Developer Experiences with a Contextualized Al Coding Assistant:
Usability, Expectations, and Outcomes

Gustavo Pinto
Zup Innovation & UFPA
Belém, PA, Brazil
gustavo.pinto@zup.com.br

Igor Steinmacher
Northern Arizona University
FlagStaft, AZ, EUA
Igor.Steinmacher@nau.edu

ABSTRACT

In the rapidly advancing field of artificial intelligence, software
development has emerged as a key area of innovation. Despite the
plethora of general-purpose Al assistants available, their effective-
ness diminishes in complex, domain-specific scenarios. Noting this
limitation, both the academic community and industry players are
relying on contextualized coding Al assistants. These assistants sur-
pass general-purpose Al tools by integrating proprietary, domain-
specific knowledge, offering precise and relevant solutions. Our
study focuses on the initial experiences of 62 participants who used
a contextualized coding Al assistant — named StackSpot AI—in a
controlled setting. According to the participants, the assistants’ use
resulted in significant time savings, easier access to documentation,
and the generation of accurate codes for internal APIs. However,
challenges associated with the knowledge sources necessary to
make the coding assistant access more contextual information as
well as variable responses and limitations in handling complex
codes were observed. The study’s findings, detailing both the bene-
fits and challenges of contextualized Al assistants, underscore their
potential to revolutionize software development practices, while
also highlighting areas for further refinement.

KEYWORDS

LLM, LLM-based applications, User expectations, Perception of
Productivity

ACM Reference Format:

Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Al-
berto de Souza, and Edward Monteiro. 2024. Developer Experiences with a
Contextualized AI Coding Assistant: Usability, Expectations, and Outcomes.
In Conference on Al Engineering Software Engineering for AI (CAIN 2024),
April 14-15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3644815.3644949

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0591-5/24/04...$15.00
https://doi.org/10.1145/3644815.3644949

Cleidson de Souza
UFPA
Belém, PA, Brazil
cleidson.desouza@acm.org

Alberto de Souza
Zup Innovation
S3o Paulo, SP, Brazil
alberto.tavares@zup.com.br

Thayssa Rocha
Zup Innovation & UFPA
Belém, PA, Brazil
thayssa.rocha@zup.com.br

Edward Monteiro
StackSpot
S3o Paulo, SP, Brazil
edward.monteiro@stackspot.com

1 INTRODUCTION

In the rapidly evolving landscape of artificial intelligence (AI) and
its integration into various industries, the software development
domain remains at the forefront of innovation [8]. Developers to-
day are equipped with an unprecedented set of coding tools and
AT agents, designed to navigate and simplify the complexities of
software engineering. However, as software projects grow intricate,
the demand for precise and efficient coding assistance becomes
critical [7].

Despite their groundbreaking nature, general-purpose Al assis-
tants currently have a fundamental shortcoming: they often pro-
vide generic or inaccurate responses, particularly when confronted
with contextualized, domain-specific queries [5]. This gap is felt
by developers who seek guidance, for example, in tasks related to
optimizing a database query [1] or deciphering the complexities
of a proprietary codebase. Conventional Al tools, while advanced
in many aspects, often fall short of delivering the depth and speci-
ficity required in these scenarios. Such limitations not only hinder
productivity but also pose a barrier to harnessing the full potential
of Al in software development.

The industry is responding to these challenges by developing
contextualized coding Al assistants. These tools, underpinned by
advanced Al models, are specifically designed to access and utilize
proprietary, domain-specific knowledge, which general-purpose
assistants typically lack. This specialized approach enables them
to offer targeted assistance, especially useful in complex, domain-
specific scenarios. To illustrate, imagine a scenario where a devel-
oper is working on an intricate e-commerce platform, and they
encounter a challenge related to optimizing a multi-tier product
recommendation algorithm. While a general-purpose Al might of-
fer broad-based guidance or algorithmic solutions, a contextualized
coding assistant, familiar with the proprietary nuances of that spe-
cific e-commerce platform and its surroundings, might pinpoint
exact issues based on historical data or even provide solutions that
account for platform-specific constraints, or company-based frame-
works. In essence, while a general-purpose Al tool might suggest
generic best practices, a contextualized assistant could reference
company-specific requirements documents and related projects,
offering answers that are not only effective but also tailored to
that organization’s unique needs. For instance, Enterprise Tabnine

https://doi.org/10.1145/3644815.3644949
https://doi.org/10.1145/3644815.3644949

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

customers might choose to train their own custom model based on
their company’s source code!.

These contextualized tools, while differing in purpose from
general-purpose coding assistants, often share a common technolog-
ical foundation: they leverage the Retrieval-Augmented Generation
(RAG) technique [9]. This involves retrieving relevant information
from specialized sources and generating contextualized responses
using advanced language models. An example of this is the con-
textualized coding Al assistant name StackSpot Al developed by
ZUP INNOVATION?— a software partner tech company — aimed at
enhancing developer productivity, confidence, and experience with
Al-based tools. The main capabilities of this assistant are detailed
in Section 3.

In this paper, we report the findings from a study about the
experience of 62 practitioners who used the StackSpot Al assis-
tant for the first time in a controlled, online environment. During
four hours, they were introduced to concepts and usage details
of StackSpot Al followed by a hands-on experience performing
simple tasks. The participants interacted and provided feedback
during the whole online discussion. The analysis of their feedback
highlights several key [B]enefits and [C]hallenges encountered:

[B] Generation of accurate codes for swift integration with in-
ternal APIs and support for routine tasks;

[B] Time efficiency by centralizing information access;

[B] Streamlined access to documentation and guidelines within
the IDE;

[C] Multiple knowledge sources are required to maintain re-
sponse accuracy;

[C] Inconsistency in responses to identical prompts, requiring
prompt refinement; and

[C] Difficulties in generating complex code structures.

Furthermore, the participants provided important insights, bring-
ing feedback on the experience, suggestions on new functionalities,
and reflections on the productivity and reliability of code generated
by StackSpot AL

2 RELATED WORK

Research in Al assistants has focused on different aspects including
the benchmarks necessary to evaluate and compare them [6], the
correctness [19], complexity [13], quality [12], and security [15] of
the generated code, the developers’ experience while using these
assistants [3, 17], among other aspects. In this paper, we are inter-
ested in two aspects. First, the user experience using these tools.
Second, the correctness of the solutions generated , i.e., their ability
to, given a particular problem, generate a code solution that will ac-
tually solve that problem. This is measured by checking whether the
solution passes the test cases associated with the original problem.

2.1 User Experience

We can find a few papers discussing the user experience of software
developers using Al code assistants including [1, 3, 4, 17? , 18].
In general, these studies indicate that developers save time using
Al assistants, i.e., “interactions with programming assistants are

!https://www.tabnine.com/code-privacy
2StackSpot Al and Zup INNOVATION are two pseudonyms adopted for double anony-
mous purposes.

Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

bimodal: in acceleration mode, the programmer knows what to do
next and uses Copilot to get there faster; in exploration mode, the
programmer is unsure how to proceed and uses Copilot to explore
their options” [3]. Even when the assistants are not 100% correct,
they still generate code that can be used as a “starting point” for
further work.

These studies also reported some of the limitations of these tools,
mainly lack of correctness of the code suggestions and interruptions,
i.e., the assistants disturb the natural flow of work [1, 4]. More
interestingly, they report coping strategies to deal with Copilot’s
limitations: “to accept the incorrect suggestion and attempt to repair
it,” add more context so that the assistant improves its suggestions,
or simply stop using the tool.

2.2 Correctness

In 2022, two different papers were published assessing the correct-
ness of GitHub Copilot. In the first paper, Nguyen and Nadi [13]
assessed the correctness of Copilot’s suggestions in four differ-
ent programming languages: Java, JavaScript, Python, and C. Each
programming language had a different result with Python code
generated by Copilot with a 42% correctness, while Java had 57%
and JavaScript with 27%. These authors tested the code generation
abilities to solve 33 questions randomly selected from LeetCode, a
popular Question Pool website with several various coding ques-
tions on different topics (array, algorithm, sorting, etc).

Meanwhile, Yetistiren and colleagues [19] focused solely on
Python and used the HumanEval [6] benchmark, the same one
used to evaluate Codex, the GPT model behind Copilot. This bench-
mark contains 164 original programming problems "with some
comparable to simple software interview questions”. In their result,
Copilot’s suggestions had a 28.7% correctness rate.

Several factors might explain the different correctness rates in
these studies (42% vs 27.8%). Arguably, a potential explanation is
associated with the datasets used. While Nguyen and Nadi [13]
used a popular programming site, Yetistiren et al. [19] used origi-
nal programming problems, i.e., a popular programming site like
LeetCode might even be used in the Copilot’s training dataset. This
seems to suggest that Copilot’s correctness is influenced by the
presence of similar data in its training dataset. Therefore, when
faced with domain-specific queries, Copilot is likely to provide
generic or inaccurate suggestions.

3 STACKSPOT Al

In this section, we describe how StackSpot AI works.

3.1 Approach

Different than Copilot or CodeWhisperer, which are general-purpose
coding assistants, StackSpot Al is a highly contextualized coding Al
assistant. StackSpot Al takes into account the nuanced requirements
of individual developers and the intricacies of specific projects
(codebases). This tailored approach is based on the implementation
of the Retrieval Augmented Generation (RAG) mechanism [9].
RAG is an approach designed to enhance LLM-generated con-
tent by anchoring it in external knowledge sources. In question-
answering systems, RAG accesses up-to-date, reliable information

https://www.tabnine.com/code-privacy

Developer Experiences with a Contextualized Al Coding Assistant:
Usability, Expectations, and Outcomes

and provides transparency to users regarding the model’s informa-
tion sources, promoting trust and verifiability. So, this approach
mitigates the risk of sensitive data leakage and misinformation
generation while also improving response quality. An illustrative
list of possible knowledge sources includes:

(1) An extensive catalog of APIs recurrently harnessed by the
development team;

(2) Exemplary code snippets serving for discerning coding paradigms

or facilitating code modernization activities;

(3) Customized artifacts written in natural language, including
but not limited to, guidelines delineating the protocol for
repository commits and a comprehensive list of software
requirements to be implemented.

By providing relevant and up-to-date information to the LLM,
RAG also reduces the need for constant model retraining and param-
eter updates, lowering computational and financial overhead [9],
since there is no need to build a new foundation model or retrain
an existing one. Additionally, RAG is a two-pronged structure con-
sisting of “retrieval” and “generation” components [9].

The “retrieval” facet of RAG is designed to fetch relevant docu-
ments from a specified dataset. Traditional databases might falter
in efficiently retrieving relevant documents. In StackSpot Al, we
use information retrieval techniques to identify the most relevant
document for a given user query. Although the retrieval component
is efficient at sourcing relevant information, it does not have the
capability to generate new content.

On the flip side, the “generation” component harnesses the
prowess of OpenAl’s most recent model, GPT-4. Imagine a sce-
nario where a developer is conceptualizing a new algorithm but
hits a roadblock in terms of its implementation. StackSpot Al, chan-
neling the generative capabilities of GPT-4, can aid in generating
code snippets that are tailored to the developer’s specific context,
based on the documents found by the retrieval component.

In essence, StackSpot Al joins advanced contextual retrieval
with state-of-the-art generative capabilities, ensuring developers
receive precise, contextual, and timely assistance. It does so by
using OpenAI’s newest model, GPT-4.

3.2 Prep-and-Go

StackSpot AI has two main interfaces. The first one is a web portal
in which users can configure their teams’ preferences and upload
representative documents, which would be later used by the re-
trieval component. These preferences’ configurations allow the use
of recommended development tech stacks and code patterns that
are often employed in the development team. As such, the gener-
ated code might respect these stacks, minimizing the developer’s
effort in translating the generated response into their codebase.
Once the configuration is done, users can turn their attention
to the StackSpot Al plugin that is currently available for VSCode
and Intelli]. Using this plugin, users could interact with the second
interface: a coding assistant chatbot. In this way, developers can
craft prompts, refine the answers, and copy the generated solution
to the code editor. Additionally, it’s important to note that StackSpot
Al utilizing GPT-4 as its core LLM, needs to manage the token
limit imposed per request effectively. This token limit is crucial
because exceeding it can lead to prompt overflow, a scenario where

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

the number of tokens used exceeds the LLM’s capacity. Given that
StackSpot Al functions as a chatbot, it tracks and retains a history of
the most recent messages exchanged with users. This historical data
enriches the input prompt, enhancing the context and relevance
of StackSpot AI’s responses. However, to prevent prompt overflow
and maintain efficiency, StackSpot Al implements a strategy of
selectively discarding older messages. This process ensures that
the prompt remains within the token limit while retaining the
most pertinent and recent interactions. Additionally, recognizing
that users may shift topics during a conversation, StackSpot Al
is designed to dynamically adjust which messages it retains. It
prioritizes those that are most relevant to the current context of the
dialogue. This adaptive approach ensures that StackSpot Al remains
focused and relevant to the user’s immediate needs, despite the
evolving nature of the conversation.

Figure 1 shows an example of the use of the StackSpot Al plugin
on VSCode. As one can see, StackSpot Al combines a code editor
with a chat interface. The red box indicates the knowledge source
found in the user search.

Finally, as a conversational agent, StackSpot Al extends its ca-
pabilities beyond mere generation of code snippets. It can engage
users in broader discussions on various programming topics, of-
fering insights and clarifications [16]. Additionally, it plays a role
in enhancing users’ programming skills through interactive learn-
ing and guidance, providing a more comprehensive, educational
experience in the realm of software development.

4 USER STUDY

To evaluate the developers’ experience in using StackSpot Al, we
organized an in-company online study. The study was performed
within Zup INNOVATION, a large software-producing company, with
around 3.5k employees, and more than 10+ years in the market,
working with some of the largest financial institutions in Latin
America and abroad. For instance, for one of their clients, Zup IN-
NOVATION engineers rewrote millions of Cobol legacy code into
modern programming languages, helping to move their physical
infrastructure to the cloud. In such a context, there is an important
need for a text-based coding assistant, in particular, for moderniza-
tion tasks.

The goal of the study was to introduce practitioners to StackSpot
Al and gather representative feedback to improve the product’s
quality and usability. We intentionally refrained from setting spe-
cific design objectives for the tool, tailoring it to particular user
groups (such as novices or experts) or specific scenarios (like coding
or learning new programming languages), as we wanted any value
provided by StackSpot AI to emerge from our user study.

In this section we describe how the study was planned, (Sec-
tion 4.1), how we collected data (Section 4.2), and how we analyzed
the data collected (Section 4.3).

4.1 Study Planning

The study was structured to provide participants with a journey
into the capabilities and functionalities of StackSpot Al Through
an online meeting, facilitators stepped from introducing concepts
and product demonstrations to hands-on exploration and collabo-
rative discussions. The intention was to provide a comprehensive

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

STACKSPOT

15
16
17
18
19
20 }
@Test

©WEONOOU D WNR

=
5]

Please note that the assertEquals method includes a
delta value to account for floating-point arithmetic
precision issues.

BoR e e
BWN R

For observability with Dynatrace, you would typically
instrument your application with the Dynatrace OneAgent,
which would automatically capture performance metrics,
traces, and logs without the need to modify your code.
However, if you want to add custom metrics or events, you
would use the Dynatrace API to send this data to your
Dynatrace environment.

NB PR R
(SRR IRN N T}

Remember to include the necessary dependencies for
Spring Boot, JUnit 5, and any other libraries you are using
in your pom.xml or build.gradle file.

Knowledge Sources:

Cobol 1 +1 more

P maint O ®o0Ao0 @Wo

Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

L poc-edp-ai

package com.example.loan;

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

public class InterestRateServiceTest {

public void testCalculateEquivalentInterestRate() {
InterestRateService service = new InterestRateService();
double annuallnterestRate = 5.0; // 5% annual interest rate
int outputBase = 365; // days in a year
int inputBase = 3@; // days in a month

double equivalentInterestRate = service.calculateEquivalentInterestRate(a

// Assert that the calculated interest rate is as expected
Assertions.assertEquals(0.4074, equivalentInterestRate, 0.0001, "The equi

Ln 12, Col 17 Spaces:4 UTF-8 LF Java 0

Figure 1: StackSpot AI plugin on VS Code.

understanding of StackSpot AL To do so, the planned timeline for
the meeting was:

e Welcoming Session (2:00 PM - 2:15 PM): An initial moment
to introduce ourselves and encourage those who did not answer
the pre-study questionnaire to fill it out (more details about this
survey are available in Section 4.2).

e StackSpot AI Demonstration (2:15 PM - 2:50 PM): We con-
ducted an StackSpot Al demonstration, emphasizing its key fea-
tures and ways of interaction. By the conclusion of the demon-
stration, participants would be equipped to execute a basic “hello
world” activity using the platform.

e Exploring StackSpot AI (3:00 PM — 4:50 PM): With the envi-
ronment duly set up, participants were engaged in independent
exploration. For this exercise, we provided three curated knowl-
edge sources and specific tasks to facilitate hands-on experience.
These tasks encompassed various activities: 1) replicating the
initial demonstration, 2) employing the given knowledge sources
to simulate banking operations like transfers or payments, 3) re-
fining the user’s prompt for more effective use of the knowledge
sources, and 4) exploring extra knowledge sources relevant to
the participant’s specific field.

¢ Group Discussion (5:00 PM - 6:00 PM): In this concluding
hour, we sought to address and reflect upon their experience
while utilizing StackSpot AI. We made it clear that the developers’
insights and feedback were invaluable in the ongoing refinement
of the StackSpot AL

A discerning reader might observe that there is a 10-minute break
between each session. This interlude was intentionally scheduled
to offer participants a chance for stretching, restroom breaks, and
other necessities. Moreover, to build rapport and foster engagement
with attendees who remained in the room, we initiated discussions
about the preceding activity, inquiring about any uncertainties
or challenges they may have encountered, for instance, in their
machine configuration.

4.2 Data Collection

We collected data in three different moments. First, we adminis-
trated a pre-study survey (Section 4.2.1); second, we audio-recorded
the conversations that happened during the study (Section 4.2.2);
and, third, we conducted a group discussion after the study (Sec-
tion 4.2.3). We will discuss each of these collection methods next.

4.2.1 Survey. We established the survey as an online questionnaire.
Before the official survey release, we piloted the instrument with
three practitioners to assess its clarity and relevance. The feedback
from these pilot participants allowed us to refine certain queries,
ensuring optimal comprehension — for instance, we adjusted a
question about user experience to be more specific based on a
suggestion. Following these revisions, the pilot responses were
purged to ensure the integrity of the final dataset.

The survey was disseminated company-wide, via our weekly
news email, one week before the study. To maximize engagement,

Developer Experiences with a Contextualized Al Coding Assistant:
Usability, Expectations, and Outcomes

the survey was also promoted in various company communication
channels. As a pre-requisite to join the session, employees were
required to complete the questionnaire. Additionally, at the outset
of the study, we emphasized the importance of the survey, allot-
ting the initial 15 minutes for attendees to fill it out. Ultimately, a
total of 62 practitioners participated, though pinpointing an exact
response rate proved challenging, given the broad outreach juxta-
posed with the targeted audience for the study. The survey was
crafted using the TypeForm platform; the platform estimated an
average completion time of four minutes.

Questions. Our survey had 12 questions (all of them were required
and five were open). The survey was not anonymous; in the very
first question, we asked for the participant’s email. We did so to
generate the invite list to the online room, the second phase of the
data collection. The questions covered in the survey were:

Q1) Enter your email? [Open question]

Q2) What is your age? [Open question]

Q3) What is your technical profile? [Open question]

Q4) How long have you been working with this technical profile?
[Numerical scale {0 to 10}]

Q5) How would you rate your experience in the following pro-
gramming languages? [Numerical scale {1 to 5}], for the
following programming languages: Java, C#, Go, Python,
JavaScript, and TypeScript

Q6) Have you ever used a Generative Al tool for code generation?
[Choices: {Yes/No}]

Q7) Which Generative Al tool for code generation do you use
most frequently? [Multiple Answer: {Github Copilot, Ama-
zon Whisperer, Sourcegraph Cody, Other}]

Q8) How often do you use this tool? [Numerical scale {1 to 5}]

Q9) How useful is the output from these tools to you? [Numerical
scale {1 to 5}]

Q10) Do you need to modify the code generated by these tools
before making a commit? [Numerical scale {1 to 5}]

Q11) What features provided by these tools do you find most
interesting? [Open question]

Q12) What features would you like these tools to implement?
[Open question]

The complete set of questions, as well as the actual survey re-
sponses, are anonymized and available at the companion website>.

4.2.2 Recorded conversations. All discussions and interactions that
took place during the study were recorded, having obtained the
explicit consent of the participants. At the welcoming session, we
clarified that attendees who might be hesitant about the recording
could still actively engage with the tool. However, we requested
that they refrain from joining the public discussions through video
or text. Instead, they were encouraged to communicate using speci-
fied private channels. Notably, we found that every attendee was
receptive to the recording procedure, with none opting for the pri-
vate communication channels. The total duration of the recorded
video amounted to 4 hours and 2 minutes.

4.2.3 Group discussion. Our group discussion mirrored the one
adopted by Luz and colleagues [10]. The organization of the group

3To be published upon acceptance.

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

discussion was as follows: (1) a researcher-moderator helmed the
session, outlining discussion subjects for the participants; (2) as
each topic was broached, participants presented their thoughts, and
keywords were posted on the shared slides; (3) subsequently, with
the notes on the slides, the participants could provide additional
comments.

The group discussion happened immediately after the technical
session. We used the same Google Meet call to conduct the dis-
cussion. However, many practitioners were unable to attend the
whole study due to other commitments. Therefore, the discussion
started with 34 participants and ended with 20. When we inspected
the recorded video, we observed several interactions among the
participants, usually complimenting StackSpot Al So, although the
group discussion concluded with 20 participants, we actually had
around 25 participants engaged in the conversation (not to mention
the interactions via chat in the meeting room).

Although we tried to reach different participants in the online
room, due to the high number of attendees, not all of them were able
to express their perspectives. The group discussion lasted approx-
imately 1 hour and we sought to answer the following questions
during this phase:

¢ Did you find any issues with running StackSpot AI that
halted your progress?

¢ Did you feel the need to understand more about the provided
knowledge sources?

e How did you perceive the ease of use of StackSpot AI? (What
factors influenced this evaluation?)

e What were the primary benefits you derived from using
StackSpot Al in your project?

e What challenges did you face when using StackSpot AI?

e How useful and accurate were the responses generated by
StackSpot Al for your purpose?

e What other features would you expect StackSpot Al to offer?

e Did StackSpot Al save you time during the development
process? (If yes, how?)

e How likely you would be to integrate StackSpot Al into your
daily work routine?

4.3 Data Analysis

We employed diverse data analysis methods, according to the data
collected. To analyze the survey delineated in Section 4.2.1, we used
descriptive statistics to provide a concise summary of the primary
information. For the open-ended questions, open coding techniques
were utilized to classify the answers.

To analyze the recorded conversations and the group discus-
sion (Section 4.2.2 and Section 4.2.3) we made use of a distinct
approach. We developed a software tool that automatically down-
loaded the video, extracted its audio, and leveraged the OpenAl
Whisper model* for transcription. This process yielded text data
comprising 29,851 words (45,580 tokens®). To identify predominant
categories and themes within this text, we queried GPT-4. For ex-
ample, GPT-4 assisted in enumerating the most recurrent questions
posed during the meeting and pinpointing prevalent issues high-
lighted by participants. We then manually refined GPT-4’s output,

“https://github.com/openai/whisper
5 Computed with Tiktoken library, https://github.com/openai/tiktoken.

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

1 2 3 4 5
Java 18.9% 18.4% 12.6% 25.7% 24.3%
C# 59.3% 211% 7.2% 5.7% 6.7%
Go 80.6% 11.1% 6.7% 17% 0%
Python 40.5% 27.2% 21% 8.2% 31%
JavaScript 23.4% 24.4% 25.9% 17.4% 9%
TypeScript 40.1% 19.3% 19.3% 12.7% 8.6%

Figure 2: Participant Programming Experience.

supplementing it with pertinent observations that the model might
have overlooked. We conducted two approaches as a way to miti-
gate study hallucination problems®. First, one author read the full
transcript while watching the recorded video; during this task, the
author fixed minor errors in the transcript, making it more accurate.
Second, we asked two practitioners who joined in the study to ana-
lyze the list of categories and themes produced by GPT-4, remove
them if they found them wrong, and complement them with addi-
tional ones that they found representative (although missing from
the initial list). The practitioners mentioned that the categories in
the GPT-4 list are accurate and no additional items were provided.
The researchers involved also analyzed the themes and the data,
and, although they agreed with GPT-4 classification, they judged
that there was some overlap across the categories. After discus-
sions, they came to a consensus on keeping four main categories: 1)
general questions, 2) perceived benefits, 3) challenges encountered,
and 4) perception of productivity. GPT-4 suggested one other cat-
egory, called “usefulness of the generated answer”. We dismissed
this last category for the sake of traceability since their themes
were following up on those themes from categories 2, 3, and 4. We
elaborate on each one of these categories throughout Section 5.

4.4 Participants Demographics

In this section, we present the demographic details of the 62 re-
spondents to our survey.

The average age of our participants is 34 years, with 6 years
of experience in software development, and 2.6 years affiliated
with the company. When evaluating proficiency in programming
languages (Figure 2), a significant portion (50%) self-identified as
proficient in Java (columns 4 and 5 in Figure 2). This was followed
by JavaScript (26.4%), TypeScript (21.2%), C# (12.4%), Python (11.2%),
and Go (1.7%). Figure 3 shows the percentage of the participants
who had experience with GenAlI tools (Figure 3.a), and which ones
(Figure 3.b). Notably, 83.9% of the respondents have prior expe-
rience with coding Al assistants, with GitHub Copilot being the
predominant choice (57.7%).

®Hallucinations are common in LLM-based tools. See Bang’s et al. discussion of Chat-
GPT [2].

Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

(A) Use or GENAI TooLs

Yes 52resp. 83.9%
No 10resp. 16.1%

(B) WHicH GENAI Toots

GitHub Co-Pilot 30resp. 57.7%
|

Amazon Whisperer Tresp. 1.9%
|

Sourcegraph Cody Tresp. 1.9%
|

Other 19 resp. 36.5%

Figure 3: Participants experience with GenAl-based tools.

Other Al coding assistants, each mentioned by a single respon-
dent, include Amazon Code Whisperer, Sourcegraph Cody, AskCodi,
Codeium, Phind, and ChatGPT (with 11 mentions). A noteworthy
observation is that 58.8% of the participants seldom utilize these
tools; in fact, 17.6% have never employed them. A minority, 23.5%,
incorporate these tools regularly in their workflow. When assessing
the utility of the output from these assistants, 29% of the partic-
ipants found them useful, and an additional 19.4% deemed them
highly valuable. However, 46.7% reported that they often make
substantial modifications to the outputs these tools produce. The
rest, 4.9% had a neutral answer to this question.

5 RESULTS

Given the exploratory nature of our study, we organize our results
according to the four themes that emerged in our analysis.

5.1 General Questions

We start by describing general questions that the participant had
when first interacting with StackSpot Al Understanding general
questions is important because developers may need to answer
them before they can write any code.

What are the main features and functionalities of StackSpot
AI? Participants expressed interest in understanding how StackSpot
Al operates and its distinction from other generative Al tools in
terms of feature set. They sought detailed insights into the specific
functionalities that set StackSpot Al apart, including its unique ca-
pabilities and how these functionalities enhance the user experience
compared to other available tools.

Developer Experiences with a Contextualized Al Coding Assistant:
Usability, Expectations, and Outcomes

How to set up and start using StackSpot AI? This question
focused on the setup and initial configuration requirements for
StackSpot AL Participants, who were used to other GenAl tools with
minimal setup, inquired about a similarly streamlined process for
StackSpot Al They were particularly interested in StackSpot AI’s
integration with various IDEs via plugins, concerning support for a
wide array of IDEs not yet compatible (such as XCode and Eclipse).
Additionally, there was a keen interest in understanding the role
and selection of knowledge sources for StackSpot Al including the
number and types of sources to use for optimal performance.

What are the benefits of using StackSpot AI compared to
other similar tools? Participants, experienced with other GenAI
tools, frequently asked about StackSpot Al's advantages over these
tools. A notable inquiry centered on the efficacy of StackSpot Al
in the absence of user-provided knowledge sources, especially in
comparison to tools like CoPilot, which also utilize state-of-the-
art OpenAl models. We clarified that without specific knowledge
sources, StackSpot Al may not demonstrate significant performance
enhancements. This discussion underscored that StackSpot Al is
not a panacea; effective use requires users to actively engage in
the selection and design of knowledge sources to fully leverage its
capabilities.

Does StackSpot Al actually bring productivity gains and time
savings for developers? Another recurrent general question was
about the tangible benefits of StackSpot Al in enhancing software
development productivity’. Participants were keen to learn how
StackSpot Al translates its features and capabilities into real-world
time savings and efficiency improvements for developers. One re-
spondent said that “I asked him [the tool] to generate unit tests, he
did, the tests were good. I said, that’s good, but I want another one. He
went and did it right too. I saw that he really can generate test and
now it’s something I'll have to worry less, because I can leave it up
to him to do it. I think this will help a lot on a daily basis. It’ll speed
things up a lot.”

5.2 Perceived Benefits

In this section, we delve into the potential contributions of StackSpot
Al in simplifying and enhancing the coding process. The partici-
pants’ experiences, initially tinged with skepticism, evolved into
recognition of StackSpot AI’s capabilities in generating precise
code for complex API integrations. We explore how StackSpot AI’s
contextual understanding, quick commands, and interactive code
refinement through chat significantly streamline the development
cycle.

Generation of accurate codes for swift integration with in-
ternal APIs Initially, participants expressed skepticism about the
accuracy and completeness of the code generated by StackSpot Al,
particularly for complex API integration. During the study, the par-
ticipants were handed a few API files, which they used to generate
integration using StackSpot Al Their experience revealed StackSpot
AT’s ability to generate functional code snippets, acknowledging
this as a crucial feature for accelerating development cycles and
reducing errors. This was highlighted by P4, who mentioned the

"Note that we are reporting what our informants said, without discussing whether
the concepts they used, e.g., productivity, are accurate or not.

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

following: “Thus, the tool accurately grasped the context, generating
a code with Spring framework — it was impressive. I did not expect
it to work out so well. StackSpot Al created the class as I requested.
Indeed, I am quite amazed here.”

Faster and more context-aware responses and code sugges-
tions compared to other tools. Participants initially perceived
StackSpot Al as an enhancement to general-purpose Al coding
assistants, intrigued by its potential for quick, context-sensitive
solutions. Upon further use, they recognized StackSpot AT’s signif-
icant value in providing time-efficient, relevant, and precise cod-
ing suggestions specifically tailored to their project’s context. As
participant P5 mentioned: “For me, the contextualization helped in
generating accurate code. It helped a lot. I saved time; the answer was
straight to the point. The contextualization was the biggest gain for

»

me .

Iterative refinement of generated codes through chat inter-
action. Given that StackSpot Al operates as a conversational agent
equipped with an internal memory to record past interactions,
users can engage with it in a manner akin to a chatbot. This feature
of maintaining a history of previous conversations was initially
viewed as interesting. It facilitates interactive code refinement and
assists in honing code outputs to align precisely with specific project
requirements, thereby enabling users to achieve more optimal cod-
ing solutions.

Support for repetitive and routine tasks through “quick com-
mands”. Quick commands are shortcuts offered by StackSpot Al
which developers could use to automate common software engi-
neering tasks, such as creating tests, documenting code, or even
asking the tool to explain a certain code snippet. Participants ini-
tially underestimated the impact of this feature, considering it a
minor convenience for routine coding tasks. As they became more
familiar with StackSpot Al the collective sentiment shifted to view
these quick commands as time-savers, greatly aiding in automating
mundane aspects of coding and allowing them to focus on more
complex tasks, assisting in improving code reliability and mainte-
nance. One participant acknowledged the use of “quick commands”
as a potential enhancement to their development workflow.

Time-saving by centralizing information access. Participants
initially recognized StackSpot Al as a convenience by minimizing
the need to alternate between various information sources. With
continued use of StackSpot Al, they appreciated its efficiency in
providing centralized access to essential information within the
IDE, notably reducing development time and cognitive load. This
was underscored by participant P1: “I obtained the answer from
the code StackSpot Al generated; I didn’t need to go to the original
knowledge source. In this case, it was accurate and helpful. [...] Even
though the question I asked was a very simple example, StackSpot
Al demonstrated that centralizing information in the IDE would be
highly useful”

5.3 Perception of productivity

After discussing the potential benefits of using StackSpot Al we
asked participants’ opinions about its potential impact on their
productivity.

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

Contextualized code snippets. A few participants affirmed that
StackSpot Al indeed saved their time by providing quick and con-
textual code snippets during the study. The ability of StackSpot AI
to quickly understand the context and deliver precise code snippets
not only streamlined the coding process but also allowed users to
focus more on creative and complex aspects of their work. When
asked one participant mentioned: “Yes, because within the context of
each project, the knowledge base will become increasingly richer and
will improve in generating responses.”

Aggregating knowledge sources within the IDE. As mentioned
among the benefits, participants specifically mentioned that StackSpot
Al saved time by eliminating the need to search for knowledge
sources because they are now “available” within the IDE. This fea-
ture was highlighted as a major time-saver, therefore influencing
the perception of productivity of some study participants. For in-
stance, one respondent mentioned: ‘Tt StackSpot Al “saves time,
as it’s a shortcut for accessing information. If done through conven-
tional means, you’d have to search through a search engine, consult
books, or find people with that information to assist you, which would
certainly take longer.” Another participant mentioned that by pro-
viding knowledge sources within the IDE, StackSpot Al could also
reduce interruptions: “I believe it can save our time, as it allows us to
reduce interruptions when seeking specific information.” In summary,
by providing instant access to relevant knowledge sources directly
within the tool, StackSpot AI enabled users to access necessary
information or code samples without disrupting their workflow.

Productivity gains unlock only if users know how to use
StackSpot Al A participant commented that, like any Al tool,
StackSpot Al only brings time-saving benefits if used correctly with
refined prompts and proper settings. If used incorrectly, it could
even lead to time wastage. For instance, one participant comple-
mented the following: “However, if used carelessly or by less expe-
rienced people, it may result in more work for the more experienced
developers.” This insight underscores the importance of understand-
ing how to effectively interact with Al tools. Properly formulated
queries and a clear understanding of StackSpot AI's capabilities are
essential to harness its full potential and avoid counterproductive
outcomes.

Insufficient experience to evaluate. Finally, a few participants
mentioned that the participation in the study was not enough to
draw a definitive perception of the productivity gains of StackSpot
Al as one engineer highlighted: “I don’t think I used it for enough
time and in scenarios that would allow me to answer this question.”

5.4 Challenges Encountered

This section highlights the various challenges encountered during
the participants’ interaction with StackSpot Al. We divided these
challenges into three groups: (i) challenges associated with the
adoption of the Retrieval-Augmented Generation (RAG) technique,
specifically the knowledge sources used; (ii) challenges associated
with large language models in general; and, finally, (iii) other tech-
nical and user challenges associated with either UI aspects or user
expectations. We present the challenges according to these groups.

Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

Figuring out what is a good knowledge source. As mentioned in
Section 3.1, knowledge sources are representative documents that
enrich the prompts for RAG’s generation component, providing
essential context for task development. Without these sources, re-
sponses from StackSpot Al would be less contextualized, resembling
the answers from general-purpose coding Al assistants. Thus, iden-
tifying effective knowledge sources is vital for StackSpot AI’s perfor-
mance. Our study, however, revealed that not all participants were
able to understand what constitutes a (good) knowledge source.
This was observed during group discussion about other kinds of
knowledge sources they would use, based on their team context.
While a few participants were able to give interesting examples
(e.g., using a database schema as a knowledge source, and asking
StackSpot Al to create SQL queries based on it), other participants
were unable to come up with one single example. Furthermore,
others gave examples that were not based on coding tasks, and a
few participants even mentioned that they “need to understand more
about it, but were able to use it in a very basic way.”

Knowledge Source Mixing Impact. During the focus group, it
was mentioned that mixing several different knowledge sources
affected the accuracy of the responses in certain cases, i.e., users
found that the blending of information sometimes led to less accu-
rate or relevant code suggestions, highlighting the need for better
source management. This observation suggests that while having
access to a wide range of sources can be beneficial, it also poses
a challenge in ensuring that the information drawn from these
sources is relevant and accurately integrated. One participant high-
lighted this issue as the following: “Initially, I thought using various
Knowledge Sources in the same workspace might not be a good prac-
tice. This led me to experiment with my own project. I combined a
postal code API and various elements from the provided knowledge
source. The result wasn’t great”

Inacurrate code suggestions and prompt refinement. Partic-
ipants noted the necessity to refine and adjust prompts to obtain
accurate responses. For instance, one participant mentioned that “In
some cases, they [the code suggestions] were not accurate; in others,
they required many interactions and didn’t yield the expected result.”
Another participant added that “It wasn’t as accurate; in my case
when I entered it as ‘Go’ [the programming language] it generated
generic things. It seems that it works better in Java.”, revealing a
potential bias towards more popular programming languages. This
feedback underscores the importance of clear prompt formulation
when interacting with Al tools. It also points to the potential need
for iterative interaction, where initial responses serve as a start-
ing point for further refinement to achieve the desired outcome.
Furthermore, this result highlights how the participants required
additional effort and understanding of how to effectively commu-
nicate with the AL which was a learning experience for several
participants.

Response Inconsistency: Our informants revealed that StackSpot
Al sometimes provided varied responses to identical prompts. This
inconsistency in output led to confusion among users and raised
questions about the reliability of the tool in repetitive tasks. Al-
though in the LLM literature, it is well-discussed that slightly dif-
ferent prompts could lead to different answers, users found this

Developer Experiences with a Contextualized Al Coding Assistant:
Usability, Expectations, and Outcomes

experience awkward, potentially negatively impacting their trust
in StackSpot AL

Generating complex code structures. StackSpot Al faced difficul-
ties in suggesting complex code like ready-to-use controllers. Par-
ticipants expressed that while basic code generation was effective,
the tool struggled with more sophisticated coding requirements.
For example, one participant expressed this saying “I tried to use
the stack based on Spring, Java, Kotlin, and then play with the knowl-
edge sources. However, despite my efforts, StackSpot Al was unable to
generate the code with the endpoints. Instead of using controllers, it
created methods in a main class that starts the SpringBoot app.”

Inability to deal with custom languages. A participant proposes
the ability to add custom language support for code snippets. The
participant mentioned: “When trying to include a snippet with a
Cucumber Gherkin code, Gherkin does not appear in the list that
defines what type of language the code refers to. Is it possible to
register it?” This may limit the ability to deal with specific/custom
language and impact the outcomes for specific projects.

Conversation History Loss. A common frustration among par-
ticipants was the loss of conversation history upon closing the
IDE. This issue was particularly problematic for those working on
complex tasks over extended periods, as it disrupted the continuity
of their work and thought processes.

Missing User-Expected Features: Participants highlighted the
absence of certain functionalities in StackSpot AI that they had
anticipated. This gap in expectations versus reality suggested a
misalignment between the tool’s capabilities and the users’ needs.
Similarly, the absence of adequate plugin availability and support
for other IDEs was mentioned as a drawback, which restricted the
usability of StackSpot AI across different development environ-
ments, impacting its adaptability.

Initial Configuration and Onboarding Process. At the begin-
ning of the study, participants struggled with the setup process of
StackSpot Al finding the integration of elements like workspaces,
Al stacks, and knowledge sources challenging. This initial com-
plexity was a significant barrier for many—particularly for those
less experienced with such environments—indicating a need for a
streamlined onboarding process. Indeed, a few participants were
unable to correctly set up the environment, and thus did not actively
participate in the full study. Still, one participant mentioned that
“[the code suggestions] could be better, but I believe it was because of
how I configured the Knowledge Sources.” This feedback shows that
StackSpot AT’s effectiveness is significantly related to appropriately
configuring the environment.

Technical Limitations. Participants frequently encountered tech-
nical issues such as timeouts and error messages (403 and 500
statuses). Additionally, some reported accessibility problems on
specific machines (“I couldn’t use StackSpot AI with the client’s ma-
chine. Does this mean that I was only able to run StackSpot Al on
my personal computer? - P6). Another limitation mentioned was
the impossibility of having a Git repository as a knowledge source
hinders the ability to understand and work with new or existing
projects, with all information available in their Git repositories.

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

In this context, a participant stated that: “The possibility to add a
complete Git repository as a knowledge source. It would help A LOT
in adding a quick context of documentation or an application.”These
technical limitations hindered the smooth operation of StackSpot
Al affecting the overall user experience.

6 DISCUSSION

Reflecting on our results, we noticed that using a contextualized
model to support developers will be beneficial for the company
developers. This was evidenced by the benefits listed in Section 5.2.

On the Accurateness of Code Generation. Several participants
highlighted that the code suggestions they received from StackSpot
Al were both useful and accurate for their purposes, enabling them
to simply copy and paste the generated code directly into their
projects. For instance, a developer was able to quickly generate
an integration with an internal API of a specific client by simply
requesting it through StackSpot Al Being able to use the provided
code without additional modifications not only saved time but also
demonstrated the tool’s capability to understand and address spe-
cific coding needs accurately. This exemplifies the potential time-
saving benefits of the tool, showcasing its ability to automate and
simplify complex tasks. This is in line with other studies [1, 4, 17],
adding evidence related to the power of models fine-tuned for spe-
cific contexts. Participants also noted that some suggestions were
not entirely precise, necessitating adjustments and refinement of
the prompts. Refining prompts is a strategy used by other software
developers using academic (see [18]) or proprietary tools (see [1]).
This is a challenge associated with LLMs in general, but, as we
discussed in section 5.4, we also identified challenges related to the
usage of knowledge sources and other technical and user-related
challenges.

Usability and Developer Efficiency. From a usability perspective,
important results are highlighted. First, the ability to offer shortcuts
(quick commands) has been shown to be beneficial to the develop-
ers, supporting what Barke et al. called the acceleration mode [3].
Our results indicate that the available tool did support that work-
ing mode. Second, StackSpot AT’s design, based on an interactive
chat instead of focusing on code completion [3], also provided an
opportunity for the iterative refinement of code suggestions as well
as avoided interruptions [1, 4] similar to what has been observed
by Ross et al. [16]. Finally, the possibility to focus solely on the
IDE while seeking information has been shown to be important for
software developers using Al coding assistants [1].

Having the right mix of knowledge sources is important. One
important challenge that we observed is associated with knowledge
sources. As mentioned in section 3.1, these sources are used in the
RAG approach to enhance LLM-generated content by anchoring
it in external knowledge sources. Therefore, it is not surprising
that our informants reported different aspects associated with it
including the difficulty in identifying good knowledge sources, the
importance of properly configuring StackSpot Al with the knowl-
edge sources, and finally the negative impact of mixing different
sources. An interesting research avenue would be exploring the
efficiency of different knowledge sources, and creating systematic

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

approaches to do so, supporting (semi-)automatic ways of optimiz-
ing the creation of contextualized coding assistants.

Challenges and Improvements in LLMs. We also highlighted
several perceived challenges using StackSpot AL It was interesting
to find out that participants reported that the tool was able to gener-
ate accurate code snippets, that helped to neatly integrate internal
APIs. Our study showed that it is possible to reduce the issues with
incorrectness [13, 19] by creating a contextualized model to retrieve
information from contextual knowledge sources. In contrast, the
non-deterministic nature of LLMs [14] remains an issue, i.e., some
of the challenges are inherent to LLMs, while other challenges are
purely technical (conversation history loss, initial configuration,
etc) and will be addressed in future releases.

Enhanced Generic Configuration Options for AI Coding As-
sistant. Since participants reported challenges with the initial
configuration, one potential way to move ahead would be provid-
ing a more flexible and generic way of configuring StackSpot AL
The goal here is to make the setup more user-oriented, without
the need to include a lot of information before the use of the tool.
This comes with a trade-off, since when the settings are properly
configured, the responses are very precise and save time—therefore,
making it too flexible may hinder less experienced team members.
The setup was idealized in a way to get the key configuration/-
customization items from the user, to make the code suggestions
more reliable and precise. By making it less constrained, we may
affect the accuracy of results. More investigation is required to
understand how much flexibility is possible, without negatively
impacting the outcome.

6.1 Limitations

This study, while extensive, has notable limitations. Firstly, our
data collection involved a sizeable sample of practitioners using
a contextualized coding assistant for the first time. However, this
sample may not fully represent the broader population of software
developers. Still, although the majority of the participants have
previous experience with Generative Al tools, such as ChatGPT
and GitHub Copilot, their experience with these tools might not
naturally translate to the use of StackSpot Al in particular, because
they have to select and design representative knowledge sources,
which is, by design, an important effort — which is not required by
general-purpose tools.

Secondly, due to company policy recommendations against re-
questing gender information during the prestudy to avoid partici-
pant discomfort, our study did not gather this data. This omission
restricts our ability to conduct comprehensive comparative analy-
ses across different gender groups. Another limitation concerns the
robustness of StackSpot Al currently in its beta phase. Some chal-
lenges noted by participants might stem from insufficient testing
rather than flaws in the underlying Large Language Model (LLM).
This factor could adversely affect the overall user experience.

Given the nature of how the group discussion was conducted
(as an online call with dozens of participants), we were unable to
accurately identify the number of participants who mentioned a
given benefit/limitation. As such, during our discussion section, we
often refer to them as ‘many’, ‘a few’, ‘various’, and the like.

Gustavo Pinto, Cleidson de Souza, Thayssa Rocha, Igor Steinmacher, Alberto de Souza, and Edward Monteiro

Moreover, our data analysis partially relied on Al-based tools.
While these tools excel in summarization tasks [11], they do not ad-
here to stringent qualitative research methodologies. Consequently,
while we successfully extracted representative quotes, the analy-
sis’s rigor cannot be fully assured. To address this, two authors
involved in the study reviewed and validated the Al-generated
outputs. These authors suggested no additional items.

7 CONCLUSION

The recent flow of newly introduced Al coding assistants has un-
locked developers’ potential, in a myriad of coding tasks. However,
these coding assistants, when not trained taking into account the
developers’ context (with their representative documents, coding
styles, etc), might produce answers that although appear interesting
at first, may not be as precise as developers’ need. Both academia
and industry have recognized the need for more intuitive, conver-
sational Al tools that could seamlessly integrate with existing IDEs,
providing real-time, context-aware assistance.

In this work, we explored the use of StackSpot Al a conversa-
tional Al tool, which is enriched with developers’ representative
documents to generate more appropriate answers. We used the tool
in a controlled setting with 62 practitioners. Our findings revealed
that StackSpot Al could improve productivity and time efficiency.
Participants appreciated its ability to quickly generate accurate code
snippets and contextual code suggestions. However, the effective-
ness of StackSpot Al was contingent on precise prompt formulation
and optimal configuration of knowledge sources. Some challenges,
like technical limitations and the need for better support in diverse
IDE environments, were identified, highlighting areas for improve-
ment. Other challenges are inherent to LLMs and require further
Al research.

7.1 Future work

In future work, we plan to expand the scope of our research activities
based on the insights gained from this paper. A key area of explo-
ration will be to conduct longitudinal studies with developers who
use StackSpot Al over extended periods. This will provide deeper in-
sights into how prolonged use affects productivity, learning curves,
and code quality. This will also allow us to understand how such a
tool will impact developers’ work practices. Additionally, compar-
ative studies involving other Al-assisted coding tools will offer a
broader perspective on StackSpot AI's unique strengths and areas
for improvement. We also aim to investigate how StackSpot Al
operates on a wider range of programming languages, assessing
its adaptability and effectiveness across diverse coding scenarios.
Further, exploring the impact of StackSpot Al on team dynamics
and collaborative coding practices could provide valuable insights
into its role in team-based development settings. Finally, delving
into user customization and personalization aspects of StackSpot
Al could reveal how tailored experiences influence developer satis-
faction and tool efficiency. These research activities will collectively
contribute to a more comprehensive understanding of Al-assisted
coding tools in software development.

Developer Experiences with a Contextualized Al Coding Assistant:
Usability, Expectations, and Outcomes

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable comments.
This work is partially supported by INES (www.ines.org.br), CNPq
(grants 420406/2023-9, 442779/2023-2, 465614/2014-0, and 308623/2022-
3), FAPESPA (053/2021), FACEPE (grants APQ-0399-1.03/17, PRONEX
APQ/ 0388-1.03/14), CAPES (88887.136410/2017-00), and the Na-
tional Science Foundation (grant numbers 2236198, 2303042).

REFERENCES

[1] Anonymous Authors. 2024. “‘You're on a bicycle with a little motor”: Benefits
and Challenges of Using AI Code Assistants. In International Conference on
Collaborative and Human Aspects of Software Engineering (CHASE). 9.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan

Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,

and Pascale Fung. 2023. A Multitask, Multilingual, Multimodal Evaluation of

ChatGPT on Reasoning, Hallucination, and Interactivity. arXiv:2302.04023 [cs.CL]

Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded

copilot: How programmers interact with code-generating models. Proceedings of

the ACM on Programming Languages 7, OOPSLA1 (2023), 85-111.

[4] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2023. Taking Flight with
Copilot: Early Insights and Opportunities of Al-Powered Pair-Programming
Tools. Queue 20, 6 (jan 2023), 35-57. https://doi.org/10.1145/3582083

[5] Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang

Zhang, Jie Fu, and Zhiyuan Liu. 2023. Chateval: Towards better llm-based evalu-

ators through multi-agent debate. arXiv preprint arXiv:2308.07201 (2023).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de

Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,

Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail

Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,

Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-

tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-

tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh

Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles

Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,

Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large

language models trained on code. arXiv preprint arXiv:2107.03374 (2021).

[7] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S Lasecki, and Steve Oney.
2017. Codeon: On-demand software development assistance. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. 6220-6231.

[8] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,

Shin Yoo, and Jie M Zhang. 2023. Large Language Models for Software Engineer-

ing: Survey and Open Problems. arXiv preprint arXiv:2310.03533 (2023).

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim

Rocktischel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented

Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural In-

formation Processing Systems 33: Annual Conference on Neural Information

Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo

Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and

Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/

6b493230205f780e1bc26945df7481e5- Abstract.html

[10] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifacio. 2019. Adopting

DevOps in the real world: A theory, a model, and a case study. J. Syst. Softw. 157

(2019). https://doi.org/10.1016/].J55.2019.07.083

Derek Miller. 2019. Leveraging BERT for extractive text summarization on

lectures. arXiv preprint arXiv:1906.04165 (2019).

[12] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khombh,
Michel C. Desmarais, and Zhen Ming (Jack) Jiang. 2023. GitHub Copilot Al pair
programmer: Asset or Liability? Journal of Systems and Software 203 (2023),
111734. https://doi.org/10.1016/j.jss.2023.111734

[13] Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub Copi-
lot’s Code Suggestions. In Proceedings of the 19th International Conference on
Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR "22). Association
for Computing Machinery, New York, NY, USA, 1-5. https://doi.org/10.1145/
3524842.3528470

[14] Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang. 2023. LLM is

Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.

arXiv:2308.02828 [cs.SE]

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and

Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub

Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy

[2

=

(3

=

G

=

[9

=

(11

[15

[17

[19

CAIN 2024, April 14-15, 2024, Lisbon, Portugal

(SP). 754-768. https://doi.org/10.1109/SP46214.2022.9833571

Steven 1. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, and
Justin D. Weisz. 2023. The Programmer’s Assistant: Conversational Interaction
with a Large Language Model for Software Development. In Proceedings of the
28th International Conference on Intelligent User Interfaces, IUI 2023, Sydney, NSW,
Australia, March 27-31, 2023. ACM, 491-514. https://doi.org/10.1145/3581641.
3584037

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1-7.

Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE Code Genera-
tion from Natural Language: Promise and Challenges. ACM Trans. Softw. Eng.
Methodol. 31, 2, Article 29 (mar 2022), 47 pages. https://doi.org/10.1145/3487569
Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the Quality of
GitHub Copilot’s Code Generation. In Proceedings of the 18th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering (Singapore,
Singapore) (PROMISE 2022). Association for Computing Machinery, New York,
NY, USA, 62-71. https://doi.org/10.1145/3558489.3559072

https://arxiv.org/abs/2302.04023
https://doi.org/10.1145/3582083
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.1016/J.JSS.2019.07.083
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3524842.3528470
https://arxiv.org/abs/2308.02828
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3558489.3559072

	Abstract
	1 Introduction
	2 Related Work
	2.1 User Experience
	2.2 Correctness

	3 StackSpot AI
	3.1 Approach
	3.2 Prep-and-Go

	4 User Study
	4.1 Study Planning
	4.2 Data Collection
	4.3 Data Analysis
	4.4 Participants Demographics

	5 Results
	5.1 General Questions
	5.2 Perceived Benefits
	5.3 Perception of productivity
	5.4 Challenges Encountered

	6 Discussion
	6.1 Limitations

	7 Conclusion
	7.1 Future work

	References

