
Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes

Gustavo Pinto
Zup Innovation & UFPA

Belém, PA, Brazil
gustavo.pinto@zup.com.br

Cleidson de Souza
UFPA

Belém, PA, Brazil
cleidson.desouza@acm.org

Thayssa Rocha
Zup Innovation & UFPA

Belém, PA, Brazil
thayssa.rocha@zup.com.br

Igor Steinmacher
Northern Arizona University

FlagSta!, AZ, EUA
Igor.Steinmacher@nau.edu

Alberto de Souza
Zup Innovation

São Paulo, SP, Brazil
alberto.tavares@zup.com.br

Edward Monteiro
StackSpot

São Paulo, SP, Brazil
edward.monteiro@stackspot.com

ABSTRACT
In the rapidly advancing "eld of arti"cial intelligence, software
development has emerged as a key area of innovation. Despite the
plethora of general-purpose AI assistants available, their e!ective-
ness diminishes in complex, domain-speci"c scenarios. Noting this
limitation, both the academic community and industry players are
relying on contextualized coding AI assistants. These assistants sur-
pass general-purpose AI tools by integrating proprietary, domain-
speci"c knowledge, o!ering precise and relevant solutions. Our
study focuses on the initial experiences of 62 participants who used
a contextualized coding AI assistant — named StackSpot AI— in a
controlled setting. According to the participants, the assistants’ use
resulted in signi"cant time savings, easier access to documentation,
and the generation of accurate codes for internal APIs. However,
challenges associated with the knowledge sources necessary to
make the coding assistant access more contextual information as
well as variable responses and limitations in handling complex
codes were observed. The study’s "ndings, detailing both the bene-
"ts and challenges of contextualized AI assistants, underscore their
potential to revolutionize software development practices, while
also highlighting areas for further re"nement.

KEYWORDS
LLM, LLM-based applications, User expectations, Perception of
Productivity

ACM Reference Format:
Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Al-
berto de Souza, and Edward Monteiro. 2024. Developer Experiences with a
Contextualized AI Coding Assistant: Usability, Expectations, and Outcomes.
In Conference on AI Engineering Software Engineering for AI (CAIN 2024),
April 14–15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3644815.3644949

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci"c permission
and/or a fee. Request permissions from permissions@acm.org.
CAIN 2024, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0591-5/24/04. . . $15.00
https://doi.org/10.1145/3644815.3644949

1 INTRODUCTION
In the rapidly evolving landscape of arti"cial intelligence (AI) and
its integration into various industries, the software development
domain remains at the forefront of innovation [8]. Developers to-
day are equipped with an unprecedented set of coding tools and
AI agents, designed to navigate and simplify the complexities of
software engineering. However, as software projects grow intricate,
the demand for precise and e#cient coding assistance becomes
critical [7].

Despite their groundbreaking nature, general-purpose AI assis-
tants currently have a fundamental shortcoming: they often pro-
vide generic or inaccurate responses, particularly when confronted
with contextualized, domain-speci"c queries [5]. This gap is felt
by developers who seek guidance, for example, in tasks related to
optimizing a database query [1] or deciphering the complexities
of a proprietary codebase. Conventional AI tools, while advanced
in many aspects, often fall short of delivering the depth and speci-
"city required in these scenarios. Such limitations not only hinder
productivity but also pose a barrier to harnessing the full potential
of AI in software development.

The industry is responding to these challenges by developing
contextualized coding AI assistants. These tools, underpinned by
advanced AI models, are speci"cally designed to access and utilize
proprietary, domain-speci"c knowledge, which general-purpose
assistants typically lack. This specialized approach enables them
to o!er targeted assistance, especially useful in complex, domain-
speci"c scenarios. To illustrate, imagine a scenario where a devel-
oper is working on an intricate e-commerce platform, and they
encounter a challenge related to optimizing a multi-tier product
recommendation algorithm. While a general-purpose AI might of-
fer broad-based guidance or algorithmic solutions, a contextualized
coding assistant, familiar with the proprietary nuances of that spe-
ci"c e-commerce platform and its surroundings, might pinpoint
exact issues based on historical data or even provide solutions that
account for platform-speci"c constraints, or company-based frame-
works. In essence, while a general-purpose AI tool might suggest
generic best practices, a contextualized assistant could reference
company-speci"c requirements documents and related projects,
o!ering answers that are not only e!ective but also tailored to
that organization’s unique needs. For instance, Enterprise Tabnine

https://doi.org/10.1145/3644815.3644949
https://doi.org/10.1145/3644815.3644949

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

customers might choose to train their own custom model based on
their company’s source code1.

These contextualized tools, while di!ering in purpose from
general-purpose coding assistants, often share a common technolog-
ical foundation: they leverage the Retrieval-Augmented Generation
(RAG) technique [9]. This involves retrieving relevant information
from specialized sources and generating contextualized responses
using advanced language models. An example of this is the con-
textualized coding AI assistant name StackSpot AI developed by
Z!" I##$%&’($#2— a software partner tech company — aimed at
enhancing developer productivity, con"dence, and experience with
AI-based tools. The main capabilities of this assistant are detailed
in Section 3.

In this paper, we report the "ndings from a study about the
experience of 62 practitioners who used the StackSpot AI assis-
tant for the "rst time in a controlled, online environment. During
four hours, they were introduced to concepts and usage details
of StackSpot AI, followed by a hands-on experience performing
simple tasks. The participants interacted and provided feedback
during the whole online discussion. The analysis of their feedback
highlights several key [B]ene"ts and [C]hallenges encountered:
[B] Generation of accurate codes for swift integration with in-

ternal APIs and support for routine tasks;
[B] Time e#ciency by centralizing information access;
[B] Streamlined access to documentation and guidelines within

the IDE;
[C] Multiple knowledge sources are required to maintain re-

sponse accuracy;
[C] Inconsistency in responses to identical prompts, requiring

prompt re"nement; and
[C] Di#culties in generating complex code structures.
Furthermore, the participants provided important insights, bring-

ing feedback on the experience, suggestions on new functionalities,
and re$ections on the productivity and reliability of code generated
by StackSpot AI.

2 RELATEDWORK
Research in AI assistants has focused on di!erent aspects including
the benchmarks necessary to evaluate and compare them [6], the
correctness [19], complexity [13], quality [12], and security [15] of
the generated code, the developers’ experience while using these
assistants [3, 17], among other aspects. In this paper, we are inter-
ested in two aspects. First, the user experience using these tools.
Second, the correctness of the solutions generated , i.e., their ability
to, given a particular problem, generate a code solution that will ac-
tually solve that problem. This is measured by checking whether the
solution passes the test cases associated with the original problem.

2.1 User Experience
We can "nd a few papers discussing the user experience of software
developers using AI code assistants including [1, 3, 4, 17? , 18].
In general, these studies indicate that developers save time using
AI assistants, i.e., “interactions with programming assistants are

1https://www.tabnine.com/code-privacy
2StackSpot AI and Z!" I##$%&’($# are two pseudonyms adopted for double anony-
mous purposes.

bimodal: in acceleration mode, the programmer knows what to do
next and uses Copilot to get there faster; in exploration mode, the
programmer is unsure how to proceed and uses Copilot to explore
their options” [3]. Even when the assistants are not 100% correct,
they still generate code that can be used as a “starting point” for
further work.

These studies also reported some of the limitations of these tools,
mainly lack of correctness of the code suggestions and interruptions,
i.e., the assistants disturb the natural $ow of work [1, 4]. More
interestingly, they report coping strategies to deal with Copilot’s
limitations: “to accept the incorrect suggestion and attempt to repair
it,” add more context so that the assistant improves its suggestions,
or simply stop using the tool.

2.2 Correctness
In 2022, two di!erent papers were published assessing the correct-
ness of GitHub Copilot. In the "rst paper, Nguyen and Nadi [13]
assessed the correctness of Copilot’s suggestions in four di!er-
ent programming languages: Java, JavaScript, Python, and C. Each
programming language had a di!erent result with Python code
generated by Copilot with a 42% correctness, while Java had 57%
and JavaScript with 27%. These authors tested the code generation
abilities to solve 33 questions randomly selected from LeetCode, a
popular Question Pool website with several various coding ques-
tions on di!erent topics (array, algorithm, sorting, etc).

Meanwhile, Yetistiren and colleagues [19] focused solely on
Python and used the HumanEval [6] benchmark, the same one
used to evaluate Codex, the GPT model behind Copilot. This bench-
mark contains 164 original programming problems "with some
comparable to simple software interview questions". In their result,
Copilot’s suggestions had a 28.7% correctness rate.

Several factors might explain the di!erent correctness rates in
these studies (42% vs 27.8%). Arguably, a potential explanation is
associated with the datasets used. While Nguyen and Nadi [13]
used a popular programming site, Yetistiren et al. [19] used origi-
nal programming problems, i.e., a popular programming site like
LeetCode might even be used in the Copilot’s training dataset. This
seems to suggest that Copilot’s correctness is in$uenced by the
presence of similar data in its training dataset. Therefore, when
faced with domain-speci"c queries, Copilot is likely to provide
generic or inaccurate suggestions.

3 STACKSPOT AI
In this section, we describe how StackSpot AI works.

3.1 Approach
Di!erent than Copilot or CodeWhisperer, which are general-purpose
coding assistants, StackSpot AI is a highly contextualized coding AI
assistant. StackSpot AI takes into account the nuanced requirements
of individual developers and the intricacies of speci"c projects
(codebases). This tailored approach is based on the implementation
of the Retrieval Augmented Generation (RAG) mechanism [9].

RAG is an approach designed to enhance LLM-generated con-
tent by anchoring it in external knowledge sources. In question-
answering systems, RAG accesses up-to-date, reliable information

https://www.tabnine.com/code-privacy

Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes CAIN 2024, April 14–15, 2024, Lisbon, Portugal

and provides transparency to users regarding the model’s informa-
tion sources, promoting trust and veri"ability. So, this approach
mitigates the risk of sensitive data leakage and misinformation
generation while also improving response quality. An illustrative
list of possible knowledge sources includes:

(1) An extensive catalog of APIs recurrently harnessed by the
development team;

(2) Exemplary code snippets serving for discerning coding paradigms
or facilitating code modernization activities;

(3) Customized artifacts written in natural language, including
but not limited to, guidelines delineating the protocol for
repository commits and a comprehensive list of software
requirements to be implemented.

By providing relevant and up-to-date information to the LLM,
RAG also reduces the need for constant model retraining and param-
eter updates, lowering computational and "nancial overhead [9],
since there is no need to build a new foundation model or retrain
an existing one. Additionally, RAG is a two-pronged structure con-
sisting of “retrieval” and “generation” components [9].

The “retrieval” facet of RAG is designed to fetch relevant docu-
ments from a speci"ed dataset. Traditional databases might falter
in e#ciently retrieving relevant documents. In StackSpot AI, we
use information retrieval techniques to identify the most relevant
document for a given user query. Although the retrieval component
is e#cient at sourcing relevant information, it does not have the
capability to generate new content.

On the $ip side, the “generation” component harnesses the
prowess of OpenAI’s most recent model, GPT-4. Imagine a sce-
nario where a developer is conceptualizing a new algorithm but
hits a roadblock in terms of its implementation. StackSpot AI, chan-
neling the generative capabilities of GPT-4, can aid in generating
code snippets that are tailored to the developer’s speci"c context,
based on the documents found by the retrieval component.

In essence, StackSpot AI joins advanced contextual retrieval
with state-of-the-art generative capabilities, ensuring developers
receive precise, contextual, and timely assistance. It does so by
using OpenAI’s newest model, GPT-4.

3.2 Prep-and-Go
StackSpot AI has two main interfaces. The "rst one is a web portal
in which users can con"gure their teams’ preferences and upload
representative documents, which would be later used by the re-
trieval component. These preferences’ con"gurations allow the use
of recommended development tech stacks and code patterns that
are often employed in the development team. As such, the gener-
ated code might respect these stacks, minimizing the developer’s
e!ort in translating the generated response into their codebase.

Once the con"guration is done, users can turn their attention
to the StackSpot AI plugin that is currently available for VSCode
and IntelliJ. Using this plugin, users could interact with the second
interface: a coding assistant chatbot. In this way, developers can
craft prompts, re"ne the answers, and copy the generated solution
to the code editor. Additionally, it’s important to note that StackSpot
AI, utilizing GPT-4 as its core LLM, needs to manage the token
limit imposed per request e!ectively. This token limit is crucial
because exceeding it can lead to prompt over$ow, a scenario where

the number of tokens used exceeds the LLM’s capacity. Given that
StackSpot AI functions as a chatbot, it tracks and retains a history of
the most recent messages exchanged with users. This historical data
enriches the input prompt, enhancing the context and relevance
of StackSpot AI’s responses. However, to prevent prompt over$ow
and maintain e#ciency, StackSpot AI implements a strategy of
selectively discarding older messages. This process ensures that
the prompt remains within the token limit while retaining the
most pertinent and recent interactions. Additionally, recognizing
that users may shift topics during a conversation, StackSpot AI
is designed to dynamically adjust which messages it retains. It
prioritizes those that are most relevant to the current context of the
dialogue. This adaptive approach ensures that StackSpot AI remains
focused and relevant to the user’s immediate needs, despite the
evolving nature of the conversation.

Figure 1 shows an example of the use of the StackSpot AI plugin
on VSCode. As one can see, StackSpot AI combines a code editor
with a chat interface. The red box indicates the knowledge source
found in the user search.

Finally, as a conversational agent, StackSpot AI extends its ca-
pabilities beyond mere generation of code snippets. It can engage
users in broader discussions on various programming topics, of-
fering insights and clari"cations [16]. Additionally, it plays a role
in enhancing users’ programming skills through interactive learn-
ing and guidance, providing a more comprehensive, educational
experience in the realm of software development.

4 USER STUDY
To evaluate the developers’ experience in using StackSpot AI, we
organized an in-company online study. The study was performed
within Z!" I##$%&’($#, a large software-producing company, with
around 3.5k employees, and more than 10+ years in the market,
working with some of the largest "nancial institutions in Latin
America and abroad. For instance, for one of their clients, Z!" I#)
#$%&’($# engineers rewrote millions of Cobol legacy code into
modern programming languages, helping to move their physical
infrastructure to the cloud. In such a context, there is an important
need for a text-based coding assistant, in particular, for moderniza-
tion tasks.

The goal of the study was to introduce practitioners to StackSpot
AI and gather representative feedback to improve the product’s
quality and usability. We intentionally refrained from setting spe-
ci"c design objectives for the tool, tailoring it to particular user
groups (such as novices or experts) or speci"c scenarios (like coding
or learning new programming languages), as we wanted any value
provided by StackSpot AI to emerge from our user study.

In this section we describe how the study was planned, (Sec-
tion 4.1), how we collected data (Section 4.2), and how we analyzed
the data collected (Section 4.3).

4.1 Study Planning
The study was structured to provide participants with a journey
into the capabilities and functionalities of StackSpot AI. Through
an online meeting, facilitators stepped from introducing concepts
and product demonstrations to hands-on exploration and collabo-
rative discussions. The intention was to provide a comprehensive

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

Figure 1: StackSpot AI plugin on VS Code.

understanding of StackSpot AI. To do so, the planned timeline for
the meeting was:

• Welcoming Session (2:00 PM – 2:15 PM): An initial moment
to introduce ourselves and encourage those who did not answer
the pre-study questionnaire to "ll it out (more details about this
survey are available in Section 4.2).

• StackSpot AI Demonstration (2:15 PM – 2:50 PM): We con-
ducted an StackSpot AI demonstration, emphasizing its key fea-
tures and ways of interaction. By the conclusion of the demon-
stration, participants would be equipped to execute a basic “hello
world” activity using the platform.

• Exploring StackSpot AI (3:00 PM – 4:50 PM): With the envi-
ronment duly set up, participants were engaged in independent
exploration. For this exercise, we provided three curated knowl-
edge sources and speci"c tasks to facilitate hands-on experience.
These tasks encompassed various activities: 1) replicating the
initial demonstration, 2) employing the given knowledge sources
to simulate banking operations like transfers or payments, 3) re-
"ning the user’s prompt for more e!ective use of the knowledge
sources, and 4) exploring extra knowledge sources relevant to
the participant’s speci"c "eld.

• Group Discussion (5:00 PM – 6:00 PM): In this concluding
hour, we sought to address and re$ect upon their experience
while utilizing StackSpot AI. Wemade it clear that the developers’
insights and feedback were invaluable in the ongoing re"nement
of the StackSpot AI.

A discerning readermight observe that there is a 10-minute break
between each session. This interlude was intentionally scheduled
to o!er participants a chance for stretching, restroom breaks, and
other necessities. Moreover, to build rapport and foster engagement
with attendees who remained in the room, we initiated discussions
about the preceding activity, inquiring about any uncertainties
or challenges they may have encountered, for instance, in their
machine con"guration.

4.2 Data Collection
We collected data in three di!erent moments. First, we adminis-
trated a pre-study survey (Section 4.2.1); second, we audio-recorded
the conversations that happened during the study (Section 4.2.2);
and, third, we conducted a group discussion after the study (Sec-
tion 4.2.3). We will discuss each of these collection methods next.

4.2.1 Survey. We established the survey as an online questionnaire.
Before the o#cial survey release, we piloted the instrument with
three practitioners to assess its clarity and relevance. The feedback
from these pilot participants allowed us to re"ne certain queries,
ensuring optimal comprehension — for instance, we adjusted a
question about user experience to be more speci"c based on a
suggestion. Following these revisions, the pilot responses were
purged to ensure the integrity of the "nal dataset.

The survey was disseminated company-wide, via our weekly
news email, one week before the study. To maximize engagement,

Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes CAIN 2024, April 14–15, 2024, Lisbon, Portugal

the survey was also promoted in various company communication
channels. As a pre-requisite to join the session, employees were
required to complete the questionnaire. Additionally, at the outset
of the study, we emphasized the importance of the survey, allot-
ting the initial 15 minutes for attendees to "ll it out. Ultimately, a
total of 62 practitioners participated, though pinpointing an exact
response rate proved challenging, given the broad outreach juxta-
posed with the targeted audience for the study. The survey was
crafted using the TypeForm platform; the platform estimated an
average completion time of four minutes.

Questions. Our survey had 12 questions (all of them were required
and "ve were open). The survey was not anonymous; in the very
"rst question, we asked for the participant’s email. We did so to
generate the invite list to the online room, the second phase of the
data collection. The questions covered in the survey were:
Q1) Enter your email? [Open question]
Q2) What is your age? [Open question]
Q3) What is your technical pro"le? [Open question]
Q4) How long have you been working with this technical pro"le?

[Numerical scale {0 to 10}]
Q5) How would you rate your experience in the following pro-

gramming languages? [Numerical scale {1 to 5}], for the
following programming languages: Java, C#, Go, Python,
JavaScript, and TypeScript

Q6) Have you ever used a Generative AI tool for code generation?
[Choices: {Yes/No}]

Q7) Which Generative AI tool for code generation do you use
most frequently? [Multiple Answer: {Github Copilot, Ama-
zon Whisperer, Sourcegraph Cody, Other}]

Q8) How often do you use this tool? [Numerical scale {1 to 5}]
Q9) How useful is the output from these tools to you? [Numerical

scale {1 to 5}]
Q10) Do you need to modify the code generated by these tools

before making a commit? [Numerical scale {1 to 5}]
Q11) What features provided by these tools do you "nd most

interesting? [Open question]
Q12) What features would you like these tools to implement?

[Open question]
The complete set of questions, as well as the actual survey re-

sponses, are anonymized and available at the companion website3.

4.2.2 Recorded conversations. All discussions and interactions that
took place during the study were recorded, having obtained the
explicit consent of the participants. At the welcoming session, we
clari"ed that attendees who might be hesitant about the recording
could still actively engage with the tool. However, we requested
that they refrain from joining the public discussions through video
or text. Instead, they were encouraged to communicate using speci-
"ed private channels. Notably, we found that every attendee was
receptive to the recording procedure, with none opting for the pri-
vate communication channels. The total duration of the recorded
video amounted to 4 hours and 2 minutes.

4.2.3 Group discussion. Our group discussion mirrored the one
adopted by Luz and colleagues [10]. The organization of the group

3To be published upon acceptance.

discussion was as follows: (1) a researcher-moderator helmed the
session, outlining discussion subjects for the participants; (2) as
each topic was broached, participants presented their thoughts, and
keywords were posted on the shared slides; (3) subsequently, with
the notes on the slides, the participants could provide additional
comments.

The group discussion happened immediately after the technical
session. We used the same Google Meet call to conduct the dis-
cussion. However, many practitioners were unable to attend the
whole study due to other commitments. Therefore, the discussion
started with 34 participants and ended with 20. When we inspected
the recorded video, we observed several interactions among the
participants, usually complimenting StackSpot AI. So, although the
group discussion concluded with 20 participants, we actually had
around 25 participants engaged in the conversation (not to mention
the interactions via chat in the meeting room).

Although we tried to reach di!erent participants in the online
room, due to the high number of attendees, not all of themwere able
to express their perspectives. The group discussion lasted approx-
imately 1 hour and we sought to answer the following questions
during this phase:

• Did you "nd any issues with running StackSpot AI that
halted your progress?

• Did you feel the need to understand more about the provided
knowledge sources?

• How did you perceive the ease of use of StackSpot AI? (What
factors in$uenced this evaluation?)

• What were the primary bene"ts you derived from using
StackSpot AI in your project?

• What challenges did you face when using StackSpot AI?
• How useful and accurate were the responses generated by
StackSpot AI for your purpose?

• What other features would you expect StackSpot AI to o!er?
• Did StackSpot AI save you time during the development
process? (If yes, how?)

• How likely you would be to integrate StackSpot AI into your
daily work routine?

4.3 Data Analysis
We employed diverse data analysis methods, according to the data
collected. To analyze the survey delineated in Section 4.2.1, we used
descriptive statistics to provide a concise summary of the primary
information. For the open-ended questions, open coding techniques
were utilized to classify the answers.

To analyze the recorded conversations and the group discus-
sion (Section 4.2.2 and Section 4.2.3) we made use of a distinct
approach. We developed a software tool that automatically down-
loaded the video, extracted its audio, and leveraged the OpenAI
Whisper model4 for transcription. This process yielded text data
comprising 29,851 words (45,580 tokens5). To identify predominant
categories and themes within this text, we queried GPT-4. For ex-
ample, GPT-4 assisted in enumerating the most recurrent questions
posed during the meeting and pinpointing prevalent issues high-
lighted by participants. We then manually re"ned GPT-4’s output,

4https://github.com/openai/whisper
5Computed with Tiktoken library, https://github.com/openai/tiktoken.

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

Figure 2: Participant Programming Experience.

supplementing it with pertinent observations that the model might
have overlooked. We conducted two approaches as a way to miti-
gate study hallucination problems6. First, one author read the full
transcript while watching the recorded video; during this task, the
author "xed minor errors in the transcript, making it more accurate.
Second, we asked two practitioners who joined in the study to ana-
lyze the list of categories and themes produced by GPT-4, remove
them if they found them wrong, and complement them with addi-
tional ones that they found representative (although missing from
the initial list). The practitioners mentioned that the categories in
the GPT-4 list are accurate and no additional items were provided.

The researchers involved also analyzed the themes and the data,
and, although they agreed with GPT-4 classi"cation, they judged
that there was some overlap across the categories. After discus-
sions, they came to a consensus on keeping four main categories: 1)
general questions, 2) perceived bene"ts, 3) challenges encountered,
and 4) perception of productivity. GPT-4 suggested one other cat-
egory, called “usefulness of the generated answer”. We dismissed
this last category for the sake of traceability since their themes
were following up on those themes from categories 2, 3, and 4. We
elaborate on each one of these categories throughout Section 5.

4.4 Participants Demographics
In this section, we present the demographic details of the 62 re-
spondents to our survey.

The average age of our participants is 34 years, with 6 years
of experience in software development, and 2.6 years a#liated
with the company. When evaluating pro"ciency in programming
languages (Figure 2), a signi"cant portion (50%) self-identi"ed as
pro"cient in Java (columns 4 and 5 in Figure 2). This was followed
by JavaScript (26.4%), TypeScript (21.2%), C# (12.4%), Python (11.2%),
and Go (1.7%). Figure 3 shows the percentage of the participants
who had experience with GenAI tools (Figure 3.a), and which ones
(Figure 3.b). Notably, 83.9% of the respondents have prior expe-
rience with coding AI assistants, with GitHub Copilot being the
predominant choice (57.7%).

6Hallucinations are common in LLM-based tools. See Bang’s et al. discussion of Chat-
GPT [2].

(&) U*+ $, G+#AI T$$-*

(.) W/(0/ G+#AI T$$-*

Figure 3: Participants experience with GenAI-based tools.

Other AI coding assistants, each mentioned by a single respon-
dent, include AmazonCodeWhisperer, Sourcegraph Cody, AskCodi,
Codeium, Phind, and ChatGPT (with 11 mentions). A noteworthy
observation is that 58.8% of the participants seldom utilize these
tools; in fact, 17.6% have never employed them. A minority, 23.5%,
incorporate these tools regularly in their work$ow. When assessing
the utility of the output from these assistants, 29% of the partic-
ipants found them useful, and an additional 19.4% deemed them
highly valuable. However, 46.7% reported that they often make
substantial modi"cations to the outputs these tools produce. The
rest, 4.9% had a neutral answer to this question.

5 RESULTS
Given the exploratory nature of our study, we organize our results
according to the four themes that emerged in our analysis.

5.1 General Questions
We start by describing general questions that the participant had
when "rst interacting with StackSpot AI. Understanding general
questions is important because developers may need to answer
them before they can write any code.

What are the main features and functionalities of StackSpot
AI? Participants expressed interest in understanding how StackSpot
AI operates and its distinction from other generative AI tools in
terms of feature set. They sought detailed insights into the speci"c
functionalities that set StackSpot AI apart, including its unique ca-
pabilities and how these functionalities enhance the user experience
compared to other available tools.

Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes CAIN 2024, April 14–15, 2024, Lisbon, Portugal

How to set up and start using StackSpot AI? This question
focused on the setup and initial con"guration requirements for
StackSpot AI. Participants, whowere used to other GenAI tools with
minimal setup, inquired about a similarly streamlined process for
StackSpot AI. They were particularly interested in StackSpot AI’s
integration with various IDEs via plugins, concerning support for a
wide array of IDEs not yet compatible (such as XCode and Eclipse).
Additionally, there was a keen interest in understanding the role
and selection of knowledge sources for StackSpot AI, including the
number and types of sources to use for optimal performance.

What are the bene!ts of using StackSpot AI compared to
other similar tools? Participants, experienced with other GenAI
tools, frequently asked about StackSpot AI’s advantages over these
tools. A notable inquiry centered on the e#cacy of StackSpot AI
in the absence of user-provided knowledge sources, especially in
comparison to tools like CoPilot, which also utilize state-of-the-
art OpenAI models. We clari"ed that without speci"c knowledge
sources, StackSpot AI may not demonstrate signi"cant performance
enhancements. This discussion underscored that StackSpot AI is
not a panacea; e!ective use requires users to actively engage in
the selection and design of knowledge sources to fully leverage its
capabilities.

Does StackSpot AI actually bring productivity gains and time
savings for developers? Another recurrent general question was
about the tangible bene"ts of StackSpot AI in enhancing software
development productivity7. Participants were keen to learn how
StackSpot AI translates its features and capabilities into real-world
time savings and e#ciency improvements for developers. One re-
spondent said that “I asked him [the tool] to generate unit tests, he
did, the tests were good. I said, that’s good, but I want another one. He
went and did it right too. I saw that he really can generate test and
now it’s something I’ll have to worry less, because I can leave it up
to him to do it. I think this will help a lot on a daily basis. It’ll speed
things up a lot.”

5.2 Perceived Bene!ts
In this section, we delve into the potential contributions of StackSpot
AI in simplifying and enhancing the coding process. The partici-
pants’ experiences, initially tinged with skepticism, evolved into
recognition of StackSpot AI’s capabilities in generating precise
code for complex API integrations. We explore how StackSpot AI’s
contextual understanding, quick commands, and interactive code
re"nement through chat signi"cantly streamline the development
cycle.

Generation of accurate codes for swift integration with in-
ternal APIs Initially, participants expressed skepticism about the
accuracy and completeness of the code generated by StackSpot AI,
particularly for complex API integration. During the study, the par-
ticipants were handed a few API "les, which they used to generate
integration using StackSpot AI. Their experience revealed StackSpot
AI’s ability to generate functional code snippets, acknowledging
this as a crucial feature for accelerating development cycles and
reducing errors. This was highlighted by P4, who mentioned the
7Note that we are reporting what our informants said, without discussing whether
the concepts they used, e.g., productivity, are accurate or not.

following: “Thus, the tool accurately grasped the context, generating
a code with Spring framework — it was impressive. I did not expect
it to work out so well. StackSpot AI created the class as I requested.
Indeed, I am quite amazed here.”

Faster and more context-aware responses and code sugges-
tions compared to other tools. Participants initially perceived
StackSpot AI as an enhancement to general-purpose AI coding
assistants, intrigued by its potential for quick, context-sensitive
solutions. Upon further use, they recognized StackSpot AI’s signif-
icant value in providing time-e#cient, relevant, and precise cod-
ing suggestions speci"cally tailored to their project’s context. As
participant P5 mentioned: “For me, the contextualization helped in
generating accurate code. It helped a lot. I saved time; the answer was
straight to the point. The contextualization was the biggest gain for
me”.

Iterative re!nement of generated codes through chat inter-
action. Given that StackSpot AI operates as a conversational agent
equipped with an internal memory to record past interactions,
users can engage with it in a manner akin to a chatbot. This feature
of maintaining a history of previous conversations was initially
viewed as interesting. It facilitates interactive code re"nement and
assists in honing code outputs to align preciselywith speci"c project
requirements, thereby enabling users to achieve more optimal cod-
ing solutions.

Support for repetitive and routine tasks through “quick com-
mands”. Quick commands are shortcuts o!ered by StackSpot AI,
which developers could use to automate common software engi-
neering tasks, such as creating tests, documenting code, or even
asking the tool to explain a certain code snippet. Participants ini-
tially underestimated the impact of this feature, considering it a
minor convenience for routine coding tasks. As they became more
familiar with StackSpot AI, the collective sentiment shifted to view
these quick commands as time-savers, greatly aiding in automating
mundane aspects of coding and allowing them to focus on more
complex tasks, assisting in improving code reliability and mainte-
nance. One participant acknowledged the use of “quick commands”
as a potential enhancement to their development work$ow.

Time-saving by centralizing information access. Participants
initially recognized StackSpot AI as a convenience by minimizing
the need to alternate between various information sources. With
continued use of StackSpot AI, they appreciated its e#ciency in
providing centralized access to essential information within the
IDE, notably reducing development time and cognitive load. This
was underscored by participant P1: “I obtained the answer from
the code StackSpot AI generated; I didn’t need to go to the original
knowledge source. In this case, it was accurate and helpful. [...] Even
though the question I asked was a very simple example, StackSpot
AI demonstrated that centralizing information in the IDE would be
highly useful.”

5.3 Perception of productivity
After discussing the potential bene"ts of using StackSpot AI, we
asked participants’ opinions about its potential impact on their
productivity.

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

Contextualized code snippets. A few participants a#rmed that
StackSpot AI indeed saved their time by providing quick and con-
textual code snippets during the study. The ability of StackSpot AI
to quickly understand the context and deliver precise code snippets
not only streamlined the coding process but also allowed users to
focus more on creative and complex aspects of their work. When
asked one participant mentioned: “Yes, because within the context of
each project, the knowledge base will become increasingly richer and
will improve in generating responses.”

Aggregating knowledge sources within the IDE. As mentioned
among the bene"ts, participants speci"callymentioned that StackSpot
AI saved time by eliminating the need to search for knowledge
sources because they are now “available” within the IDE. This fea-
ture was highlighted as a major time-saver, therefore in$uencing
the perception of productivity of some study participants. For in-
stance, one respondent mentioned: “It StackSpot AI “saves time,
as it’s a shortcut for accessing information. If done through conven-
tional means, you’d have to search through a search engine, consult
books, or !nd people with that information to assist you, which would
certainly take longer.” Another participant mentioned that by pro-
viding knowledge sources within the IDE, StackSpot AI could also
reduce interruptions: “I believe it can save our time, as it allows us to
reduce interruptions when seeking speci!c information.” In summary,
by providing instant access to relevant knowledge sources directly
within the tool, StackSpot AI enabled users to access necessary
information or code samples without disrupting their work$ow.

Productivity gains unlock only if users know how to use
StackSpot AI. A participant commented that, like any AI tool,
StackSpot AI only brings time-saving bene"ts if used correctly with
re"ned prompts and proper settings. If used incorrectly, it could
even lead to time wastage. For instance, one participant comple-
mented the following: “However, if used carelessly or by less expe-
rienced people, it may result in more work for the more experienced
developers.” This insight underscores the importance of understand-
ing how to e!ectively interact with AI tools. Properly formulated
queries and a clear understanding of StackSpot AI’s capabilities are
essential to harness its full potential and avoid counterproductive
outcomes.

Insu"cient experience to evaluate. Finally, a few participants
mentioned that the participation in the study was not enough to
draw a de"nitive perception of the productivity gains of StackSpot
AI, as one engineer highlighted: “I don’t think I used it for enough
time and in scenarios that would allow me to answer this question.”

5.4 Challenges Encountered
This section highlights the various challenges encountered during
the participants’ interaction with StackSpot AI. We divided these
challenges into three groups: (i) challenges associated with the
adoption of the Retrieval-Augmented Generation (RAG) technique,
speci"cally the knowledge sources used; (ii) challenges associated
with large language models in general; and, "nally, (iii) other tech-
nical and user challenges associated with either UI aspects or user
expectations. We present the challenges according to these groups.

Figuring out what is a good knowledge source.Asmentioned in
Section 3.1, knowledge sources are representative documents that
enrich the prompts for RAG’s generation component, providing
essential context for task development. Without these sources, re-
sponses from StackSpot AI would be less contextualized, resembling
the answers from general-purpose coding AI assistants. Thus, iden-
tifying e!ective knowledge sources is vital for StackSpot AI’s perfor-
mance. Our study, however, revealed that not all participants were
able to understand what constitutes a (good) knowledge source.
This was observed during group discussion about other kinds of
knowledge sources they would use, based on their team context.
While a few participants were able to give interesting examples
(e.g., using a database schema as a knowledge source, and asking
StackSpot AI to create SQL queries based on it), other participants
were unable to come up with one single example. Furthermore,
others gave examples that were not based on coding tasks, and a
few participants even mentioned that they “need to understand more
about it, but were able to use it in a very basic way.”

Knowledge Source Mixing Impact. During the focus group, it
was mentioned that mixing several di!erent knowledge sources
a!ected the accuracy of the responses in certain cases, i.e., users
found that the blending of information sometimes led to less accu-
rate or relevant code suggestions, highlighting the need for better
source management. This observation suggests that while having
access to a wide range of sources can be bene"cial, it also poses
a challenge in ensuring that the information drawn from these
sources is relevant and accurately integrated. One participant high-
lighted this issue as the following: “Initially, I thought using various
Knowledge Sources in the same workspace might not be a good prac-
tice. This led me to experiment with my own project. I combined a
postal code API and various elements from the provided knowledge
source. The result wasn’t great.”

Inacurrate code suggestions and prompt re!nement. Partic-
ipants noted the necessity to re"ne and adjust prompts to obtain
accurate responses. For instance, one participant mentioned that “In
some cases, they [the code suggestions] were not accurate; in others,
they required many interactions and didn’t yield the expected result.”
Another participant added that “It wasn’t as accurate; in my case
when I entered it as ’Go’ [the programming language] it generated
generic things. It seems that it works better in Java.”, revealing a
potential bias towards more popular programming languages. This
feedback underscores the importance of clear prompt formulation
when interacting with AI tools. It also points to the potential need
for iterative interaction, where initial responses serve as a start-
ing point for further re"nement to achieve the desired outcome.
Furthermore, this result highlights how the participants required
additional e!ort and understanding of how to e!ectively commu-
nicate with the AI, which was a learning experience for several
participants.

Response Inconsistency: Our informants revealed that StackSpot
AI sometimes provided varied responses to identical prompts. This
inconsistency in output led to confusion among users and raised
questions about the reliability of the tool in repetitive tasks. Al-
though in the LLM literature, it is well-discussed that slightly dif-
ferent prompts could lead to di!erent answers, users found this

Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes CAIN 2024, April 14–15, 2024, Lisbon, Portugal

experience awkward, potentially negatively impacting their trust
in StackSpot AI.

Generating complex code structures. StackSpot AI faced di#cul-
ties in suggesting complex code like ready-to-use controllers. Par-
ticipants expressed that while basic code generation was e!ective,
the tool struggled with more sophisticated coding requirements.
For example, one participant expressed this saying “I tried to use
the stack based on Spring, Java, Kotlin, and then play with the knowl-
edge sources. However, despite my e"orts, StackSpot AI was unable to
generate the code with the endpoints. Instead of using controllers, it
created methods in a main class that starts the SpringBoot app.”

Inability to deal with custom languages. A participant proposes
the ability to add custom language support for code snippets. The
participant mentioned: “When trying to include a snippet with a
Cucumber Gherkin code, Gherkin does not appear in the list that
de!nes what type of language the code refers to. Is it possible to
register it?” This may limit the ability to deal with speci"c/custom
language and impact the outcomes for speci"c projects.

Conversation History Loss. A common frustration among par-
ticipants was the loss of conversation history upon closing the
IDE. This issue was particularly problematic for those working on
complex tasks over extended periods, as it disrupted the continuity
of their work and thought processes.

Missing User-Expected Features: Participants highlighted the
absence of certain functionalities in StackSpot AI that they had
anticipated. This gap in expectations versus reality suggested a
misalignment between the tool’s capabilities and the users’ needs.
Similarly, the absence of adequate plugin availability and support
for other IDEs was mentioned as a drawback, which restricted the
usability of StackSpot AI across di!erent development environ-
ments, impacting its adaptability.

Initial Con!guration and Onboarding Process. At the begin-
ning of the study, participants struggled with the setup process of
StackSpot AI, "nding the integration of elements like workspaces,
AI stacks, and knowledge sources challenging. This initial com-
plexity was a signi"cant barrier for many—particularly for those
less experienced with such environments—indicating a need for a
streamlined onboarding process. Indeed, a few participants were
unable to correctly set up the environment, and thus did not actively
participate in the full study. Still, one participant mentioned that
“[the code suggestions] could be better, but I believe it was because of
how I con!gured the Knowledge Sources.” This feedback shows that
StackSpot AI’s e!ectiveness is signi"cantly related to appropriately
con"guring the environment.

Technical Limitations. Participants frequently encountered tech-
nical issues such as timeouts and error messages (403 and 500
statuses). Additionally, some reported accessibility problems on
speci"c machines (“I couldn’t use StackSpot AI with the client’s ma-
chine. Does this mean that I was only able to run StackSpot AI on
my personal computer? - P6). Another limitation mentioned was
the impossibility of having a Git repository as a knowledge source
hinders the ability to understand and work with new or existing
projects, with all information available in their Git repositories.

In this context, a participant stated that: “The possibility to add a
complete Git repository as a knowledge source. It would help A LOT
in adding a quick context of documentation or an application.”These
technical limitations hindered the smooth operation of StackSpot
AI, a!ecting the overall user experience.

6 DISCUSSION
Re$ecting on our results, we noticed that using a contextualized
model to support developers will be bene"cial for the company
developers. This was evidenced by the bene"ts listed in Section 5.2.

On the Accurateness of Code Generation. Several participants
highlighted that the code suggestions they received from StackSpot
AI were both useful and accurate for their purposes, enabling them
to simply copy and paste the generated code directly into their
projects. For instance, a developer was able to quickly generate
an integration with an internal API of a speci"c client by simply
requesting it through StackSpot AI. Being able to use the provided
code without additional modi"cations not only saved time but also
demonstrated the tool’s capability to understand and address spe-
ci"c coding needs accurately. This exempli"es the potential time-
saving bene"ts of the tool, showcasing its ability to automate and
simplify complex tasks. This is in line with other studies [1, 4, 17],
adding evidence related to the power of models "ne-tuned for spe-
ci"c contexts. Participants also noted that some suggestions were
not entirely precise, necessitating adjustments and re"nement of
the prompts. Re"ning prompts is a strategy used by other software
developers using academic (see [18]) or proprietary tools (see [1]).
This is a challenge associated with LLMs in general, but, as we
discussed in section 5.4, we also identi"ed challenges related to the
usage of knowledge sources and other technical and user-related
challenges.

Usability and Developer E"ciency. From a usability perspective,
important results are highlighted. First, the ability to o!er shortcuts
(quick commands) has been shown to be bene"cial to the develop-
ers, supporting what Barke et al. called the acceleration mode [3].
Our results indicate that the available tool did support that work-
ing mode. Second, StackSpot AI’s design, based on an interactive
chat instead of focusing on code completion [3], also provided an
opportunity for the iterative re"nement of code suggestions as well
as avoided interruptions [1, 4] similar to what has been observed
by Ross et al. [16]. Finally, the possibility to focus solely on the
IDE while seeking information has been shown to be important for
software developers using AI coding assistants [1].

Having the right mix of knowledge sources is important. One
important challenge that we observed is associated with knowledge
sources. As mentioned in section 3.1, these sources are used in the
RAG approach to enhance LLM-generated content by anchoring
it in external knowledge sources. Therefore, it is not surprising
that our informants reported di!erent aspects associated with it
including the di#culty in identifying good knowledge sources, the
importance of properly con"guring StackSpot AI with the knowl-
edge sources, and "nally the negative impact of mixing di!erent
sources. An interesting research avenue would be exploring the
e#ciency of di!erent knowledge sources, and creating systematic

CAIN 2024, April 14–15, 2024, Lisbon, Portugal Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

approaches to do so, supporting (semi-)automatic ways of optimiz-
ing the creation of contextualized coding assistants.

Challenges and Improvements in LLMs.We also highlighted
several perceived challenges using StackSpot AI. It was interesting
to "nd out that participants reported that the tool was able to gener-
ate accurate code snippets, that helped to neatly integrate internal
APIs. Our study showed that it is possible to reduce the issues with
incorrectness [13, 19] by creating a contextualized model to retrieve
information from contextual knowledge sources. In contrast, the
non-deterministic nature of LLMs [14] remains an issue, i.e., some
of the challenges are inherent to LLMs, while other challenges are
purely technical (conversation history loss, initial con"guration,
etc) and will be addressed in future releases.

Enhanced Generic Con!guration Options for AI Coding As-
sistant. Since participants reported challenges with the initial
con"guration, one potential way to move ahead would be provid-
ing a more $exible and generic way of con"guring StackSpot AI.
The goal here is to make the setup more user-oriented, without
the need to include a lot of information before the use of the tool.
This comes with a trade-o!, since when the settings are properly
con"gured, the responses are very precise and save time—therefore,
making it too $exible may hinder less experienced team members.
The setup was idealized in a way to get the key con"guration/-
customization items from the user, to make the code suggestions
more reliable and precise. By making it less constrained, we may
a!ect the accuracy of results. More investigation is required to
understand how much $exibility is possible, without negatively
impacting the outcome.

6.1 Limitations
This study, while extensive, has notable limitations. Firstly, our
data collection involved a sizeable sample of practitioners using
a contextualized coding assistant for the "rst time. However, this
sample may not fully represent the broader population of software
developers. Still, although the majority of the participants have
previous experience with Generative AI tools, such as ChatGPT
and GitHub Copilot, their experience with these tools might not
naturally translate to the use of StackSpot AI, in particular, because
they have to select and design representative knowledge sources,
which is, by design, an important e!ort — which is not required by
general-purpose tools.

Secondly, due to company policy recommendations against re-
questing gender information during the prestudy to avoid partici-
pant discomfort, our study did not gather this data. This omission
restricts our ability to conduct comprehensive comparative analy-
ses across di!erent gender groups. Another limitation concerns the
robustness of StackSpot AI, currently in its beta phase. Some chal-
lenges noted by participants might stem from insu#cient testing
rather than $aws in the underlying Large Language Model (LLM).
This factor could adversely a!ect the overall user experience.

Given the nature of how the group discussion was conducted
(as an online call with dozens of participants), we were unable to
accurately identify the number of participants who mentioned a
given bene"t/limitation. As such, during our discussion section, we
often refer to them as ‘many’, ‘a few’, ‘various’, and the like.

Moreover, our data analysis partially relied on AI-based tools.
While these tools excel in summarization tasks [11], they do not ad-
here to stringent qualitative research methodologies. Consequently,
while we successfully extracted representative quotes, the analy-
sis’s rigor cannot be fully assured. To address this, two authors
involved in the study reviewed and validated the AI-generated
outputs. These authors suggested no additional items.

7 CONCLUSION
The recent $ow of newly introduced AI coding assistants has un-
locked developers’ potential, in a myriad of coding tasks. However,
these coding assistants, when not trained taking into account the
developers’ context (with their representative documents, coding
styles, etc), might produce answers that although appear interesting
at "rst, may not be as precise as developers’ need. Both academia
and industry have recognized the need for more intuitive, conver-
sational AI tools that could seamlessly integrate with existing IDEs,
providing real-time, context-aware assistance.

In this work, we explored the use of StackSpot AI, a conversa-
tional AI tool, which is enriched with developers’ representative
documents to generate more appropriate answers. We used the tool
in a controlled setting with 62 practitioners. Our "ndings revealed
that StackSpot AI could improve productivity and time e#ciency.
Participants appreciated its ability to quickly generate accurate code
snippets and contextual code suggestions. However, the e!ective-
ness of StackSpot AI was contingent on precise prompt formulation
and optimal con"guration of knowledge sources. Some challenges,
like technical limitations and the need for better support in diverse
IDE environments, were identi"ed, highlighting areas for improve-
ment. Other challenges are inherent to LLMs and require further
AI research.

7.1 Future work
In future work, we plan to expand the scope of our research activities
based on the insights gained from this paper. A key area of explo-
ration will be to conduct longitudinal studies with developers who
use StackSpot AI over extended periods. This will provide deeper in-
sights into how prolonged use a!ects productivity, learning curves,
and code quality. This will also allow us to understand how such a
tool will impact developers’ work practices. Additionally, compar-
ative studies involving other AI-assisted coding tools will o!er a
broader perspective on StackSpot AI’s unique strengths and areas
for improvement. We also aim to investigate how StackSpot AI
operates on a wider range of programming languages, assessing
its adaptability and e!ectiveness across diverse coding scenarios.
Further, exploring the impact of StackSpot AI on team dynamics
and collaborative coding practices could provide valuable insights
into its role in team-based development settings. Finally, delving
into user customization and personalization aspects of StackSpot
AI could reveal how tailored experiences in$uence developer satis-
faction and tool e#ciency. These research activities will collectively
contribute to a more comprehensive understanding of AI-assisted
coding tools in software development.

Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes CAIN 2024, April 14–15, 2024, Lisbon, Portugal

ACKNOWLEDGMENTS
We would like to thank the reviewers for their valuable comments.
This work is partially supported by INES (www.ines.org.br), CNPq
(grants 420406/2023-9, 442779/2023-2, 465614/2014-0, and 308623/2022-
3), FAPESPA (053/2021), FACEPE (grants APQ-0399-1.03/17, PRONEX
APQ/ 0388-1.03/14), CAPES (88887.136410/2017-00), and the Na-
tional Science Foundation (grant numbers 2236198, 2303042).

REFERENCES
[1] Anonymous Authors. 2024. ‘You’re on a bicycle with a little motor”: Bene"ts

and Challenges of Using AI Code Assistants. In International Conference on
Collaborative and Human Aspects of Software Engineering (CHASE). 9.

[2] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A Multitask, Multilingual, Multimodal Evaluation of
ChatGPT on Reasoning, Hallucination, and Interactivity. arXiv:2302.04023 [cs.CL]

[3] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[4] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2023. Taking Flight with
Copilot: Early Insights and Opportunities of AI-Powered Pair-Programming
Tools. Queue 20, 6 (jan 2023), 35–57. https://doi.org/10.1145/3582083

[5] Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang
Zhang, Jie Fu, and Zhiyuan Liu. 2023. Chateval: Towards better llm-based evalu-
ators through multi-agent debate. arXiv preprint arXiv:2308.07201 (2023).

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374 (2021).

[7] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S Lasecki, and Steve Oney.
2017. Codeon: On-demand software development assistance. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. 6220–6231.

[8] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large Language Models for Software Engineer-
ing: Survey and Open Problems. arXiv preprint arXiv:2310.03533 (2023).

[9] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html

[10] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. 2019. Adopting
DevOps in the real world: A theory, a model, and a case study. J. Syst. Softw. 157
(2019). https://doi.org/10.1016/J.JSS.2019.07.083

[11] Derek Miller. 2019. Leveraging BERT for extractive text summarization on
lectures. arXiv preprint arXiv:1906.04165 (2019).

[12] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Zhen Ming (Jack) Jiang. 2023. GitHub Copilot AI pair
programmer: Asset or Liability? Journal of Systems and Software 203 (2023),
111734. https://doi.org/10.1016/j.jss.2023.111734

[13] Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub Copi-
lot’s Code Suggestions. In Proceedings of the 19th International Conference on
Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22). Association
for Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/
3524842.3528470

[14] Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv:2308.02828 [cs.SE]

[15] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy

(SP). 754–768. https://doi.org/10.1109/SP46214.2022.9833571
[16] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, and

Justin D. Weisz. 2023. The Programmer’s Assistant: Conversational Interaction
with a Large Language Model for Software Development. In Proceedings of the
28th International Conference on Intelligent User Interfaces, IUI 2023, Sydney, NSW,
Australia, March 27-31, 2023. ACM, 491–514. https://doi.org/10.1145/3581641.
3584037

[17] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[18] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE Code Genera-
tion from Natural Language: Promise and Challenges. ACM Trans. Softw. Eng.
Methodol. 31, 2, Article 29 (mar 2022), 47 pages. https://doi.org/10.1145/3487569

[19] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the Quality of
GitHub Copilot’s Code Generation. In Proceedings of the 18th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering (Singapore,
Singapore) (PROMISE 2022). Association for Computing Machinery, New York,
NY, USA, 62–71. https://doi.org/10.1145/3558489.3559072

https://arxiv.org/abs/2302.04023
https://doi.org/10.1145/3582083
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.1016/J.JSS.2019.07.083
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3524842.3528470
https://arxiv.org/abs/2308.02828
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3558489.3559072

	Abstract
	1 Introduction
	2 Related Work
	2.1 User Experience
	2.2 Correctness

	3 StackSpot AI
	3.1 Approach
	3.2 Prep-and-Go

	4 User Study
	4.1 Study Planning
	4.2 Data Collection
	4.3 Data Analysis
	4.4 Participants Demographics

	5 Results
	5.1 General Questions
	5.2 Perceived Benefits
	5.3 Perception of productivity
	5.4 Challenges Encountered

	6 Discussion
	6.1 Limitations

	7 Conclusion
	7.1 Future work

	References

