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Fire sensors have been widely used for early warning of fire in confined space in buildings. However, the
currently used fire sensors cannot achieve high sensitivity, long service life, and low cost at the same time. In this
work, 4D printable and recyclable two-way shape memory polymers (2 W-SMPs), which are made of a butadiene
rubber (P-80), have been designed for fire warning sensor with ultra-high sensitivity, longer-lasting service life,
and lower-cost. The P-80 displays a high reversible actuation with a crystallization-induced elongation (CIE) and
a melting-induced contraction (MIC) as large as 99.3 % and 90.4 %, respectively. The designed fire sensor ex-
hibits an average respond time as fast as 0.2 s and can be reused for more than 20 times. The mechanism for the
excellent two-way shape memory effect and recyclability of the P-80 has been revealed. The entropy and
enthalpy increase is the primary reasons for the large MIC in P-80, which contributes to 76.1 % and 23.9 % of
MIC, respectively. The recyclability of the P-80 is caused by the reconstruction of C = C bond via olefin
metathesis reaction, resulting in the dynamic topology reformation. This work provides a guideline for devel-

opment of 4D printable and recyclable 2 W-SMPs.

1. Introduction

Fire in confined spaces in buildings poses significant hazards to both
life and property [1,2]. Fire sensor, as an important strategy for early
warning of building fire, has been widely used. Currently, various fire
sensors such as heat sensor, gas sensor, smoke sensor, and flame sensor
have been commercialized [3]. Most of the commercialized fire sensors
show a long response time (> 100 s) but long service lifespan [4], except
for flame sensor (< 5 s) [5]. However, flame sensor is of high cost. Apart
from the commercialized fire sensors, diverse novel fire sensors with
high sensitivity based on different mechanisms including resistance
change [6-11], color transition [12,13], and thermal-resistance change
[14-16] have also been reported. The reported minimal fire alarm
response time (graphene oxide-based fire sensor) is around 0.25 s [17].
However, most of those new fire sensors exhibit some limitations such as
short service life (can only be used once), high cost, nonrecyclable
material, and uncustomed structure design. Therefore, it is crucial to
develop new fire sensors with more comprehensive performance.

Two-way shape memory polymers (2 W-SMPs) are a type of smart
materials that expand upon cooling and contract upon heating. Their
shape transition in response to external temperature change is reversible
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and repeatable [18,19]. It has been reported that most of polymers with
two-way shape memory effect (2 W-SME) are semi-crystalline elasto-
meric polymer networks [20]. Most of 2 W-SMPs exhibit reversible
crystallization-induced elongation (CIE) upon cooling and melting-
induced contraction (MIC) upon heating [21,22]. Except for crystalli-
zation/melting transition, our group also proposed that entropy change
is also a reason why semi-crystalline elastomeric polymer networks
exhibit two-way shape memory effect in the rubbery state [23,24]. A
large number of 2 W-SMPs have been developed based on the above
mechanism including liquid crystalline elastomers, poly(octylene adi-
pate), poly(E-caprolactone), oligo(pentadecalactone), ionomer, poly-
urethane, poly(ethylene-co-vinyl acetate), and poly(1,4-butadiene)
(PBD) [25-33]. Itis reported that the PBD displays the highest reversible
actuation in response to the temperature change among all reported 2
W-SMPs [19]. Thus, if PBD is designed as a fire warning system (FWS), it
will show great potential in improving temperature sensitivity and cycle
lifespan of the FWS considering its large actuation strain and reversible
shape transition.

The olefin metathesis reaction, also known as a model of “green
chemistry”, refers to the process of breaking and recombination of C =C
bonds under the action of a metal catalyst. The C = C bonds in the cross-
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linked polymer networks are rapidly exchanged via olefin metathesis
reaction, resulting in the topology of the cross-linked network being
dynamically altered [34-36]. It displays great potential for designing
environmental-friendly recyclable cross-linked polymers. A malleable
but insoluble cross-linked PBD has been designed based on olefin
metathesis [37]. The key to achieving the recyclable cross-linked PBD is
the Grubbs 2nd generation catalyst. It is not only stable in air, but can
also maintain high catalytic activity even in the presence of water,
alcohol or acid [38].

Digital light processing (DLP) 3D printing, as an emerging
manufacturing method, allows to produce complex geometries with
high precision that may be difficult or impossible to achieve with
traditional manufacturing methods [39-41]. If the PBD can be 3D
printed through DLP, it is expected that a 4D printable FWS with a
customized structure can be designed to alarm fire in complex and
confined spaces. However, the viscosity of commercialized PBD is too
high to do 4D printing due to its high molecular weight. Although low
molecular weight cis-1,4-butadiene shows low viscosity, it is difficult to
synthesize a PBD with good mechanical performance based on 4D
printing techniques due to its low degree of polymerization.

The objective of this work is to integrate large reversible actuation,
3D or 4D printability, and recyclability into one polymer network as fire
sensors. To achieve the objective, this work intends to adopt a blend of
low molecular weight cis-1,4-butadiene (polyvest 110) and high mo-
lecular weight cis-PBD to prepare 4D printable and recyclable two-way
shape-memory-PBD based FWS in terms of click chemistry and olefin
metathesis reaction. A 4D printable cross-linked PBD with desirable
mechanical performance can be synthesized due to the high activity of
click reaction and low viscosity of low molecular weight cis-1,4-buta-
diene. An environmental-friendly and recyclable FWS with ultra-high
sensitivity, long service lifespan, and customized structure design can
be realized owing to the large reversible actuation of PBD,
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recombination of C = C bond through olefin metathesis reaction, and 3D
printing technology.

2. Results and discussion
2.1. Preparation and characterization of crosslinked poly(1,4-butadiene)

Conventional PBD with high molecular weight is impossible to do
DLP 4D printing due to its high viscosity. However, as shown in Fig. 1 a
and b, the crosslinked poly(1,4-butadiene) (P-80) composed of low
molecular weight polyvest 110, high molecular weight cis PBD and
crosslinking agent trimethylolpropane tris(3-mercaptopropionate)
(TPMP) is prepared through an DLP 3D printer due to the diluting ef-
fect of low-viscosity polyvest 110. In addition to P-80, we also have two
more categories of samples, P-80-5 and P-80-15. When P-80 was
immersed into Grubbs 2nd generation catalyst solution for 5 min, it is
named as P-80-5; when P-80 was immersed into Grubbs 2nd generation
catalyst solution for 15 min, it is named as P-80-15. The detailed syn-
thesis route for P-80 has been shown in Fig. 1 c. The P-80 is synthesized
based on the Thiol-Ene “click reaction” between TPMP and PBD or
polyvest 110. In Fig. e, the peaks centered at 2569 and 1743 cm ™! are
—SH and C = O bond from the TPMP [42,43]. The peaks located at 1259
and 1238 ecm ™! are asymmetric stretch vibration of C-O-C bond. The
peak at 1153 cm™! is symmetrical stretching vibration of C-O-C bond
[44-46]. The disappearance of —SH and appearance of C-S bond (698
em™!) and C-O-C bond on P-80 proves that the P-80 has been prepared
successfully [43]. The thermal stability of P-80 decreases compared with
that of uncross-linked PBD and polyvest 110 (Figure S1), which is caused
by the low thermal stability of crosslink agent TPMP. The crosslinked P-
80 can be recycled through the olefin metathesis reaction. The detailed
process is shown in Fig. 1 d. The key to achieve the recyclability of P-80
is C = C bond recombination. Thus, a certain amount of C = C bonds
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Fig. 1. Preparation and characterization of PBD. a) Schematic illustration of DLP 3D printing. b) Chemical structure of raw materials. c) Synthesis of P-80 based on
Thiol-Ene “click reaction”. d) The mechanism of olefin metathesis reaction. e) The FTIR curves, f) TGA curves under nitrogen, and g) storage modulus of samples.
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(Fig. 1le) are reserved in the crosslinked P-80 and a Grubbs 2nd gener-
ation catalyst with a high catalytic activity is adopted. The thermal and
mechanical properties of P-80 have been regulated by the olefin
metathesis reaction without changing its topology structure. The FTIR
curves of P-80 and Grubbs 2nd generation catalyst modified P-80 are the
same (Fig. S2). However, the crystallization temperature (Ty,) of P-80
decreases from —13 to —27.5 °C with increased content of Grubbs 2nd
generation catalyst (Fig. S3). The temperature at 10 % weight loss (T1¢
wt%) of P-80 under nitrogen environment increases from 367.3 °C to
404.9 °C with the increase in the content of Grubbs 2nd generation
catalyst. The Grubbs 2nd generation catalyst may work as the stabilizers,
which can increase the resistance to thermal degradation. However, the
char residue at 700 °C of P-80 decreases from 4.2 wt% to 0.1 wt% with
the increase in the content of Grubbs 2nd generation catalyst (Fig. 1fand
Fig. S4). The sample’s molecular structure become more homogeneous
due to reconstruction of network topology caused by olefin metathesis
reaction. The polymer with a more homogeneous topology may degrade
more uniformly, reducing the likelihood of leaving behind solid char
residues. The storage modulus of P-80 which was immersed into Grubbs
2nd generation catalyst solution for 15 min (P-80-15) is larger than that
of untreated one below —35 °C. However, the storage modulus of P-
80-15 above —35 °C is smaller than that of P-80 (Fig. 1g). Besides, the
loss modulus of P-80-15 is larger than that of P-80 (Fig. S5). It proves
that the viscoelasticity of P-80 has been enhanced after olefin metathesis
reaction.
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2.2. Recyclability of P-80

The P-80 was immersed into CHCl3 with stirring to test its recycla-
bility. The crosslinked P-80 can be dissolved into CHCl3 completely or
even be melted at 80 °C due to the olefin metathesis reaction (Fig. 2 a
and Fig. S6). The Grubb 2nd generation catalyst shows high stability. Its
chemical structure is the same even after UV-curing (Figure S 7). After
evaporating the CHCl3 and UV curing, a cubic P-80 sample can be
reshaped into round piece, love heart or hexagonal star (Fig. 2a and
Fig. S6). However, P-80 without Grubb 2nd generation catalyst cannot
be dissolved by CHCl3 even after 2 days of immersion (Fig. S8). The
mechanical performance of the recycled P-80 has been displayed in
Fig. 2b and Fig. S9. The breaking strength increases but elongation at
break decreases with the increased number of cycles. The breaking
strength and elongation at break of P-80 are 16.5 KPa and 489 %,
respectively. The breaking strength of P-80 after three recycling cycles
(P-80°%rd) is increased by 73 % (28.5 KPa). However, the elongation at
break of P-80%rd decreased to 180 % compared with that of original P-
80. The reason for the enhanced breaking strength but decreased
deformability of P-80°rd persists in the increased crosslinking density.
The crosslinking density of P-80°rd increases from 1.854 x 107 to 1.68
x 10* mol/cm® (Fig. 2¢). The reason for the increased crosslink density
is that we added the photoinitiator again before recycling the samples.
The amount of the photoinitiator added was 9 wt% for each recycling
cycle. The UV curing condition for each recycling process was the same.
Because some new crosslinks may have been formed due to the newly
added photoinitiator during each recycling cycle, the crosslinking
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Fig. 2. Recyclability of P-80. a) Recycling process of P-80. b) The mechanical property of P-80 before and after the recycle. ¢) The crosslinking density of the sample.
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density of the recycled sample increased gradually with the increase in
the number of the recycling cycles. As a result, the breaking strength of
the recycled samples increases but the strain at break decreases as the
number of the recycling cycles increases.

2.3. In-depth interpretation of the recyclability of P-80

To better understand why the P-80 can be recycled like a vitrimer,
more detailed investigation has been conducted in Fig. 3. As shown in
Fig. 3 a, the C = C bond in the cross-linked P-80 can be exchanged via
olefin metathesis reaction, resulting in the topology of P-80 being
transformed dynamically. Thus, the P-80 with a crosslinked network
topology demonstrates the reprocessing-recyclable nature of thermo-
plastic polymers. During the tensile test, the stiffness of P-80 decreases
after adding Grubb 2nd generation catalyst (Fig. 3b), as evidenced by
the reduction in the initial slope of the stress-strain curves. This is
because the more the content of the Grubb 2nd generation catalyst, the
more the C = C bonds in P-80 that can be broken and recombined. The
elongation at break of P-80-15 increases by 68 % compared with that of
P-80. The tensile strength of P-80 decreases first then increases with
increased content of Grubb 2nd generation catalyst. The tensile strength
of P-80-15 is lower than that of P-80 but higher than that of P-80 which
was immersed into Grubbs 2nd generation catalyst solution for 5 min (P-
80-5). The P-80-15 with high content of Grubb 2nd generation catalyst
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shows a higher C = C bond reconstruction rate, which may display a
better self-healing properties, resulting in enhancement in tensile
strength. The stress relaxation and creep tests have also been conducted
to investigate the effects of olefin metathesis reaction on the recycla-
bility of P-80. The stress attenuation and stiffness reduction during stress
relaxation are shown in Fig. 3 ¢ and Fig. S10. The normalized stress and
stiffness at 30 min of treated P-80 are lower than that of untreated one.
However, the normalized stress and stiffness at 30 min of P-80-15 are
larger than that of P-80-5. This is consistent with tensile strength results
shown in Fig. 3b. The creep performances of the samples are shown in
Fig. 3d-g and Fig. S11. There are two stages in creep test. The first stage
is the creep stage from 0 to 10 min. The second stage is the recovery
stage from 10 to 30 min. In the first stage, the strain and creep
compliance of Grubb 2nd generation catalyst treated P-80 are signifi-
cantly larger than that of untreated original P-80 (Fig. 3 d, f and
Fig. S11). The maximum strain of P-80-15, P-80-5, and P-80 are 62.28
%, 39.34 % and 12.06 %, respectively (Fig. 3e). This is in line with the
elongation at break results shown in Fig. 3b. In the second stage, the
recovery compliance of the treated P-80 is larger than that of the pure P-
80 (Fig. 3g). The remaining strain during the recovery stage at 20 min of
P-80-15 is even smaller than that of P-80-5 (Fig. 3d and e). Polymers are
viscoelastic materials [47-49]. The restriction of network topology on
the movement of P-80 polymer chains and segments has been weakened
by the olefin metathesis reaction, resulting in the enhancement in
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mobility of P-80. Thus, the creep and recovery compliance of treated P-
80 are increased. In other words, the above results further prove that the
olefin metathesis reaction does cause the reconstruction of the P-80
network topology. The fundamental reason why the P-80 has recycla-
bility is the breaking and recombining of C = C bonds within the P-80
network.

2.4. Two-way shape memory performance of P-80

As shown in Fig. 4 a, P-80 displays a typical two-way shape memory
performance with a repeatable crystallization-induced elongation (CIE)
and melting-induced contraction (MIC) in response to temperature
change. The CIE and MIC increase with increase in the external force
(from 0.004 MPa to 0.009 MPa). The P-80 displays a high degree of
repeatable and reversible actuation in the loading direction between
—40 to 60 °C compared with the reported works (Fig. 4e). The CIE and
MIC of P-80 with a constant force of 0.009 MPa are as high as 99.3 % and
90.4 %, respectively (Fig. 4b). The stress evolution of 300 % stretched P-
80 with temperature is shown in Fig. 4c to further prove its two-way
shape memory performances. The stress of 300 % stretched P-80 de-
creases during cooling but increases during heating. This trend is con-
trary to polymer without two-way shape memory performances. For P-
80, it expands during cooling and contracts during heating. To maintain
a stable 300 % strain, the stress of P-80 decreases during colling but
increases during heating. The thermal conductivity of the stretched P-80
is displayed in Fig. 4d and Fig. S12. The P-80 with two-way shape
memory performance (under 300 % tensile strain) exhibits a higher
thermal conductivity and thermal effusivity compared with that of P-80
without two-way shape memory performance. The reason that the
thermal conductivity is higher along the loading direction can be
explained as follows. The orientation of polymer chains plays a crucial
role in determining the thermal conductivity of polymers due to the way
that heat is transferred through the molecular structure. Thermal con-
ductivity is the ability of a material to transfer heat, and in polymers,
this process largely depends on the movement of phonons (lattice vi-
brations) or the vibrational energy transfer through the polymer chains.
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The P-80 was stretched to 300 % in Fig. 4d. The polymer chain of P-80
with 300 % strain is well-oriented. Thus, there is less scattering of
phonons because the aligned chains created a more direct pathway for
heat transfer. As a result, heat conduction is more efficient along the
direction of chain alignment [50].

2.5. The mechanisms for the good two-way shape memory performance of
P-80

The crystallization/melting transition of P-80 has been tested to
further understand why P-80 shows a large CIE and MIC. The P-80 shows
a Ty of —13 °C (Fig. 5a). Besides, the stretched P-80 transferred from
transparent to partly opaque after being cooled by liquid nitrogen
(Fig. S13 and Video 1), suggesting transition from amorphous to crys-
talline morphology. The Ty, of P-80 is within the two-way shape memory
test temperature range (—40-60 °C). Thus, the crystallization/melting
transition is indeed one of the reasons that why P-80 expands upon
cooling and contracts upon heating. However, the strain changes of P-80
from —40 to —13 °C is only 23.7 %. It is much smaller than strain
changes (75.6 %) from —13 to 60 °C (Fig. 5b). It proves that the crys-
tallization/melting transition of P-80 is not the main reason that causes
the large CIE and MIC of P-80. We try to figure it out according to
thermodynamics. The enthalpy and entropy of P-80 will change with
temperature [51,52]. The crystallization/melting transition is the
typical enthalpy change. Changes in bond lengths and bond angles will
cause enthalpy changes, and chain segment motion and polymer chain
orientation will cause entropy change [53]. As shown in Fig. 5c, we
divided stress and stress change rate of P-80 into two stages based on the
temperature. The first stage including the crystallization/melting tran-
sition is named as enthalpy change stage. Due to the low temperature,
the chain segment motion is restricted by the crystallization zone of the
polymer. Only the bond lengths and bond angles can be changed. Thus,
the enthalpy change is dominant. The second stage in Fig. 5c is named as
entropy change stage. The changes in chain segment motion and poly-
mer chain orientation will occur. In Fig. 5c, the stress change rate at
—40 °C is around 0, which proves that the stretched chain has been
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g) Schematic illustration of melting-induced contraction mechanism of P-80.

crystallized [54,55]. The low stress change rate may mainly be caused
by changes in bond lengths and bond angles. The stress change rate
increases sharply during enthalpy change stage due to the crystalliza-
tion/melting transition. The three peaks at —19.0, —13.5 and —7.5 °C
correspond to crystallization/melting transition zone of P-80, which is
within the range detected by DSC. The stress change rate of P-80 starts to
decrease with the increase in temperature in the entropy change stage,
as shown in Fig. 5c. The stretched polymer chains are oriented. As the
temperature increases, the heat absorbed continues to increase, and the
oriented polymer chains begin to become disordered (entropy in-
creases). This process corresponds to three steps. First, the stretched
bond length is reduced, then the chain segment orientation is restored,
and finally, the polymer chain orientation is partially restored. Thus, the
stress change rate of P-80 decreases but stress increases with the increase
in temperature in the entropy change stage. The stress and stress change
rate during the cooling and heating process are shown in Fig. 5d and

Fig. S14. The stress change rate peaks (marked area) during the cooling
are consistent with that during the heating process, which further proves
the occurrence of crystallization/melting transition of P-80. The FTIR
curves of P-80 at 25 and 60 °C in Fig. 5b have been displayed in Fig. 5e
and Fig. S15. The C-C bond of the unstretched P-80 is at 1020.0 cm ™.
During the two-way performance test, the C-C bond (1018.3 cm™!) of P-
80 is blue-shifted at 25 °C compared with that of unstretched P-80. This
is caused by the increased C-C bond length [56]. When increasing the
temperature from 25 to 60 °C, the C-C bond is red-shifted. The P-80
contracts during heating, leading to decrease in C-C bond length. The
reasons why P-80 has a large MIC have been shown in Fig. 5f. The en-
tropy increase is the main reason for large MIC of P-80, which contrib-
utes to 76.1 % of contraction. The enthalpy increase is only the
secondary reason, which provides 23.9 % of contraction. The detailed
MIC mechanism of P-80 is sketched in Fig. 5g. During the heating pro-
cess, the crystallinity of semi-crystalline P-80 decreases, the C-C bond
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length of P-80 decreases, and the bond angle changes due to the
enthalpy and entropy increase from —40 to —13 °C. When the temper-
ature reaches 60 °C, which is well above the crystallization/melting
transition temperature, the P-80 becomes amorphous. The stretched C-C
bond, the oriented chain segment, and the polymer chain of P-80 have
been gradually relaxed, leading to entropy increase.

2.6. The application of 4D printable P-80

A series of P-80 s in different shapes including rectangles, circles,
flowers, and butterflies are 4D printed as shown in Fig. 6. A fire warning
system (FWS) based on 4D printed P-80 has been designed (Fig. 6d).
When the flame warms up P-80 stripe, the P-80 stripe shrinks rapidly.
The P-80 stripe brings the metal wire up, and the circuit is connected. As
a result, the alarm light is lighted up. When the flame is removed, the P-
80 stripe is cooled and returns to its original length quickly, causing the
circuit to open and the alarm light to go out. The digital images and
video of the FWS have been shown in Fig. 6a-c and Video S2. The FWS
exhibits the ultra-high fire sensitive and long-lasting fire warning cycles
compared with reported works (Fig. 6g). The average respond time and
average duration of the FWS are 0.2 s and 1.7 s, respectively. (Fig. 6e and
Fig. S16). The reusing cycles of the FWS are more than 20 times (Fig. 6f).
The reported FWS not only combines advantages of high fire alarm

Average response time:(0.2s

Larm light | - :J arm light |
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sensitivity but also the long-lasting cycling use (Fig. 6g). Most reported
FWSs can only be used for once although its sensitivity is even as high as
0.25 s [17]. The working mechanism of the recycled FWS reported is
based on energy band theory of semiconductor [57]. When the flame
contacts the semiconductor, the electrons in the valence band will gain
energy and jump to the conduction band, resulting in a significant in-
crease in electrical conductivity [58]. However, the conductivity of
semiconductor materials is low before contacting the flame, which will
inevitably sacrifice the alarm sensitivity of the FWS. The working
mechanism of FWS in this work is based on reversible CIE and MIC of 2
W-SMPs. P-80 displays a high reversible deformation ratio and a large
deformation rate in response to the temperature change (Fig. 5), which
overcomes the disadvantages of the reported FWSs, giving the FWS
designed in this work ultra-high fire sensitivity and long cycle lifespan.
Besides, P-80 is environmental-friendly and recyclable, 4D printable,
and inexpensive. Therefore, P-80 based FWS has a great application
potential.

In addition to being used for fire warning, 4D printed P-80 can also
be used for information storage. The logo of Louisiana State University
(LSU) can be printed on the surface of P-80 (Fig. 6j). When a high in-
tensity flashlight shines on the P-80, the letters of “LSU” appear. When
the high intensity flashlight is removed, the “LSU” disappears (Fig. 6k
and Video 3). The letters of “L.SU” are first embossed on the 4D printed P-
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k) Digital image of stress induced pattern.
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80 surface. After the letters of “LSU” are removed, further UV curing is
performed. The anisotropy caused by “LSU” is stored inside the P-80
after UV-curing. The anisotropy leads to change in refraction index.
Refraction occurs when light passes through the interface of two phases
with different refractive indices, resulting in reappearance of the three
letters “LSU” when a beam of light shines on the sample. Thus, the “LSU”
appears inside the P-80 thin film when light strikes on it.

3. Conclusions

In this work, a 4D printable and recyclable two-way shape memory
butadiene rubber (P-80) has been designed as ultra-highly sensitive,
longer-lasting, and lower-cost fire warning sensor. The P-80 based 4D
printable fire sensor exhibits the ultra-high fire sensitivity (average
respond time of 0.2 s) and longer-lasting fire warning cycles (can be
reused more than 20 times) compared with reported works due to the
high reversible actuation and fast deformation rate in response to tem-
perature change. In addition to being used for fire warning, 4D printed
P-80 can also be used for information storage. The letters of “LSU” will
appear inside the P-80 thin film after being shined by light due to the
storage of anisotropy. The P-80 displays a good two-way shape memory
effect with a crystallization-induced elongation (CIE) and a melting-
induced contraction (MIC) as large as 99.3 % and 90.4 %, respec-
tively. The mechanism for the good two-way shape memory effect and
the in-depth interpretation of the recyclability of P-80 have been
revealed. The entropy and enthalpy increase are two main reasons for
the large MIC of P-80, which contributes to 76.1 % and 23.9 % of CUH,
respectively. During the heating process, the crystallinity of the semi-
crystalline P-80 decreases, the C-C bond length of P-80 network de-
creases, and the bond angle changes due to the enthalpy and entropy
increase. The stretched C-C bond, the oriented chain segment and the
alignment of the polymer chain in P-80 have been released gradually
due to the entropy and enthalpy increase. The recyclability of P-80 is
caused by the rapid breaking and recombining of C = C bond within the
cross-linked network via olefin metathesis reaction, resulting in the to-
pology being dynamically altered. The breaking strength increases but
elongation at break decreases with the increase in the number of re-
cycles. The breaking strength and elongation at break of the P-80 are
16.5 KPa and 489 %, respectively. The breaking strength of P-80 after
three recycles (P-80°%rd) increases by 73 % (28.5 KPa). The elongation at
break of P-80°rd decreases to 180 % compared with that of P-80. This
work provides a guideline for development of 4D printable and recy-
clable two-way shape memory polymer as fire warming sensors, infor-
mation storage devices, and other high-tech applications.

4. Material and methods
4.1. Preparation of poly(1,4-butadiene)

10 g PBD was first immersed into 190 g CHCI; for 3 d and then
dissolved through mechanical stirring at room temperature for 1 d to
prepare PBD solution. Then 80 g PBD solution, 1 g Polyvest 110, 0.15 g
2-hydroxy-2-methylpropiophenone and 0.05 g tris(3-
mercaptopropionate) were mixed and dried at room temperature for 2
d. Finally, the mixture was cured in a UV chamber (IntelliRay 600,
Uvitron International, USA) for 90 s under 35 % irradiation intensity
(232 nm).

4.2. 4D printing of poly(1,4-butadiene)

A mixture containing 77.6 g Polyvest 110, 2.4 g PBD, 0.8 g trime-
thylolpropane tris(3-mercaptopropionate), 4 g 2-hydroxy-2-methylpro-
piophenone, and 4 g (Phenylphosphoryl)bis(mesitylmethanone) was
added into a digital light processing (DLP) 3D printer (Anycubic Photon
Mono X 6 K) with a layer thickness of 0.05 mm, a normal exposure time
of 45 s, a bottom exposure time of 60 s, and a bottom layer of 10. The
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printing accuracy is 5,760 x 3,600 pixels and the horizontal resolution is
34 um. The power output is 5,500 pw/cmz, and the maximum printing
speed in thickness direction is 80 mm/h.

4.3. Preparation of recyclable poly(1,4-butadiene)

0.02 g Grubbs 2nd generation catalyst was dissolved into 200 mL
CHCl3. Then 2 g prepared crosslinked poly(1,4-butadiene) was
immersed into above solution for 5 min or 15 min. after that, crosslinked
poly(1,4-butadiene) contained Grubbs 2nd generation catalyst were
dried at room temperature for 4 h under a vacuum oven. Then cross-
linked poly(1,4-butadiene) contained Grubbs 2nd generation catalyst
was redissolved into CHCl3 solution containing 3 wt% 2-hydroxy-2-
methylpropiophenone and 1 wt% trimethylolpropane tris(3-
mercaptopropionate) at room temperature under stirring for 1 d. The
reprepared poly(1,4-butadiene) was dried out under a vacuum oven and
then cured in a UV chamber for 40 s under 35 % irradiation intensity
(232 nm). Repeating the above steps for three times.

4.4. Preparation of fire warning system

The general idea was as follows: the power supply, LED light and
wires formed a series circuit. The P-80 was designed as a switch. When
the temperature rose, the switch was turned on and the LED light turned
on. When the temperature dropped, the switch was turned off and the
LED light turned off. The specific design of the switch was as follows: a P-
80 (5 x 1 x 0.3 cm®) was hung vertically, and a weight of 125 g and a
horizontally placed copper wire were hung below the P-80. The series
circuit consisting of the power supply, LED light and wires was specif-
ically designed as follows: one end of the black wire was connected to
the LED light and the other end was fixed on the clip. One end of the red
wire was connected to the LED light and the other end was also fixed to
another clip. The heights of the two wires fixed by the clips were the
same. The copper wire placed horizontally was 1 cm below the electrical
wire.
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