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ABSTRACT: Moduli stabilisation in string compactifications with many light scalars remains
a major blind-spot in the string landscape. In these regimes, analytic methods cease to
work for generic choices of UV parameters which is why numerical techniques have to be
exploited. In this paper, we implement algorithms based on JAX, heavily utilising automatic
differentiation, just-in-time compilation and parallelisation features, to efficiently construct
string vacua. This implementation provides a golden opportunity to efficiently analyse large
unexplored regions of the string landscape. As a first example, we apply our techniques to
the search of Type IIB flux vacua in Calabi-Yau orientifold compactifications. We argue
that our methods only scale mildly with the Hodge numbers making exhaustive studies of
low energy effective field theories with (O(100) scalar fields feasible. Using small computing
resources, we are able to construct O(10%) flux vacua per geometry with A2 > 2, vastly
out-performing previous systematic searches. In particular, we showcase the efficiency of
our methods by presenting generic vacua with fluxes below the tadpole constraint set by
the orientifold with up to A2 = 25 complex structure moduli.
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1 Introduction

The string landscape is believed to contain a large number of vacuum solutions, current

estimates ranging between 10°%° [1, 2] in type IIB flux compactfications to 10272900 [3]

I Despite these statistical estimates, it is fair to say that our

in F-theory constructions.
capabilities to efficiently construct string vacua are extremely limited. To understand the
low-energy physics attainable from string compactifications, a comprehensive numerical
approach for analysing string theory vacua is therefore highly desirable. This is the over-
arching objective of this work. Success in this endeavour would enable an unprecedented
look into the nature of consistent theories of quantum gravity and, in particular, their
distinguishing features compared to bottom-up Effective Field Theories (EFTs).

More specifically, high-performance methods to search for realistic vacua will allow us
to explicitly scrutinise existing constructions of e.g. string inflation [5, 6], while at the same
time explore previously unknown mechanisms in the landscape. In this context, there are

several computational steps which have to be addressed simultaneously:

LSimilar amplification of vacuum solutions has also been observed in other low-energy theories of string
theory [4].



1. Sampling UV data (compactification data): zooming in on Calabi-Yau (CY) compact-
ifications, large datasets of compactification spaces have been constructed with the
most prominent example being the Kreuzer-Skarke (KS) database of 4-dimensional
reflexive polytopes [7]. To obtain the associated EFTs, the relevant information about
these compact dimensions has to be extracted. This includes the choice of geometry,
its topological data like intersection numbers as well as suitable D-brane/O-plane se-
tups satisfying tadpole and anomaly cancellation conditions. This UV data has been
constructed on an individual basis in the past (see [8-11] for examples in Type IIB
string theory), and tools have been developed to enable the study of large numbers
of examples [12-14]. By now this provides access to ‘all’ models in the KS database
which is the first step to systematically analyse their vacuum structures.

2. Calculating EFT properties (quantum corrections): consistently identifying perturba-
tive and non-perturbative effects associated with a given UV sample is a prerequisite
for proper control over the EFT. For CY compactifications, this includes in particular
the scalar potential for the moduli fields. For these setups, several interesting phe-
nomenological implications (most prominently an additional phase of matter domina-
tion in the early Universe) have been established in concrete geometric constructions
(see [6] for a recent review). On the methodological side, following over thirty years
of development, we now have tools available for computing a wide range of com-
plex structure potentials [15-18]. In addition, to control other moduli (e.g. Kéhler
moduli and open string moduli), further effects have to be considered such as non-
perturbative effects via gaugino condensation or D-brane instantons (see [19] for a
review).

Many explicit computational methods for various aspects of the EFT are currently un-
der development. This includes for instance Pfaffian pre-factors in non-perturbative
superpotentials (see [20-24] for recent advances) or 1-loop corrections to the Kéhler
potential in 4D N = 1 compactifications [25-27]. Even more importantly, the status
of o corrections in A/ = 1 compactifications is of major concern for the success of
Kéhler moduli stabilisation procedures like KKLT [28] and, in particular, the LARGE
volume scenario [29], see e.g. [30-33] for progress using F-theory dualities.

3. EFT analysis: for many explicit constructions, analysing the EFTs has been a bottle-
neck due to a plethora of moduli fields which effectively limits our access to string the-
ory solutions. For example, typical examples in the KS database feature O(100) com-
plex structure and/or Kéhler moduli fields with the Hodge numbers being bounded
by hP? < 491. For these systems, analytic approaches are generically impossible
except under certain assumptions.? In general, one faces two significant bottlenecks:
on the one hand, the EFT analysis usually has to be hard-coded on an example
by example level. On the other hand, the numerical optimisation appeared to be
inefficient [34, 35].

2See [20] for SUSY AdS vacua with h'* > 51.



In this work, we focus on developing tools which naturally combine the data products
from the first two of the above points and, in light of the third item, address the problem of
efficiently sampling string vacua. Specifically, we focus on Type IIB flux vacua which are
typically used as starting points for many moduli stabilisation procedures [18, 28, 29]. We
construct UV input from smooth CY orientifolds where no complex structure or Kéhler
moduli are projected out. Furthermore, we focus on the large complex structure regime in
moduli space where the EFT data is easily derived from string dualities [16, 36, 37]. Our
examples are obtained from the KS database using CYTools [12] by taking advantage of
recent advances in mirror symmetry [24] and orientifold constructions [13, 14].

Our main objective is a self-contained framework for computing EFT properties in the
aforementioned compactifications. Using automatic differentiation, we connect elementary
inputs such as the prepotential F' for the complex structure moduli with the K&hler po-
tential K and superpotential W. Subsequently, this allows us — again using automatic
differentiation — to calculate the scalar potential and its derivatives. In our implemen-
tation we make heavy use of the just-in-time compilation and parallelisation features of
JAX [38] which, as discussed later, accelerates our code in comparison to a simple python
implementation by more than two orders of magnitude. We highlight that, although we
provide a framework for type IIB flux compactifications, all components of our numerical
implementation are modular. Little effort is required to build extensions including further
aspects of low energy EFTs or exploring different string duality frames.

In our pipeline, we are able to generate efficiently the relevant equations (like the F'-
flatness conditions D;W = 0) associated with string solutions for any UV input. This
defines an underlying optimisation problem which is the main use case in this work. We
solve the latter using standard optimisation methods readily available via standard li-
braries. Arguably, solving this optimisation problem and generating solutions numerically
is a challenging task by itself, but it becomes even more difficult to locate trustworthy and
phenomenologically relevant solutions. Regarding the former, this means that we seek to
find solutions in regimes of moduli space where calculations are under control. Equally
important, we constrain our search to those values of the tadpole that can be realised in
actual orientifold compactifications of Type IIB superstring theory. If we allowed uncon-
strained tadpoles, we would naturally find solutions almost anywhere for any number of
moduli simply because of the drastically increased density of vacua in our search space.

We stress that, apart from the minimising task itself, evaluating and checking the
aforementioned constraints on, say, billions of fluxes and the associated solutions to F-term
equations is computationally expensive. The study of such large ensembles is necessary to
address phenomenological requirements and to be able to statistically test the properties of
the string landscape in a meaningful manner. Our framework naturally connects with other
ongoing work to develop methods which allow to efficiently search for phenomenologically
viable solutions in the string flux landscape [39-42].

The rest of this paper is organised as follows. In section 2 we give a short portrait
of CY orientifold flux compactifications and introduce the type of optimisation problems
to be solved in the remainder of the paper. Section 3 describes our implementation and
numerical approach to finding flux vacua. We present detailed numerical experiments in
section 4 and summarise our results in the conclusions in section 5.



2 Type IIB flux compactifications

In this section, we review Type IIB flux compactifications on CY orientifolds and the type of
equations that need to be solved for flux vacua. We mainly state results to set our notation
and refer to the literature for more detailed discussions (see [43-45] for reviews). These
considerations are prerequisites for the subsequent implementation of our root finding and

sampling methods.

2.1 Type IIB flux vacua

Compactifying Type IIB superstring theory on a CY orientifold leads to 4D AN = 1 su-
pergravity with hi’l Kihler and h%? complex structure moduli Z’. The classical Kéhler
potential K for the Z¢ and the axio-dilaton 7 can be written as

K = —log(—iIll - ¥ - TI) — log (—i(7 = 7)), %= (_0]1 ]S) : (2.1)

Here, we defined the period vector II in terms of the prepotential F' as
2F — Z'F;
Im= , F;,=0,F. (2.2)
i
The presence of 3-form fluxes induces the F-term scalar potential
Vin = e (K™D W D:W + KYD,W D;W ) (2.3)
in terms of the Gukov-Vafa-Witten (GVW) superpotential [17]
W=(-7h)" 2. 1(2), (2.4)
and integer flux quanta
1,2

f:(mJ7mI)7 h:(nfan1)7 I,J=0,...,hZ (X3) (25>

For given choices of a 3-form flux background Gs = f — 7h, the potential (2.3) exhibits
a non-trivial structure of minima called flur vacua. In the first instance it is these flux
vacua which we aim at identifying. The available choices of fluxes are limited because they
contribute to the cancellation condition for the Cy-tadpole,

1 Qp3 x(Y1)
§Nﬁux + Np3 — Npz = 5 Qb3 = TR (2.6)
in terms of the D3-brane charge induced by fluxes
Niw= [ HynFy=f-S-h=mm! —min; . 2.7)
X3



where Np3 (N53) denotes the number of (anti-)D3-branes. The quantity x(Y4) is the Euler
characteristic of the F-theory fourfold [46] encoding D3-charge contributions from O-planes
and D7-branes.

In this work, we focus on a class of flux vacua for which the F-term conditions DgrW =
DW =0, &' € {1, 7'}, are satisfied.> One finds that

DTWZ_L(f—Fh)T-E.H(Z)zo, (2.8)

DW = (f —mh)T -2 - (I1(Z) + TI(Z2)9;K) = 0. (2.9)

In fact, these two conditions are equivalent to saying that the 3-form G5 must be imaginary
self-dual (ISD), i.e., x¢G3 = iG3 in terms of the Hodge star operator x3 on X3. We can
express this condition more explicitly as [47]

my—1nyg =Nyr (mI—Tn]) (2.10)
in terms of the gauge kinetic matrix

Im(Frp) X Im(Frp) XK

= Frj+2i
Nis 1J+21 XM Tm(Fy ) XN ;

Fjjzaxl 8xlF (211)

For ISD fluxes, Ngux > 0 is non-negative which is why sources with negative D3-brane
charge like D-branes and O-planes [18] are required for tadpole cancellation (2.6).

Flux choices can lead to equivalent vacua by being identified under transformations of
G = SL(2,Z) x I where the former is the Type IIB S-duality group and I' the modular
group acting on Ms(X3). This can be avoided by mapping solutions to the fundamental
domain of SL(2,Z). For later convenience, let us define the VEV of the superpotential as*

Wo = \/g<eK/2 W> : (2.12)

which is manifestly invariant under SL(2,Z) transformations.

We note that for models with A2 > 1, very little is known about the solution space
of string theory, see however [35, 50, 51] for examples with A2 > 4 and [34] for h1? = 2.
A key obstacle hereby is systematically solving F-term conditions (2.8), (2.9) for generic
choices of fluxes below tadpole. Typically, analytic methods cease to work in regimes with
hY? > 1 unless for special classes of vacua like in [49, 52-54] where a subset of VEVs can
be fixed analytically under certain conditions.

2.2 Explicit models at large complex structure

In explicit examples, we need to compute the period vector II entering (2.8), (2.9). These
periods can be computed by solving Picard-Fuchs equations (cf. [16, 36, 37]), employing
localisation techniques (cf. [55]) or using asymptotic Hodge theory (cf. [56]).

An important class of models concerns Large Complex Structure (LCS) limits in com-
plex structure moduli space Ms(X3). For such scenarios, the analytic structure for the

3The study of general vacua (e.g. non-supersymmetric solutions with DrW # 0) is left for the future.
“The convention for the normalisation is chosen based on [48, 49)].



prepotential is well understood and easily computed using mirror symmetry, see [24] for
recent progress. In fact, around LCS points, the coordinates Z° of Ms(X3) are identified
with the Type ITA Kéhler moduli in the large volume limit of Type ITA string theory
compactified on the mirror dual CY manifold X3 [36, 57, 58]. This identification implies
that the complex structure moduli Z* take values in the Kahler cone of X3

Kg,=1{J € H"(X3,R) : Voly(U) > 0V sub-varieties U} ¢ H"(X3,R), (2.13)

where the sub-varieties are effective curves, effective divisors and Xj itself. It describes
the moduli space of Kéhler structures on X3 parametrised by a Kéhler form J. By abuse
of terminology, we simply refer to Ky as the Kahler cone without mentioning the mirror
side explicitly.
The prepotential computed from mirror symmetry reads [36, 57, 58]
F= —%K;Z-jk A A %aij 2070+ b 7+ % £+ Fuw(Z). (2.14)

Here, the parameters x;;;, are the triple intersection numbers of X5 which, along with the
other parameters, are defined as

1
"{ijk:/~ JiNTj N T, aij:§/~ JiNJj AN JjmodZ
X3 X3
1 : s C(3) x(X3)
;= E/j{ 02(X3) A Jj 5 = W (2.15)
: 3

Here, CQ(Xg) denotes the second Chern class of the mirror manifold X5. Further, the
J; € HYY(X3,7) are (1,1)-forms and x(X3) is the Euler characteristic of X3.

Finally, the worldsheet instantons on the mirror dual side give rise to exponential
contributions of the form [36, 58]

m

S a0 Lis (e%i%'zi) , Lige) =Y 5 (2.16)
m=1

: x
Enst (ZZ) - -

~ m
gEM(X3)

(27i)3
in terms of genus zero Gopakumar-Vafa (GV) invariants néo) [59, 60] of effective curves ¢ in
the Mori cone M(X3) of the mirror manifold X3. It turns out to be more convenient to work
with a different set of invariants obtained from a resummation of poly-logarithms. These
are the so-called (genus zero) Gromouv-Witten (GW) invariants Nq(o) which are related to
the GV invariants via

S opu ).y apems
gEM(X3) gEM(X3)

A systematic approach to computing these invariants has been established by HKTY [16,
36]. In practice, we compute the GV and GW invariants using CYTools [12, 24] up to some
finite degree.

The validity of the ansatz (2.14) for F' is limited to the region of convergence of the
LCS expansion [58]. The radius of convergence is determined by the singularity of the



associated Yukawa couplings [61, 62]. In this paper, we only check mild conditions to
ensure the validity of our solutions up to a given cutoff on the GV invariants. That is, we
look at solutions for which

‘ Finst | o (2.18)

Fpert

for some ¢ where Fj,¢ is computed up to some finite cutoff in the instanton expansion. In
practice, we typically choose € = 0.1, though we also investigate the cutoff dependence of
the instanton expansion by including higher order contributions to Fj,s in the region of
interest.

Before we continue, let us stress that going beyond the LCS regime is possible and
should be part of future investigations. Here we limit ourselves to the LCS regime as
computational tools from mirror symmetry are readily available in this regime [24]. An
extension of these tools to other regimes is a clear direction for future developments (see [63,
64] for work along those lines).

2.3 Model construction and data-sets

Having presented the framework for our optimisation problem, we briefly comment on the
data-sets which will be studied subsequently.

CY and orientifold construction. Foremost, we focus on the Kreuzer-Skarke (KS)
database [7] comprised of 473,800,776 reflexive polytopes in four dimensions. Any fine,
regular, star triangulation (FRST) of these polytopes leads to a CY manifold embedded as
the anti-canonical hypersurface [65]. Given that a single polytope can have many FRSTs,
it typically features several non-isomorphic CY manifolds, though the actual number of
topologically inequivalent ones remains opaque.’

Orientifolds are constructed from Zs-involutions of Calabi-Yau manifolds. In the con-
text of the KS database, the fixed point loci can often be obtained from simple conditions
on the polytope [13, 14]. Although such involutions are inherited from the ambient toric
variety covering only a subset of all involutions, they allow for the construction of a sizable
number of orientifolds. We note that, in some cases, orientifold involutions lead to singu-
larities which have to be resolved appropriately (see [68, 69] for detailed discussions). For
the examples discussed in this paper, we checked that our orientifolds do not give rise to
any such singularities.

For convenience, we consider orientifolds with [ h}f = 0 for which the D7-tadpole
is cancelled locally by putting D7-branes on top of the O7-planes. The D3-charge from
O-planes and non-Higgsable SO(8)-stacks is given by

Qpz = 2+ 't + 12, (2.19)

5There exist rigorous upper bounds on the number of homotopically inequivalent CYs from polytopes
in the KS database [66] which have been obtained by bounding the number of inequivalent, fine 2-face
triangulations and applying Wall’s theorem [67].



Throughout the main text, we constructed suitable models from the KS database using
CYTools [12] making sure that there exists an orientifold with hi2 = 0.5 Ultimately, this
requirement ensures that the orientifold intersects the LCS patch allowing us to directly
apply the formulas stated in previous section.

Flux vacua at LCS. In this work, we are concerned with analysing large samples of
vacua to investigate their distributions and attainable properties. It is clear that, due to
the absence of generic analytic solutions, this requires dedicated numerical tools. On the
aforementioned geometries, the tadpole (through (2.19)) and hence the possible flux vacua
are bounded [2, 70]. This number is generally speaking huge and estimates obtained from
continuous flux approximations suggest that the number of flux vacua with DyW = 0 and
Naux < Qps is given by [2]

bs
N (N < Qo)=L [ de(R ), (2.20)

Here, we defined the 3rd Betti number b3 = 2(h? + 1), the curvature 2-form R and the
Kéhler form w on moduli space. We refer to [71] for an explicit evaluation of this formula
for examples with few moduli.

We stress that the absence of solutions for a given choice of fluxes in our subsequent
routine has to be seen in conjunction with the restriction to the LCS regime and to a single
Kéhler cone phase associated with a single FRST of a polytope. To give some heuristic
motivation, let us assume that for each of the N moduli half of the parameter range falls
within the strict LCS regime Im(Z?) > 0. This implies that at large N a uniformly sampled
point in moduli space has a probability of 1/2" to fall in the LCS regime. In reality, the
angles between two hyperplanes of the cone becomes smaller as we scale up h'? making
the cone even narrower than our previous naive estimate [72].

On top of that, even if points can be efficiently sampled from K¢ , the actual question
to ask is: given a choice of fluxes, what are the chances of finding a minimum within the
LCS patch traced out by K¢ 7 In our case, we search for flux vacua in a single toric phase
defined by a single FRST of a polytope. Generally, this geometric phase only covers a small
subspace of moduli space where the existence of solutions to (2.8), (2.9) for arbitrary flux
choices with Ng. < @ps cannot be guaranteed.” As we discuss later in section 4.3, this
seriously affects our ability to sample vacua at large values of hl2.

3 Algorithmic approach for string vacua

Below we outline the scope and functionalities of our current numerical approach. Our
code is modular such that each component can be developed further on an individual basis
and allows to be integrated into the pipeline to extract physical properties. In short, the
rationale is as follows:

SWe thank Jakob Moritz for explaining us the necessary conditions on polytopes allowing for orientifolds
with h? = 0.
"We refer to [73] for related discussions in the context of 5D black hole solutions in M-theory.



(i) Model construction: we start with a high level input which can either be a custom
example or directly interface with existing databases such as the KS database or the
CICY database [74, 75].

(ii) EFT module: we calculate relevant quantities in the 4D supergravity EFT starting
from a prepotential. Here, this includes the flux superpotential (2.4) and the Kéhler
potential (2.1) for complex structure moduli. Subsequently, we use the known ana-
lytical framework to calculate quantities like the F-term scalar potential (2.3). This
pipeline is implemented such that we can ensure scalability in the presence of many
moduli. To do this, we utilise JAX and its just-in-time (jit) and vectorisation (vmap)
features. As detailed below, compared to alternative implementations in python or
Mathematica, simply evaluating relevant quantities with our methods is faster by
several orders of magnitude, see figure 1.

(iii) Optimisation module: we formulate the optimisation conditions for identifying min-
ima of moduli potentials and pass them to optimisation algorithms. A priori there
is no optimisation algorithm which is singled out. At this stage, we restrict our-
selves to the use of scipy.optimize.root which we find to be rather efficient for

our purposes.

(iv) Sampling module: of particular importance for the efficiency of our optimisation
algorithm is the choice of initial guesses for the moduli VEVs, i.e., from where the
algorithm starts searching for minima. We present novel methods to choose these
points based on the choice of flux quanta using the ISD condition (2.10).

(v) Filter module: the minima are identified using a certain numerical tolerance of the
respective conditions. To warrant that we are dealing with actual minima, we perform
additional checks on these candidates as outlined below. Among others, this involves
checking the positivity of the Hessian of the scalar potential.

Below, we describe in more detail each of the individual modules (ii)-(v) building our frame-
work for the search for string vacua. (The model construction (i) is largely outsourced using
tools readily available in CYTools.) In addition, we provide some pseudo-code snippets in
appendix A. Again we stress that each of these components could be modified without
interfering with the other parts of the code. Given our implementation, our current bottle-
neck when extrapolating to large h'? is the sampling and root finding which we comment
on in due course.

3.1 EFT module — moduli potentials in JAX

For our implementation, we opted for JAX [38] which at its heart employs automatic dif-
ferentiation to compute gradients of functions. It recognises primitive operations inside
functions and applies standard rules for differentiation in such a way to numerically eval-
uate derivatives rather efficiently. In particular, it avoids finite differences to compute
approximate derivatives in numerical differentiation, and it bypasses inefficient expressions
in symbolic differentiation which would appear for instance when using sympy.



Overall, this makes the implementation differentiable, i.e., derivatives of quantities with
respect to intermediate or input variables can be taken and utilised at machine precision.
This is ideal for our quest for finding string vacua in 4D supergravity where only a handful
of functions are prerequisites, in our case the prepotential (2.14), in order to compute
quantities like period vectors, scalar potentials or the Hessian by taking suitable derivatives.
In particular, this implies that our code only needs the absolute minimum of functions to
be hard-coded, thereby making our implementation extremely versatile. Among others, it
is readily applicable to any moduli space limit away from LCS such as conifold regions and,
with minor adjustments, can be easily extended to include Kéhler moduli.

Apart from the usefulness of auto-differentiation, there are two powerful tools to speed
up the implementations. The first is jit-compilation (standing for just-in-time com-
pilation) which, in short, transforms python-functions into language representations via
so-called tracer objects that record all the operations being performed. This reconstruc-
tion improves the execution by sending full sequences of operations to tensorflow’s XLA
(Accelerated Linear Algebra) compiler [76], while in standard python-code each operation
is sent to the compiler one at a time.® For our purposes, jit ensures that there is only a
modest scaling with respect to the number of moduli fields through essentially C++ speed
of the code. Additionally, the usage of JAX makes most modules readily usable on the GPU
which can further improve the efficiency.

Secondly, while vectorisation can always be implemented manually (by rearranging
indices and axes), this can become increasingly tedious when the range or the number of
indices changes dynamically. This is where the automatic vectorisation feature vmap of JAX
is particularly useful. For example, we may want to evaluate the F-term conditions for a
single flux at many points or, instead, for several fluxes, but for each flux at a different
collection of points. Both cases can be addressed by calling vmap on the various inputs
(see the JAX documentation for examples). Clearly, the upshot of vectorising expressions
in our implementation are enormous gains in efficiency as we now illustrate.

Let us quantify the improvements of our implementation compared to popular alterna-
tives, namely Mathematica (version 13.4) and python (version 3.9). We compare the time
required to evaluate the F-term conditions D;W for all fields in different implementations
in figure 1. We present two models with A% = 2,4 complex structure moduli using in both
cases GV invariants up to degree 4.” In Mathematica and python, we used a hard-coded
version of the F-term conditions, while our jit- and vmap-compilation starts from the
prepotential (2.14) and constructs the F-terms via automatic differentiation. We use JAX
version 0.4.4 in our benchmark comparison.

In both the Mathematica and python implementations, one observes a clear scaling
with A2 coming from the increasing number of primitive operations required when comput-
ing D;W. In contrast, the implementations with jit show virtually no difference between

8We note however jax.jit cannot be applied to any arbitrary function, see the official JAX docu-
mentation. For instance, whenever specific values are tested as conditions (e.g., via if-statements), the
jit-compilation is not directly applicable but generally workarounds can be identified.

9The two models in question are P[1,1,1,6,9] for hY? = 2 discussed in section 4.1 and the first example
in [35] for AM? = 4.
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Figure 1. Efficiency comparison of different implementations. Time required to evaluate the F-
term conditions for two models, described in the text, with h''2 = 2,4 at a given number of points
using different implementations. Each curve is obtained from averaging over 10 runs performed on
the same laptop using a single core. Further improvements are easily obtained when parallelising
over multiple cores or using our code on the GPU.

the two models. As promised above, the most dramatic speed up is however observed by
making use of vmap which improves the evaluation time by roughly two orders of magni-
tude. A comparison with other implementations like a direct C++ implementation is beyond
the scope of this paper.

Before we continue, we note that, while we provide implementations for general super-
gravity equations, it can occasionally be more efficient to use simplified expressions. For
example, say we solved the F-flatness conditions for a given choice of fluxes. Then it can
be useful to employ identities for the F-term scalar potential (2.3) and related quantities
like the Hessian, see e.g. [77].

3.2 Optimisation module — numerical search for extremal points

In our quest for string vacua, we would like to numerically solve D;W = 0 for given
inputs of UV data. Since most optimisation algorithms work with real-valued variables
we re-formulate our complex-valued optimisation conditions (cf. egs. (2.8), (2.9)) in terms
of their respective real and imaginary parts. We end up with a one-dimensional array of
size 2(h? + 1) for which we find the roots in terms of the real and imaginary parts of the
moduli fields.!”

For our analyses, finding zeros of D;W is efficiently achieved using the root find-
ing methods of scipy [78], especially when compared with homotopy solvers previously
employed in [34, 35]. From the methods implemented within scipy.optimize.root, we
determine via direct comparisons that method="hybr’ associated with a modified version

10We note that empirically, we find that using the analytic solution for the dilaton obtained from solv-
ing (2.8) does not simplify the optimisation substantially.
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of Powell’s method [79] works most reliably and efficiently. As input, we provide a choice
of integer fluxes together with initial guesses for the roots. We comment on the sampling
of both in the subsequent section. In practice, we run the optimisation module on several
CPUs in parallel to speed up the computation. As numerical tolerance €, for the root
finding, we use e = 10710 across all models which was chosen as a robust choice when
comparing with known special solutions for the torus [80] and P[1,1,1,6,9] [49, 81].

Beyond scipy.optimize.root there are several optimisation methods which could be
used. At this stage, however, involving only a small number of checks, we did not find
a more efficient method when comparing with e.g. gradient descent approaches. Clearly,
choosing eqs. (2.8), (2.9) as optimisation targets is only one possibility and our framework
can be easily applied to the gradient of the scalar potential instead. This is possible due to
the efficient automatic differentiation capabilities of our implementation. In the long term,
it would be beneficial to apply even more efficient optimisers which can be parallelised
easily within the JAX framework and make use of the GPU. These modifications will be
the target of the next round of improvements of our framework.

3.3 Sampling module — sampling of fluxes and initial guesses

In this section, we detail the strategies to efficiently sample flux choices and starting condi-
tions for our root finding algorithm. As we will show subsequently, this vastly outperforms
previous access to solutions. Hereby, it is absolutely crucial to employ vmap to guarantee
speedups of several orders of magnitude similar to figure 1.

Obviously, there remain biases associated to our selection procedure. Although we
believe that one should account for these biases using existing statistical techniques, this
analysis goes beyond the current scope of the paper.'! Here, our main focus is to establish
novel methods to numerically access these vacua. The various sampling techniques to be
introduced below will be compared in the subsequent section, see in particular figure 2.

Initial guesses. Initially, we need to specify points in moduli space from which to start
the root finding. To this end, we define a region, e.g. sphere, box, or the Kéhler cone
K%, in which points are being uniformly sampled. We treat the size of these regions as
a hyperparameter. While the notion of the Kéhler cone is mainly useful for LCS limits,
conifold regions can be described by spheres centered around the origin.

For our considerations, it is useful to work inside subcones of K¢, defined in (2.13),
namely so-called stretched Kahler cones defined for some ¢ € Ry via [72, 82]

Kxg,lcl={J € H"(X3,R) : Vols(U) > ¢V sub-varieties U} . (3.1)
The tip of Kg,[c] is given by the shortest (in the Euclidean metric) vector vy, in the

Kéhler cone K¢, for which the Z; generators of the Mori cone M(X3) (as the dual of
its closure) have volume at least c. It is convenient to work with ICXg[c] for some ¢ > 0

' An example of such algorithmic biases was discussed recently in [42].
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because the convergence of Fj, is more easily guaranteed.'? In addition, by picking initial
guesses far inside Ky [c], we are more likely to find roots inside the domain of validity of
the LCS expansion, thereby improving the stability and success rate of our root finding
methods.

Lastly, we implemented a variant of the cone sampling procedure which is useful in
models where the generators of K %, are not known explicitly. In such cases, one can select
initial guesses along the one-dimensional subspace {c- vp : ¢ € Ry} (with v here and
subsequently denoting the tip of ICXg[c = 1]) corresponding to the tips of the stretched
cones for varying c.

Flux choices. We have to specify flux choices where we distinguish the following two
approaches:

1. We sample fluxes independently from the starting point: we do this randomly
by sampling from the uniform distribution such that Ng,y is below or at a fixed
tadpole @ ps as set by eq. (2.19). Similarly, we sample starting points independently
from our flux choices using one of the aforementioned techniques.

2. ISD biased sampling: we introduce a new sampling technique which ensures that
both the flux is below the tadpole and the starting point is close to the point satisfying
the ISD condition in eq. (2.10). The idea is to sample only half of the fluxes together
with points (Z§,7) inside the Kihler cone. Then, the ISD constraint (2.10) can be
solved for the remaining half of the fluxes. We implemented two variants, namely

ISD, : my—T1ony = (No)sr (mI—TOnI) , mi,nl ez, (3.2)

ISD_ : m! —monl = (No)t (my—mony) , my,ny €%. (3.3)

Here, Ny denotes the gauge kinetic matrix (2.11) evaluated at Zj. We sample the
fluxes on the right hand sides of (3.2) and (3.3), while solving for the fluxes on the
left. We note that this method modifies a previous algorithm [83] for generating
a pair of flux and starting point values by sampling points from the entire K&hler
cone that achieve Ny, < Qp3.'> In general, the fluxes m, 7 (dropping indices for
convenience) obtained in this way are continuous. To get a meaningful flux vacuum
consistent with flux quantisation, we have to round the fluxes m,n — m,n € Z. In
effect, this implies that we no longer solve (3.2), (3.3) exactly at our initial point in
moduli space, but pay the price of shifting the moduli VEVs (Z%), (1) slightly away
from Z(i), To, i.e.,

(ZY = Zi 462", (1) =19+ 0T. (3.4)

2To be more precise, the convergence of Finst demands that we stay far enough away from walls of K s
where some of the (mirror) effective curve volumes become zero and the sum in (2.16) potentially diverges.
Clearly, this depends on the structure of (non-zero) GV invariants. For instance, in particular examples, we
can analytically continue the LCS periods to regions near conifold singularities by shrinking GV-nilpotent
curves [63, 64].

13Similar strategies have previously been employed in e.g. [8].

~13 -



The sizes of the induced shifts {§Z¢, 67} from rounding the fluxes depend crucially on
the chosen method ISD., see figure 2. More importantly, the two sampling procedures
give rise to different characteristics of the resulting distribution of ISD solutions as
we will show in section 4.1.

3.4 Filter module — identification of trustworthy string vacua

After computing the stationary points of Vg by solving DiW = 0 or 9;Vr = 0, we feed
them into a pipeline to extract trustworthy minima.'® Currently, we implemented the
following checks on our solutions:

e We ensure positive string couplings and inequivalence to other solutions under
SL(2,7Z) transformations. This is simply because we are interested only in physi-
cally relevant solutions with g; > 0, while avoiding overcounting solutions due to
SL(2,Z). Where necessary, we map 7 to the fundamental domain of SL(2,Z) by
applying translations and S-duality transformations.

e We verify that our solutions meet the Kdhler cone conditions. Depending on the
available information associated with the background geometry, we use different im-
plementations to verify that the Kéhler cone conditions are satisfied. If hyperplanes
or generators of the cone are available, then we can easily check whether the given
VEVs lie inside the Kéhler cone. Alternatively, we check that the Kahler metric is
positive definite which is however not a sufficient condition.

e We check that the Hessian of the scalar potential is positive semi-definite by com-
puting its Cholesky decomposition as we find this method to be more efficient than
computing eigenvalues directly. This guarantees that the obtained stationary points
are actual minima of the scalar potential. In addition, even if non-negativity of the
Hessian can be guaranteed, ensuring the absence of flat directions requires special
attention. This is because it can be numerically hard to distinguish minima from
flat direction, especially when large hierarchies of scales are involved. For vacua with
DiW = 0, the number of massless fluctuations around the minimum, i.e., the dimen-
sion of the remaining moduli space is given by the rank of the matrix'® (see e.g. [77])

DiD;W KW
M|DIW:0: T M (3.5)
K7,W  DyD5W
For vacua with D;W # 0, we have to consider the number of first order obstructions
to 0rVp = 0 which is simply the rank of the Hessian. In both cases, the rank is
computed using the tolerance €, used in the optimisation module.

141t is certainly interesting to analyse the set of all stationary points and compare against results from
random matrix theory such as [51, 84, 85]. We will come back to these questions in the future.

15The diagonal entries of this matrix (evaluated at a minimum) are proportional to the mass matrix of
chiral fermions.
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0 0 3 -6 27 -192

1 540 -1,080 2,700 -17,280 154,440

2 540 143,370 -574,560 5,051,970 -57,879,900
3 540 204,071,184 74,810,520 -913,383,000 13,593,850,920

4 540 | 21,772,947,555 | -49,933,059,660 | 224,108,858,700 | -2,953,943,334,360

Table 1. The leading order GV invariants for P[1,1,1,6,9].

o Validity of the LCS approximation: we check eq. (2.18) for ¢ = 0.1. This gives a
rough estimate on the radius of convergence for degrees available in each model.'®

A solution passing these criteria we refer to as a flux solution or vacuum. All of the above
checks are fully vmap compatible (recall section 3.1).

4 Numerical experiments

Having described our algorithm, we now showcase some initial capabilities and comment on
physical implications of the respective results. To begin — using the well-studied example
of a degree 18 hypersurface in the weighted projective space P[1,1,1,6,9] — we discuss
the differences in our sampling procedures. We then generate large samples of vacua for
four and five moduli models which were introduced in [35] featuring at least one million
flux vacua, vastly outperforming the handful of previously obtained vacua. Interestingly,
we identify that the respective |Wp|—distributions can be well approximated by the same
probability distribution. Finally we analyse the scaling behaviour with k2 by studying
examples with up to 25 moduli; identifying suitable success rates and timing behaviour of
our approach. Our data can be accessed on https://github.com/mldphysics.

4.1 Sampling procedures in practice — h1?% = 2

To characterise the physics associated with the distribution of flux vacua, we need to
understand the biases arising from the respective sampling techniques.'” To start the
discussion, we present the difference of the vacua distribution in our sampling techniques
previously introduced in section 3.3. To allow for simpler visualisation, we study the degree
18 hypersurface X3 in weighted projective space P[1,1,1,6,9] [61] with Hodge numbers
(R R12) = (2,272).

In detail, we focus on a particular locus in moduli space where the CY is invariant under
G = 7Zg x Z1s [86]. By restricting to fluxes invariant under this symmetry, we only need to

16 Arguably, to fully trust a solution, one would need to compute the radius of convergence to high
precision. We intend to discuss this problem in a separate work.
"Note that this applies to both numerically and analytically constructed flux vacua.

~15 -



solve the F-term conditions along the invariant subspace. The corresponding periods can
be obtained from the mirror CY giving rise to an effective prepotential depending only on
two moduli. The associated topological data is

1({9 3 1 (17
k111 =9, Ki12=3, Ki2=1, aij = 5 s 0] bi:Z 6 | (4.1)

We also computed GV invariants up to degree 100 using methods described in [24] and
collected the leading order GV invariants (see table 1 as a reference). We consider an
orientifold with hi’z = 0 constructed explicitly in [87] for which the D3-tadpole is given by
®p3 = 276.

The Kahler cone Ky is simply the positive quadrant generated by the vectors
{(1,0),(0,1)}. One thus easily samples points inside the cone by taking positive linear
combinations of these generators. The tip of the stretched cone K¢, [c = 1] is just given by
vip = (1,1), recall section 3.3.

Benchmarking our performance. Initially, we compare our implementation with ex-
isting searches using the Paramotopy method [88] which has been employed for our model
in [34] to search for flux vacua with Npux = 34. While the scan of [34] was performed only
including classical terms, we are able to conduct two separate searches: the first uses the
purely classical prepotential, whereas the second includes instanton terms up to degree 10.
We note that in our framework there is no significant change in performance for either of the
two scans despite the fact that Fi,g includes 65 additional terms with non-vanishing GVs.

Our calculations have been performed on the LMU cluster on a single node with 4
cores with 5GB of memory and 50,000 input fluxes. For the two runs, we found 34,542
(with instantons) and 33,019 (classical) vacua with € = 0.1 in (2.18) in about 45 minutes
respectively. From those vacua, using sampling method ISD, 33,047 and 31,042 survive
when choosing instead £ = 0.01 in (2.18) implying that the LCS expansion is well under
control in our framework. As a comparison, the equivalent scan in [34] was performed with
100 nodes each with 32 cores and required a total calculation time of around 75,000 hours
to find around 24,882 acceptable solutions.

Qualitative comparison of sampling approaches. Turning to the differences of our
sampling methods, we show the distribution of moduli VEVs for the different sampling
methods in figure 2. We note that, throughout this section, we do not impose any cut
on the flux contribution Ng,, to the D3-tadpole. By sampling points only along tips of
the stretched Kéahler cone for different choices of ¢ (recall (3.1)), the resulting sample of
flux vacua remains largely 1-dimensional (orange). For cone sampling, one covers a much
broader range inside the Kéhler cone for both ISD_L. Interestingly, randomly sampling
fluxes results in moduli VEVs clustered at the boundary of the Kéhler cone. Being close to
the boundary suggests that these solutions may not survive in the presence of higher order
instanton corrections as the region with |Fis/F| < € shifts further inside the Kéhler cone
when cutting the instanton prepotential at higher degree.

Looking at the right in figure 2, we find that the distribution of flux tadpole contribu-
tions Ng,.x are vastly different among the sampling methods. We clearly see that the ISD
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Figure 2. Comparison between the different sampling procedures. Top left: distribution of flux
vacua in the plane of moduli VEVs, utilising units as outlined in the main text. Top right: distri-
bution of Ngux with the vertical line indicating the tadpole bound @ p3 = 276 and the dark shaded
region highlighting solutions with Ngux > Qps. Bottom row: distribution of initial guesses (gray)
compared to the actual solutions to D;W = 0.

method leads to rather large tadpoles, even for models with small A12.1% In contrast, the
ISD_ approach generates samples with significantly smaller Ny, values.

The bottom row of figure 2 shows a subset of the moduli VEVs at the minimum and
the associated initial guesses. The relative distance between them depends significantly
on the sampling method. These noticeable dissimilarities can lead to algorithmic biases
(see [42]) as the identification of minima is subject to input parameters of the optimisation
module like the maximal number of steps. For random flux sampling, we find the largest
displacements where, despite sampling points far inside the cone, the moduli VEVs end up
close to the boundary. In contrast, the induced shifts §Z¢ (recall eq. (3.4)) from rounding
fluxes in ISD sampling are appreciably smaller, though they are larger for ISD_ than for
ISD,. This is because, when using the ISD_ method, the inverse matrix A 7 appears
in (3.3). In effect, this amplifies the error in (3.3) when rounding the continuous fluxes on
the left hand side. Hence, the actual solutions to the F-flatness conditions are on average
further away from the initial guess than in ISD, thereby also affecting the success rate.

To conclude, we clearly see that the different biases due to the sampling method have
indeed an appreciable effect. These biases have to be accounted for to deduce constraints on
the space of flux vacua and to extract probabilistic statements about the string landscape.”
At this stage we postpone a quantification of these effects to future work as we believe that
these techniques are best applied in the context of a direct physics question.

!8This is reminiscent of the observations made in [83] for a model with rather large h'? = 50.
19We note that dealing with such biases in practice is ubiquitous in observational cosmology, see for
instance [89] for examples in the context of large scale structure cosmology constraints.
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Figure 3. Samples of flux vacua with four and five complex structure moduli of [35]. Left:
distribution of W and g,, showing universal behaviour in the distribution of Wy. Right: distribution
of € and Npux, demonstrating very good control over the instanton expansion.

In particular, let us highlight that already in this simple example the distribution of
Npaux depends critically on the chosen sampling and solving methods. As is obvious from
figure 2, large values of Ny, > O(103) are naturally preferred for ISD; sampling. This
should however not be understood as evidence for the tadpole conjecture. It is merely
a sign that, due to the high dilution of string vacua with low Np.x < @@p3 compared to
swampland solutions with high Ngux > @ p3, randomly sampling points in K¢ generically
leads to large Npuy. Obviously, this problem becomes even more severe at higher A2, see
also section 4.3. Hence, it becomes necessary to optimise the procedure for the sampling

of points in the Kéhler cone.

4.2 Generating samples of flux vacua — h'? = 4,5

Capabilities to generate vast sets of generic flux vacua in regimes with h? > 2 has so far
been rather limited. Here, we would like to demonstrate the ease with which such datasets
can be efficiently produced within our framework even for more elaborate geometries. We
therefore revisit models with four and five complex structure moduli presented in [35].
Specifically, we study three CY hypersurfaces presented in the appendix?® of [35],
though we construct orientifolds from different Zs-involutions.?! The latter are obtained
from the orientifold database of [90] with the D3-tadpole values Qp3 = 104 and Q ps = 192
for (W11, h12) = (4,98) (example 2) and (h'!, h12) = (5,185) (examples 3, 4) respectively.

200ne easily verifies from the list of orientifolds in [90] that the model discussed in the main text of [35]
does not allow for an orientifold with h}‘_‘Q =0.

21The orientifold examples of [35] were specifically constructed to satisfy certain model building criteria
presented in [11] for D-branes at singularities with h"" # 0.
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As in the previous example, we study these models near a Greene-Plesser point [91]
where the CY is manifestly invariant under a discrete subgroup G. Turning on fluxes only
along the invariant 3-cycles allows to fix the non-invariant moduli fields at their fixed point
under G, thereby solving the associated F-flatness conditions. The remaining periods can
directly be computed on the mirror dual CY X3 and depend only on the invariant moduli
of which we have four (example 2) or five (examples 3,4) in our models.

For these example, we now collect flux vacua by using the ISD, sampling method for
the fluxes and initial points. To this end, we randomly generate fluxes in the range [—5, 5]
and points inside the Kéhler cone up to Euclidean distance 10 from the origin using the
cone generators. For each model, we collected approximately 10% vacua taking into account
instanton corrections up to degree 10 which took 10 hours of run time on a machine with
4 CPUs and 10GB memory.

We show the distribution of |Wp| and gs on the left of figure 3. Apart from a slight
shift of the peak, the former seems to be almost identical across the three models. This
is a hint at universality of the |IWy| distribution across different models within our current
framework. In contrast, the distribution of gy exhibits non-trivial structures which are
distinct for each model. Clearly, at this point, we are unable to infer that these are
characteristic features of the respective models given the expected biases in our data,
recall section 3.3. Nonetheless, it is interesting to point out that, while the distribution for
example 2 peaks at small g;, we observe two distinctive peaks at large g; for example 4.

The distribution of ¢ and Ngu/Qps is displayed on the right of figure 3. While in the
analysis of [35] most vacua were unstable against the inclusion of higher order instanton
corrections, we find overall an excellent control over the instanton expansion as exhibited by
small . This can be expected given that our sampling methods allow us to stabilise moduli
deep inside the Kéhler cone where instanton terms are highly suppressed. In contrast, as
we have seen previously in figure 2, random sampling fluxes as in [35] tends to drive the F-
term solutions closer to the boundary, thereby loosing control over the instanton expansion.
This makes evident the fact that our new sampling techniques are superior to previously
employed techniques.

The rescaled distribution of Ng,x/Qps is largely model independent. At first sight,
this is surprising given the expected scaling (2.20) of the number of vacua with h'? and
the tadpole. We believe that this is due to the chosen sampling method, though this
observation deserves further scrutiny.

4.3 Scaling behaviour for large numbers of moduli — h'? < 25

Having seen the capabilities to generate reliable samples, we next comment on the capabil-
ities of this framework to analyse geometries with even larger number of moduli. To this
end, we construct examples with k2 € {5,10, 15,20, 25} moduli using CYTools, see table 2
and ancillary files for the details regarding these models. Specifically, we selected trilayer
polytopes [14] in KS with the largest h''! for given h'? and constructed smooth O3/07
orientifolds with A" = pl?

= 0. Even though we collected these models by requiring, in
addition to the existence of suitable orientifolds, large ()p3, we note that similar analysis
could be done with much smaller ()p3 at the prize of a higher run time.
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rY1 | Y2 | Qps | success rate fvacua | min(Nguy)
213 5} 220 50% 1,370,842 )

244 | 10 | 256 16% 498,545 36
399 | 15 | 416 7% 168,291 116
350 | 20 | 372 < 1% 36 180
245 | 25 | 272 < 1% 1 270

Table 2. Hodge numbers and tadpole values for the selected models.

Given the model data, we look for flux vacua with Ng. < @p3. We sample vacua by
using the ISD method running on machines with 8 CPU cores and 12GB RAM. For each
model, we include instanton contributions up to degree 2.

The average success rates of finding vacua from some input fluxes is listed in table 2
where we notice a significant drop at k%2 > 20. We believe that this is because of several
constraining factors conspiring to drastically decrease the success rate at large h':2. Firstly,
high dimensionality of flux and moduli spaces from which we sample typically means slower
evaluation time. In addition, it becomes even harder to perform numerical optimisation,
i.e., to find solutions to D;W = (. Lastly, a single phase of the Kéhler cone becomes nar-
rower [72], while the number of phases of the extended Kéhler cone increases exponentially.
That is, we see less and less of the complete moduli space. This becomes e.g. relevant in
ISD sampling where the induced shifts in (3.4) may easily lead to moduli VEVs (Z?), (r)
outside the original Kéhler cone. All in all, the chances get rather slim to locate minima at
large h'? below a certain threshold of Qps. Clearly, despite significant progress, we point
out that our methods are simply not refined enough yet to access these regimes.

In this context, we stress that sampling below a realistic value of ()p3 is many orders
of magnitude harder than sampling with arbitrary N, by virtue of (2.20). We tested
our algorithm on examples with A2 > 100 and easily obtained solutions with Ny >
@ps- This is just telling us that sampling from an effectively continuous distribution
for swampland solutions is much easier than probing a discrete distribution of landscape
solutions.

We present the performance of our code in figure 4. On the left, we show the time
required to obtain roots to the F-term conditions by employing our optimisation module.
Crucially, we observe virtually no scaling with respect to h'? which, as we said before, is
largely due to jit-compilation.?? This in principle opens up the opportunity to efficiently
pursue systematic scans for flux vacua over a large range of models within the wider CY
landscape.

On the right in figure 4, we plot the distributions of ¢ computed for instanton con-
tributions up to degree 2 via eq. (2.18). We again find that our solutions have extremely
small ¢ < 1072 signifying excellent control over instanton corrections. Nonetheless, as we

22Recall that vmap is not being used currently in our optimisation module which would lead to a significant
speed up over a few orders of magnitude. We however use vmap for all other parts of the algorithm e.g. when
checking the validity of our solutions.
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Figure 5. Solutions for large number of moduli. Left: distribution of the ratio of Ngux over the
maximally allowed D3-charge Qps. Right: distribution of the string coupling g;.

stressed several times before, a more thorough analysis is a prerequisite to make definitive
statements about the radius of convergence of the sum over instanton terms.

The left plot in figure 5 shows the distribution of the ratio of Ng,x over the maximally
allowed D3-charge Qps3. (Note that each sample at fixed h%? contains a different number
of vacua as summarised in Tab 2.) As we argued before in section 4.1, our ISD, sampling,
which we picked because of its reliability, prefers large Ngux which is why the distribution
in figure 5 is peaked near Npux/Qps ~ 1. In contrast, gs is almost uniformly distributed
in a wide range of values for h»? < 15, though the distribution for A2 = 5,10 exhibit
moderate peaks around gs; ~ 0.2.
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5 Conclusions

We presented an efficient and reliable framework to find flux vacua providing access to
largely unexplored territories of string theory solutions. These advances have been achieved
by combining various numerical techniques ubiquitously used in the context of machine
learning, namely automatic differentiation, just-in-time compilation, and vectorisation.
These methods allow for the generation of fast (C++), parallelisable (on CPU and GPU),
and versatile code allowing a simple interface with EFT quantities, e.g., the couplings in
the prepotential.

In this work, we are only hinting at upcoming physics analysis for these flux solutions.
For instance, our framework, JAXVacua, intrinsically calculates the scalar potential and its
derivatives at machine precision to any order in some approximation scheme. This enables
systematic studies of properties of moduli potentials in general classes of models. Even more
importantly, as we showed in the main text, large scale surveys of previously inaccessible
regimes in the string landscape become feasible. This provides excellent opportunities to
refine our understanding of the statistics of vacuum solutions, their associated mass spectra
and couplings to visible matter fields. Ultimately, there is a wide range of applications of
our methods to string model building and cosmology.

At this stage, there are a few technical improvements which we leave for the near future
to make flux vacua at LCS of the entire KS database accessible:

¢ Optimisation: although we identify scipy.optimize.root as an efficient root find-
ing method for flux vacua, it is nevertheless a limiting factor in efficiency. For in-
stance, it would allow for further speed-up if we can use this method on the GPU
directly. In this context it is interesting to see whether other optimisers, such as
variants of gradient descent can lead to more efficient flux vacua generation, see [92]
for applications of gradient descent methods to different types of string theory vacua.
As the successful choice of optimiser is also based on the structure of the respec-
tive energy landscape in this optimisation problem, it will be interesting to compare
the similarities between the string theory landscape and other energy landscapes
(e.g. spin glass systems or deep learning optimisation).

e Characterising the trustable EFT regime: to understand the stability of flux
solutions at the boundaries of the LCS expansion, efficient ways of estimating the
radius of convergence in our examples are pending (see [16, 36, 61, 62] for examples).
This applies to a subset of our solutions where the control parameter Finst/Fpert = €
becomes large. Currently, we evaluate this parameter by calculating the GV expan-
sion using CYTools [24] up to high degrees. In this way, we identified a large sample
of solutions where these contributions are exponentially suppressed up to degree 10.
Crucially, our implementation is able to compute the relevant quantities to any order
in the GV expansion at machine precision.

e Sampling input data: we observed that the success rate of finding vacua below
tadpole decreases in our current pipeline significantly at large h'? > 15. We believe
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that this is mainly due to inefficient sampling procedures. To make progress, it would
be instructive to formulate conditions that, for a given choice of fluxes, guarantee
solutions to exist inside the Kéhler cone. Secondly, while the ISD sampling methods
have shown outstanding success, it turns out to be hard to sample points in the Kéhler
cone such that Npwx < @ps. By implementing this as an optimisation problem,
gradient descent methods could help locating such points inside the Kéhler cone.

We note that, although our methods and examples are currently limited to LCS limits,
our implementation can be adapted to study different asymptotic limits in moduli space
such as conifold regimes [63, 64]. In these cases, the solutions to the Picard-Fuchs equation
for the periods have different analytic properties. Such generalisations will be investigated
in the future.

More generally speaking, our approach in JAXVacua can be extended to other moduli,
such as Kéhler moduli stabilisation. This will enable a general search for vacua where the
presence of novel minima could be observed that fall neither in the class of the standard
KKLT nor the LVS. Such new solutions are believed to arise from the intricate structure
of EFTs from string compactifications. In the presence of large numbers of moduli, such
regions are most easily discovered in comprehensive numerical explorations as presented in
this paper.
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A TImplementation details of JAXVacua

In this appendix we provide some more details on the implementation. A public release
of this code is intended in the future when we have developed a few more modules. In
the meantime, the following discussion might proof useful in the implementation of similar
optimisation problems.

o As described above (recall (2.14)), the prepotential can be implemented as

1 import jax.numpy as jnp

N

from jax import jit
3 from scipy.special import =zeta

S @jit
¢ def prepotential (moduli):
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N

return jnp.einsum(’ijk,i,j,k’,intnums ,moduli ,moduli,

moduli) /6. + jnp.einsum(’ij,i,j’,a_matrix,moduli,moduli
)/2. +jnp.einsum(’i,i’,b_vector ,moduli) + zeta (3)=*chi

/(2.%jnp.pi*1j)**(3)/2.-jnp.sum(GW_inv*jnp.exp(2.*jnp.
pi*1j*jnp.einsum("ki,i",curve_charges ,moduli)))/(2.*jnp
.pi*1j)*%x(3)

Here, we wuse jit to speed wup the valuation time of the function
prepotential (moduli). The invariants like x;j (called intnums in the code snippet
above) are globally defined variables.

As described in the main text, many functions require the combination of various
gradients of functions. Such gradients are implemented using jax.grad. For instance,
the gradient of the above prepotential is easily obtained by calling jax.grad, i.e.,
Qjit

def gradient_prepotential (moduli):

return jax.grad(prepotential ,holomorphic=True) (moduli)

We use the optional holomorphic=True argument because the prepotential is a holo-
morphic and, in particular, complex function.

We use scipy.optimize.root to find solutions to D;W = 0. The input is the starting
point for the moduli is x and flux is the flux vector, leading to an implementation
as follows

from scipy.optimize import root

; def sciRoot(x, flux):

N

res = root(DW, x0 = x, args = (flux, ), tol =1e-10)
return [res.x , res.success]

The return values are the candidate roots res.x and the status of the root finder
res.success. If the latter indicates a failure, we discard the flux choice.

The computation of some quantities, such as the Hessian of the potential, can be sig-
nificantly speed up using the JAX vectorisation functionality jax.vmap. For example,
to compute the Hessian on all of our solutions, we achieve this as follows:

from jax import vmap

hessian_vmap = vmap(lambda moduli, conj_moduli, tau,
conj_tau, fluxes: hessian(moduli, conj_moduli, tau,
conj_tau, fluxes,mode="SUSY"))

Here, setting mode="SUSY" assumes D;W = 0 for all fields, thereby speeding up the
calculation of the Hessian at the minimum.
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