peripheral Access Crates 565 439 (77.70%)

Arch Architecture Support Crates 15 9 (60.00%)

Util Utility Crates 4,764 173 (3.63%)

Uncat Others 421 30 (7.18%)

TOTAL 6,408 813 (12.69%)

4.1.1 Hardware Support Crates. These provide software abstrac-

tion to interact with the hardware i.e.,MCU, Peripherals, etc. There

are at least 43 differentMCU families with various peripherals [5, 90,

132]. We use the following categories to further categorize based

on the type of interactions the crates provide. Tbl. 1 shows the

summary of different categories of crates available for embedded

systems development.

• Architecture Support: These help in interacting with the pro-

cessor and are Instruction Set Architecture (ISA) dependent. For

instance, the aarch64-cpu crate [111] provides the function

SPSR_EL2.write to write to the Saved Program Status Register

(SPSR) at EL2 exception level on aarch64 processors. For embed-

ded processors (i.e., Reduced Instruction Set Computer (RISC) ISAs),

there are support crates for ARM, MIPS, and RISC-V.

• Peripheral Access: These provide necessary functions to access

peripherals on different MCUs. Out of 43 different MCU families,

peripheral crates are currently available for only 16 (37%). Most

of these crates are generated using svd2rust utility [42], which

automatically converts CMSIS-SVD [63] file (XML description

of ARM Cortex-M processors) into Rust structs. Consequently,

2299

Rust for Embedded Systems: Current State and Open Problems CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

most of these crates are for ARM Cortex-M family processors.

However, other MCUs, such as AVR-based ATMEGA48PB, do

not have SVD files but rather have .atdf files. There exist crates

such as atdf2svd [35] to convert these into CMSIS-SVD format,

but these tools are not robust and have issues.

Open Problem P1.1:We need effective techniques to automat-

ically generate peripheral access crates for non-ARM architec-

tures. Recent advancements in LLM-assisted techniques [143]

show promise in solving this problem.

• HAL Implementation (HAL): These are implementations of

embedded-hal [38], a common Hardware Abstraction Interface for

various MCUs. These provide higher-level functions than periph-

eral crates, which just provide structures encapsulating periph-

eral registers. For example, GPIO::write is a function provided

by embedded-hal, which involves multiple interactions through

GPIO registers. The HAL crates are available for 14 (32%) MCU

families. Unlike peripheral access crates, HAL crates are not auto-

matically generated but are manually engineered. Consequently,

a lot of variance exists in MCU families having HAL crates. For

instance, Espressif MCUs (with Xtensa ISA) has HAL crates [114]

but does not have peripheral crates.

• Board Support (BSP):These crates help in bootstrapping anMCU

for an RTOS. Specifically, these included bootloaders and other

code to initialize and recognize other hardware peripherals. BSPs

are built using HAL and peripheral traits and expose higher-level

functions to operate the underlying MCU or System on Chip

(SoC). For instance, hifive1 BSP crate [123] (for HiFive1 boards)

exposes a function configure_spi_flashwhich uses e310x_hal

[122] HAL crate to configure SPI Flash with maximum speed.

There are BSP crates for 19 (44%) different boards. Unlike periph-

eral or HAL crates, BSP crates are specific to each board Ð- a

combination of MCU and peripherals.

Open Problem P1.2: Recent work [128] exposes layering vio-

lations in C embedded systems, i.e., components breaking the

layered abstraction, e.g., HAL crate not using peripheral crates.

However, no such work exists for Rust crates.

• Driver Crates: These are device drivers and expose functions to

access various aspects of a device. For instance, eeprom24x driver

crate [37] provides the necessary functions (e.g., read_byte) to

access 24x series serial EEPROMs.

• RTOS Crates: These are complete RTOSes, which expose nec-

essary functions for task creation and synchronization, thus en-

abling easy creation of embedded applications.

Finding RQ1.1: Existing hardware support crates mainly target

ARM Cortex-M family MCUs and boards. Although, there are

ongoing efforts [109] to improve support for other family MCUs

such as AVR. It is still a work in progress, and more efforts are

required.

4.1.2 Utility Crates. These are hardware-independent embedded

crates (i.e., no_std) that provide various capabilities for embedded

systems development. For instance, tinybmp embedded crate [43]

provides functions to parse BMP images.

Despite the existence of a large number of utility crates in theRust

ecosystem, only 4,764 can be used in embedded systems because of

the requirement to be independent of OS abstractions, i.e., should

not use Rust’s std crate (or be no_std compatible). However, it

is not easy to convert a crate to be no_std [104] compatible as it

requires the ability to perform semantic refactoring of the crate

and its dependencies. Our Extended Report has an example.

Open Problem P1.3:We need techniques to automatically con-

vert Rust crates to be no_std compatible to enable existing large

quantity of crates to be usable in embedded systems. Recent work

by Sharma et al., [127] demonstrates a possible approach using

type-based conditional compilation.

4.1.3 Quality of Embedded Rust. At a high level, as shown by the

last column of Tbl. 1, many (813 (12.69%)) of the crates are just wrap-

pers around C libraries (details in Our Extended Report [126]). We

also consider crates that depend on a wrapper crate to be wrapper

crates. These crates are susceptible to the bugs in corresponding C

libraries. In other words, vulnerabilities in the wrapped libraries

can be exploited to get complete control of the corresponding Rust

program. This problem has received considerable attention, and

several works try to isolate code running as part of libraries (or in

general unsafe blocks) from the rest of the crate. These techniques

depend on special hardware features [20, 58, 67, 80, 106], specifi-

cally Intel’s Memory Protection Key (MPK) or OS abstractions, such

as mprotect [10], IPC mechanism [99], sandboxing [72] Ð making

them inapplicable to type-2 embedded systems, i.e., RTOS based

embedded systems that run on MCUs.

Open Problem P1.4:We need techniques (applicable also for em-

bedded systems) to isolate Rust code from unsafe code, i.e., tech-

niques that do not depend on hardware features, OS abstractions,

and have low overhead. Recent techniques [65, 66] on C-based

embedded software compartmentalization demonstrate possible

approaches. However, these should be customized for Rust.

Code Quality:We use the following tools to further assess embed-

ded crates’ code quality.

• Qrates [17]: This tool finds instances of various unsafe id-

ioms, i.e., blocks, functions, traits, and trait implementations.

Unfortunately, the tool failed on 405 (6.30%) crates. We provide a

categorization of failures in Our Extended Report [126]. Out of the

remaining 6003 crates, 2634 (43.88%) contain at least one unsafe

idiom. This is much higher than in non-embedded crates where

only 23.6% crates (as reported in [17]) contain unsafe idioms.

Tbl. 2 shows the results alongwith top three reasons for unsafeness.

Note that the percentages are not cumulative, i.e., there could be

multiple reasons for an unsafe block. These reasons differ from

regular crates, indicating the need for different design decisions

when creating analysis tools for embedded crates.

• cla-metrics [86]: Recently, Mergendahl et al., [86] demonstrated

the feasibility of Cross-Language-Attacks, wherein interactions

of Rust with C/C++ could result in security vulnerabilities. They

released cla-metrics, a tool to identify these cross-language in-

teraction points. cla-metrics works on binaries and require ELF

files with specific sections. As we showed in Tbl. 1, there are 813

wrapper crates, which means these contain at least one call

from Rust to C/C++, i.e., a transfer point. Interestingly, cla-

metrics found only 198 crates with interaction points. These

results indicate potential issues with the cla-metrics tool and

2300

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

Table 2: Summary of Qrates results on embedded crates (uf: Call to Unsafe Function, ptr: Derefercing raw pointer, mstat: Use

of Mutable Static, estat: Use of Extern Static, asm: Use of Inline Assembly, union: Access to Union Field)

Category
Num. Crates Successful

(% of Total
from Tbl. 1)

Number of Crates (% of Successful) having Top 3 Reasons for
Unsafe Usage

Unsafe
Blocks

Unsafe
Functions

Unsafe Trait
Impl

Unsafe
Trait

At least one
unsafe idiom

Rtos 3 (50.00%) 3 (100.00%) 2 (66.67%) 2 (66.67%) 0 (0.00%) 3 (100.00%) ud (82%), mstat (29%), estat (6%)

Dr 423 (90.77%) 70 (16.55%) 55 (13.00%) 11 (2.60%) 3 (0.71%) 91 (21.51%) ud (82%), ptr (19%), mstat (2%)

Hal 42 (73.68%) 28 (66.67%) 20 (47.62%) 12 (28.57%) 9 (21.43%) 31 (73.81%) uf (72%), ptr (38%), mstat (2%)

Bsp 89 (78.07%) 25 (28.09%) 23 (25.84%) 4 (4.49%) 0 (0.00%) 29 (32.58%) uf (88%), ptr (77%), mstat (2%)

Pac 560 (99.12%) 508 (90.71%) 538 (96.07%) 528 (94.29%) 5 (0.89%) 547 (97.68%) uf (91%), ptr (18%), mstat (1%)

Arch 10 (66.67%) 9 (90.00%) 10 (100.00%) 1 (10.00%) 1 (10.00%) 10 (100.00%) uf (52%), asm (31%), ptr (22%)

Util 4,473 (93.89%) 1,591 (35.57%) 1053 (23.54%) 554 (12.39%) 210 (4.69%) 1,790 (40.02%) uf (89%), ptr (16%), union (1%)

Uncat 403 (95.72%) 102 (25.31%) 78 (19.35%) 30 (7.44%) 8 (1.99%) 133 (33.00%) uf (84%), ptr (25%), mstat (2%)

Total 6003 (93.68%) 2336 (38.91%) 1779 (29.64%) 1143 (19.04%) 236 (3.93%) 2634 (43.88%) uf (90%), ptr (18%), mstat (1%)

Table 3: cla-metrics results.

Category
Num. Crates Successful

(% of Total
from Tbl. 1)

Num. Crates having
at least one
Transfer Pt.

Rtos 6 (100.00%) 0 (0.00%)

Dr 462 (99.14%) 0 (0.00%)

Hal 56 (98.25%) 0 (0.00%)

Bsp 113 (99.12%) 0 (0.00%)

Pac 562 (99.47%) 0 (0.00%)

Arch 15 (100.00%) 0 (0.00%)

Util 4727 (99.22%) 58 (1.23%)

Uncat 416 (98.81%) 14 (3.37%)

Total 6,357 (99.20%) 73 (1.13%)

we found that an important class of such transfer points that cla-

metrics misses is indirect function calls. Indirect function calls

are common in embedded systems due to their event driven na-

ture. Recent works [30] show that employing CFI mechanism

through LLVM can help detect indirect calls. Although as we see

in 4.3.3, embedded systems fail to build with clang. We need more

work in the area. cla-metrics uses the differences in name man-

gling used by Rust and C++ to determine such transfer points.

This information would not be available for indirect function

calls and hence cla-metrics misses out these.

Security Implications: The prevalence of unsafe idioms indicates

that developers should be more cautious in using embedded crates.

Moreover, the robustness issues in analysis tools indicate that secu-

rity researchers should consider embedded crates as part of their

evaluation.

Finding RQ1.2: Compared to non-embedded crates, many em-

bedded crates (48.5% v/s 23.6%) contain unsafe Rust code idioms.

FindingRQ1.3: cla-metrics fails to identify cross-language inter-

actions through indirect calls e.g., calls through function pointers.

4.2 SAST Tools

As we show in §4.1.3, embedded crates contain a large amount

of unsafe blocks. The presence of unsafe blocks potentially vi-

olates Rust’s safety guarantees and results in various memory

safety issues [17]. It is important to use SAST tools for embedded

systems development in Rust. We investigate the effectiveness of

state-of-the art Rust SAST tools on embedded crates.
Table 4: Failure reasons of SAST tools and the number of

affected crates. Our Extended Report [126] contains detailed

and examples of failures.

Failure Reason
Affected

Tools and Crates
Total

Toolchain
Incompatibility

FFIChecker (2559, 39.93%)
Rudra (2547, 39.75%)
Yuga (539, 8.41%)

SafeDrop (166,2.59%)
rCanary (156, 2.43%)
Lockbud (30, 0.46%)

2,692

Tool Crashes

FFIChecker (67, 1.046%)
rCanary (9,0.14%)

SafeDrop (1, 0.015%)
Lockbud (5, 0.78)
Yuga (1, 0.02%)

89

No binary target
support

SafeDrop (27, 0.42%)
rCanary (25, 0.39%)

FFIChecker (6, 0.094%)
Rudra (4, 0.04%)

27

Ignoring Project-Specific
Configurations

Yuga (19, 0.30%)
Rudra (6, 0.09%)

FFIChecker (2, 0.03%)
SafeDrop (2, 0.03%)
rCanary (1, 0.02%)

21

Timeouts (large crates) rCanary (16, 0.25%) 16

Rustc version
incompatibility

FFIChecker (8, 0.12%) 8

Unknown Reasons Yuga (7, 0.11%) 7

4.2.1 Tool Selection. The recent study by Ami et al., [12] shows

that developers are more likely to use SAST tools that do not require

any configuration and can be directly used on a software project.

Following this, we aim to collect state-of-the-art and readily us-

able SAST tools. Specifically, these tools should run directly on a

given crate and not require any configuration. We searched Rust

2301

Rust for Embedded Systems: Current State and Open Problems CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

Table 5: Summary of Rust SAST tools evaluated as part of the study and the features that are supported (Ë) or not (é), type of

reports (insufficient information , missing relevant details , or detailed report), along with references to results.

Tool
Name

Target
Bug Types

Techniques
Used

Flow-Tracking Report
Type

Result
Reference

Require
Across

Unsafe blocks
Across

FFI Boundaries
Handles Async/
Indirect Flows

Lockbud [103]
Concurrency,
Memory Safety

CallGraph Analysis,
Points-to Analysis,
Dataflow Analysis

Ë é é é
Source Level Traces

(Our Extended Report [126])

Refer Our
Extended Report

[126]

Rudra [19] Temporal & Spatial safety
Taint Analysis,

Dataflow analysis
Ë Ë é é

Source Level Traces
(Our Extended Report [126])

Yuga [94] Temporal Safety
Taint Analysis,
Alias Analysis

Ë Ë é é

Detailed Source
Level Traces

(Our Extended Report [126])

rCanary [45] Temporal Safety
Dataflow Analysis,
Constraint solving

Ë Ë é é
sat/unsat

(Our Extended Report [126])

FFIChecker [77] Temporal Safety
Taint Analysis,
Alias Analysis

Ë Ë Ë é
Generic warning

(Our Extended Report [126])

SafeDrop [44] Temporal Safety
Dataflow Analysis,

Alias analysis
Ë Ë é é

Affected Function name
(Our Extended Report [126])

forums and the past five years’ proceedings of top-tier security and

software engineering conferences and collected the set of readily

usable SAST tools. We filtered out tools that did not satisfy our

requirements. For instance, we did not select MirChecker [76]

because it requires configuring the abstract domain and specifying

analysis entry points. After filtering such tools, our investigation

resulted in six tools as summarized in Tbl. 5.

Almost all tools except for Lockbud focus on identifying tem-

poral safety issues, e.g., incorrect lifetimes, and multiple drops. All

these tools are based on flow-tracking as indicated by Ë under

the Require column.

4.2.2 Qualitative Assessment. As presented in §4.1.3, embedded

Rust crates have a higher percentage of unsafe blocks, use FFI

functions (i.e., interact with C libraries), and use indirect (or function

pointer) calls. SAST tools should be able to handle these idioms to

be effective on embedded crates.

Supported Features: We referred to the research papers on the cor-

responding tools and created simple examples to identify their

capabilities to handle idioms common in embedded crates. The var-

ious columns under Flow-Tracking indicate whether each of these

idioms is either supported (Ë) or not (é) by the corresponding

tools. All tools, except for Lockbud, handle flows across unsafe

blocks. None of the tools handle data-flows through indirect calls

(i.e., function pointer calls) Ð which is one of the common idioms in

embedded systems (§2.1 and [128]). Except for FFIChecker, none

of the tools handle flows across FFI boundaries, another common

usage in embedded crates.

Usability:Despite the existence of standard formats, such as SARIF [3],

Rust SAST tools employ ad-hoc ways to report their warnings. As

shown in the last column of Tbl. 5, these reports do not always

contain the necessary information to triage the underlying defect.

The Tbl. 5 also contains references to the examples of correspond-

ing warnings. All tools, except for Yuga, report their findings in an

ad-hoc and hard-to-analyze manner. rCanary and FFIChecker just

provide a single-line warning without any details about the source

location Ð which makes these warnings almost impossible to ana-

lyze. Lockbud, Rudra, and SafeDrop provide source level traces.

However, the complex semantics of Rust lifetimes make it hard

to triage the reported warnings. Yuga provides a well-formatted

HTML report with necessary information about the identified de-

fect.

4.2.3 Effectiveness. There is no existing Rust embedded systems

bug dataset. The situation is the same for C/C++ [129]. , which

also contains references to the complete results We evaluated the

effectiveness of SAST tools on our embedded crates dataset. The

last column of Tbl. 5 has references to the complete results for each

tool. Robustness Issues: SAST tools fail to handle the diverse build

configurations, code structures, and semantics of embedded Rust

crates. Consequently, these tools failed on several crates. The Tbl. 4

summarizes different classes of failures, affected tools, and crates.

The majority of failures are because of łToolchain Imcompatibili-

tiesž, i.e., tools fail to identify the backend toolchain required by

crates and consequently fail to analyze.

Precision: Given the large number of warnings, we used a random

sampling method to analyze the precision of the tools. Specifically,

we picked 30 crates with more downloads than the median across

all the crates. This is to avoid selecting unimportant or rarely used

crates.

We ignored rCanary and FFIChecker as their warnings did

not contain enough information. Furthermore, even for other tools

(e.g., Lockbud), the information provided is not always sufficient

to triage the corresponding warning. We categorized each warning

into True Positive (TP), False Positive (FP) or Insufficient Informa-

tion (IsIn). Tbl. 6 shows the results, the top two reasons for false

positives, and the corresponding examples. First, tools were able to

find real defects. Our Extended Report [126] shows a real deadlock

found by Lockbud in the tracing-log crate. However, the true

positive rate is very low. Contrary to tools’ claim, all tools suffer

from a very high false positive rate (40%-90%) on embedded crates.

This is unsurprising as all these tools are evaluated (mostly) on

non-embedded crates. This indicates that the design choices of the

current tools fail to consider embedded crates.

Security Implications:Our results indicate that developers cannot

solely rely on existing automated SAST tools to assess their crates

and should also perform manual or semi-automated assessments.

4.3 C to Rust Conversion Tools

We selected C to Rust conversion tools by following the same

approach as for SAST tools (§4.2.1). Although several tools satisfy

2302

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

Table 6: Summary of manual analysis of results of vari-

ous Rust SAST tools with True Positives (TP), False positives

(FP), and Insufficient Information (IsIn). We list the top two

reasons for FPs here (examples and complete results in our

Extended Report [126]). Details in §4.2.3.

Tool
Name

Analysis Results Top 2
FP ReasonsTP FP IsIn

Lockbud 10 (33%) 14 (46%) 6 (20%)
Lock type ambiguity (42%)

Complex Program Semantics (32%)

Rudra 1 (2.7%) 36 (97.2%) N/A
Ignoring Explicit Guards (50%)
Ignoring Atomic Types (30%)

Yuga 10 (33%) 13 (43%) 7 (23.3%)
Ignoring Caller Contexts (56%)

Complex Program Semantics (30%)

SafeDrop 9 (30%) 17 (56.6%) 4 (13.3%)
Infeasible Paths (80%)

Analysis Imprecision (10%)

Finding RQ1.4: Current SAST tools lack the necessary features

required to effectively handle embedded crates.

Finding RQ1.5: Current SAST tools do not provide the necessary

information to triage the reported defects, making it hard (rather

impossible) to verify the reports.

FindingRQ1.6:Current SAST tools fail to effectively handle build

idioms and configurations of embedded Rust crates, resulting in

robustness issues.

Finding RQ1.7: The design choices of current SAST tools fail to

effectively handle the common idioms in embedded crates result-

ing in a very high false positive rate (40%-90%).

Open Problem P1.5: There is no dataset of security bugs

in Rust embedded crates. Recent systematic bug dataset creation

works [59] provide possible approaches to tackle this.

our requirements, we present the results of only the c2rust tool.

Other recent tools, such as laertes [50] and CRustS [78], do not

work directly on C code but rather improve the Rust code produced

by c2rust through novel post-processing techniques. As we will

show in §4.3.3, c2rust either failed or produced uncompilable Rust

code on (almost) the entire dataset. Consequently, recent tools that

depend on c2rust also failed on the dataset.

4.3.1 Dataset. We collected popular C/C++ based RTOS from osrtos.

com, which maintains the list of all popular RTOSes released to

date. We selected well-maintained (i.e., has build instructions) and

compilable RTOSes. This resulted in a total of 16 C/C++ RTOSes

(𝐶𝑅𝑇). The compilation of RTOSes is specific to an MCU and in-

cludes HAL and other peripheral access libraries for the MCU. Thus,

using RTOSes enables us to test the effectiveness of c2rust on code-

bases across different layers of embedded systems.

4.3.2 Running c2rust. To convert a project, we first need to cap-

ture compilation commands, e.g., generating compile_commands.json

using scan-build [81]. Next, we need to run c2rust on the cap-

tured compile_commands.json. c2rust uses clang to parse C files

and uses pattern-based techniques on the resulting Abstract Syn-

tax Tree (AST) to produce corresponding Rust code. Specifically,

each compilation command (from compile_commands.json) will be

executed by replacing the compiler with clang. However, just

replacing the compiler will not work as embedded systems use

non-standard and MCU specific toolchains, e.g., avr-gcc, whose

compiler flags/options may not be supported by clang. We fol-

lowed an on-demand approach to convert into a clang compatible

variant and run c2rust. Specifically, for each incompatible option

leading to an error in conversion/compilation, we refer to clang’s

documentation to see if there is an alternative option (case-1), or

if it is not supported by clang (case-2). For case-1, we use the

corresponding alternative flags, e.g., we replace -march=nehalem

with -march=armv8-a. For case-2, we remove those flags/options

(5 flags), e.g., -Wformat-overflow. The removal of case-2 flags does

not affect the conversion (a frontend task), as all of these flags are

related to optimization (a middle/backend task).

4.3.3 Results. Our Extended Report [126] has a summary of the

results. All RTOSes, except for two, required manually fixing

compile_commands.json (discussed in §4.3.2). c2rust failed on 6

(37.5%) RTOSes. The two main reasons for this are: (i) Embedded sys-

tem codebases often use (clang) unsupported C language features,

and (ii) c2rust uses Rust std library to generate certain wrapper

functions, but as mentioned in §2.2, std library should not be used

in an embedded environment. For instance, gnucc/oscore.c file

in stateos/StateOS uses parameter references in naked functions,

which is not supported by clang [82] and consequently, c2rust

fails. It executed successfully on 10 (62.5%) RTOSes. Out of which, the

generated Rust code was incorrect or syntactically invalid (e.g., miss-

ing semicolon) on 9 (90%) RTOSes. The conversion was successful

(i.e., c2rust produced compilable Rust code) on only one RTOS, i.e.,

kmilo17pet/QuarkTS.

Finally, c2rust uses a syntactic approach and consequently

produces Rust code with mostly unsafe blocks. Although recent

works [50] have tried to improve the situation, the progress is rather

slow and requires more focused efforts.

Finding RQ1.8: C to Rust tools fail on most, i.e., 93.8% (15/16),

embedded codebases because of the prevalent use of special com-

piler flags and non-standard C language features.

Finding RQ1.9: C to Rust tools do not consider the no_std re-

quirement and consequently will generate Rust code inapplicable

for embedded systems.

5 RQ2: Interoperability of Rust

Most existing embedded system codebases are written in C [129].

Developers should be able to write Rust code that can interoperate

with existing C code to avoid reengineering the entire embedded

software stack in Rust. As mentioned in §2.2, Rust has Foreign

Function Interface (FFI) support enabling interoperability with code

written in other languages, especially C.

To answer this research question, we investigate the effort and

challenges in developingRust (or C) code that can interoperatewith

C (or Rust) code. We first provide a brief overview of recommended

steps to develop interoperable code and quantify the effort and

challenges specific to embedded systems. Second, we will present

our experience and challenges in engineering interoperable code

in various embedded system development scenarios.

5.1 Rust ⇔ C

The top part of Tbl. 7 summarizes our observations.

2303

Rust for Embedded Systems: Current State and Open Problems CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

Table 7: Summary of Rust Interoperability Modes. We indicate whether each step is easy (⌣), (e.g., running a tool on a C

file), requires medium effort or automation opportunities (À) (e.g., configuring linker script), or requires significant effort

or open-problems (⌢) (e.g., rewriting embedded C code in Rust). The challenges affecting embedded systems are highlighted .

Interoperability Modes
Method Effort

Embedded System
Specific

Challenges
Mode

Sub
Abbr.

Desc.

R
<
->
C

(§
5.
1)

R
->
C

(§
5.
1.
1) Calling C function

from Rust
1. Use bindgen to get declaration in Rust (⌣)

2. Link with target C object file (À)

Easy
(All C types are
FFI Compatible)

N/A

C
->
R

(§
5.
1.
2) Calling Rust

function from C
1. Use cbindgen to get declaration in C (⌢).
2. Link with target Rust object file (À).

Depends on the use of
Rust types not compatible

with C types.
(i.e., FFI Incompatible types)

Most functions in
Embedded crates use
FFI incompatible types.

In
te
ro
p
er
ab
il
it
y
in

E
m
b
ed
d
ed

Sy
st
em

C
o
m
p
o
n
en
ts

(§
5.
2)

R
o
C

(§
5.
2.
2) Developing Rust

Application on top of
C-RTOS

1. Use bindgen to get C-RTOS
functions’ declarations in Rust (⌣).
2. Modify the linker script (À).

Easy
(All C type are
FFI compatible)

N/A

C
o
R

(§
5.
2.
3) Developing C

Application on top of
Rust RTOS

1. Use cbindgen to get Rust-RTOS
functions’ declarations in C (⌢).
2. Modify the linker script (À).

Depends on the use
of FFI incompatible types

in Rust RTOSes.

There is a prevalent
use of FFI incompatible
types in Rust RTOSes.

R
w
C

(§
5.
2.
4) Converting a component

in C-RTOS to Rust

1. Use bindgen to convert all dependent
component C headers to Rust (⌣).
2. Rewrite the target embedded

component in Rust (⌢).
3. Modify the Makefile (À).

Depends on the effort
to rewrite C code to Rust.

C to Rust conversion tools
fail to handle embedded codebases,

forcing manual rewriting.

5.1.1 Calling C function from Rust (Rust → C). To invoke a C

function from from Rust, first, we need to provide the Rust FFI sig-

nature of the function. This can be done using tools such as bindgen [24]

to automatically generate FFI signatures from C header files. Then,

they can link the library (i.e., object file) containing the C function

with the Rust object file to get the final executable. We illustrate

these steps with an example in Our Extended Report [126]. One

of the main tasks here is to generate FFI bindings for the C func-

tions. It is relatively straightforward to create these bindings as

the Rust’s type system [84] is a superset of C’s, i.e., every builtin C

type has a corresponding type in Rust. Finally, the target object file

created from Rust code should be linked to the source C project.

However, there are no automated tools to achieve this. In summary,

it is relatively straightforward to write Rust code that can invoke

C functions, but automation opportunities exist.

5.1.2 Calling Rust function from C (C → Rust). Similar to Rust

→ C (§5.1.1), here we need to generate C declaration for the tar-

get Rust function, which can be automated using cbindgen [87] tool

(Our Extended Report [126] provides details of this process). The

superior Rust type system has several types that are not supported

in C. For instance, Vec [117], one of the most commonly used Rust

types, is not supported in C. Consequently, cbindgen fails for such

functions. Developers need to write type wrappers to handle this

manually. But advanced features of Rust types, such as trait [137],

makes engineering these wrapper functions challenging [61], more

details in Our Extended Report [126]. We also performed a type

compatibility analysis to assess the extent to which external func-

tions in Rust crates use advanced Rust types, i.e., library functions

for which developers need to engineer corresponding type wrapper

functions manually. Our Extended Report [126] provides details of

the same. This is also the difficulty faced by developers (RQ3.4) as

we discuss in §6.3.

Finding RQ2.1: Although it is relatively straightforward to in-

voke C functions from Rust code, automation opportunities exist

to ease the process.

FindingRQ2.2:The use of FFI incompatible typesmakes it hard to

invoke Rust functions from C code. The majority (∼70%) of Rust

embedded crates have functions with incompatible types.

Open Problem P2.1: Embedding rust function calls in C applica-

tion is challenging due to the need for type conversion between C

types and FFI-incompatible rust types. One possible approach is

to manually create (once for all) type wrappers for basic complex

types (e.g., Vec) and use them to automatically create wrappers

for composite types (e.g., struct).

5.2 Rust Interoperable Challenges in Embedded
Systems Development

We used Rust in various real-world scenarios to investigate this

aspect. Specifically, we explore: Rust application on top of C RTOS

(RoC), C application on top of Rust RTOS (CoR) and converting a

component in C RTOS to Rust (RwC). The bottom part of Tbl. 7

summarizes our observations.

5.2.1 Setup. We chose the blinker application [95] for our applica-

tion scenarios (RoC and CoR) as it encompasses all the necessary

aspects of a typical embedded system, i.e., interacts with RTOS, has

event-driven custom interrupt handler, and uses call-backs. The ap-

plication periodically (through an interrupt handler) blinks an LED

by interacting through GPIO addresses. We used the nrf52840-dk

MCU board [96] with ARM Cortex-M4 for our target board, as it

is a widely recognized and adopted development platform in the

embedded systems community and is well-supported by Rust. We

used FreeRTOS [52] as our C RTOSes, because of its widespread

popularity in the embedded systems community [141] and extensive

2304

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

documentation [53]. As mentioned in §3.1, Rust RTOS can be either

fully developed in Rust (i.e., native) or wrappers around a C RTOS.

We selected lilos [23] and FreeRTOS.rs [54] as our native and

wrapper RTOSes, respectively. lilos is a stable and purely Rust

based and completly asynchronous RTOS. This is a representa-

tive Rust based RTOS using the strongly suggested async design

pattern [85].

5.2.2 Rust application on top of C RTOS (RoC). Our goal is to cre-

ate a Rust blinky application on top of C FreeRTOS. We followed

similar steps as described in §5.1.1. First, we generated embedded

system compatible (i.e., no_std) Rust FFI bindings from FreeRTOS

header files using bindgen. Second, we developed blinky applica-

tion using these FFI bindings. Our Extended Report [126] shows a

snippet of creating a task using FreeRTOS through its FFI bindings.

Specifically, we converted Rust types into appropriate FFI types

and invoked the target function. We followed a similar procedure

for all other steps, i.e., registering interrupts, etc. Finally, we created

a static library of C FreeRTOS and linked it with our Rust applica-

tion to get the final executable. We tested the final executable and

ensured that it worked as expected. The entire process was straight-

forward. The only issue was creating a linker script suitable for

the target board. As mentioned before in §5.1.2, the availability of

automated tools will make this process easier.

Listing 1: FFI incompatible function and FFI-friendly wrap-

per function to create tasks in Lilos scheduler

1 // FFI incompatible function

2 pub fn run_tasks(

3 futures: &mut [Pin <&mut dyn Future <Output = Infallible >>],

4 initial_mask: usize ,

5) -> !

6

7 #[no_mangle]

8 pub extern "C" fn lilos_run_two_tasks(fn1: *mut fn(), fn2: *mut

fn(), initial_mask: usize) -> ! {

9 unsafe {

10 let fut1 = *fn1;

11 let future1 = pin!(async move {

12 loop { fut1() } });

13 let fut2 = *fn2;

14 let future2 = pin!(async move {

15 loop { fut2() } });

16 run_tasks (&mut [future1 , future2], initial_mask);

17 }

18 }

5.2.3 C application on top of Rust RTOS (CoR). This interoperable

modality is crucial for developers who seek to build secure systems

by leveraging existing components. Furthermore, as shown in Fig. 4,

36% of developers claim to have developed C code calling Rust

functions. Here, our goal is to create a C blinky application on top

of Rust RTOSes, specifically on FreeRTOS.rs (Rust wrapper of

C FreeRTOS) and lilos (a pure Rust RTOS). We followed similar

steps as described in §5.1.2.

• On FreeRTOS.rs: Being a wrapper, all external functions used C

compatible types, and cbindgen was able to create C declarations

for all the required functions. This made it easy to create the main

task of the C blinky application. However, accessing GPIO pins

required us to use nrf52840_pac [116] Rust create, which uses a

C incompatible type, i.e., RegisterBlock. Consequently, cbingen

failed to create corresponding C declarations. We manually cre-

ated an FFI compatible Rust function (togglePin) to access

GPIO pins and used it in our application. Refer our Extended

Report [126] for details.

• On lilos: This presented an extreme case wherein none of the ex-

ternal functions are FFI compatible, and consequently, cbindgen

failed to create C declarations.We had tomanually create FFI com-

patiblewrapper functions (e.g., lilos_run_two_tasks for run_tasks

in Lis. 1). For accessingGPIO pins, we followed the same approach

as described before in On FreeRTOS.rs.

The main challenge in both cases was dealing with incompat-

ible Rust types. We found (from our analysis in §5.1.2) that on-

average of 26 interface functions in Rust RTOSes use incompati-

ble Rust types.

Finding RQ2.3: Significant development effort is required to en-

gineer a C-embedded application on top of Rust RTOSes because

of the prevalent use of incompatible Rust types.

5.2.4 Rust component in C RTOS (RwC). Here, we aim to convert

a component in C RTOS into Rust to mimic an incremental port-

ing scenario. We selected list component in C FreeRTOS, as it

is self-contained (i.e., no calls to other components). We followed

a similar procedure as described in §5.1.1. First, we used bindgen

on list.h to create the required Rust types. The xLIST (in our

Extended Report [126]) shows the type generated by bindgen. Sec-

ond, we reimplemented the list functions (in list.rs) using the

types generated by bindgen. Unfortunately, as mentioned in §4.3,

the recommended way to convert C to Rust code does not work on

embedded codebases. We manually translated the corresponding C

implementation line-by-line into Rust, which required considerable

effort. Our Extended Report shows a snippet of vListInitialise

function in Rust. Finally, we modified the Makefile to build list.rs

into a static library and linked it with the final FreeRTOS object

file.

Finding RQ2.4:The lack of embedded codebase support in C-to-

Rust conversion tools (described in §4.3) poses a considerable

challenge in adopting the (recommended) incremental porting

approach [50, 134] to convert embedded codebases to Rust.

6 RQ3: Developers Perspective

We aim to shed light on developers’ perspectives on using Rust

for embedded systems development. Specifically, (i) Reasons for

not using Rust.; (ii) Challenges faced by developers in using Rust.;

and (iii) Developer’s perspective on Rust’s performance, safety and

interoperability.

6.1 Study Methodology

We used an anonymous online survey with questions spanning

various categories as shown in Tbl. 8. We recruited participants

by sending the link to our survey to various embedded systems

communities and Rust embedded developers’ mailing lists (De-

tails in Our Extended Report [126]). Also, we used our industry

collaborations to circulate our survey to multiple organizations.

Our Institutional Review Board (IRB) reviewed and approved our

study protocol.

Survey Respondents. We got 268 responses, out of which we

filtered out 43 responses from inattentive participants (through

2305

Rust for Embedded Systems: Current State and Open Problems CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

Table 8: Summary of Survey Questions. Exact questions in Our Extended Report [126]

Category Description No. of questions

Familiarity and Experience Examines participants’ familiarity, experience, and preferred languages for embedded systems
development.

9

Acquaintance with Rust Explores familiarity with Rust and its specific features of participants. 15
Reasons to Use Rust Gathers opinions of participants on reasons to use Rust, its advantages, and perceived challenges. 13

Hardware Support, Integration, and Performance Enquires about issues related to hardware support, integration, and performance when using Rust for
embedded development.

11

Memory Safety and Debugging Focuses on the importance of memory safety, ease of debugging with Rust, and related practices in
embedded systems development.

9

Documentation and Community Support Evaluates the quality of Rust documentation and the level of community support available for
embedded systems.

6

Development Time and Code Quality Investigates views on potential gains in development time and code quality when using Rust. 3

attention-checking questions), resulting in 225 valid responses.

There is considerable diversity in the embedded systems experi-

ence of participants, indicating a representative developers group.

Our Extended Report shows the distribution of embedded systems

experience of participants.

6.2 Not Using Rust for Embedded Systems:
Expectations v/s Reality

69 (91%)

Developers not using Rust for Embedded Systems (76 (33.8%))

Lack of expertise (86%)

Non-convinced about Rust's benefits (29%)

Never Tried Considered but discontinued

7 (9%)

Lack of Support for MCUs (36%)
Difficulty Integrating with Existing codebase (32%)

Organization constraints and certification requirements (30%)

Manual Inspection (28%)
Static Analysis Tools (21%)

Avoid Memory Allocation after init (10%)

Handling Memory Safety Issues

4
Better Library and tool support (20%)

Easy to learn (20%)
Portability (18%)

Low-level control over hardware (14%)

Why C over Rust?

3

1 2

Figure 1: Response summary of Developers not using Rust.

The Fig. 1 shows the summary of 76 (33.8%) participants who

currently do not use Rust. Only, 7 (9%) participants never tried to

use Rust, mainly because of the lack expertise (1○). Furthermore,

29% of developers are not convinced about Rust security benefits

as embedded systems rarely use dynamic memory allocation and do

not need Rust’s ownership features Ð an important safety feature

of Rust.

However, the other 69 (91%) participants considered Rust, but

discontinued because of three main reasons (2○): (i) Lack of support

for MCUs, this is inline with our analysis in §4. (ii) Integrating with

existing codebases. (iii) Organizational and certification constraints.

Source code used as part of critical infrastructure, such as airplanes,

undergo rigorous certification [47, 69, 70]. This is expensive and

time-consuming. Switching to Rust requires re-certification, which

may not be desirable for organizations.

All developers in Fig. 1 use C, and the 3○ box shows the reasons

for choosing C. The first two reasons are expected, as C is an old

language with many libraries and toolchain support. The third

reason, i.e., Portability, is interesting. In C, there are no language-

specific considerations for embedded systems. Consequently, it

is relatively easy to port (or repurpose) an existing library for the

embedded use case by linking it with embedded versions of standard

libraries. However, in Rust, embedded libraries (i.e., crates) should

be developed with no_std environment Ð which restricts the uses

of certain language-level features. Consequently, porting existing

libraries to be no_std compatible and to use in embedded systems is

challenging [40, 46].

Interestingly, as shown in 4○ of Fig. 1, many (28%) embedded

systems developers (using C) do not use any automated security

tools and rely on manual inspection. Only 21% of the developers

use static analysis tools. This confirms observations made by a

recent study [129]. Finally, none of the developers use any dynamic

analysis tools.

Finding RQ3.1: To improve adoption of Rust for embedded sys-

tems:

• Support needs to be added for more MCUs.

• Techniques and methods should be developed to ease the certi-

fication of Rust code ported from already certified C code.

• Automated techniques should be developed to convert Rust

crates to no_std compatible.

6.3 Experiences in Using Rust for Embedded
Systems

There were 149 (66.2%) participants who currently use Rust for

embedded systems development. These participants have varied de-

velopment experience with Rust, specifically, 19% with < 6 months,

28% with 6 months - 1 year and 18% with 1-2 years, and 35% with

more than 2 years.

Adopting Rust and Motivation: The two main motivations to

learn Rust for embedded systems are safety and reliability (94%)

and familiarity with the language (57%). Although there exists good

support for Rust in the embedded systems community (Fig. 7), the

majority percentage (85%) of developers claim that it still requires

considerable effort (i.e.,Moderate (40%) + Hard (45%)) to adopt Rust.

Rust Documentation and Community Support (Fig. 6 and 2):

Themajority, i.e., 81% (51 + 30) of developers, agree that the available

documentation and community are helpful. However, 49% (30 +

19) of developers mention that documentation should be improved.

The Fig. 2 shows specific suggestions to improve the documentation.

Specifically, Rust documentation should contain more examples and

be organized better.

Developer Tools and Crates: 68% of the developers think the cur-

rently available crates provide sufficient support (i.e., very satisfied

ś somewhat satisfied), whereas the rest, 32%, observe that it is not

2306

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

More

examples

Better

information

organization

Others Improved

search

functionality

20

40

60

80
79.19

52.35

24.16

15.44

Figure 2: Required Improvements to Rust Documentation.

adequate (i.e., dissatisfied ś very dissatisfied). This is also in line with

our analysis (§4), where we noticed that necessary support (i.e.,

HAL and other necessary crates) is unavailable for certain MCUs.

Fig. 3 shows the opinion of users w.r.t the Rust toolchain sup-

port. Most developers (across all experience levels) mention that it

is easy to adopt Rust toolchain for embedded systems development

Ð reasons are intuitive tools and their documentation (5○). This is

in line with our analysis in §5. Nonetheless, 12% (18) developers ex-

pressed concerns, i.e., poor documentation (missing examples) and

buggy tools (6○). These could be because of using tools from non-

stable branches. This also further confirms observations in Fig. 2,

where developers require more examples to be included in the

documentation.

12%88%

Intuitive Tools (76%)

Documentation (54%)

Community Support (32%)

Better Integration with Hardware (27%)

Poor Documentation and Examples (58%)

Incomplete or Buggy Tools (50%)

Difficulty Integration with Hardware (39%)

Ease of Adopting Rust toolchain

Easy - Moderate Hard - Very hard

Beginner: 15 (79%), Intermediate: 37 (82%),
Advanced: 49 (96%), Expert: 30 (88%)

(Developer Experience) (Developer Experience)

Beginner: 4 (21%), Intermediate: 8 (18%),
Advanced: 2 (4%), Expert: 4 (12%)

5 6

Figure 3: Response summary of Developers on ease of adopt-

ing Rust toolchain.

Performance of Rust: It is interesting to see that only 54% of de-

velopers mentioned that they performed a systematic comparative

evaluation of their Rust implementation with existing C implemen-

tation. Wherein 28.5% noticed similar performance, 22% noticed

that Rust was faster, and the remaining 3.5% noticed that Rust

implementation was slower.

The slowdown observations contradict the common belief that

given the asynchronous nature of embedded systems, the perfor-

mance of Rust’s implementation can be significantly improved by

carefully using its built-in features, such as closures [60]. These

observations also highlight the need for a systematic performance

evaluation of using Rust for embedded systems.

Finding RQ3.2: Rust documentation should be improved with

more embedded system-specific examples.

Open Problem P3.1: Developers have contradictory views

on Rust’s performance on embedded systems. Existing perfor-

mance studies [21, 71, 144] could be extended to include Rust

embedded systems.

Interoperability with Existing Codebase: All developers agree

that interoperability is needed, and most developers (98%) were

aware of Rust’s interoperability support. However, 56% of develop-

ers mentioned that they face challenges in using interoperability

support of Rust. The 7○ box in Fig. 4 shows developers’ common

challenges in using interoperability support.

Finding RQ3.3: The majority (i.e., 34%) of developers face issues

handling type incompatibilities between Rust and C code. This is

in line with our analysis (§5.1.2), where we show that handling

data types is one of the challenges in using C on top of Rust

(CoR).

The second major (26%) issue is debugging, which is expected

because, as explained in §2, embedded systems follow an asyn-

chronous and event-driven design. This results in frequent cross-

language domain interactions and makes debugging hard.

As shown by 8○ in Fig. 4, 60% (32 + 28) of developers agree that

using interoperable Rust improves security. However, 32% mention

that secure usage (i.e., through unsafe blocks) requires significant

effort Ð which is in line with existing works [17] that show that

engineering interoperable code in unsafe blocks is challenging and

prone to security issues.

Calling C function from Rust (60%)

Calling Rust functions from C (36%)

Other (e.g., C bindings for Rust) (4%)

Data types incompatibilities (34%)

Debugging (26%)

Memory Management (21%)

Improves Security but requires effort (32%)

Improves Security of Existing C code (28%)

 No significant security improvements (15%)

Challenges Security Benefits

Common Uses

7
8

Figure 4: Response summary of Developers perspectives

on Rust’s Interoperability.

0 10 20 30 40 50 60 70 80 90 100

4454011

Easy Moderate Hard Very Hard

Figure 5: Ease of Adopting Rust for Embedded Systems De-

velopment

Rust v/c C: 92% of developers mentioned that they also used C

for embedded systems development. Out of which, 64% of developers

claim that development time significantly decreased and also the

code quality improved after switching to Rust. This is in line with

recent findings at Google [31]. For embedded systems development,

30% of developers recommend Rust unconditionally, whereas 61%

recommend Rust only if the developer is well-versed in it, and the

9% recommend Rust only if safety is of high importance.

2307

Rust for Embedded Systems: Current State and Open Problems CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

0 10 20 30 40 50 60 70 80 90 100

224224111

Very Poor Poor Average Good Excellent

Figure 6: Support for Rust in Embedded Systems Community

0 10 20 30 40 50 60 70 80 90 100

513019

Percentage (%)

No - should be

improved

Yes - can be

improved

Yes - very

helpful

Figure 7: Is Rust Documentation and Community Helpful?

7 Limitations and Threats to Validity

We acknowledge the following limitations and threats to validity:

• Our findings are based on the analysis of the collected dataset

and SAST tools. The dataset and the tools may not be representa-

tive enough. We tried to avoid this by collecting crates and tools

from diverse sources.

• We did not analyze all the alerts raised by various SAST tools

(§4.2). Consequently, using these alerts to assess the quality of

crates could be exaggerated because of potential false positives.

• Our RQ2 (§5.2) observations are based on limited scenarios and

may not be generalizable. However, the developer survey (in §6.3)

confirmed our findings, reducing the risk.

8 Related Work

Rust Studies: Several works [17, 55, 88, 103, 145] evaluate various

aspects of Rust from the usability perspective. Fulton et al., [55] sur-

veyed and interviewed Rust developers to understand challenges

and barriers to adoption. Similarly, Zeng et al., [145] performed a

mixed-methods study of Rust related forums to identify common

challenges and corresponding solutions. However, other works as-

sess specific aspects of Rust. Astrauskas et al., [17] focused on iden-

tifying common uses of unsafe blocks. Whereas, Qin et al., [103]

focused on identifying challenges in using concurrency constructs

and identified common causes of concurrency issues in Rust code.

Similarly, Mindermann et al., [88] exclusively studied the usability

of Rust’s cryptography APIs, providing crucial recommendations

for developing these APIs to enhance usability and reduce misuse.

Pinho et al., [100] and Ashmore et al., [16] evaluated the feasibil-

ity of using Rust for safety critical systems (a class of embedded

systems). Specifically, using evaluation criteria for programming

languages, aligning with the standards set by RTCA DO-178C, they

demonstrated that Rust meets all the criteria. Levy et al., [74] fo-

cused on using Rust for kernel development and shared their first-

hand experience in creating a kernel for low-power MCUs. They

also demonstrated [73, 75] the feasibility of using Rust to engineer

common kernel building blocks with only a few unsafe blocks.

This paper assesses the applicability and challenges of using Rust

for embedded system software, such as RTOSes, by performing a

systematic analysis and developer study.

Embedded Systems Vulnerabilities: Several works [49, 51, 57]

try to understand vulnerabilities in embedded systems and analyze

challenges and possible solutions for effective vulnerability detec-

tion. Several embedded systems vulnerability detection techniques

use various approaches ranging from static analysis [105], sym-

bolic execution [33], and rehosting-based dynamic analysis [125] or

fuzzing [29]. In this work, we do not propose any new techniques

but rather use state-of-the-art tools (§4.2) to assess various aspects

of Rust embedded software.

9 Conclusion

We performed a systematic analysis and a comprehensive (with 225

developers) survey to understand the current state and challenges in

using Rust for embedded systems development. Our findings pro-

vide insights into the current state and expose open problems and

potential improvements that can facilitate easy adoption of Rust

for embedded system development.

10 Acknowledgements

This research was supported in part by the National Science Foun-

dation (NSF) under Grant CNS-2340548, Rolls-Royce Grant on łDy-

namic Analysis of Embedded Systemsž, and Defense Advanced Re-

search Projects Agency (DARPA) under contract numbers N660012

0C4031 and N660012224037. The U.S.Government is authorized

to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. Any opinions,

findings, conclusions, or recommendations expressed in this ma-

terial are those of the author(s) and do not necessarily reflect the

views of the NSF, Rolls-Royce, or the United States Government.

References
[1] Conditional compilation - The Rust Reference. https://doc.rust-lang.org/

reference/conditional-compilation.html.
[2] How Rust is Made and łNightly Rustž - The Rust Programming Language.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html.
[3] SARIF Home. https://sarifweb.azurewebsites.net/.
[4] The 5 Worst Examples of IoT Hacking and Vulnerabilities in Recorded History.

https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities, June 2020.
[5] Vali Kh Abdrakhmanov, Niaz N Bikbaev, and Renat B Salikhov. Development

of low-cost electronic training boards based on universal microcontroller. In
2016 13th International Scientific-Technical Conference on Actual Problems of
Electronics Instrument Engineering (APEIE), volume 1, pages 319ś325. IEEE, 2016.

[6] Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Djamel Ed-
dine Khelladi, and Jean-Marc Jézéquel. Learning from thousands of build failures
of Linux kernel configurations. PhD thesis, Inria; IRISA, 2019.

[7] Abdullah Al-Boghdady, KhaledWassif, and Mohammad El-Ramly. The presence,
trends, and causes of security vulnerabilities in operating systems of iot’s low-
end devices. Sensors, 21(7), 2021.

[8] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiaojiang
Du, Ihsan Ali, and Mohsen Guizani. A Survey of Machine and Deep Learning
Methods for Internet of Things (IoT) Security. IEEE Communications Surveys &
Tutorials, 22(3):1646ś1685, 2020.

[9] Fadi Al-Turjman and Joel Poncha Lemayian. Intelligence, security, and vehicular
sensor networks in internet of things (iot)-enabled smart-cities: An overview.
Computers & Electrical Engineering, 87:106776, 2020.

[10] Hussain M. J. Almohri and David Evans. Fidelius charm: Isolating unsafe rust
code. In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, CODASPY ’18, page 248ś255, New York, NY, USA, 2018.

[11] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. SoK:
Security Evaluation of Home-Based IoT Deployments. IEEE Symposium on
Security and Privacy (SP), 2019-May:1362ś1380, 2019.

[12] Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. " false
negativeśthat one is going to kill you": Understanding industry perspectives of
static analysis based security testing. arXiv preprint arXiv:2307.16325, 2023.

[13] AMNESIA:33 ś Foresout Research Labs Finds 33 New Vulnerabilities in Open
Source TCP/IP Stacks. https://www.forescout.com/blog/amnesia33-forescout-
research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/, De-
cember 2020.

[14] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In 26th USENIX Security Sympo-
sium, pages 1093ś1110, 2017.

[15] URGENT/11. https://www.armis.com/research/urgent11/.
[16] Rob Ashmore, Andrew Howe, Rhiannon Chilton, and Shamal Faily. Program-

ming language evaluation criteria for safety-critical software in the air domain.

2308

CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

In 2022 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW), pages 230ś237, 2022.

[17] Vytautas Astrauskas, ChristophMatheja, Federico Poli, PeterMüller, and Alexan-
der J. Summers. How do programmers use unsafe rust? Proc. ACM Program.
Lang., 4(OOPSLA), November 2020.

[18] Azure RTOS. https://github.com/azure-rtos.
[19] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim.

Rudra: finding memory safety bugs in rust at the ecosystem scale. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pages
84ś99, 2021.

[20] Inyoung Bang, Martin Kayondo, Hyungon Moon, and Yunheung Paek. Trust:
A compilation framework for in-process isolation to protect safe rust against
untrusted code. In 32nd USENIX Security Symposium, 2023.

[21] Rust vs C++ g++ - Which programs are fastest? https://benchmarksgame-
team.pages.debian.net/benchmarksgame/fastest/rust-gpp.html.

[22] Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan, and
Nader Meskin. Cybersecurity for industrial control systems: A survey. Comput-
ers & Security, 89:101677, 2020.

[23] Cliff L. Biffle. lilos: A minimal async rtos. https://github.com/cbiffle/lilos, 2023.
[24] bindgen - Rust. https://docs.rs/bindgen/latest/bindgen/.
[25] BlueHat. Memory corruption is still the most prevalent security vulnerabil-

ity. https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-
are-memory-safety-issues, 2019.

[26] Carsten Bormann, Mehmet Ersue, and Ari Keränen. Terminology for
Constrained-Node Networks. Request for Comments RFC 7228, Internet Engi-
neering Task Force, May 2014.

[27] William Bugden and Ayman Alahmar. Rust: The programming language for
safety and performance. arXiv preprint arXiv:2206.05503, 2022.

[28] Archana Chaudhary, Savita Kolhe, and Raj Kamal. An improved random forest
classifier for multi-class classification. Information Processing in Agriculture,
3(4):215ś222, 2016.

[29] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
Xiaofeng Wang, W. Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang.
Iotfuzzer: Discovering memory corruptions in iot through app-based fuzzing.
In Network and Distributed System Security Symposium, 2018.

[30] LLVM CFI and Cross-Language LLVM CFI Support for Rust. https:
//bughunters.google.com/blog/4805571163848704/llvm-cfi-and-cross-
language-llvm-cfi-support-for-rust.

[31] Thomas Claburn. Rust developers at Google twice as productive as C++ teams.
https://www.theregister.com/2024/03/31/rust_google_c/.

[32] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C
Necula. Dependent types for low-level programming. In Proceedings of the 2007
European Symposium on Programming (ESOP), pages 520ś535. Springer, 2007.

[33] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. Inception:
System-wide security testing of real-world embedded systems software. In 27th
USENIX Security Symposium, page 309ś326, 2018.

[34] arduino_nano_connect - crates.io. https://crates.io/crates/arduino_nano_
connect.

[35] atdf2svd crates.io. https://crates.io/crates/atdf2svd.
[36] crates.io: Rust Package Registry. https://crates.io/.
[37] eeprom24x - crates.io. https://crates.io/crates/eeprom24x.
[38] embedded-hal - crates.io. https://crates.io/crates/embedded-hal.
[39] futures-executor - crates.io. https://crates.io/crates/futures-executor.
[40] no-std-compat - crates.io. https://crates.io/crates/no-std-compat.
[41] oc-wasm-futures - crates.io. https://crates.io/crates/oc-wasm-futures.
[42] svd2rust - crates.io. https://crates.io/crates/svd2rust.
[43] tinybmp - crates.io. https://crates.io/crates/tinybmp.
[44] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. Safedrop: Detecting

memory deallocation bugs of rust programs via static data-flow analysis. ACM
Transactions on Software Engineering and Methodology, 2021.

[45] Mohan Cui, Suran Sun, Hui Xu, and Yangfan Zhou. rcanary: Detecting memory
leaks across semi-automated memory management boundary in rust, 08 2023.

[46] Item 33: Consider making library code no_std compatible - Effective Rust. https:
//www.lurklurk.org/effective-rust/no-std.html.

[47] Ian Dodd and Ibrahim Habli. Safety certification of airborne software: An
empirical study. Reliability Engineering & System Safety, 98(1):7ś23, 2012.

[48] Gregory J Duck and Roland HC Yap. Heap bounds protection with low fat point-
ers. In Proceedings of the 2016 International Conference on Compiler Construction
(CC), pages 132ś142. ACM, 2016.

[49] Max Eisele, Marcello Maugeri, Rachna Shriwas, Christopher Huth, and Gi-
ampaolo Bella. Embedded fuzzing: a review of challenges, tools, and solutions.
Cybersecurity, 5, 09 2022.

[50] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. Translating c
to safer rust. Proc. ACM Program. Lang., 5(OOPSLA), October 2021.

[51] Xiaotao Feng, Xiaogang Zhu, Qing-Long Han, Wei Zhou, Sheng Wen, and Yang
Xiang. Detecting vulnerability on iot device firmware: A survey. IEEE/CAA
Journal of Automatica Sinica, 10(1):25ś41, 2023.

[52] FreeRTOS. https://www.freertos.org/index.html.
[53] Freertos book. https://www.freertos.org/Documentation/RTOS_book.html.
[54] Freertos-rust. https://github.com/lobaro/FreeRTOS-rust, 2023.
[55] Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael W. Hicks, and Michelle L.

Mazurek. Benefits and drawbacks of adopting a secure programming language:
Rust as a case study. In Symposium on Usable Privacy and Security, 2021.

[56] Dharmalingam Ganesan, Mikael Lindvall, Rance Cleaveland, Raoul Jetley, Paul
Jones, and Yi Zhang. Architecture reconstruction and analysis of medical device
software. In 2011 Ninth Working IEEE/IFIP Conference on Software Architecture,
pages 194ś203. IEEE, 2011.

[57] Imran Ghafoor, Imran Jattala, Shakeel Durrani, and Ch Muhammad Tahir. Anal-
ysis of openssl heartbleed vulnerability for embedded systems. In 17th IEEE
International Multi Topic Conference 2014, pages 314ś319, 2014.

[58] Merve Gülmez, Thomas Nyman, Christoph Baumann, and Jan Tobias Mühlberg.
Friend or foe inside? exploring in-process isolation to maintain memory safety
for unsafe rust. In 2023 IEEE Secure Development Conference (SecDev), pages
54ś66, 2023.

[59] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A ground-truth
fuzzing benchmark. Proc. ACM Meas. Anal. Comput. Syst., 4(3), nov 2020.

[60] Hugo Heyman and Love Brandefelt. A comparison of performance & imple-
mentation complexity of multithreaded applications in rust, java and c++, 2020.

[61] The Rust FFI Omnibus. https://jakegoulding.com/rust-ffi-omnibus/.
[62] Ripple20. https://www.jsof-tech.com/disclosures/ripple20/.
[63] System View Description. https://www.keil.com/pack/doc/CMSIS/SVD/html/

index.html.
[64] Samuel C Kendall. Bcc: Runtime checking for c programs. In USENIX Summer

Conference, 1983, pages 5ś16, 1983.
[65] Arslan Khan, Dongyan Xu, and Dave Jing Tian. Ec: Embedded systems com-

partmentalization via intra-kernel isolation. In IEEE Symposium on Security and
Privacy (SP), pages 2990ś3007, 2023.

[66] Arslan Khan, Dongyan Xu, and Dave Jing Tian. Low-cost privilege separa-
tion with compile time compartmentalization for embedded systems. In IEEE
Symposium on Security and Privacy (SP), pages 3008ś3025, 2023.

[67] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. Pkru-safe: Automati-
cally locking down the heap between safe and unsafe languages. In Proceedings
of the Seventeenth European Conference on Computer Systems (EuroSys), page
132ś148, 2022.

[68] Steve Klabnik and Carol Nichols. The Rust programming language. No Starch
Press, 2023.

[69] Andrew Kornecki and Janusz Zalewski. Certification of software for real-time
safety-critical systems: state of the art. Innovations in Systems and Software
Engineering, 5:149ś161, 2009.

[70] Andrew J Kornecki. Airborne software: communication and certification. Scal-
able Computing: Practice and Experience, 9(1), 2008.

[71] Speed of Rust vs C. https://kornel.ski/rust-c-speed.
[72] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann

Härtig. Sandcrust: Automatic sandboxing of unsafe components in rust. In
Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (PLOS), page 51ś57, 2017.

[73] Amit Levy, Michael P. Andersen, Bradford Campbell, David Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. Ownership is theft: Experi-
ences building an embedded os in rust. In Proceedings of the 8th Workshop on
Programming Languages and Operating Systems (PLOS), page 21ś26, 2015.

[74] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and
Philip Levis. The case for writing a kernel in rust. In Proceedings of the 8th
Asia-Pacific Workshop on Systems (APSys), 2017.

[75] Amit A. Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Alexander Levis. Multiprogramming a 64kb computer
safely and efficiently. Proceedings of the 26th Symposium on Operating Systems
Principles, 2017.

[76] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. Mirchecker:
Detecting bugs in rust programs via static analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS), page
2183ś2196, 2021.

[77] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John CS Lui. Detecting cross-
language memory management issues in rust. In European Symposium on
Research in Computer Security, pages 680ś700. Springer, 2022.

[78] Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James R. Cordy, and Ahmed E.
Hassan. In rust we trust ś a transpiler from unsafe c to safer rust. In IEEE/ACM
44th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 354ś355, 2022.

[79] Rust Ð The Linux Kernel documentation. https://www.kernel.org/doc/html/
next/rust/index.html.

[80] Peiming Liu, Gang Zhao, and Jeff Huang. Securing unsafe rust programs with
xrust. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE), pages 234ś245, 2020.

[81] intercept-build · llvm-mirror/clang. https://github.com/llvm-mirror/clang/blob/
master/tools/scan-build-py/bin/intercept-build.

[82] r217200 - Don’t allow inline asm statements to reference parameters in
naked functions. https://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-
20140901/114154.html.

[83] Joel Margolis, Tae Tom Oh, Suyash Jadhav, Young Ho Kim, and Jeong Neyo Kim.
An in-depth analysis of the mirai botnet. In 2017 International Conference on
Software Security and Assurance (ICSSA), pages 6ś12. IEEE, 2017.

[84] Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada
Letters, 34(3):103ś104, 2014.

[85] OpenSystems Media. Asynchronous event-driven architecture
for high-reliability systems - military embedded systems. https:

2309

Rust for Embedded Systems: Current State and Open Problems CCS ’24, October 14ś18, 2024, Salt Lake City, UT, USA

//militaryembedded.com/radar-ew/rugged-computing/asynchronous-
event-driven-architecture-for-high-reliability-systems.

[86] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. Cross-language
attacks. In Proceedings of the 2022 Network and Distributed System Security
Symposium (NDSS), volume 22, pages 1ś17, 2022.

[87] Generating a Header File - The (unofficial) Rust FFI Guide. https://michael-f-
bryan.github.io/rust-ffi-guide/cbindgen.html.

[88] Kai Mindermann, Philipp Keck, and Stefan Wagner. How usable are rust cryp-
tography apis? CoRR, abs/1806.04929, 2018.

[89] MITRE. 2021 CWE top 25 most dangerous software weaknesses. https://cwe.
mitre.org/top25/archive/2021/2021_cwe_top25.html, 2021.

[90] Krunal A Moharkar, Ankita A Tiwari, Pratik N Bhuyar, Pradip K Bedre, and
FSA Bachwani. Review on different microcontroller boards used in iot. Journal
For Research in Applied Science and Engineering Technology, 10:2321ś9653, 2022.

[91] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In Proceedings of the 2018 Network and Distributed System
Security Symposium (NDSS), 2018.

[92] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
Softbound: Highly compatible and complete spatial memory safety for c. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 245ś258, 2009.

[93] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. Ccured: type-safe retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(3):477ś526, 2005.

[94] Vikram Nitin, Anne Mulhern, Sanjay Arora, and Baishakhi Ray. Yuga: Au-
tomatically detecting lifetime annotation bugs in the rust language. ArXiv,
abs/2310.08507, 2023.

[95] nrf interrupt application. https://infocenter.nordicsemi.com/index.jsp?topic=
%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Fpin_change_int_example.html.

[96] nrf52840-dk mcu board. https://www.nordicsemi.com/Products/Development-
hardware/nRF52840-DK.

[97] Eoin O’driscoll and Garret E O’donnell. Industrial power and energy meteringśa
state-of-the-art review. Journal of Cleaner Production, 41:53ś64, 2013.

[98] OSRTOS. https://www.osrtos.com/.
[99] Wanrong Ouyang and Baojian Hua. Rusbox: Towards efficient and adaptive

sandboxing for rust. In 2021 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 1ś2, 2021.

[100] André Pinho, Luis Couto, and José Oliveira. Towards rust for critical systems. In
2019 IEEE International Symposium on Software Reliability EngineeringWorkshops
(ISSREW), pages 19ś24, 2019.

[101] PYPL PopularitY of Programming Language index. https://pypl.github.io/PYPL.
html.

[102] Dipika Roy Prapti, Abdul Rashid Mohamed Shariff, Hasfalina Che Man, Norul-
huda Mohamed Ramli, Thinagaran Perumal, and Mohamed Shariff. Internet of
things (iot)-based aquaculture: An overview of iot application on water quality
monitoring. Reviews in Aquaculture, 14(2):979ś992, 2022.

[103] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. Understand-
ing memory and thread safety practices and issues in real-world rust programs.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), page 763ś779, 2020.

[104] Idiomatically convert to no-std. https://www.reddit.com/r/rust/comments/
10f3nvn/how_do_you_idiomatically_convert_libs_to_no_std/.

[105] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Karonte: Detect-
ing insecure multi-binary interactions in embedded firmware. IEEE Symposium
on Security and Privacy (SP), pages 1544ś1561, 2020.

[106] Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan
Burow. Keeping safe rust safe with galeed. In Annual Computer Security
Applications Conference (ACSAC), page 824ś836, 2021.

[107] Muhammad Danish Roshaidie, William Pang Han Liang, Calvin Goh Kai Jun,
Kok Hong Yew, et al. Importance of secure software development processes
and tools for developers. arXiv preprint arXiv:2012.15153, 2020.

[108] Android Rust Introduction. https://source.android.com/docs/setup/build/rust/
building-rust-modules/overview.

[109] The AVR-Rust Guidebook. https://book.avr-rust.com/.
[110] Introduction - The Cargo Book. https://doc.rust-lang.org/cargo/.
[111] aarch64-cpu. https://github.com/rust-embedded/aarch64-cpu.
[112] Rust Embedded. https://github.com/rust-embedded.
[113] Awesome embedded Rust. https://github.com/rust-embedded/awesome-

embedded-rust, June 2023. original-date: 2018-04-01T21:17:15Z.
[114] esp-hal. https://github.com/esp-rs/esp-hal.
[115] Lifetimes - Rust By Example. https://doc.rust-lang.org/rust-by-example/scope/

lifetime.html.
[116] nrf52840pac - rust. https://docs.rs/nrf52840-pac/latest/nrf52840_pac/index.html.

[117] std::vec - Rust. https://doc.rust-lang.org/std/vec/index.html.
[118] Understanding Ownership - The Rust Programming Language. https://doc.rust-

lang.org/book/ch04-00-understanding-ownership.html.
[119] Unsafe Rust. https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html.
[120] References and Borrowing. https://doc.rust-lang.org/1.8.0/book/references-and-

borrowing.html.
[121] The Rust Programming Language - The Rust Programming Language. https:

//doc.rust-lang.org/book/.
[122] e310x-hal. https://github.com/riscv-rust/e310x-hal.
[123] riscv-rust/hifive1: Board support crate for HiFive1 and LoFive boards. https:

//github.com/riscv-rust/hifive1.
[124] Aditya Saligrama, Andrew Shen, and Jon Gjengset. A Practical Analysis of

Rust’s Concurrency Story. arXiv preprint arXiv:1904.12210, 2019.
[125] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson,MariusMuench,

Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and Ali Reza Abbasi.
Fuzzware: Using precise mmio modeling for effective firmware fuzzing. In 31st
USENIX Security Symposium, 2022.

[126] Ayushi Sharma, Shashank Sharma, Santiago Torres-Arias, and Aravind Machiry.
Rust for embedded systems: Current state, challenges and open problems (ex-
tended report). arXiv.org, (arXiv:2311.05063v2), 2023.

[127] Shashank Sharma, Ayushi Sharma, and Aravind Machiry. Aunor: Converting
rust crates to [no_std] at scale. In Proceedings of the Fourteenth ACM Conference
on Data and Application Security and Privacy (CODASPY), page 163ś165, 2024.

[128] Mingjie Shen, James C Davis, and Aravind Machiry. Towards automated iden-
tification of layering violations in embedded applications (wip). In 2023 ACM
International Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES). ACM, 2023.

[129] Mingjie Shen, Akul Pillai, Brian A Yuan, James C Davis, and Aravind Machiry.
An empirical study on the use of static analysis tools in open source embedded
software. arXiv preprint arXiv:2310.00205, 2023.

[130] NB Soni and Jaideep Saraswat. A review of iot devices for traffic management
system. In 2017 international conference on intelligent sustainable systems (ICISS),
pages 1052ś1055. IEEE, 2017.

[131] Joseph L Steffen. Adding run-time checking to the portable c compiler. Software:
Practice and Experience, 22(4):305ś316, 1992.

[132] K Swathi, T Uday Sandeep, and A Roja Ramani. Performance analysis of
microcontrollers used in iot technology. International journal of scientific research
in science, engineering and technology, 4(4):1268ś1273, 2018.

[133] TOML: Tom’s Obvious Minimal Language. https://toml.io/en/.
[134] An Empirical Study of C to Rust Transpilers.
[135] CVE Trends. Cve trends. https://www.cvedetails.com/vulnerabilities-by-types.

php, 2021. Accessed: 2020-10-11.
[136] Margus Välja, Matus Korman, and Robert Lagerström. A study on software

vulnerabilities and weaknesses of embedded systems in power networks. In
Proceedings of the 2nd Workshop on Cyber-Physical Security and Resilience in
Smart Grids, pages 47ś52, 2017.

[137] Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian
Sampson. Verifying dynamic trait objects in rust. In Proceedings of the 44th In-
ternational Conference on Software Engineering: Software Engineering in Practice,
pages 321ś330, 2022.

[138] Wemo WiFi Light Switch Smart Dimmer | Belkin: US. https://www.belkin.com/
wifi-smart-dimmer/WDS060.html.

[139] Elecia White. Making Embedded Systems: Design Patterns for Great Software.
"O’Reilly Media, Inc.", October 2011.

[140] Press Release: Future Software Should Be Memory Safe | ONCD.
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-
technical-report/, February 2024.

[141] The Express Wire. Real-time operating systems (rtos) market 2023: Research,
growth and trends. https://www.benzinga.com/pressreleases/23/09/34197565/
real-time-operating-systems-rtos-market-2023-research-growth-and-trends-
industry-forecast-2030.

[142] Geeta Yadav and Kolin Paul. Architecture and security of scada systems: A
review. International Journal of Critical Infrastructure Protection, 34:100433, 2021.

[143] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan
Hong, Xiaoxue Ma, Zhi Jin, and Ge Li. Exploring and unleashing the power of
large language models in automated code translation. Proceedings of the ACM
on Software Engineering (FSE), 1:1585ś1608, 2024.

[144] Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu. Towards
understanding the runtime performance of rust. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2023.

[145] Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song. Learning
and programming challenges of rust: A mixed-methods study. In Proceedings of
ACM/IEEE 44th International Conference on Software Engineering (ICSE), pages
1269ś1281, 2022.

2310

	Abstract
	1 Introduction
	2 Background
	2.1 Embedded Systems
	2.2 Rust

	3 Study Methodology
	3.1 Embedded Software Dataset

	4 RQ1: Software Support
	4.1 Libraries and Support Software
	4.2 SAST Tools
	4.3 C to Rust Conversion Tools

	5 RQ2: Interoperability of Rust
	5.1 Rust ↔ C
	5.2 Rust Interoperable Challenges in Embedded Systems Development

	6 RQ3: Developers Perspective
	6.1 Study Methodology
	6.2 Not Using Rust for Embedded Systems: Expectations v/s Reality
	6.3 Experiences in Using Rust for Embedded Systems

	7 Limitations and Threats to Validity
	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

