)
Py Rust for Embedded Systems: Current State and Open Problems

Shashank Sharma*
Purdue University
West Lafayette, USA

Sai Ritvik Tanksalkar
Purdue University
West Lafayette, USA

Ayushi Sharma*
Purdue University
West Lafayette, USA

sharmé616@purdue.edu sharmé611@purdue.edu stanksal@purdue.edu
Santiago Torres-Arias Aravind Machiry
Purdue University Purdue University
West Lafayette, USA West Lafayette, USA

torresar@purdue.edu

Abstract

Embedded software is used in safety-critical systems such as medi-
cal devices and autonomous vehicles, where software defects, in-
cluding security vulnerabilities, have severe consequences. Most
embedded codebases are developed in unsafe languages, specifically
C/C++, and are riddled with memory safety vulnerabilities. To pre-
vent such vulnerabilities, RusT, a performant memory-safe systems
language, provides an optimal choice for developing embedded
software. RUsT interoperability enables developing RusT applica-
tions on top of existing C codebases. Despite this, even the most
resourceful organizations continue to develop embedded software
in C/C++.

This paper performs the first systematic study to holistically un-
derstand the current state and challenges of using Rust for embed-
ded systems. Our study is organized across three research questions.
We collected a dataset of 6,408 RusT embedded software spanning
various categories and 6 Static Application Security Testing (SAST)
tools. We performed a systematic analysis of our dataset and sur-
veys with 225 developers to investigate our research questions. We
found that existing RusT software support is inadequate, SAST
tools cannot handle certain features of Rust embedded software,
resulting in failures, and the prevalence of advanced types in exist-
ing RusT software makes it challenging to engineer interoperable
code. In addition, we found various challenges faced by developers
in using RusT for embedded systems development.

CCS Concepts

« Security and privacy — Embedded systems security; « Com-
puter systems organization — Embedded software; Real-time
operating systems; » Hardware — Safety critical systems.

Keywords
Rust, Deep Embedded Systems, Security

“Both authors contributed equally to this research.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690275

amachiry@purdue.edu

ACM Reference Format:

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-
Arias, and Aravind Machiry. 2024. Rust for Embedded Systems: Current
State and Open Problems . In Proceedings of the 2024 ACM SIGSAC Conference
on Computer and Communications Security (CCS °24), October 14-18, 2024,
Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3658644.3690275

1 Introduction

Our dependence on embedded devices (e.g., IoT devices), has sig-
nificantly increased, controlling various aspects of our daily lives,
including homes [11], transportation [9], traffic management [130],
and the distribution of vital resources like food [102] and power [97].
The adoption of these devices has seen rapid and extensive growth,
with an estimated count of over 50 billion devices [8]. Vulnerabil-
ities in these devices have far-reaching consequences [4, 14] due
to the pervasive and interconnected nature of these devices, as
exemplified by the infamous Mirai botnet [83].

Most embedded software are developed in “unsafe” (i.e., not
memory-safe) languages, specifically C/C++, because of the low
memory footprint, good performance, and the availability of ex-
tensive support software. It is well-known that software developed
in unsafe languages is prone to security vulnerabilities, especially
memory safety vulnerabilities [25, 89, 135]. Likewise, embedded
systems are riddled with security vulnerabilities [7, 13, 62, 136].
The most recent URGENT/11 [15] vulnerabilities in VxWorks that
affected millions of medical [56], SCADA systems [142], and in-
dustrial controllers [22] are all because of memory safety (spa-
tial) violations. It is important to ensure that embedded systems
do not contain memory-safety issues. Automated memory-safety
retrofitting techniques [32, 48, 64, 92, 93, 131] based on compile-
time instrumentation add significant overhead (both space and
runtime) and are inapplicable to resource-constrained embedded
systems.

Our analysis (details in Our Extended Report [126]) of security
vulnerabilities in various Real Time Operating Systems (RTOSes)
(an important class of embedded software) for the past ten years
shows that 59 (54.2%) of them are memory corruption vulnerabili-
ties, i.e., spatial or temporal memory issues. It is important to use
memory-safe languages to prevent such vulnerabilities. Further-
more, recently, the White House released a report [140] requiring
future software to be developed in memory-safe languages. Tradi-
tional memory-safe languages, such as Java, have high overhead

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

and are not suitable for embedded systems. RusT [121] is a memory-
safe language that is shown to have comparable performance as
native code. Furthermore, RUST can easily interoperate with exist-
ing unsafe codebases [61], enabling incremental adoption. Rust
team has a special focus on embedded systems [112], and several
works [74, 75] demonstrate the feasibility of engineering a complete
embedded software stack in RusT. Furthermore, Rust popularity
is rising [101], and it is now adopted in Linux kernel [79] and An-
droid [108]. Unfortunately, embedded systems are continuing to be
developed in C. Even the most resourceful organizations, such as
Microsoft, continue to develop embedded systems in C, as demon-
strated by their recent Azure RTOS [18]. Previous works [55, 145]
investigated the challenges of adopting RusT for regular software.
However, no work tries to understand factors affecting the use
of RusT for embedded systems development.

In this paper, we perform the first systematic study to holisti-
cally understand the issues in using RusT for developing embedded
systems. Specifically, we explored the following research questions:

e RQ1: Software Support. How effective (quantity and quality)
is the existing RUsT software support for embedded system de-
velopment?

e RQ2: Interoperability of RusT. Given that most of the existing
embedded systems are in C, how well can RuUsT interoperate with
existing C codebases? and what are the challenges specific to
embedded codebases?

e RQ3: Developers Perspective. What challenges do developers
face in using RusT for embedded system development?

We collected a dataset of 6,408 RusT embedded software packages
(or crates) spanning various categories and 6 SAST tools. We per-
formed a systematic analysis of our dataset and surveys with 225
developers to investigate our research questions. Our study re-
vealed several interesting findings (16), drawbacks of existing tools
on embedded crates, and open problems (8) to increase the adop-
tion of RusT for embedded systems. A few interesting findings
include the following: Embedded crates use more (~2X) unsafe
blocks than non-embedded crates, significantly increasing the pos-
sibility of memory safety issues. However, existing techniques to
isolate unsafe blocks are not applicable to embedded systems. Ex-
isting developer support tools related to RusT, such as c2rusr, fail
on majority of embedded codebases, as these tools fail to handle
the diverse build systems and execution semantics of embedded
systems. The state-of-the-art Rust SAST tools perform poorly on
embedded crates. The superior type-system of Rust makes it chal-
lenging to engineer interoperable embedded systems code. Our
observations are in line with the developer survey, and many de-
velopers consider the RusT documentation for embedded systems
poorly organized and want the documentation to contain more
examples. In summary, the following are our contributions:

o Software Study: We perform a systematic study of the Rust
software ecosystem to support the use of RusT for embedded
applications and highlight opportunity areas for adoption.

e Tool Study: We systematically studied the effectiveness of var-
ious (9) RusT related tools, i.e.,, SAST tools, quality checking,
and conversion tools, on embedded crates and identified various
weaknesses specific to embedded systems.

2297

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

e Developer Aspects: We performed a large-scale developer sur-
vey (with 225 developers) that highlights the challenges for slow
adoption of RusT for embedded applications.

e Dataset, Findings, and Open Problems ': We curated a set
of 6,408 embedded RUST crates cataloged into various categories
along with the necessary infrastructure to run analysis tools. Our
findings shed light on challenges in adopting RusT for embed-
ded systems, insights into open problems, and possible research
directions.

2 Background

This section provides the necessary background information for
the rest of our work.

2.1 Embedded Systems

Embedded systems are designed to perform a designated set of tasks
in a resource-constrained environment and on battery-powered
devices. There are several ways to categorize embedded systems.
Previous work [91] categorizes embedded systems based on under-
lying Operating System (OS).

(a) Type-1 systems have feature-rich general-purpose OSes retro-
fitted for embedded systems.

(b) Type-2 systems or constrained devices [26] use specialized
embedded OSes, which are usually designed as Real Time Oper-
ating System (RTOS), e.g., WEMO Light controller [138] running
FreeRTOS [52].

(c) Type-3 systems do not use OS abstractions and are rarely
used in commercial products.

Previous work [11] shows consumer IoT devices, such as door
knobs and temperature controllers, are mostly Type-2, which we
primarily focus on. Type-2 systems execute on battery-powered and
resource-constrained Microcontroller Units (MCUs). These systems
have a lot of diversity in terms of hardware (MCU and peripherals)
and supported software [91, 139]. For instance, there are 31 dif-
ferent RTOSes [98]. To handle this diversity, Type-2 systems have
a layered design [128] (illustrated in our Extended Report [126]).
Application logic is implemented in tasks managed by an RTOS.
Execution Semantics. The application and all the layers are com-
piled into a single monolithic binary and flashed onto the on-chip
flash memory. On reset, the contents of the memory are loaded into
RAM, and execution starts from a pre-defined address, i.e., start or
reset address. The tasks get scheduled per the scheduling policy,
and handlers get triggered on corresponding events.

2.2 RusT

RusT is a programming language created by Mozilla to build ef-
ficient and safe low-level software [27, 68, 71, 121, 124]. RuUST is
targeted to achieve performance comparable to programs writ-
ten in C while avoiding many safety issues in C, including con-
currency and memory safety bugs. This section provides a brief
overview of RusT’s safety features. We recommend the RusT’s
official book [121] for a comprehensive understanding of these
features.

!https://zenodo.org/records/12775715

Rust for Embedded Systems: Current State and Open Problems

Features and Safety Guarantees. RusT has several features, such
as scopes, borrowing rules [120], single ownership [118], and life-
times [115], which force developers to follow certain practices
enabling verification of memory safety properties (mostly) at com-
pile time. For instance, all read-write variables should be explicitly
marked as mutable (i.e., mut). RusT provides both spatial and tem-
poral memory safety. We provide a discussion of these guarantees
in Our Extended Report [126]

Unsafe Rust. RusT features can be too restrictive in a few cases.
For instance, RUsT requires all global variables to be read-only, i.e.,
disallows mut. Similarly, we may need to call a C library function,
which is also not allowed. RusT provides unsafe blocks [119] to re-
lax these restrictions and enable interaction with external language
(or foreign) functions. Arbitrary regions of code can be enclosed
in an unsafe directive, and such code will be permitted certain
(otherwise disallowed) actions, such as modifying a mutable global
variable, dereferencing a raw pointer, calling an unsafe or external
method, etc.

Foreign Function Interface (FFI) Support. RusT supports easy
interaction with functions written in foreign languages through
its Foreign Function Interface (FFI) [61]. Specifically, such functions
need to be annotated with special attributes, which enables the RusT
compiler to generate appropriate code respecting the ABI of the
target language.

Build System and Package Management. RUST uses an inte-
grated and easy-to-use build system and package manager called
Cargo [110], which downloads library packages, called crates, as
needed, during builds. Developers specify the build configuration
along with all dependencies in a . toml file [133] — an organized
key-value text file. Rust has an official community package registry
called crates.io [36], which (as of 29 April 2024) has more than 144K
crates (i.e., libraries) — a 200% increase over the last two years.
RusT Compilation Attributes. RUST supports attributes or con-
figurations that enable compilation specialization. These attributes
can be at various levels, e.g., crate level, file level, function level,
etc. no_std attribute [46] is a crate-level attribute that avoids
linking the entire standard module and results in small binaries.
Embedded software in RusT should use this attribute to produce
a self-contained binary independent of OS abstractions. A no_std
compatible crate should also have all its dependencies to be no_std
compatible too.

3 Study Methodology

Our study aims to perform a holistic analysis to understand various
aspects regarding usage of RusT for embedded systems. We aim to
answer the following research questions:

e RQ1: Software Support (§4): How good is the software support
for developing RusT based embedded systems?

RQ2: Interoperability (§5): How effective is the interoperabil-
ity support of RusT to deal with existing C based embedded
codebases?

RQ3: Developers Perspective (§6): What is developers’ per-
spective on using RusT for embedded systems?

2298

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

3.1 Embedded Software Dataset

Our goal is to collect RUST crates that are applicable to embedded
systems, i.e., no_std compatible, and can be built using one of
the embedded toolchains. We also want to identify the necessary
compilation steps for all the collected crates.

3.1.1 Crates collection. As mentioned in §2.2, crates.io is the offi-
cial repository for all RUST crates (i.e., libraries). However, there are
other well-known sources, such as Rust-embedded project [113]
and arewertosyet.com, that also contain embedded RUST projects.
We used a two-pronged approach to collect our embedded RusT
dataset.

e Crawling crates.io: We crawled crates.io (in Feb 2024) and got
all the crates that are no_std compatible. This is not trivial as
crates can declare no_std compatibility at various levels. For in-
stance, arduino_nano_connect v@.6.0 [34] crate declares no_std
compatibility at the crate level (i.e., in 1ib.rs file). In contrast,
futures-executor v@.3.30 [39] crate uses cfg attribute to have
only selected code blocks compile for no_std environment. We
perform lightweight static analysis to identify all such crates.

e Well-known Sources: We collected additional crates by crawl-
ing other well-known sources, specifically Rust-embedded project
and arewertosyet.com.

After deduplication, we collected 11,002 unique crates.

3.1.2 Identifying Stable Crates. We tried to build crates using a
stable version of RusT and the corresponding compiler. However,
we identified that 2,025 (18.4%) embedded crates depend on unsta-
ble RusT versions, specifically nightly versions [2]. These versions
contain unstable RusT features and might pose threats to the secu-
rity guarantees of RusT. This is also reflected in one of the concerns
(in §6.3) raised by developers in using RusT for embedded systems.
We only considered those that build on the stable version of RusT,
specifically 1.77.2. This resulted in 8,977 crates.

3.1.3 Compilation Validation. The no_std compatibility alone is
a necessary condition but not sufficient for a crate to be usable
on embedded systems. For instance, oc-wasm-futures [41] crate
is no_std compatible but is for WebAssembly target, which is not
an embedded architecture.

In this step, our goal is to validate crates to check for their
applicability to embedded targets and identify the corresponding
build commands.

Identifying Build Command: All crates can be built using cargo build,
which uses the default configuration specified in the crate’s cargo. toml
file. However, not all crates have their default configuration to
be no_std, i.e., the default build step (cargo build) may notbuild no_std
compatible version. Such crates require special configuration flags
to be passed to the build command, e.g., we need to use

cargo build --no-default-features --features no_std to build no_std
variant of async_cell. Developers specify such flags through Rust’s
conditional compilation attributes [1] (cfg_attr) as a propositional
logic formula.
For instance, #! [cfg_attr(all(feature = s

not(feature)), no_std)] (in resize v@.8.4 crate)
indicates that we need to pass no_std flag and not pass std to build
for no_std.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

We use a lightweight static analysis technique to identify the
appropriate build command. First, we identify all cfg_attr directly

corresponding to no_std (i.e., containing #! [cfg_attr(..., no_std)])

Second, we analyze the propositional formula to identify the flags
that must be enabled or disabled for no_std. Our technique was
able to find the build commands for 8,148 (90.77%) of crates.

The rest 9.23% failed because of the following reasons: (i) In-
correct attributes: Here, crates have an incorrect cfg_attr speci-
fication. For instance, zero-crypto v@.1.11 crate has wrong flag
name (featusre) (Correct: (feature = "std")); (ii) Incor-
rect dependencies: As mentioned in §2, for a crate to be no_std
compatible all its dependencies should also be no_std. However,
few crates use dependencies that are either not no_std compatible
or incorrectly configured. For instance, linux-kvm v@.2.0 crate de-
pends on linux-io v@.6.0 crate, which is not no_std compatible.;
(iii) Complex attributes specification: In our analysis, we consider
only directly related flags, i.e., those specified along with no-std
in cfg_attr. However, there could be conditional compilation flags
that are indirectly related. For instance, ab_glyph v@.2.23 crate
requires --features= flag. As we explain in Our Extended
Report [126], this flag dependency is specified indirectly and accu-
rately identifying such flags is a combinatorial problem [6].

Open Problem P0.1: We need techniques to automatically iden-
tify embedded system specific (i.e.,no_std compatible) build con-
figurations for RUsT crates — this also enables identifying mistakes
in build configurations (a prevalent problem). One possible ap-
proach is to map the dependencies into a boolean formula for
constraint solver and use the solution to derive the appropriate
flags.

3.1.4 Embedded Targets Filtering. There are 23 embedded targets
(85 total targets) supported by the latest stable version of rustc (ver-
sion: 1.77.2). For all the crates for which we identified the build com-
mands, we further filtered out crates that did not build for any of the
embedded targets. For instance, the no_std variant of winapi v@.3.9
crate is excluded because it requires an underlying operating sys-
tem environment, which is not present in embedded targets. This
resulted in a total of 6,408 crates after filtering out 2,569 crates.
Although our study focuses on type-2 systems, our crates are not ex-
clusively type-2. For instance, type-1 systems exist for aarch64-cpu,
one of our targets.

3.1.5 Categorization. Based on the functionality, we categorize
each embedded crate into eight categories (Tbl. 1). We will present
details of these categories in §4.1. We created a Multi-class Random
Forest (MCRF) classifier [28] to categorize a given crate. We man-
ually categorized 2000 crates into various categories. Using this
as ground truth, we created an MCREF classifier with an F1-score
of 82%. We used our MCREF classifier to categorize the rest of the
crates.

Summary. We collected a total of 6,408 embedded crates along
with appropriate build commands that produce no_std compatible
binary.

4 RQ1: Software Support

In this research question, we want to assess the existing software
support for engineering embedded systems in RusT. We plan to

2299

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

investigate the categories of support software that aid in common
software engineering activities. Specifically:

o (For Development) Libraries and Support Software: As ex-
plained in §2, applications in embedded systems are developed
atop an RTOS and need necessary libraries that enable commu-
nicating with peripherals and provide certain common function-
ality (e.g., network protocols).

(For Testing) SAST Tools: These are an integral part of software
development [107]. We need to have effective SAST tools to
ensure the quality of newly developed RusT based embedded
systems.

(To Handle Existing Codebases) C to Rust Conversion Tools:
Given that most existing embedded codebases are in C, we should
have tools to convert C to RusT effectively.

4.1 Libraries and Support Software

The available software support, i.e., crates, can be broadly catego-
rized into hardware support crates and utility crates.

Table 1: Categorization of all available embedded crates.

Crates (%Total)

Rtos RTOS Crates 6 2 (33.33%)
Dr Driver Crates 466 31 (6.65%)
HaL HAL Crates 57 29 (50.88%)
Bsp Board Support Package 114 100 (87.72%)
Pac Peripheral Access Crates 565 439 (77.70%)
ARCH Architecture Support Crates 15 9 (60.00%)
UtIiL Utility Crates 4,764 173 (3.63%)
UNCAT Others 421 30 (7.18%)
TOTAL 6,408 813 (12.69%)

4.1.1 Hardware Support Crates. These provide software abstrac-
tion to interact with the hardware i.e., MCU, Peripherals, etc. There
are at least 43 different MCU families with various peripherals [5, 90,
132]. We use the following categories to further categorize based
on the type of interactions the crates provide. Tbl. 1 shows the
summary of different categories of crates available for embedded
systems development.

o Architecture Support: These help in interacting with the pro-
cessor and are Instruction Set Architecture (ISA) dependent. For
instance, the aarch64-cpu crate [111] provides the function
SPSR_EL2.write to write to the Saved Program Status Register
(SPSR) at EL2 exception level on aarché64 processors. For embed-
ded processors (i.e., Reduced Instruction Set Computer (RISC) ISAs),
there are support crates for ARM, MIPS, and RISC-V.

Peripheral Access: These provide necessary functions to access
peripherals on different MCUs. Out of 43 different MCU families,
peripheral crates are currently available for only 16 (37%). Most
of these crates are generated using svd2rust utility [42], which
automatically converts CMSIS-SVD [63] file (XML description
of ARM Cortex-M processors) into RusT structs. Consequently,

R

ust for Embedded Systems: Current State and Open Problems

most of these crates are for ARM Cortex-M family processors.
However, other MCUs, such as AVR-based ATMEGA48PB, do
not have SVD files but rather have .atdf files. There exist crates
such as atdf2svd [35] to convert these into CMSIS-SVD format,
but these tools are not robust and have issues.

Open Problem P1.1: We need effective techniques to automat-
ically generate peripheral access crates for non-ARM architec-
tures. Recent advancements in LLM-assisted techniques [143]
show promise in solving this problem.

HAL Implementation (HAL): These are implementations of
embedded-hal [38], a common Hardware Abstraction Interface for
various MCUs. These provide higher-level functions than periph-
eral crates, which just provide structures encapsulating periph-
eral registers. For example, GPIO: :write is a function provided
by embedded-hal, which involves multiple interactions through
GPIO registers. The HAL crates are available for 14 (32%) MCU
families. Unlike peripheral access crates, HAL crates are not auto-
matically generated but are manually engineered. Consequently,
a lot of variance exists in MCU families having HAL crates. For
instance, Espressif MCUs (with Xtensa ISA) has HAL crates [114]
but does not have peripheral crates.

Board Support (BSP): These crates help in bootstrapping an MCU
for an RTOS. Specifically, these included bootloaders and other
code to initialize and recognize other hardware peripherals. BSPs
are built using HAL and peripheral traits and expose higher-level
functions to operate the underlying MCU or System on Chip
(SoC). For instance, hifivel BSP crate [123] (for HiFivel boards)
exposes a function configure_spi_flash which uses e310x_hal
[122] HAL crate to configure SPI Flash with maximum speed.
There are BSP crates for 19 (44%) different boards. Unlike periph-
eral or HAL crates, BSP crates are specific to each board — a
combination of MCU and peripherals.

Open Problem P1.2: Recent work [128] exposes layering vio-
lations in C embedded systems, i.e., components breaking the
layered abstraction, e.g., HAL crate not using peripheral crates.

However, no such work exists for RUsT crates.

Driver Crates: These are device drivers and expose functions to
access various aspects of a device. For instance, eeprom24x driver
crate [37] provides the necessary functions (e.g., read_byte) to
access 24x series serial EEPROMs.

RTOS Crates: These are complete RTOSes, which expose nec-
essary functions for task creation and synchronization, thus en-
abling easy creation of embedded applications.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

the requirement to be independent of OS abstractions, i.e., should
not use RUsT’s std crate (or be no_std compatible). However, it
is not easy to convert a crate to be no_std [104] compatible as it
requires the ability to perform semantic refactoring of the crate
and its dependencies. Our Extended Report has an example.

Open Problem P1.3: We need techniques to automatically con-
vert RUST crates to be no_std compatible to enable existing large
quantity of crates to be usable in embedded systems. Recent work
by Sharma et al., [127] demonstrates a possible approach using
type-based conditional compilation.

4.1.3 Quality of Embedded RusT. At a high level, as shown by the
last column of Thl. 1, many (813 (12.69%)) of the crates are just wrap-
pers around C libraries (details in Our Extended Report [126]). We
also consider crates that depend on a wrapper crate to be wrapper
crates. These crates are susceptible to the bugs in corresponding C
libraries. In other words, vulnerabilities in the wrapped libraries
can be exploited to get complete control of the corresponding RusT
program. This problem has received considerable attention, and
several works try to isolate code running as part of libraries (or in
general unsafe blocks) from the rest of the crate. These techniques
depend on special hardware features [20, 58, 67, 80, 106], specifi-
cally Intel’s Memory Protection Key (MPK) or OS abstractions, such
as mprotect [10], IPC mechanism [99], sandboxing [72] — making
them inapplicable to type-2 embedded systems, i.e., RTOS based
embedded systems that run on MCUs.

Open Problem P1.4: We need techniques (applicable also for em-
bedded systems) to isolate RusT code from unsafe code, i.e., tech-
niques that do not depend on hardware features, OS abstractions,
and have low overhead. Recent techniques [65, 66] on C-based
embedded software compartmentalization demonstrate possible
approaches. However, these should be customized for RusT.

Code Quality: We use the following tools to further assess embed-

ded crates’ code quality.

e QRATES [17]: This tool finds instances of various unsafe id-
ioms, i.e., blocks, functions, traits, and trait implementations.
Unfortunately, the tool failed on 405 (6.30%) crates. We provide a
categorization of failures in Our Extended Report [126]. Out of the
remaining 6003 crates, 2634 (43.88%) contain at least one unsafe
idiom. This is much higher than in non-embedded crates where
only 23.6% crates (as reported in [17]) contain unsafe idioms.
Tbl. 2 shows the results along with top three reasons for unsafeness.
Note that the percentages are not cumulative, i.e., there could be
multiple reasons for an unsafe block. These reasons differ from

Finding RQ1.1: Existing hardware support crates mainly target
ARM Cortex-M family MCUs and boards. Although, there are
ongoing efforts [109] to improve support for other family MCUs
such as AVR. It is still a work in progress, and more efforts are
required.

4.1.2 Utility Crates. These are hardware-independent embedded
crates (i.e., no_std) that provide various capabilities for embedded
systems development. For instance, tinybmp embedded crate [43]
provides functions to parse BMP images.

Despite the existence of a large number of utility crates in the Rust
ecosystem, only 4,764 can be used in embedded systems because of

2300

regular crates, indicating the need for different design decisions
when creating analysis tools for embedded crates.

CLA-METRICS [86]: Recently, Mergendahl et al., [86] demonstrated
the feasibility of Cross-Language-Attacks, wherein interactions
of RusT with C/C++ could result in security vulnerabilities. They
released CLA-METRICS, a tool to identify these cross-language in-
teraction points. CLA-METRICS works on binaries and require ELF
files with specific sections. As we showed in Tbl. 1, there are 813
wrapper crates, which means these contain at least one call
from RusT to C/C++, ie., a transfer point. Interestingly, cra-
METRICS found only 198 crates with interaction points. These
results indicate potential issues with the cLA-METRICS tool and

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

Table 2: Summary of QRATES results on embedded crates (uf: Call to Unsafe Function, ptr: Derefercing raw pointer, mstat: Use
of Mutable Static, estat: Use of Extern Static, asm: Use of Inline Assembly, union: Access to Union Field)

Num. Crates Successful

Number of Crates (% of Successful) having

Top 3 Reasons for

Category
f(rfl;t(r,lf’l?‘l())lt all) Unsafe Unsafe Unsafe Trait Unsafe At least one Unsafe Usage
) Blocks Functions Impl Trait unsafe idiom
Rros 3 (50.00%) 3 (100.00%) 2 (66.67%) 2 (66.67%) 0(0.00%) 3(100.00%) ud (82%), mstat (29%), estat (6%)
Dr 423 (90.77%) 70 (16.55%) 55 (13.00%) 11 (2.60%) 3(0.71%) 91 (21.51%) ud (82%), ptr (19%), mstat (2%)
Hat 42 (73.68%) 28 (66.67%) 20 (47.62%) 12 (28.57%) 9 (21.43%) 31(73.81%) uf (72%), ptr (38%), mstat (2%)
Bsp 89 (78.07%) 25 (28.09%) 23 (25.84%) 4(4.49%) 0(0.00%) 29 (32.58%) uf (88%), ptr (77%), mstat (2%)
Pac 560 (99.12%) 508(90.71%) 538 (96.07%) 528 (94.29%) 5 (0.89%) 547 (97.68%) uf (91%), ptr (18%), mstat (1%)
Arcu 10 (66.67%) 9(90.00%) 10 (100.00%) 1(10.00%) 1(10.00%) 10 (100.00%) uf (52%), asm (31%), ptr (22%)
UTiL 4,473 (93.89%) 1,591 (35.57%) 1053 (23.54%) 554 (12.39%) 210 (4.69%) 1,790 (40.02%) uf (89%), ptr (16%), union (1%)
UNCAT 403 (95.72%) 102 (25.31%) 78 (19.35%) 30 (7.44%) 8 (1.99%) 133 (33.00%) uf (84%), ptr (25%), mstat (2%)
Total 6003 (93.68%) 2336 (38.91%) 1779 (29.64%) 1143 (19.04%) 236 (3.93%) 2634 (43.88%) uf (90%), ptr (18%), mstat (1%)
Table 3: cLA-METRICS results. 4.2 SAST Tools
As we show in §4.1.3, embedded crates contain a large amount
Num. Crates Successful ~ Num. Crates having of unsafe blocks. The presence of unsafe blocks potentially vi-
Category (% of Total at least one s . .
from TbL. 1) Transfer Pt. olates RusT’s safety guarantees and results in various memory
Rros 6 (100.00%) 0(0.00%) safety issues [17]. It 1s‘1mportant tc? use SAST tools for f.:mbedded
systems development in RusT. We investigate the effectiveness of
Dr 462 (99.14%) 0 (0.00%)
state-of-the art Rust SAST tools on embedded crates.
Hat 56 (98.25%) 0(0.00%) Table 4: Failure reasons of SAST tools and the number of
Bsp 113 (99.12%) 0(0.00%) affected crates. Our Extended Report [126] contains detailed
Pac 562 (99.47%) 0 (0.00%) and examples of failures.
ARcH 15 (100.00%) 0(0.00%)
UriL 4727 (99.22%) 58 (1.23%) Failure Reason Too]/:f:(citziates Total
Uncar 416 (98.81%) 14 (3.37%)
FFICHECKER (2559, 39.93%)
Total 6,357 (99.20%) 73 (1.13%) RubRA (2547, 39.75%)
Toolchain Yuca (539, 8.41%) 2692
Incompatibility SAFEDROP (166,2.59%) ?
RCANARY (156, 2.43%)
LockBup (30, 0.46%)
FFICHECKER (67, 1.046%)
RCANARY (9,0.14%)
we found that an important class of such transfer points that crLa- Tool Crashes SAFEDROP (1, 0.015%) 89
. s i1 . . . Locksub (5, 0.78)
METRICS misses is indirect function calls. Indirect function calls Yuea (1, 0.02%)
are common in embedded systems due to their event driven na- SAFEDROP (27, 0.42%)
ture. Recent works [30] show that employing CFI mechanism No binary tffget F;‘ICCANARY (2(56’ %-?)992) 27
. . suppor HECKER (6, 0. 0,
through LLVM can help detect indirect calls. Although as we see PP RupRa (4, 0.04%)
in 4.3.3, embedded systems fail to build with clang. We need more Yuaa (19, 0.30%)
work in the area. cLA-METRICS uses the differences in name man- Ignoring Project-Specific FFI%UD};A , (02'0378)3,) 21
. . . . HECKER (2, 0.03%
gling used by Rust and C++ to determine such transfer points. Configurations SaFEDROP (2, 0.03%)
This information would not be available for indirect function RCANARY (1, 0.02%)
calls and hence cLA-METRICS misses out these. T‘mel;’“t: (large crates) RCANARY (16, 0.25%) 16
. . . o R ustc version
Security Implications: The prevalence of unsafe idioms indicates incompatibility FFICHECKER (8, 0.12%) 8
that developers should be more cautious in using embedded crates. Unknown Reasons Yuca (7, 0.11%) 7

Moreover, the robustness issues in analysis tools indicate that secu-
rity researchers should consider embedded crates as part of their
evaluation.

Finding RQ1.2: Compared to non-embedded crates, many em-
bedded crates (48.5% v/s 23.6%) contain unsafe RusT code idioms.
Finding RQ1.3: cLA-METRICS fails to identify cross-language inter-
actions through indirect calls e.g., calls through function pointers.

2301

4.2.1 Tool Selection. The recent study by Ami et al, [12] shows
that developers are more likely to use SAST tools that do not require
any configuration and can be directly used on a software project.
Following this, we aim to collect state-of-the-art and readily us-
able SAST tools. Specifically, these tools should run directly on a
given crate and not require any configuration. We searched Rust

Rust for Embedded Systems: Current State and Open Problems

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 5: Summary of RusT SAST tools evaluated as part of the study and the features that are supported (v) or not (X), type of
reports ([insufficient information|, missing relevant details, or detailed report), along with references to results.

Tool Target Techniques Flow-Tracking Report Result
Name Bug Types Used Requi Across Across Handles Async/ Type Reference
€qWre | Unsafe blocks | FFIBoundaries Indirect Flows
CallGraph Analysis.
Concurrency, . L Source Level Traces
LockBuD [103] e Points-to Analysis, v x x x
Memory Safety Dataflow Analysis (Our Extended Report [126])
R Taint Analysis, Source Level Traces Refer Our
Rupra [19] Temporal & Spatial safety Dataflow analysis v v x x (Our Extended Report [126]) | Extended Report
Taint Analysis Detailed Source [126]
Yuca [94] Temporal Safety Alias Analy sie’ v v x x Level Traces
N ysis (Our Extended Report [126])
Dataflow Analysis, sat/unsat
RCANARY [45] Temporal Safety Constraint solving x x (Our Extended Report [126])
Taint Analysis, Generic warning
FFICHECKER [77] Temporal Safety Alias Analysis v x (Our Extended Report [126])
Dataflow Analysis, Affected Function name
SarEDrop [44] Temporal Safety Alias analysis x x (Our Extended Report [126])

forums and the past five years’ proceedings of top-tier security and
software engineering conferences and collected the set of readily
usable SAST tools. We filtered out tools that did not satisfy our
requirements. For instance, we did not select MIRCHECKER [76]
because it requires configuring the abstract domain and specifying
analysis entry points. After filtering such tools, our investigation
resulted in six tools as summarized in Tbl. 5.

Almost all tools except for LockBUD focus on identifying tem-
poral safety issues, e.g., incorrect lifetimes, and multiple drops. All
these tools are based on flow-tracking as indicated by + under
the Require column.

4.2.2 Qualitative Assessment. As presented in §4.1.3, embedded
RusT crates have a higher percentage of unsafe blocks, use FFI
functions (i.e., interact with C libraries), and use indirect (or function
pointer) calls. SAST tools should be able to handle these idioms to
be effective on embedded crates.

Supported Features: We referred to the research papers on the cor-
responding tools and created simple examples to identify their
capabilities to handle idioms common in embedded crates. The var-
ious columns under Flow-Tracking indicate whether each of these
idioms is either supported (¥) or not (%) by the corresponding
tools. All tools, except for LockBUD, handle flows across unsafe
blocks. None of the tools handle data-flows through indirect calls
(i.e., function pointer calls) — which is one of the common idioms in
embedded systems (§2.1 and [128]). Except for FFICHECKER, none
of the tools handle flows across FFI boundaries, another common
usage in embedded crates.

Usability: Despite the existence of standard formats, such as SARIF [3],
RusT SAST tools employ ad-hoc ways to report their warnings. As
shown in the last column of Tbl. 5, these reports do not always
contain the necessary information to triage the underlying defect.
The Tbl. 5 also contains references to the examples of correspond-
ing warnings. All tools, except for YUGA, report their findings in an
ad-hoc and hard-to-analyze manner. RCANARY and FFICHECKER just
provide a single-line warning without any details about the source
location — which makes these warnings almost impossible to ana-
lyze. LockBUD, RUDRA, and SAFEDRoOP provide source level traces.
However, the complex semantics of RusT lifetimes make it hard
to triage the reported warnings. YUGA provides a well-formatted

HTML report with necessary information about the identified de-
fect.

4.2.3 Effectiveness. There is no existing Rust embedded systems
bug dataset. The situation is the same for C/C++ [129]., which
also contains references to the complete results We evaluated the
effectiveness of SAST tools on our embedded crates dataset. The
last column of Tbl. 5 has references to the complete results for each
tool. Robustness Issues: SAST tools fail to handle the diverse build
configurations, code structures, and semantics of embedded Rust
crates. Consequently, these tools failed on several crates. The Tbl. 4
summarizes different classes of failures, affected tools, and crates.
The majority of failures are because of “Toolchain Imcompatibili-
ties”, i.e., tools fail to identify the backend toolchain required by
crates and consequently fail to analyze.

Precision: Given the large number of warnings, we used a random
sampling method to analyze the precision of the tools. Specifically,
we picked 30 crates with more downloads than the median across
all the crates. This is to avoid selecting unimportant or rarely used
crates.

We ignored RCANARY and FFICHECKER as their warnings did
not contain enough information. Furthermore, even for other tools
(e.g., LockBUD), the information provided is not always sufficient
to triage the corresponding warning. We categorized each warning
into True Positive (TP), False Positive (FP) or Insufficient Informa-
tion (IsIn). Tbl. 6 shows the results, the top two reasons for false
positives, and the corresponding examples. First, tools were able to
find real defects. Our Extended Report [126] shows a real deadlock
found by LockBuUD in the tracing-log crate. However, the true
positive rate is very low. Contrary to tools’ claim, all tools suffer
from a very high false positive rate (40%-90%) on embedded crates.
This is unsurprising as all these tools are evaluated (mostly) on
non-embedded crates. This indicates that the design choices of the
current tools fail to consider embedded crates.

Security Implications: Our results indicate that developers cannot
solely rely on existing automated SAST tools to assess their crates
and should also perform manual or semi-automated assessments.

4.3 C to Rust Conversion Tools

We selected C to RusT conversion tools by following the same
approach as for SAST tools (§4.2.1). Although several tools satisfy

2302

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 6: Summary of manual analysis of results of vari-
ous RusT SAST tools with True Positives (TP), False positives
(FP), and Insufficient Information (IsIn). We list the top two
reasons for FPs here (examples and complete results in our
Extended Report [126]). Details in §4.2.3.

Tool | Analysis Results | Top 2
Name [TP | FP [Tsin | FP Reasons
Lock type ambiguity (42%)
Locksup 10(33%) 14 (46%) 6 (20%) Complex Program Semantics (32%)
Ignoring Explicit Guards (50%)
RuDrA 1(27%) 36 (97.2%) N/A Tgnoring Atomic Types (30%)
Ignoring Caller Contexts (56%)
Yuea 10 (33%) 13(43%) 7(23.3%) Complex Program Semantics (30%)
Infeasible Paths (80%
SAFEDROP 9 (30%) 17 (56.6%) 4 (13.3%) Analysis Imprecisi;n (12)%)

Finding RQ1.4: Current SAST tools lack the necessary features
required to effectively handle embedded crates.

Finding RQ1.5: Current SAST tools do not provide the necessary
information to triage the reported defects, making it hard (rather
impossible) to verify the reports.

Finding RQ1.6: Current SAST tools fail to effectively handle build
idioms and configurations of embedded RusT crates, resulting in
robustness issues.

Finding RQ1.7: The design choices of current SAST tools fail to
effectively handle the common idioms in embedded crates result-
ing in a very high false positive rate (40%-90%).

Open Problem P1.5: There is no dataset of security bugs
in RusT embedded crates. Recent systematic bug dataset creation
works [59] provide possible approaches to tackle this.

our requirements, we present the results of only the c2rusT tool.
Other recent tools, such as LAERTES [50] and CRusTS [78], do not
work directly on C code but rather improve the RusT code produced
by c2rusT through novel post-processing techniques. As we will
show in §4.3.3, c2RusT either failed or produced uncompilable Rust
code on (almost) the entire dataset. Consequently, recent tools that
depend on c2RrUsT also failed on the dataset.

4.3.1
com, which maintains the list of all popular RTOSes released to
date. We selected well-maintained (i.e., has build instructions) and
compilable RTOSes. This resulted in a total of 16 C/C++ RTOSes
(CRT). The compilation of RTOSes is specific to an MCU and in-
cludes HAL and other peripheral access libraries for the MCU. Thus,
using RTOSes enables us to test the effectiveness of c2RUST on code-
bases across different layers of embedded systems.

4.3.2 Running c2rusT. To convert a project, we first need to cap-
ture compilation commands, e.g., generating compile_commands. json
using scan-build [81]. Next, we need to run c2rRUST on the cap-
tured compile_commands. json. C2RUST uses CLANG to parse C files
and uses pattern-based techniques on the resulting Abstract Syn-
tax Tree (AST) to produce corresponding RusT code. Specifically,
each compilation command (from compile_commands. json) will be
executed by replacing the compiler with cLanG. However, just
replacing the compiler will not work as embedded systems use

Dataset. We collected popular C/C++ based RTOS from osrtos.

2303

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

non-standard and MCU specific toolchains, e.g., avr-gcc, whose
compiler flags/options may not be supported by cLanc. We fol-
lowed an on-demand approach to convert into a CLANG compatible
variant and run c2rUsT. Specifically, for each incompatible option
leading to an error in conversion/compilation, we refer to CLANG’s
documentation to see if there is an alternative option (case-1), or
if it is not supported by cLANG (case-2). For case-1, we use the
corresponding alternative flags, e.g., we replace -march=nehalem
with -march=armv8-a. For case-2, we remove those flags/options
(5 flags), e.g., -Wformat-overflow. The removal of case-2 flags does
not affect the conversion (a frontend task), as all of these flags are
related to optimization (a middle/backend task).

4.3.3 Results. Our Extended Report [126] has a summary of the
results. All RTOSes, except for two, required manually fixing
compile_commands. json (discussed in §4.3.2). C2RUST failed on 6
(37.5%) RTOSes. The two main reasons for this are: (i) Embedded sys-
tem codebases often use (CLANG) unsupported C language features,
and (ii) c2RUST uses RUST std library to generate certain wrapper
functions, but as mentioned in §2.2, std library should not be used
in an embedded environment. For instance, gnucc/oscore.c file
in stateos/State0S uses parameter references in naked functions,
which is not supported by cLANG [82] and consequently, C2RUST
fails. It executed successfully on 10 (62.5%) RTOSes. Out of which, the
generated RUST code was incorrect or syntactically invalid (e.g., miss-
ing semicolon) on 9 (90%) RTOSes. The conversion was successful
(i.e., c2rusT produced compilable RusT code) on only one RTOS, i.e.,
kmilo17pet/QuarkTs.

Finally, c2RUST uses a syntactic approach and consequently
produces RusT code with mostly unsafe blocks. Although recent
works [50] have tried to improve the situation, the progress is rather
slow and requires more focused efforts.

Finding RQ1.8: C to RusT tools fail on most, i.e., 93.8% (15/16),
embedded codebases because of the prevalent use of special com-
piler flags and non-standard C language features.

Finding RQ1.9: C to RusT tools do not consider the no_std re-
quirement and consequently will generate RusT code inapplicable
for embedded systems.

5 RQ2: Interoperability of Rust

Most existing embedded system codebases are written in C [129].
Developers should be able to write RusT code that can interoperate
with existing C code to avoid reengineering the entire embedded
software stack in RusT. As mentioned in §2.2, RusT has Foreign
Function Interface (FFI) support enabling interoperability with code
written in other languages, especially C.

To answer this research question, we investigate the effort and
challenges in developing RusT (or C) code that can interoperate with
C (or RusT) code. We first provide a brief overview of recommended
steps to develop interoperable code and quantify the effort and
challenges specific to embedded systems. Second, we will present
our experience and challenges in engineering interoperable code
in various embedded system development scenarios.

5.1 Rust e C

The top part of Tbl. 7 summarizes our observations.

Rust for Embedded Systems: Current State and Open Problems

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 7: Summary of Rust Interoperability Modes. We indicate whether each step is easy (©), (e.g., running a tool on a C
file), requires medium effort or automation opportunities (©) (e.g., configuring linker script), or requires significant effort
or open-problems (®) (e.g., rewriting embedded C code in Rust). The challenges affecting embedded systems are 'highlighted .

Intesrltl)li)erablhty Modes Method Effort Embesdl;ieecdingstem
Mode ‘ Abbr. Desc. Challenges
0= Calling C function 1. Use bindgen to get declaration in Rust (©) Easy
7 = % from Rust 2. Link with target C object file (£) (ALLC types are N/A
v) : FFI Compatible)
= . Depends on the use of Most functions in
N Calling Rust 1. Use cbindgen to get declaration in C (®). Rust types not compatible
[. . ;)) Embedded crates use
OB function from C 2. Link with target Rust object file (©). with C types. FFI incompatible types
e (i.e., FFI Incompatible types) P 7,
I Developing Rust 1. Use bindgen to get C-RTOS Easy
g g E X Application on top of functions’ declarations in Rust (©). (All C type are N/A
2 2 2 < C-RTOS 2. Modify the linker script (©). FFI compatible)
% e “ @ Developing C 1. Use cbindgen to get Rust-RTOS Depends on the use There is a prevalent
5 E 2.5, 3 S Application on top of functions’ declarations in C (®). of FFI incompatible types use of FFI incompatible
é‘“ T g = < Rust RTOS 2. Modify the linker script (©). in Rust RTOSes. types in Rust RTOSes.
E_.:) F‘E © 1. Use bindgen to convert all dependent
| o= :
o3 | Comertmgscomponn | o CReten B 00 e on e (IR
,:% » in C-RTOS to Rust - Rewrlte the farget embedde to rewrite C code to Rust. . L. ?
< component in Rust (®). forcing manual rewriting.
3. Modify the Makefile (©).

5.1.1 Calling C function from Rust (Rust — C). To invoke a C
function from from RusT, first, we need to provide the Rust FFI sig-

nature of the function. This can be done using tools such as bindgen [24]

to automatically generate FFI signatures from C header files. Then,
they can link the library (i.e., object file) containing the C function
with the RusT object file to get the final executable. We illustrate
these steps with an example in Our Extended Report [126]. One
of the main tasks here is to generate FFI bindings for the C func-
tions. It is relatively straightforward to create these bindings as
the RUsT’s type system [84] is a superset of C’s, i.e., every builtin C
type has a corresponding type in RusT. Finally, the target object file
created from RUsT code should be linked to the source C project.
However, there are no automated tools to achieve this. In summary,
it is relatively straightforward to write RusT code that can invoke
C functions, but automation opportunities exist.

5.1.2 Calling RusT function from C (C — RusT). Similar to RusT
— C (85.1.1), here we need to generate C declaration for the tar-
get RusT function, which can be automated using cbindgen [87] tool
(Our Extended Report [126] provides details of this process). The
superior RUST type system has several types that are not supported
in C. For instance, Vec [117], one of the most commonly used RusT
types, is not supported in C. Consequently, cbindgen fails for such
functions. Developers need to write type wrappers to handle this
manually. But advanced features of RUsT types, such as trait [137],
makes engineering these wrapper functions challenging [61], more
details in Our Extended Report [126]. We also performed a type
compatibility analysis to assess the extent to which external func-
tions in RUST crates use advanced RUST types, i.e., library functions
for which developers need to engineer corresponding type wrapper
functions manually. Our Extended Report [126] provides details of
the same. This is also the difficulty faced by developers (RQ3.4) as
we discuss in §6.3.

2304

Finding RQ2.1: Although it is relatively straightforward to in-
voke C functions from RUST code, automation opportunities exist
to ease the process.

Finding RQ2.2: The use of FFl incompatible types makes it hard to
invoke RusT functions from C code. The majority (~70%) of RusT
embedded crates have functions with incompatible types.

Open Problem P2.1: Embedding rust function calls in C applica-
tion is challenging due to the need for type conversion between C
types and FFI-incompatible rust types. One possible approach is
to manually create (once for all) type wrappers for basic complex
types (e.g., Vec) and use them to automatically create wrappers
for composite types (e.g., struct).

5.2 RusT Interoperable Challenges in Embedded
Systems Development

We used RUST in various real-world scenarios to investigate this
aspect. Specifically, we explore: Rust application on top of C RTOS
(RoC), C application on top of Rust RTOS (CoR) and converting a
component in C RTOS to RusTt (RWC). The bottom part of Tbl. 7
summarizes our observations.

5.2.1 Setup. We chose the blinker application [95] for our applica-
tion scenarios (RoC and CoR) as it encompasses all the necessary
aspects of a typical embedded system, i.e., interacts with RTOS, has
event-driven custom interrupt handler, and uses call-backs. The ap-
plication periodically (through an interrupt handler) blinks an LED
by interacting through GPIO addresses. We used the nrf52840-dk
MCU board [96] with ARM Cortex-M4 for our target board, as it
is a widely recognized and adopted development platform in the
embedded systems community and is well-supported by RusT. We
used FREERTOS [52] as our C RTOSes, because of its widespread
popularity in the embedded systems community [141] and extensive

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

documentation [53]. As mentioned in §3.1, RusT RTOS can be either
fully developed in RusT (i.e., native) or wrappers around a C RTOS.
We selected riros [23] and FREERTOS.Rs [54] as our native and
wrapper RTOSes, respectively. LiLOS is a stable and purely RusT
based and completly asynchronous RTOS. This is a representa-
tive RusT based RTOS using the strongly suggested async design
pattern [85].

5.2.2 RusT application on top of C RTOS (RoC). Our goal is to cre-
ate a RusT blinky application on top of C FREERTOS. We followed
similar steps as described in §5.1.1. First, we generated embedded
system compatible (i.e., no_std) Rust FFI bindings from FREERTOS
header files using bindgen. Second, we developed blinky applica-
tion using these FFI bindings. Our Extended Report [126] shows a
snippet of creating a task using FREERTOS through its FFI bindings.
Specifically, we converted RuUST types into appropriate FFI types
and invoked the target function. We followed a similar procedure
for all other steps, i.e., registering interrupts, etc. Finally, we created
a static library of C FREERTOS and linked it with our RusTt applica-
tion to get the final executable. We tested the final executable and
ensured that it worked as expected. The entire process was straight-
forward. The only issue was creating a linker script suitable for
the target board. As mentioned before in §5.1.2, the availability of
automated tools will make this process easier.

Listing 1: FFI incompatible function and FFI-friendly wrap-
per function to create tasks in Lilos scheduler

// FFI incompatible function

pub fn run_tasks(

futures: &mut [Pin<&mut dyn Future<Output = Infallible>>],
initial_mask:
)y > !

usize,

#[no_mangle]

pub extern fn lilos_run_two_tasks(fn1:
fn(), initial_mask: usize) -> ! {

9 unsafe {

10 let futl = *fnl;

11 let futurel = pin!(async move {

12 loop { fut1() 3} 3});

13 fut2 = xfn2;

14 future2 = pin! (async move {

15 loop { fut2() } });

16 tasks (&mut [futurel,

17)

18 3

[I R R S

*mut fn(), fn2: *xmut

let
let

run_ future2], initial_mask);

5.23 C application on top of RusT RTOS (CoR). This interoperable
modality is crucial for developers who seek to build secure systems
by leveraging existing components. Furthermore, as shown in Fig. 4,

36% of developers claim to have developed C code calling Rust

functions. Here, our goal is to create a C blinky application on top

of RusT RTOSes, specifically on FREERTOS.Rs (RusT wrapper of

C FReeRTOS) and r1Los (a pure RusT RTOS). We followed similar

steps as described in §5.1.2.

o On FREERTOS.Rs: Being a wrapper, all external functions used C
compatible types, and cbindgen was able to create C declarations
for all the required functions. This made it easy to create the main
task of the C blinky application. However, accessing GPIO pins
required us to use nrf52840_pac [116] RUST create, which uses a
C incompatible type, i.e., RegisterBlock. Consequently, chingen
failed to create corresponding C declarations. We manually cre-
ated an FFI compatible RusT function (togglePin) to access

2305

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

GPIO pins and used it in our application. Refer our Extended
Report [126] for details.

On L1L0s: This presented an extreme case wherein none of the ex-
ternal functions are FFI compatible, and consequently, cbindgen
failed to create C declarations. We had to manually create FFI com-

patible wrapper functions (e.g., 1ilos_run_two_tasks for run_tasks

inLis. 1). For accessing GPIO pins, we followed the same approach

as described before in On FREERTOS.Rrs.

The main challenge in both cases was dealing with incompat-
ible RusT types. We found (from our analysis in §5.1.2) that on-
average of 26 interface functions in Rust RTOSes use incompati-
ble RusT types.

Finding RQ2.3: Significant development effort is required to en-
gineer a C-embedded application on top of RusT RTOSes because
of the prevalent use of incompatible RUST types.

5.2.4 RusT component in C RTOS RwC). Here, we aim to convert
a component in C RTOS into RUST to mimic an incremental port-
ing scenario. We selected list component in C FREERTOS, as it
is self-contained (i.e., no calls to other components). We followed
a similar procedure as described in §5.1.1. First, we used bindgen
on list.h to create the required RusT types. The xLIST (in our
Extended Report [126]) shows the type generated by bindgen. Sec-
ond, we reimplemented the list functions (in list.rs) using the
types generated by bindgen. Unfortunately, as mentioned in §4.3,
the recommended way to convert C to RusT code does not work on
embedded codebases. We manually translated the corresponding C
implementation line-by-line into RusT, which required considerable
effort. Our Extended Report shows a snippet of vListInitialise
function in RusT. Finally, we modified the Makefile to build list.rs
into a static library and linked it with the final FREERTOS object
file.

Finding RQ2.4:The lack of embedded codebase support in C-to-
RusT conversion tools (described in §4.3) poses a considerable
challenge in adopting the (recommended) incremental porting
approach [50, 134] to convert embedded codebases to RUsT.

6 ROQ3: Developers Perspective

We aim to shed light on developers’ perspectives on using Rust
for embedded systems development. Specifically, (i) Reasons for
not using RusTt,; (ii) Challenges faced by developers in using RUsT.;
and (iii) Developer’s perspective on RusT’s performance, safety and
interoperability.

6.1 Study Methodology

We used an anonymous online survey with questions spanning
various categories as shown in Tbl. 8. We recruited participants
by sending the link to our survey to various embedded systems
communities and RusT embedded developers’ mailing lists (De-
tails in Our Extended Report [126]). Also, we used our industry
collaborations to circulate our survey to multiple organizations.
Our Institutional Review Board (IRB) reviewed and approved our
study protocol.

Survey Respondents. We got 268 responses, out of which we
filtered out 43 responses from inattentive participants (through

Rust for Embedded Systems: Current State and Open Problems

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 8: Summary of Survey Questions. Exact questions in Our Extended Report [126]

Category ‘ Description ‘ No. of questions
Familiarity and Experience Examines participants’ familiarity, experience, and preferred languages for embedded systems 9
development.
Acquaintance with Rust Explores familiarity with Rust and its specific features of participants. 15
Reasons to Use Rust Gathers opinions of participants on reasons to use Rust, its advantages, and perceived challenges. 13
Hardware Support, Integration, and Performance | Enquires about issues related to hardware support, integration, and performance when using Rust for 11
embedded development.
Memory Safety and Debugging Focuses on the importance of memory safety, ease of debugging with Rust, and related practices in 9
embedded systems development.
Documentation and Community Support Evaluates the quality of Rust documentation and the level of community support available for 6
embedded systems.
Development Time and Code Quality Investigates views on potential gains in development time and code quality when using Rust. 3

attention-checking questions), resulting in 225 valid responses.
There is considerable diversity in the embedded systems experi-
ence of participants, indicating a representative developers group.
Our Extended Report shows the distribution of embedded systems
experience of participants.

6.2 Not Using Rust for Embedded Systems:
Expectations v/s Reality

Developers not using Rust for Embedded Systems (76 (33.8%))

7 (9%)
Considered but discontinued

Never Tried
Lack of Support for MCUs (36%)
Difficulty Integrating with Existing codebase (32%)
i and certification requi (30%)

69 (91%)

®

O

[@

Lack of expertise (86%)
Non-convinced about Rust's benefits (29%)

Why C over Rust?

Better Library and tool support (20%)

@ Easy to learn (20%)
Portability (18%)

Low-level control over hardware (14%)

Handling Memory Safety Issues
Manual Inspection (28%) }

Static Analysis Tools (21%)
Avoid Memory Allocation after init (10%)

Figure 1: Response summary of Developers not using RusT.

The Fig. 1 shows the summary of 76 (33.8%) participants who
currently do not use RusT. Only, 7 (9%) participants never tried to
use RusT, mainly because of the lack expertise (). Furthermore,
29% of developers are not convinced about RusT security benefits
as embedded systems rarely use dynamic memory allocation and do
not need RUST’s ownership features — an important safety feature
of RUsT.

However, the other 69 (91%) participants considered RusT, but
discontinued because of three main reasons (2)): (i) Lack of support
for MCU, this is inline with our analysis in §4. (ii) Integrating with
existing codebases. (iii) Organizational and certification constraints.
Source code used as part of critical infrastructure, such as airplanes,
undergo rigorous certification [47, 69, 70]. This is expensive and
time-consuming. Switching to RUST requires re-certification, which
may not be desirable for organizations.

All developers in Fig. 1 use C, and the 3 box shows the reasons
for choosing C. The first two reasons are expected, as C is an old
language with many libraries and toolchain support. The third
reason, i.e., Portability, is interesting. In C, there are no language-
specific considerations for embedded systems. Consequently, it
is relatively easy to port (or repurpose) an existing library for the
embedded use case by linking it with embedded versions of standard

2306

libraries. However, in RusT, embedded libraries (i.e., crates) should
be developed with no_std environment — which restricts the uses
of certain language-level features. Consequently, porting existing
libraries to be no_std compatible and to use in embedded systems is
challenging [40, 46].

Interestingly, as shown in @ of Fig. 1, many (28%) embedded
systems developers (using C) do not use any automated security
tools and rely on manual inspection. Only 21% of the developers
use static analysis tools. This confirms observations made by a
recent study [129]. Finally, none of the developers use any dynamic
analysis tools.

Finding RQ3.1: To improve adoption of Rust for embedded sys-

tems:

e Support needs to be added for more MCUs.

o Techniques and methods should be developed to ease the certi-
fication of RusT code ported from already certified C code.

o Automated techniques should be developed to convert RusT
crates to no_std compatible.

6.3 Experiences in Using RusT for Embedded
Systems

There were 149 (66.2%) participants who currently use RusTt for
embedded systems development. These participants have varied de-
velopment experience with RusT, specifically, 19% with < 6 months,
28% with 6 months - 1 year and 18% with 1-2 years, and 35% with
more than 2 years.

Adopting RusT and Motivation: The two main motivations to
learn RusT for embedded systems are safety and reliability (94%)
and familiarity with the language (57%). Although there exists good
support for RusT in the embedded systems community (Fig. 7), the
majority percentage (85%) of developers claim that it still requires
considerable effort (i.e., Moderate (40%) + Hard (45%)) to adopt RUST.
RusT Documentation and Community Support (Fig. 6 and 2):
The majority, i.e., 81% (51 + 30) of developers, agree that the available
documentation and community are helpful. However, 49% (30 +
19) of developers mention that documentation should be improved.
The Fig. 2 shows specific suggestions to improve the documentation.
Specifically, RusTt documentation should contain more examples and
be organized better.

Developer Tools and Crates: 68% of the developers think the cur-
rently available crates provide sufficient support (i.e., very satisfied
- somewhat satisfied), whereas the rest, 32%, observe that it is not

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

79.19

80 (- B
60 52.35)
40 |- B
24.16
20| [l 1544
1 1 1 T
More Better Others Improved
examples information search

organization functionality

Figure 2: Required Improvements to Rust Documentation.

adequate (i.e., dissatisfied — very dissatisfied). This is also in line with
our analysis (§4), where we noticed that necessary support (i.e.,
HAL and other necessary crates) is unavailable for certain MCUs.

Fig. 3 shows the opinion of users w.r.t the RusT toolchain sup-
port. Most developers (across all experience levels) mention that it
is easy to adopt RusT toolchain for embedded systems development
— reasons are intuitive tools and their documentation (). This is
in line with our analysis in §5. Nonetheless, 12% (18) developers ex-
pressed concerns, i.e., poor documentation (missing examples) and
buggy tools (®). These could be because of using tools from non-
stable branches. This also further confirms observations in Fig. 2,
where developers require more examples to be included in the
documentation.

Ease of Adopting Rust toolchain

88%

Easy - Moderate

Intuitive Tools (76%)

12%

Hard - Very hard

Poor Documentation and Examples (58%)

Documentation (54%)
@ Incomplete or Buggy Tools (50%)
Community Support (32%)
Difficulty Integration with Hardware (39%)
Better Integration with Hardware (27%)

B Beginner: 4 (21%), Intermediate: 8 (18%),
Advanced: 2 (4%), Expert: 4 (12%)

(Developer Experience)

: 15 (79%), Intermedi: 37 (82%),
Advanced: 49 (96%), Expert: 30 (88%)

(Developer Experience)

Figure 3: Response summary of Developers on ease of adopt-
ing RusT toolchain.

Performance of RusT: It is interesting to see that only 54% of de-
velopers mentioned that they performed a systematic comparative
evaluation of their RusT implementation with existing C implemen-
tation. Wherein 28.5% noticed similar performance, 22% noticed
that RusT was faster, and the remaining 3.5% noticed that Rust
implementation was slower.

The slowdown observations contradict the common belief that
given the asynchronous nature of embedded systems, the perfor-
mance of RUST’s implementation can be significantly improved by
carefully using its built-in features, such as closures [60]. These
observations also highlight the need for a systematic performance
evaluation of using RUsT for embedded systems.

Finding RQ3.2: RusT documentation should be improved with
more embedded system-specific examples.

2307

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

Open Problem P3.1: Developers have contradictory views
on RusT’s performance on embedded systems. Existing perfor-
mance studies [21, 71, 144] could be extended to include RusT
embedded systems.

Interoperability with Existing Codebase: All developers agree
that interoperability is needed, and most developers (98%) were
aware of RUsT’s interoperability support. However, 56% of develop-
ers mentioned that they face challenges in using interoperability
support of Rust. The (D box in Fig. 4 shows developers’ common
challenges in using interoperability support.

Finding RQ3.3: The majority (i.e., 34%) of developers face issues
handling type incompatibilities between Rust and C code. This is
in line with our analysis (§5.1.2), where we show that handling
data types is one of the challenges in using C on top of RusT
(CoR).

The second major (26%) issue is debugging, which is expected
because, as explained in §2, embedded systems follow an asyn-
chronous and event-driven design. This results in frequent cross-
language domain interactions and makes debugging hard.

As shown by ® in Fig. 4, 60% (32 + 28) of developers agree that
using interoperable RusT improves security. However, 32% mention
that secure usage (i.e., through unsafe blocks) requires significant
effort — which is in line with existing works [17] that show that
engineering interoperable code in unsafe blocks is challenging and
prone to security issues.

Common Uses

Calling C function from Rust (60%)

Calling Rust functions from C (36%)

Other (e.g., C bindings for Rust) (4%)

Challenges Security Benefits

Data types incompatibilities (34%)

Q)

Improves Security but requires effort (32%)

Debugging (26%) Imp

Security of Existing C code (28%)

Memory Management (21%) No significant security improvements (15%)

Figure 4: Response summary of Developers perspectives
on RusT’s Interoperability.
=

100

[Easy [[] Moderate [] Hard [l Very Hard

40
\ [

0 10

45

20 30 40 50 60 70 80 90

Figure 5: Ease of Adopting Rust for Embedded Systems De-
velopment

RusT v/c C: 92% of developers mentioned that they also used C
for embedded systems development. Out of which, 64% of developers
claim that development time significantly decreased and also the
code quality improved after switching to RusT. This is in line with
recent findings at Google [31]. For embedded systems development,
30% of developers recommend RusT unconditionally, whereas 61%
recommend RUsT only if the developer is well-versed in it, and the
9% recommend RuUST only if safety is of high importance.

Rust for Embedded Systems: Current State and Open Problems

[Very Poor [[] Poor [[] Average lll Good Il Excellent

1 11
\ [

0 10

24 42

20 30 40 50 60 70 80 90 100

Figure 6: Support for Rust in Embedded Systems Community

[No - should be [Yes - can be
improved improved

[Yes - very
helpful

19 30

51

50

20 30 40 60 70 80 90 100

Percentage (%)

Figure 7: Is Rust Documentation and Community Helpful?

7 Limitations and Threats to Validity

We acknowledge the following limitations and threats to validity:
o Our findings are based on the analysis of the collected dataset
and SAST tools. The dataset and the tools may not be representa-
tive enough. We tried to avoid this by collecting crates and tools
from diverse sources.
e We did not analyze all the alerts raised by various SAST tools
(8§4.2). Consequently, using these alerts to assess the quality of
crates could be exaggerated because of potential false positives.
Our RQ2 (§5.2) observations are based on limited scenarios and
may not be generalizable. However, the developer survey (in §6.3)
confirmed our findings, reducing the risk.

8 Related Work

Rust Studies: Several works [17, 55, 88, 103, 145] evaluate various
aspects of RusT from the usability perspective. Fulton et al., [55] sur-
veyed and interviewed Rust developers to understand challenges
and barriers to adoption. Similarly, Zeng et al., [145] performed a
mixed-methods study of RusT related forums to identify common
challenges and corresponding solutions. However, other works as-
sess specific aspects of RusT. Astrauskas et al., [17] focused on iden-
tifying common uses of unsafe blocks. Whereas, Qin et al., [103]
focused on identifying challenges in using concurrency constructs
and identified common causes of concurrency issues in RUST code.
Similarly, Mindermann et al., [88] exclusively studied the usability
of RusT’s cryptography APIs, providing crucial recommendations
for developing these APIs to enhance usability and reduce misuse.
Pinho et al, [100] and Ashmore et al., [16] evaluated the feasibil-
ity of using RusT for safety critical systems (a class of embedded
systems). Specifically, using evaluation criteria for programming
languages, aligning with the standards set by RTCA DO-178C, they
demonstrated that RusT meets all the criteria. Levy et al., [74] fo-
cused on using RUsT for kernel development and shared their first-
hand experience in creating a kernel for low-power MCUs. They
also demonstrated [73, 75] the feasibility of using RUsT to engineer
common kernel building blocks with only a few unsafe blocks.
This paper assesses the applicability and challenges of using Rust
for embedded system software, such as RTOSes, by performing a
systematic analysis and developer study.
Embedded Systems Vulnerabilities: Several works [49, 51, 57]
try to understand vulnerabilities in embedded systems and analyze
challenges and possible solutions for effective vulnerability detec-
tion. Several embedded systems vulnerability detection techniques

2308

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

use various approaches ranging from static analysis [105], sym-
bolic execution [33], and rehosting-based dynamic analysis [125] or
fuzzing [29]. In this work, we do not propose any new techniques
but rather use state-of-the-art tools (§4.2) to assess various aspects
of RusT embedded software.

9 Conclusion

We performed a systematic analysis and a comprehensive (with 225
developers) survey to understand the current state and challenges in
using RusT for embedded systems development. Our findings pro-
vide insights into the current state and expose open problems and
potential improvements that can facilitate easy adoption of RusT
for embedded system development.

10 Acknowledgements

This research was supported in part by the National Science Foun-
dation (NSF) under Grant CNS-2340548, Rolls-Royce Grant on “Dy-
namic Analysis of Embedded Systems”, and Defense Advanced Re-
search Projects Agency (DARPA) under contract numbers N660012
0C4031 and N660012224037. The U.S.Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions,
findings, conclusions, or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the NSF, Rolls-Royce, or the United States Government.

References

[1] Conditional compilation - The Rust Reference.
reference/conditional-compilation.html.
[2] How Rust is Made and “Nightly Rust” - The Rust Programming Language.
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html.
[3] SARIF Home. https://sarifweb.azurewebsites.net/.
[4] The 5 Worst Examples of IoT Hacking and Vulnerabilities in Recorded History.
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities, June 2020.
Vali Kh Abdrakhmanov, Niaz N Bikbaev, and Renat B Salikhov. Development
of low-cost electronic training boards based on universal microcontroller. In
2016 13th International Scientific-Technical Conference on Actual Problems of
Electronics Instrument Engineering (APEIE), volume 1, pages 319-325. IEEE, 2016.
Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Djamel Ed-
dine Khelladi, and Jean-Marc Jézéquel. Learning from thousands of build failures
of Linux kernel configurations. PhD thesis, Inria; IRISA, 2019.
Abdullah Al-Boghdady, Khaled Wassif, and Mohammad El-Ramly. The presence,
trends, and causes of security vulnerabilities in operating systems of iot’s low-
end devices. Sensors, 21(7), 2021.
Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiaojiang
Du, Thsan Ali, and Mohsen Guizani. A Survey of Machine and Deep Learning
Methods for Internet of Things (IoT) Security. IEEE Communications Surveys &
Tutorials, 22(3):1646-1685, 2020.
Fadi Al-Turjman and Joel Poncha Lemayian. Intelligence, security, and vehicular
sensor networks in internet of things (iot)-enabled smart-cities: An overview.
Computers & Electrical Engineering, 87:106776, 2020.
Hussain M. J. Almohri and David Evans. Fidelius charm: Isolating unsafe rust
code. In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, CODASPY ’18, page 248-255, New York, NY, USA, 2018.
Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. SoK:
Security Evaluation of Home-Based IoT Deployments. IEEE Symposium on
Security and Privacy (SP), 2019-May:1362-1380, 2019.
Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. " false
negative—that one is going to kill you": Understanding industry perspectives of
static analysis based security testing. arXiv preprint arXiv:2307.16325, 2023.
AMNESIA:33 - Foresout Research Labs Finds 33 New Vulnerabilities in Open
Source TCP/IP Stacks. https://www.forescout.com/blog/amnesia33-forescout-
research-labs-finds-33-new-vulnerabilities-in-open- source-tcp-ip-stacks/, De-
cember 2020.
Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In 26th USENIX Security Sympo-
sium, pages 1093-1110, 2017.
URGENT/11. https://www.armis.com/research/urgent11/.
Rob Ashmore, Andrew Howe, Rhiannon Chilton, and Shamal Faily. Program-
ming language evaluation criteria for safety-critical software in the air domain.

https://doc.rust-lang.org/

=

[10

[11]

[12]

[13]

[14

[15]
[16]

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

In 2022 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW), pages 230-237, 2022.

Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Miiller, and Alexan-
der J. Summers. How do programmers use unsafe rust? Proc. ACM Program.
Lang., 4 OOPSLA), November 2020.

Azure RTOS. https://github.com/azure-rtos.

Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim.
Rudra: finding memory safety bugs in rust at the ecosystem scale. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pages
84-99, 2021.

Inyoung Bang, Martin Kayondo, Hyungon Moon, and Yunheung Paek. Trust:
A compilation framework for in-process isolation to protect safe rust against
untrusted code. In 32nd USENIX Security Symposium, 2023.

Rust vs C++ g++ - Which programs are fastest? https://benchmarksgame-
team.pages.debian.net/benchmarksgame/fastest/rust-gpp.html.

Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan, and
Nader Meskin. Cybersecurity for industrial control systems: A survey. Comput-
ers & Security, 89:101677, 2020.

Cliff L. Biffle. lilos: A minimal async rtos. https://github.com/cbiffle/lilos, 2023.
bindgen - Rust. https://docs.rs/bindgen/latest/bindgen/.

BlueHat. Memory corruption is still the most prevalent security vulnerabil-
ity. https://www.zdnet.com/article/microsoft-70- percent-of-all-security-bugs-
are-memory-safety-issues, 2019.

Carsten Bormann, Mehmet Ersue, and Ari Kerdnen. Terminology for
Constrained-Node Networks. Request for Comments RFC 7228, Internet Engi-
neering Task Force, May 2014.

William Bugden and Ayman Alahmar. Rust: The programming language for
safety and performance. arXiv preprint arXiv:2206.05503, 2022.

Archana Chaudhary, Savita Kolhe, and Raj Kamal. An improved random forest
classifier for multi-class classification. Information Processing in Agriculture,
3(4):215-222, 2016.

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhigiang Lin,
Xiaofeng Wang, W. Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang.
Iotfuzzer: Discovering memory corruptions in iot through app-based fuzzing.
In Network and Distributed System Security Symposium, 2018.

LLVM CFI and Cross-Language LLVM CFI Support for Rust.
//bughunters.google.com/blog/4805571163848704/llvm- cfi-and- cross-
language-llvm- cfi- support-for-rust.

Thomas Claburn. Rust developers at Google twice as productive as C++ teams.
https://www.theregister.com/2024/03/31/rust_google_c/.

Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C
Necula. Dependent types for low-level programming. In Proceedings of the 2007
European Symposium on Programming (ESOP), pages 520-535. Springer, 2007.
Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. Inception:
System-wide security testing of real-world embedded systems software. In 27th
USENIX Security Symposium, page 309-326, 2018.

arduino_nano_connect - crates.io. https://crates.io/crates/arduino_nano_
connect.

atdf2svd crates.io. https://crates.io/crates/atdf2svd.

crates.io: Rust Package Registry. https://crates.io/.

eeprom24x - crates.io. https://crates.io/crates/eeprom24x.

embedded-hal - crates.io. https://crates.io/crates/embedded-hal.
futures-executor - crates.io. https://crates.io/crates/futures-executor.
no-std-compat - crates.io. https://crates.io/crates/no-std-compat.
oc-wasm-futures - crates.io. https://crates.io/crates/oc-wasm-futures.
svd2rust - crates.io. https://crates.io/crates/svd2rust.

tinybmp - crates.io. https://crates.io/crates/tinybmp.

Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. Safedrop: Detecting
memory deallocation bugs of rust programs via static data-flow analysis. ACM
Transactions on Software Engineering and Methodology, 2021.

Mohan Cui, Suran Sun, Hui Xu, and Yangfan Zhou. rcanary: Detecting memory
leaks across semi-automated memory management boundary in rust, 08 2023.
Item 33: Consider making library code no_std compatible - Effective Rust. https:
//www.lurklurk.org/effective-rust/no-std.html.

Ian Dodd and Ibrahim Habli. Safety certification of airborne software: An
empirical study. Reliability Engineering & System Safety, 98(1):7-23, 2012.
Gregory J Duck and Roland HC Yap. Heap bounds protection with low fat point-
ers. In Proceedings of the 2016 International Conference on Compiler Construction
(CC), pages 132-142. ACM, 2016.

Max Eisele, Marcello Maugeri, Rachna Shriwas, Christopher Huth, and Gi-
ampaolo Bella. Embedded fuzzing: a review of challenges, tools, and solutions.
Cybersecurity, 5, 09 2022.

Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. Translating ¢
to safer rust. Proc. ACM Program. Lang., 5(O0PSLA), October 2021.

Xiaotao Feng, Xiaogang Zhu, Qing-Long Han, Wei Zhou, Sheng Wen, and Yang
Xiang. Detecting vulnerability on iot device firmware: A survey. IEEE/CAA
Journal of Automatica Sinica, 10(1):25-41, 2023.

FreeRTOS. https://www.freertos.org/index.html.

Freertos book. https://www.freertos.org/Documentation/RTOS_book.html.
Freertos-rust. https://github.com/lobaro/FreeRTOS-rust, 2023.

Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael W. Hicks, and Michelle L.

Mazurek. Benefits and drawbacks of adopting a secure pro%rammin language:
Rust as a case study. In Symposium on Usable Privacy and Security, 2021.

https:

[56]

[57]

[58]

[59]
[60]
[61

[62
[63

[64]

[65]

[66]

[67

[68

[69

[70]

[71
[72

[73

[74]

[75]

[76

[77

[78

[79]

[80

[81

[82

[83

[84

[85]

Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry

Dharmalingam Ganesan, Mikael Lindvall, Rance Cleaveland, Raoul Jetley, Paul
Jones, and Yi Zhang. Architecture reconstruction and analysis of medical device
software. In 2011 Ninth Working IEEE/IFIP Conference on Software Architecture,
pages 194-203. IEEE, 2011.

Imran Ghafoor, Imran Jattala, Shakeel Durrani, and Ch Muhammad Tahir. Anal-
ysis of openssl heartbleed vulnerability for embedded systems. In 17th IEEE
International Multi Topic Conference 2014, pages 314-319, 2014.

Merve Giilmez, Thomas Nyman, Christoph Baumann, and Jan Tobias Miihlberg.
Friend or foe inside? exploring in-process isolation to maintain memory safety
for unsafe rust. In 2023 IEEE Secure Development Conference (SecDev), pages
54-66, 2023.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A ground-truth
fuzzing benchmark. Proc. ACM Meas. Anal. Comput. Syst., 4(3), nov 2020.
Hugo Heyman and Love Brandefelt. A comparison of performance & imple-
mentation complexity of multithreaded applications in rust, java and c++, 2020.
The Rust FFI Omnibus. https://jakegoulding.com/rust-ffi-omnibus/.

Ripple20. https://www.jsof-tech.com/disclosures/ripple20/.

System View Description. https://www.keil.com/pack/doc/CMSIS/SVD/html/
index.html.

Samuel C Kendall. Bee: Runtime checking for ¢ programs. In USENIX Summer
Conference, 1983, pages 5-16, 1983.

Arslan Khan, Dongyan Xu, and Dave Jing Tian. Ec: Embedded systems com-
partmentalization via intra-kernel isolation. In IEEE Symposium on Security and
Privacy (SP), pages 2990-3007, 2023.

Arslan Khan, Dongyan Xu, and Dave Jing Tian. Low-cost privilege separa-
tion with compile time compartmentalization for embedded systems. In IEEE
Symposium on Security and Privacy (SP), pages 3008-3025, 2023.

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. Pkru-safe: Automati-
cally locking down the heap between safe and unsafe languages. In Proceedings
of the Seventeenth European Conference on Computer Systems (EuroSys), page
132-148, 2022.

Steve Klabnik and Carol Nichols. The Rust programming language. No Starch
Press, 2023.

Andrew Kornecki and Janusz Zalewski. Certification of software for real-time
safety-critical systems: state of the art. Innovations in Systems and Software
Engineering, 5:149-161, 2009.

Andrew J Kornecki. Airborne software: communication and certification. Scal-
able Computing: Practice and Experience, 9(1), 2008.

Speed of Rust vs C. https://kornel.ski/rust-c-speed.

Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann
Hértig. Sandcrust: Automatic sandboxing of unsafe components in rust. In
Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (PLOS), page 51-57, 2017.

Amit Levy, Michael P. Andersen, Bradford Campbell, David Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. Ownership is theft: Experi-
ences building an embedded os in rust. In Proceedings of the 8th Workshop on
Programming Languages and Operating Systems (PLOS), page 21-26, 2015.
Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and
Philip Levis. The case for writing a kernel in rust. In Proceedings of the 8th
Asia-Pacific Workshop on Systems (APSys), 2017.

Amit A. Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Alexander Levis. Multiprogramming a 64kb computer
safely and efficiently. Proceedings of the 26th Symposium on Operating Systems
Principles, 2017.

Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. Mirchecker:
Detecting bugs in rust programs via static analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS), page
2183-2196, 2021.

Zhuohua Li, Jincheng Wang, Mingshen Sun, and John CS Lui. Detecting cross-
language memory management issues in rust. In European Symposium on
Research in Computer Security, pages 680-700. Springer, 2022.

Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James R. Cordy, and Ahmed E.
Hassan. In rust we trust — a transpiler from unsafe c to safer rust. In IEEE/ACM
44th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 354355, 2022.

Rust — The Linux Kernel documentation. https://www.kernel.org/doc/html/
next/rust/index.html.

Peiming Liu, Gang Zhao, and Jeff Huang. Securing unsafe rust programs with
xrust. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE), pages 234-245, 2020.

intercept-build - llvm-mirror/clang. https://github.com/llvm-mirror/clang/blob/
master/tools/scan-build-py/bin/intercept-build.

1217200 - Don’t allow inline asm statements to reference parameters in
naked functions. https://lists.llvm.org/pipermail/cfe- commits/Week- of-Mon-
20140901/114154.html.

Joel Margolis, Tae Tom Oh, Suyash Jadhav, Young Ho Kim, and Jeong Neyo Kim.
An in-depth analysis of the mirai botnet. In 2017 International Conference on
Software Security and Assurance (ICSSA), pages 6-12. IEEE, 2017.

Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada
Letters, 34(3):103-104, 2014.

OpenSystems Media. Asynchronous event-driven
for high-reliability systems - military embedded systems.

architecture
https:

Rust for Embedded Systems: Current State and Open Problems

o
2

[92

[93

o
3

[104

[105

[106

[107]

[108

[109
[110
[111
[112
[113

[114
[115

[116

//militaryembedded.com/radar-ew/rugged-computing/asynchronous-
event-driven-architecture-for-high-reliability-systems.

Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. Cross-language
attacks. In Proceedings of the 2022 Network and Distributed System Security
Symposium (NDSS), volume 22, pages 1-17, 2022.

Generating a Header File - The (unofficial) Rust FFI Guide. https://michael-f-
bryan.github.io/rust-ffi-guide/cbindgen.html.

Kai Mindermann, Philipp Keck, and Stefan Wagner. How usable are rust cryp-
tography apis? CoRR, abs/1806.04929, 2018.

MITRE. 2021 CWE top 25 most dangerous software weaknesses. https://cwe.
mitre.org/top25/archive/2021/2021_cwe_top25.html, 2021.

Krunal A Moharkar, Ankita A Tiwari, Pratik N Bhuyar, Pradip K Bedre, and
FSA Bachwani. Review on different microcontroller boards used in iot. Journal
For Research in Applied Science and Engineering Technology, 10:2321-9653, 2022.
Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In Proceedings of the 2018 Network and Distributed System
Security Symposium (NDSS), 2018.

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
Softbound: Highly compatible and complete spatial memory safety for c. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 245-258, 2009.

George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. Ccured: type-safe retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(3):477-526, 2005.

Vikram Nitin, Anne Mulhern, Sanjay Arora, and Baishakhi Ray. Yuga: Au-
tomatically detecting lifetime annotation bugs in the rust language. ArXiv,
abs/2310.08507, 2023.

nrf interrupt application. https://infocenter.nordicsemi.com/index.jsp?topic=
%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Fpin_change_int_example html.
nrf52840-dk mcu board. https://www.nordicsemi.com/Products/Development-
hardware/nRF52840-DK.

Eoin O’driscoll and Garret E O’donnell. Industrial power and energy metering—a
state-of-the-art review. Journal of Cleaner Production, 41:53-64, 2013.
OSRTOS. https://www.osrtos.com/.

Wanrong Ouyang and Baojian Hua. Rusbox: Towards efficient and adaptive
sandboxing for rust. In 2021 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 1-2, 2021.

André Pinho, Luis Couto, and José Oliveira. Towards rust for critical systems. In
2019 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pages 19-24, 2019.

PYPL PopularitY of Programming Language index. https://pypl.github.io/PYPL.
html.

Dipika Roy Prapti, Abdul Rashid Mohamed Shariff, Hasfalina Che Man, Norul-
huda Mohamed Ramli, Thinagaran Perumal, and Mohamed Shariff. Internet of
things (iot)-based aquaculture: An overview of iot application on water quality
monitoring. Reviews in Aquaculture, 14(2):979-992, 2022.

Bogin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. Understand-
ing memory and thread safety practices and issues in real-world rust programs.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), page 763-779, 2020.

Idiomatically convert to no-std. https://www.reddit.com/r/rust/comments/
10f3nvn/how_do_you_idiomatically_convert_libs_to_no_std/.

Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Karonte: Detect-
ing insecure multi-binary interactions in embedded firmware. IEEE Symposium
on Security and Privacy (SP), pages 1544-1561, 2020.

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan
Burow. Keeping safe rust safe with galeed. In Annual Computer Security
Applications Conference (ACSAC), page 824-836, 2021.

Muhammad Danish Roshaidie, William Pang Han Liang, Calvin Goh Kai Jun,
Kok Hong Yew, et al. Importance of secure software development processes
and tools for developers. arXiv preprint arXiv:2012.15153, 2020.

Android Rust Introduction. https://source.android.com/docs/setup/build/rust/
building-rust-modules/overview.

The AVR-Rust Guidebook. https://book.avr-rust.com/.

Introduction - The Cargo Book. https://doc.rust-lang.org/cargo/.

aarch64-cpu. https://github.com/rust-embedded/aarch64-cpu.

Rust Embedded. https://github.com/rust-embedded.

Awesome embedded Rust. https://github.com/rust-embedded/awesome-
embedded-rust, June 2023. original-date: 2018-04-01T21:17:15Z.

esp-hal. https://github.com/esp-rs/esp-hal.

Lifetimes - Rust By Example. https://doc.rust-lang.org/rust-by-example/scope/
lifetime. html.

nrf52840pac - rust. https://docs.rs/nrf52840-pac/latest/nrf52840_pac/index.html.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

std::vec - Rust. https://doc.rust-lang.org/std/vec/index.html.

Understanding Ownership - The Rust Programming Language. https://doc.rust-
lang.org/book/ch04-00-understanding-ownership.html.

Unsafe Rust. https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html.
References and Borrowing. https://doc.rust-lang.org/1.8.0/book/references-and-

borrowing.html.

The Rust Programming Language - The Rust Programming Language. https:
//doc.rust-lang.org/book/.

e310x-hal. https://github.com/riscv-rust/e310x-hal.

riscv-rust/hifivel: Board support crate for HiFivel and LoFive boards. https:
//github.com/riscv-rust/hifivel.

Aditya Saligrama, Andrew Shen, and Jon Gjengset. A Practical Analysis of
Rust’s Concurrency Story. arXiv preprint arXiv:1904.12210, 2019.

Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Marius Muench,
Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and Ali Reza Abbasi.
Fuzzware: Using precise mmio modeling for effective firmware fuzzing. In 31st
USENIX Security Symposium, 2022.

Ayushi Sharma, Shashank Sharma, Santiago Torres-Arias, and Aravind Machiry.
Rust for embedded systems: Current state, challenges and open problems (ex-
tended report). arXiv.org, (arXiv:2311.05063v2), 2023.

Shashank Sharma, Ayushi Sharma, and Aravind Machiry. Aunor: Converting
rust crates to [no_std] at scale. In Proceedings of the Fourteenth ACM Conference
on Data and Application Security and Privacy (CODASPY), page 163-165, 2024.
Mingjie Shen, James C Davis, and Aravind Machiry. Towards automated iden-
tification of layering violations in embedded applications (wip). In 2023 ACM
International Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES). ACM, 2023,

Mingjie Shen, Akul Pillai, Brian A Yuan, James C Davis, and Aravind Machiry.
An empirical study on the use of static analysis tools in open source embedded
software. arXiv preprint arXiv:2310.00205, 2023.

NB Soni and Jaideep Saraswat. A review of iot devices for traffic management
system. In 2017 international conference on intelligent sustainable systems (ICISS),
pages 1052-1055. IEEE, 2017.

Joseph L Steffen. Adding run-time checking to the portable ¢ compiler. Software:
Practice and Experience, 22(4):305-316, 1992.

K Swathi, T Uday Sandeep, and A Roja Ramani. Performance analysis of
microcontrollers used in iot technology. International journal of scientific research
in science, engineering and technology, 4(4):1268-1273, 2018.

TOML: Tom’s Obvious Minimal Language. https://toml.io/en/.

An Empirical Study of C to Rust Transpilers.

CVE Trends. Cve trends. https://www.cvedetails.com/vulnerabilities-by- types.
php, 2021. Accessed: 2020-10-11.

Margus Vilja, Matus Korman, and Robert Lagerstrom. A study on software
vulnerabilities and weaknesses of embedded systems in power networks. In
Proceedings of the 2nd Workshop on Cyber-Physical Security and Resilience in
Smart Grids, pages 47-52, 2017.

Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian
Sampson. Verifying dynamic trait objects in rust. In Proceedings of the 44th In-
ternational Conference on Software Engineering: Software Engineering in Practice,
pages 321-330, 2022.

Wemo WiFi Light Switch Smart Dimmer | Belkin: US. https://www.belkin.com/
wifi-smart-dimmer/WDS060.html.

Elecia White. Making Embedded Systems: Design Patterns for Great Software.
"O’Reilly Media, Inc!, October 2011.

Press Release: Future Software Should Be Memory Safe | ONCD.
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-
technical-report/, February 2024.

The Express Wire. Real-time operating systems (rtos) market 2023: Research,
growth and trends. https://www.benzinga.com/pressreleases/23/09/34197565/
real-time- operating- systems-rtos-market- 2023- research- growth-and-trends-
industry-forecast-2030.

Geeta Yadav and Kolin Paul. Architecture and security of scada systems: A
review. International Journal of Critical Infrastructure Protection, 34:100433, 2021.
Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan
Hong, Xiaoxue Ma, Zhi Jin, and Ge Li. Exploring and unleashing the power of
large language models in automated code translation. Proceedings of the ACM
on Software Engineering (FSE), 1:1585-1608, 2024.

Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu. Towards
understanding the runtime performance of rust. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2023.

Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song. Learning
and programming challenges of rust: A mixed-methods study. In Proceedings of
ACM/IEEE 44th International Conference on Software Engineering (ICSE), pages
1269-1281, 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Embedded Systems
	2.2 Rust

	3 Study Methodology
	3.1 Embedded Software Dataset

	4 RQ1: Software Support
	4.1 Libraries and Support Software
	4.2 SAST Tools
	4.3 C to Rust Conversion Tools

	5 RQ2: Interoperability of Rust
	5.1 Rust ↔ C
	5.2 Rust Interoperable Challenges in Embedded Systems Development

	6 RQ3: Developers Perspective
	6.1 Study Methodology
	6.2 Not Using Rust for Embedded Systems: Expectations v/s Reality
	6.3 Experiences in Using Rust for Embedded Systems

	7 Limitations and Threats to Validity
	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

