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A B S T R A C T 
Widefield surv e ys probe clustered scalar fields – such as galaxy counts, lensing potential, etc. – which are sensitive to different 
cosmological and astrophysical processes. Constraining such processes depends on the statistics that summarize the field. We 
e xplore the cumulativ e distribution function (CDF) as a summary of the galaxy lensing convergence field. Using a suite of N -body 
light-cone simulations, we show the CDFs’ constraining power is modestly better than the second and third moments, as CDFs 
approximately capture information from all moments. We study the practical aspects of applying CDFs to data, using the Dark 
Energy Surv e y (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions 
from the point spread function and reduced shear approximation are ! 1 per cent of the total signal. Source clustering effects and 
baryon imprints contribute 1–10 per cent. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrade 
these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We detect correlations 
between the observ ed conv ergence field and the shape noise field at 13 σ . The non-Gaussian correlations in the noise field must 
be modelled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool. 
Key words: large-scale structure of Universe – cosmology: observations. 
1  I N T RO D U C T I O N  
The structure in the Universe – namely the distribution of matter –
contains significant information on all kinds of physical processes; 
from the largest cosmological scales that probe the initial conditions 
of the Universe, to the galaxy and halo scales that probe both nonlin- 
ear gra vitational ev olution and baryonic imprints due to astrophysical 
⋆ E-mail: dhayaa@uchicago.edu 

processes, to the intragalaxy scales where the gas and stellar phase 
space exhibit distinct structures from the rich physics of magneto- 
hydrodynamics. It is clear that the observed fields are abundant with 
information on both cosmology and astrophysics. It is then pertinent 
to question how best to extract the information from these fields, 
i.e. how best to maximize the constraints we can place on physical 
phenomena through measurements of these fields. 

In the scenario where the field is a mean-zero Gaussian random 
field that is isotropic and homogeneous, the only degree of freedom 
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for the field is the covariance between the pixels/voxels in real space 
(or alternatively, the power spectra in Fourier space). In such a 
scenario, it is clear that the maximal constraining power is obtained 
by measuring the power spectra, i.e. the only degree of freedom. For 
cosmological fields, the initial conditions seeding structure formation 
are Gaussian to a very good approximation, as has been verified 
by the cosmic microwave background (CMB) observations (Planck 
Collaboration 2016b , 2020 ), and a large part of the cosmological 
information in the resulting late time density field is still Gaussian, 
i.e. encoded in the variance of the field. Thus, the power spectra are 
a good way to extract information from the late-time fields as well. 

Ho we ver, there still remains significant, additional information 
beyond the power spectra. Even in the fiducial # CDM case – where 
# CDM is the cosmological model with cold dark matter (CDM) 
and the cosmological constant # – and the initial conditions contain 
no primordial non-Gaussianities, the presence of nonlinear, grav- 
itational evolution generates signatures beyond the power spectra. 
This is commonly called ‘higher-order information’. 1 and represents 
information in the field that is not captured by the power spectra. Such 
information still encodes signatures from cosmological and astro- 
physical processes, and is often highly complementary to the 2-point 
constraints; as a result, the combination of power spectra with higher- 
order information leads to constraints that are better than the trivial 
sum of the individual parts (e.g. Fluri et al. 2018 , 2019 , 2022 ; Gatti 
et al. 2020 ; Z ̈urcher et al. 2021 ; Gatti et al. 2022 ; Lanzieri et al. 2023 ). 

There exists a rich body of literature on different, complementary 
ways to extract this non-Gaussian information from continuous scalar 
fields like the density field or the weak lensing convergence field. 
The N -point correlation functions (or their Fourier equi v alents, the 
poly-spectra) are the most well known and widely used statistic, 
and measure the correlation of N points in space, where the points 
are separated by some distances. For N = 3, these statistics are 
computationally e xpensiv e to compute, and for N = 4 they are mostly 
prohibitive unless measured in specific limiting cases. Given this, 
man y alternativ e methods hav e been e xplored to capture some/all 
of this information in a computationally ine xpensiv e way. Some of 
the most commonly known/used methods include moments (Petri 
et al. 2015 ; Chang et al. 2018 ; Peel et al. 2018 ; Gatti et al. 2020 , 
2022 ), Minkowski Functionals (Mecke, Buchert & Wagner 1994 ; 
Blake, James & Poole 2014 ; Petri et al. 2015 ; Parroni et al. 2020 ), 
density-split statistics (Friedrich et al. 2018 ; Gruen et al. 2018 ) and 
more. Similar statistics exist for the discrete fields, such as counts-in- 
cells (Baugh, Gaztanaga & Efstathiou 1995 ; Adelberger et al. 1998 ) 
and the k-nearest neighbour (kNN) distributions (Banerjee & Abel 
2021a , b ). For the weak lensing field, the 3-point information has 
been pursued either through the direct measurement (Fu et al. 2014 ; 
Secco et al. 2022b ) or approximate summaries like the density-split 
statistics (Friedrich et al. 2018 ; Gruen et al. 2018 ), mass aperture 
moments (Secco et al. 2022b ), field moments (Petri et al. 2015 ; Gatti 
et al. 2020 , 2022 ), and integrated shear functions (Halder et al. 2021 ). 
Weak-lensing peaks (Kratochvil, Haiman & May 2010 ; Martinet 
et al. 2018 ; Shan et al. 2018 ; Z ̈urcher et al. 2022 ) probe a specific, 
fixed combination of N -point functions, as is the case with other 
statistics like cosmic v oid distrib ution functions (Da vies et al. 2021 ) 
and persistent homology (Heydenreich, Br ̈uck & Harnois-D ́eraps 
1 Power spectra are referred to as ‘2-point statistics’ and they capture up to 
second-order information as they are fundamentally a variance measure and 
contain two orders of the field. ‘Higher-order’ here refers to higher than 
second-order information, which needs to be captured by beyond 2-point 
statistics, or sometimes referred to as ‘higher-order statistics’. 

2021 ; Heydenreich et al. 2022 ). Field-level inference tools are also 
employed (Fluri et al. 2018 , 2019 , 2022 ; Jeffrey et al. 2020 ), while 
others explore machine learning-informed, but still interpretable, 
statistics such as scattering transforms (Cheng & M ́enard 2021 ) and 
wavelet phase harmonics (Allys et al. 2020 ). 

An outstanding question is identifying the ‘maximally’ infor- 
mative statistic for summarizing, and extracting constraints from, 
the fully nonlinear late-time density/convergence field. This is 
an unsolved problem given we do not a priori know the exact 
cosmological information contained in the different non-Gaussian 
signatures (including those beyond the 3-point function) across both 
linear and nonlinear scales. Thus, to ensure we use all the available 
cosmological information in the field, it is desirable to consider 
statistics that capture all orders of statistical information (rather 
than just one order, or a specific combination of orders). The kNN 
distrib utions ha ve been formally shown to be such a statistic for 
discrete tracers (Banerjee & Abel 2021a ) as they capture volume 
integrals of all N -point auto/cross-correlation functions of the field. 
While these kNN distributions are constructed for discrete tracer 
fields, Banerjee & Abel ( 2023 ) demonstrated that the analogous 
statistic for continuous fields are the CDFs of the field smoothed on 
different length-scales. 

The CDFs – or the probability distribution functions (PDFs), which 
are interchangeable ideas given they are connected by a linear integral 
transform – are the main statistic of focus in this work and have been 
theoretically known as a good non-Gaussian statistic for lensing 
fields since more than two decades ago (Jain, Seljak & White 1998 ; 
Kruse & Schneider 2000 ). The CDF is also an intuitive, visually 
informative statistic for non-Gaussian features and is often used to 
check and validate reconstructed lensing fields (White & Hu 2000 ; 
Chang et al. 2018 ; Jeffrey et al. 2021 ). Previous works have also 
shown that the lensing PDF significantly impro v es constraints in 
wCDM compared to the standard 2-point functions (Giblin, Cai & 
Harnois-D ́eraps 2023 ), while more works have shown the utility 
of the 3D matter density PDF in probing both wCDM and other 
extended cosmologies (Friedrich et al. 2020 ; Uhlemann et al. 2020 ; 
Boyle et al. 2021 ; Cataneo et al. 2022 ; Gough & Uhlemann 2022 ). 

While the benefits of using the CDF – namely the level of 
cosmological non-Gaussianity it can capture – have been explored 
in the past, this has mostly been in the more idealistic regime where 
some key observational factors were not included in the analysis. 
Thus, while we have had a prior understanding of the benefits of using 
PDFs/CDFs of the lensing field, we currently have an incomplete 
picture of the practical challenges in using this statistic to infer 
cosmological constraints. 

In this work, we measure the CDFs of the lensing field from the first 
three years (Y3) of the Dark Energy Surv e y (DES) data and validate 
that the common lensing systematics – such as point spread function 
(PSF) contributions, reduced shear approximation, source clustering, 
and baryon imprints – have an impact on this statistic that is either 
negligible or can be adequately mitigated. Many of these tests have 
been e xtensiv ely performed for 2-point statistics (Gatti et al. 2021 ) 
and have also been done for some 3-point statistics (Gatti et al. 2022 ; 
Secco et al. 2022b ). The CDFs are sensitive to information at all 
orders, and validating the impact of these observational/modelling 
systematics on the CDFs also provides validation for higher-order 
information beyond the 3-point. 

This work is organized as follows: first, we introduce the formalism 
for the CDFs in Section 2 . In Section 3 , we describe the data sets 
and simulations used in this work, as well as the procedures used 
to forward-model the simulations to match the DES Y3 data. In 
Section 4 , we define the data vector used for the rest of this work, 
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and also demonstrate the Fisher constraining power of the CDFs 
for DES Y3-like data. In Section 5 , we measure the CDFs on the 
DES Y3 weak lensing maps, and quantify the signal-to-noise of the 
measurements. We then validate the impact of different effects –
PSF contributions, source clustering, reduced shear approximation, 
and baryonic imprints – on this statistic and discuss any scale cuts 
required to mitigate these effects. Finally, we conclude in Section 6 . 
2  C D F  F ORMALISM  
We begin in Section 2.1 by describing the formalism of the CDF 
statistics used in this work, including the exact measurement pro- 
cedure. In Section 2.2 , we briefly re vie w the kNN distributions, 
which are a recently introduced statistic for discrete tracers that 
summarize all higher-order information, and we discuss how the 
analogous, continuous-field statistic is the CDF. Finally, in Section 
2.3 , we validate the CDFs using Gaussian fields. Note that the CDFs 
are closely related to other statistics in the literature and we will 
describe these later on in Section 6 . 
2.1 Cumulati v e distribution functions 
The CDFs 2 used in this work are defined as follo ws. Gi ven a set of 
uniform/random points in a field, with spheres of radius r around 
each point, the CDFs summarize the fraction of spheres that have an 
enclosed density – i.e. the mean density within radius r – that exceeds 
a chosen threshold. In 2D, the density becomes a surface density, 
$, and the radius is a projected aperture, θ . The calculation of the 
fraction of points whose enclosed surface densities exceed a threshold 
can be formally written down using the following expression, 
CDF ( θ, k) = P ( κθ > k) , (1) 
where κθ ≡ κ( < θ ) is the average surface o v erdensity within an 
aperture θ . This measurement can also be trivially modified to use the 
surface density, rather than o v erdensity, just switching κ → $̄ (1 + 
κ), where $̄ is the mean surface density field. It can also be done with 
the surface mass , by simply multiplying the surface density with the 
aperture area associated with scale θ . 

For a given map, the CDF measurement is performed as follows: 
First, we fill the map with a grid of points. Without loss of 

generality, we take these points to be located at the centre of the 
HEALPix pixels (with NSIDE = 1024), as this greatly simplifies 
the calculations. Increasing the number of points in the grid (i.e. the 
number of pixels) will impro v e the precision of the measurement, as 
is the case with the traditional 2-point correlations. 

Second, we pick a certain aperture scale, θ , and for each point we 
compute κθ , the convergence smoothed on scale θ . The smoothing 
is done in harmonic space using a harmonic tophat filter 
B( ℓ ) = 2 J 1 ( ℓθ ) 

ℓθ
, (2) 

where J 1 ( x ) is the Bessel function of the first order. The choice of 
tophat o v er a Gaussian filter is because the former allows for an easy 
interpretation of an enclosed quantity within a given physical scale. 
Our computing procedure is the same for any other choice of filter 
as well. 

Third, we measure what fraction of the grid points satisfy the 
inequality in equation ( 1 ), which is the probability, P ( κθ > k ). The 
2 The entire formalism could also be done using PDFs instead of CDFs. The 
latter is simply a more natural/convenient choice when connecting to the kNN 
formalism, as we describe in Section 2.2 . 

choice of thresholds is a degree of freedom in the measurement, and 
we describe our choices in Section 4.1 . 

Fourth and finally, steps 2 and 3 are repeated for a range of scales 
and thresholds to extract the distribution, P ( κθ > k ), for different 
choices of θ . The exact choice of scales and thresholds used in this 
work is described in Section 4.1 . 

Fig. 1 illustrates how the CDFs are constructed in a given field, 
and highlights some generic features of the CDFs. In the limit where 
the variance σ 2 → ∞ , we expect P ( κθ > k ) → 0.5, and where σ 2 
→ 0, then we expect P ( κθ > k ) → 0 if k > 0, and P ( κθ > k ) → 1 if 
k < 0. In Fig. 1 we see that all curves are closer to P = 0.5 on small 
scales where the field’s variance is high compared to the threshold 
values, and mo v e towards P = 0 or P = 1 on large scales where the 
large smoothing scale suppresses the field’s variance to values lower 
than the thresholds. Additionally, we see P ( κθ > 0) ≈ 0.4 at small 
scales, where the distribution is log-normal (see top panels of Fig. 
1 ) and so the median of the distribution is not the same as the mean, 
⟨ κ⟩ = 0. At large scales, we find P ( κθ > 0) ≈ 0.5 as the distribution 
becomes more Gaussian. 

Thinking in 3D space, the CDFs extract P ( > ρ | R), the condi- 
tional distribution of the enclosed mean density given radius, as well 
as P ( R | > ρ), the conditional distribution of radii or volumes given 
a density threshold. These two distributions can be related using 
Bayes’ theorem, 
P ( > ρ | R) = P ( R | > ρ) P ( > ρ) 

P ( R) . (3) 
Note that given the enclosed density ρ and spherical radius R , we can 
easily obtain a mass M ≡ 4 

3 πR 3 ρ. So the abo v e can be rewritten as 
P ( > M | R) = P ( R | > M) P ( > M) 

P ( R) . (4) 
equation ( 3 ) better elucidates the connection between the CDFs and 
the ideas from halo collapse. The quantity P ( > 200 ρc | R) is simply 
the fraction of volumes that contain a halo, where the haloes are 
identified/defined as o v erdensities of at least ρ > 200 ρc , with ρc 
being the critical density of the Universe. 

We can also generalize the CDF formalism to multifield probes by 
computing the joint CDFs of multiple fields; this is simply, 
P ( κθ, 1 > k 1 , κθ, 2 > k 2 | θ ) , (5) 
where κθ , 1 and κθ , 2 are two different fields (e.g. different tomo- 
graphic bins of a single type of field, or different types of fields). 
While we are allowed to choose different values for the thresholds 
k 1 and k 2 , we will enforce k = k 1 = k 2 henceforth for simplicity in 
the data vector. In this work, we will consider the cross-correlation 
between tomographic bins as part of our measurement. Note that 
the 2-field version of the CDFs formally contains all the 1-field 
information as well. This connection is identical to how 2D PDFs 
contain the marginal 1D distributions within them. 3 We will use 
both 1-field and 2-field CDFs as part of our main data vector. The 
3-field and 4-field CDFs will formally have additional information 
beyond the 1-field and 2-field CDFs, though our tests have shown 
there is only marginal impro v ement in cosmological constraints for 
the analysis choices described here (e.g. tomographic bin, angular 
scales, and thresholds). 
3 A simple example is the 2D CDF, P ( κθ, 1 > k 1 , κθ, 2 > k 2 | θ ) taken in the 
limit k 2 = −∞ . In this case, κθ , 2 is al w ays abo v e the threshold k 2 and so 
the 2D CDF reduces to a 1D CDF, P ( κθ, 1 > k 1 , κθ, 2 > k 2 | θ ) → P ( κθ, 1 > 
k 1 | θ ). 
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Figure 1. Bottom: The probability that κθ , the average convergence within circles of apertures θ , exceeds a chosen threshold k . We use seven thresholds and 
show measurements for a noiseless convergence field corresponding to the fourth tomographic redshift bin in DES Y3. The solid lines are converted to dotted 
ones when the CDFs fall into the 99.7 per cent (3 σ ) tail. The grey–blue line is al w ays in the tail for this particular measurement. Top: The PDFs of κθ for 
different choices of aperture, θ . The three aperture scales that we show PDFs for are indicated by the vertical grey lines in the bottom panel. The PDFs are 
estimated from noiseless convergence fields and are smoothed with a Gaussian for visualization purposes. The vertical lines in these top three panels are the 
thresholds we use. The probability to exceed is the integral from each threshold up to P ( κ = ∞ ). For high thresholds, we have a lower probability to exceed and 
vice versa for low thresholds. 

For some tests, we will also post-process the 2-field CDFs to isolate 
just the cross-covariance/correlation. This is done by performing the 
redefinitions described in Banerjee & Abel ( 2021b ), 
ψ 1 , 2 ( k) = CDF 1 , 2 ( k) − CDF 1 ( k) CDF 2 ( k) , (6) 
which takes the joint probability to exceed in two different fields 
and remo v es the product of the individual probability to exceed for 
each field. The quantity ψ 1, 2 ( k ) is 0 if the fields are completely 
uncorrelated, and non-zero otherwise. The sign of ψ 1, 2 ( k ), for any 
threshold k , indicates the sign of the correlation between the two 
fields at that threshold. 

We can also extend this formalism to more than 2 fields (e.g. 
a triplet ABC , where each letter is a field index). While we do 
not consider such measurements in our analysis here, we note their 
potential utility both for cosmological information, but also as further 
compressions of the data vector. Note that there is no benefit to 
repeating a field twice (e.g. the triplet AAB , where A is repeated 
twice) if we also fix the threshold k for all the fields. The joint 
probability P ( κ1 > k , κ1 > k , κ2 > k ) is exactly similar to P ( κ1 > k , 
κ2 > k ). 

While we have discussed the CDFs in terms of lensing conver- 
gence, it is not necessary to be limited to this quantity. For example, 
one could consider the kinetic or thermal Sun yaev–Zeldo vich fields 
(Sunyaev & Zeldovich 1972 ; Carlstrom, Holder & Reese 2002 ), 
which are generated by baryons in haloes and thus inherit the non- 
Gaussian features of the structure traced by these haloes. 

2.2 Connection to kNN distributions for discrete fields 
The kNN distributions (Banerjee & Abel 2021a , b ) are a no v el 
way to summarize the clustering in a field of discrete tracers, such 
as galaxies or haloes. They have been formally shown to capture 
volume integrals of all N -point functions of the tracer field, but 
can be computed in O( N log N ) time, where N is the number of 
tracers. Thus, the y hav e the same computational efficienc y as a 2- 
point correlation function, but capture integrals of all the information 
held in the N -point functions (2-point, 3-point, 4-point, etc.). This 
statistic has already been measured in observational data, particularly 
to quantify the signal-to-noise of all correlations (both Gaussian and 
non-Gaussian) in a clustered field (Wang, Banerjee & Abel 2022 ). 

The kNNs are computed by taking a field of tracers with a 
known number density n tr , and then generating a large set of 
random points in this field as one would for computing an N -point 
clustering function (although a set of uniform points would be a 
sufficient choice as well). For each point, one computes the distance 
to the nearest tracer neighbour. The distribution of distances to 
the k th nearest neighbour forms a kNN distribution. This statistic 
is probing the distribution P ( V | > k tr ), i.e. the distribution of 
volumes that contain at least k tr tracers, where k tr takes integer 
values. Assuming spherical volumes, this can be reformulated as 
the distribution P ( R | > k tr ). Given kNNs depend on the counts 
of tracers enclosed within a volume, it is sensitive to volume 
integrals of all the correlation functions. Ho we ver, the fact that the 
sensitivity is to a volume integral of the functions means signals 
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from specific configurations of the N -point functions will be mixed 
together. 4 

In the limit of n tr → ∞ , the number counts threshold > k tr 
becomes a density threshold >ρ, and the conditional distribution 
becomes P ( R | > ρ) which can be related, using Bayes’ theorem, 
to the distribution probed by the CDFs, P ( > ρ | R). A detailed 
discussion on this connection between kNNs and CDFs can be 
found in Banerjee & Abel ( 2023 , see their section 2.1). The analytic 
connection between the two statistics directly confirms that the CDFs 
can be formally shown to contain all volume integrals of higher- 
order functions, and this makes them better suited for summarizing 
a field, where we do not a priori know the exact cosmological 
information contained in all the non-Gaussian signatures of the field. 
In addition, this connection means the CDFs are the natural statistic 
to cross-correlate discrete and continuous fields while using the kNN 
formalism for the former (Banerjee & Abel 2023 ). 
2.3 Consistency relations for Gaussian fields 
In the Gaussian limit of P ( κθ ) = N ( κθ ; µ, σ ) – where N is a normal 
distribution with mean µ and variance σ 2 – there are three degrees 
of freedom for the CDF: the mean and variance of the map at 
each aperture scale, and the threshold k . The threshold is an input 
parameter, and the mean of the map is taken to be µ = 0 given κ is 
derived from the overdensity field and so is defined as a perturbation 
field with the mean background subtracted. Thus, the variance is the 
only unconstrained parameter, and this variance can also be measured 
directly on the map. Formally, a Gaussian CDF is parametrized as, 
CDF ( k) = 1 − ∫ ∞ 

k N ( x − µ, σ )d x = 1 
2 
[

1 + erf (k − µ

σ
√ 

2 
)]

. (7) 
We can thus use the variance measured from the map smoothed 

on a given scale, θ , to predict the CDFs at that scale. For a purely 
Gaussian field, the measurements and predictions must agree. The 
same e x ercise is trivially e xtended for the 2-field CDFs. In the 
Gaussian limit, the joint PDF of any set of fields is given by a 
multi v ariate normal distribution, 
PDF = 1 √ 

(2 π ) n det $ exp [ − 1 
2 ( ⃗  κ − µ) T $ −1 ( ⃗  κ − µ) ], (8) 

where the column vector ⃗ κ = { κ1 , κ2 , . . . κn } are the kappa value in 
each field, and denote the point in multidimensional space where we 
e v aluate the probability. The PDF in equation ( 8 ) can be integrated, 
assuming some set of thresholds for each field, to obtain the CDF. 
Recall that in this work we set all thresholds to the same value k . We 
also use µ = 0. The unknown degrees of freedom for the distribution 
are then entirely in the covariance matrix. Thus if we know this 
covariance matrix, we can al w ays predict the CDFs exactly. 

We verify this in Fig. 2 for our analysis setup. The top panel 
shows the 2-field CDF measured on noiseless, simulated maps whose 
signal mimics the DES Y3 data used in this work (see Section 3.2 
for more details). In particular , the con vergence map has the same 
redshift distribution as the third and fourth tomographic bins. These 
are all Gaussian maps made by post-processing N -body products, as 
detailed below in Section 3.1.4 . The dashed lines (prediction) are 
4 For the 2-point function, there is no configuration information as the 
correlations depend on just distance, r . For N -point correlations of N > 
3, the geometry connecting the N points will contain additional information, 
though the exact information contained in this geometry remains an open 
question. 

Figure 2. Top: The 2-field CDFs averaged over 1000 noiseless, full-sky, 
Gaussian convergence maps. The n ( z) for the two fields corresponds to the 
third and fourth DES Y3 redshift bins. The solid lines switch to dotted when 
the CDF is outside the range [0.003, 0.997] (approximately corresponding 
to the 3 σ bounds). The black dashed lines show the predictions for the 
CDFs given the covariance of the two fields at a given smoothing scale, θ ; 
under the assumption the fields are Gaussian, the predictions must match 
the measurement. Bottom: The difference between the CDF measurement 
and Gaussian-field predictions, + P = P meas − P theory normalized by the 
uncertainty in the CDFs – where the uncertainty is cosmic variance and is the 
observational limit for measurement uncertainty – estimated from the 1000 
realizations. The grey band shows + / σ < 0.1. In all cases, the difference, 
+ P , is within this region and is completely negligible. 
consistent with the solid ones (measurement). The bottom panel 
shows the Gaussian model predictions are within 0.05 σ of the 
measurements, where the σ of the data vector is just cosmic variance 
and thus represents the observational limit in precision. 
3  DATA  
We first describe in Section 3.1 the different simulations used in 
our analysis. We then detail the DES Y3 data in Section 3.2 and 
in Section 3.3 we describe how the simulated maps are forward 
modelled to imitate the DES Y3 data. 

All maps used in this work are made with the HEALPIX convention 
of NSIDE = 1024. This corresponds to a pixel scale of 3.2 arcmin. 
The one exception are the products used from the COSMOGRID suite, 
described in Section 3.1.3 , which are NSIDE = 512. 
3.1 Simulations 
While the CDF is a statistic that can be used to summarize any 
scalar field, in this work we are specifically interested in the lensing 
convergence, κ , which is a line-of-sight integral of the density field, 
κ( ̂ n , z s ) = 3 

2 H 2 0 ,m 
c 2 

∫ z s 
0 δ( ̂ n , z j ) χj ( χs − χj ) 

a( z j ) χs d z j d χd z 
∣∣∣∣
z j , (9) 

where z s is the redshift of the ‘source’ plane/galaxies being lensed, ˆ n 
is the pointing direction on the sky, δ is the o v erdensity field, χ is the 
comoving distance from an observer to a given redshift, a is the scale 
factor, H 0 is the Hubble constant, ,m is the matter energy density 
fraction at z = 0, and c is the speed of light. We use the shorthand 
χ ( z s ) ≡ χ s and χ ( z j ) ≡ χ j . 

We model this convergence using full-sky density maps from dif- 
ferent N -body simulations, with each simulation serving a different 
purpose in this work. We detail these different simulations below. 
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Such simulations are uniquely suited for modelling these fields in 
the nonlinear re gime. F or quasi-linear and linear re gimes, analytic 
models can also be utilized (e.g. Barthelemy et al. 2023 ). 
3.1.1 Anbajagane23 simulations (A23) 
In this work, we use a suite of N -body simulations run with the 
PKDGRAV3 solver (Potter, Stadel & Teyssier 2017 ), where the suite 
has been specialized for performing Fisher forecasts for widefield 
surv e ys. This simulation suite, formally denoted the ULAGAM suite 
but referred to in this work by the abbreviation ‘A23’ for simplicity, 
is described in Anbajagane et al. ( 2023b ). We describe here just the 
essential features of the runs and the rele v ant data products used 
in this work. The A23 simulations are run in 1 h −1 Gpc boxes, 
starting at z = 127, with N = 512 3 dark matter particles. The 
initial conditions for all simulations are obtained from the QUIJOTE 
suite (Villaescusa-Navarro et al. 2020 ), and so the simulations are 
essentially light-cone runs of the QUIJOTE simulations specialized for 
widefield surv e y analyses. The original QUIJOTE suite was designed 
for studying the Fisher information of the nonlinear structure, as well 
as building emulators sampling different cosmological parameters, 
but the data products are inadequate for producing mock light-cones 
of the lensing/density field. These products include snapshots and 
halo catalogues at only five redshifts, which is too coarse a redshift 
resolution for building light-cones. Hence we have rerun a subset 
of these simulations to create accurate full-sky lensing and density 
maps. 

The suite contains simulations for computing the deri v ati ves 
of the lensing/density field with respect to multiple cosmological 
parameters, of which three are of interest to us – ,m , σ 8 , and w. For 
each parameter, the suite contains 100 full-sky simulations where the 
parameter takes values slightly higher than the fiducial, and another 
100 full-sky simulations where the value is lower than the fiducial. 
These two sets are used to compute the deri v ati ves of a summary 
statistic with respect to ,m , σ 8 , and w. The fiducial cosmology is 
from Planck Collaboration ( 2016a ), and the deri v ati ves are computed 
o v er differences of +,m = 0.02, +σ 8 = 0.03 and +w = 0.05, which 
are all the same settings as the QUIJOTE suite. The suite also has 2000 
simulations at the fiducial cosmology which are used to compute the 
covariance matrix for our data vector. Since each all-sky map can 
have 4 completely independent DES footprints, we have a total of 
8000 estimates of each summary statistic to use for the covariance, 
and 400 independent estimates of the deri v ati ve of the summary 
statistic with respect to each parameter. 

While the original QUIJOTE suite was run using GADGET3 (last 
described in Springel 2005 ), we use PKDGRAV3 which has already 
been employed e xtensiv ely to perform both theoretical studies of 
the lensing field as well as simulation-based analyses of data from 
different weak lensing surv e ys (Fluri et al. 2019 ; Gatti et al. 2022 ; 
Z ̈urcher et al. 2022 ). The PKDGRAV3 solver automatically builds 
light-cones as it solves the gravitational dynamics of the system 
forward in time, and so our final outputs are the light-cone shells –
i.e. HEALPIX maps – of the density field at different redshifts. The 
simulation box is tiled/repeated as needed to construct large enough 
volumes to then build full-sky light-cones to a given redshift. This 
repetition will bias any large-scale correlations in the light-cone, but 
in this work we only consider scales much smaller than the box size. 

The simulations have a total of 100 time-steps/shells, with 95 
shells between 0 < z < 10. This gives us a high redshift resolution 
of between +z ≈ 0.01 − 0.05 in that redshift range, with the exact 
value depending on the shell. The time-steps in this redshift range 

are spaced uniformly in proper time, t , and this corresponds to 
different z and comoving distances depending on the cosmology. 
These density shells are then post-processed via equation ( 9 ), with 
the integral over z j replaced by a simple discrete sum, to create 
a lensing convergence field at each source plane redshift, z s . This 
technique uses the Born approximation, which computes the total 
ef fecti ve deflection due to lensing but along an undeflected ray path. 
A more precise calculation uses full ray-tracing, which calculates 
these deflections while constantly deflecting/updating the ray path. 
Petri, Haiman & May ( 2017 ) found the Born approximation leads to 
differences of ! 5 per cent for the third moments statistic we will 
use in Section 4.2 , but this is subdominant to the current uncertainties 
of ≈ 15 per cent . 

Note we have not performed any resolution-convergence tests. 
The numerical requirements for this work are less stringent as we 
do not use the simulations for cosmological inference, but rather 
for (i) performing a Fisher analysis (Section 4.2 ), where the rele v ant 
quantities are relative and not absolute differences in the simulations 
as we vary cosmological parameters, and for (ii) computing 
covariance matrices for our systematic checks (Section 5 ). 
3.1.2 Takahashi17 simulations (T17) 
The Takahashi17 simulations (Takahashi et al. 2017 ) are a suite of 
N -body simulations run at a WMAP9 cosmology (Hinshaw et al. 
2013 ), and have a higher particle resolution than the A23 suite, with 
2048 3 particles. They, ho we ver, have lo wer redshift resolution than 
the A23 suite with 38 shells between 0 < z < 5. The shells are 
spaced equally in comoving distance, with widths of 150 Mpc h −1 , 
and this leads to redshift spacing of roughly δz ∼ 0.05 − 0.2. The 
T17 simulations have been used to model/test higher-order statistics 
in many works (Gatti et al. 2020 ; Secco et al. 2022b ; Gong et al. 
2023 ; Heydenreich et al. 2023 ; Munshi et al. 2023 ) for modelling, 
validation etc. and so we measure our statistics on these simulations 
for completeness. There are 108 independent full-sky maps, and that 
gives us a total of 432 DES Y3 cutouts. 
3.1.3 Cosmogrid 
COSMOGRID is a large suite of simulations that span the wCDM 
parameter space, including the sum of the neutrino masses, and are 
designed for simulation-based modelling of widefield surv e y data 
(Kacprzak et al. 2023 ). They were run using PKDGRAV3 , similar to the 
A23 simulations, and have a 900 Mpc /h box size with 832 3 particles. 
The simulations are run at 2500 points spanning the parameter space, 
with 7 realizations at each point. They have 140 time-steps, with 70 
equally spaced steps in proper time between 4 < z < 99, and another 
70 equally spaced steps in proper time between 0 < z < 4. The 
spacing is different in each of the two regimes. 

In this work, we use COSMOGRID to test the impact of baryons on 
the lensing CDF statistic. For this purpose, we use the fiducial runs 
which are 200 simulations run at fixed cosmology (Kacprzak et al. 
2023 , see their table 2). We use both the default N -body run as well 
as the run post-processed using the method of Schneider et al. ( 2019 ) 
so the density field looks like that of a hydrodynamic simulation with 
baryons. We discuss this more in Section 5.6 . While the raw maps 
are available at NSIDE = 2048, the maps post-processed to look 
like those of hydrodynamic simulations are provided only at NSIDE 
= 512 – which is lower than the fiducial resolution of NSIDE = 1024 
used in this work – and we discuss the impact of this in Section 5.6 
as well. 
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3.1.4 Gaussian maps 
For the purpose of validating non-Gaussian statistics, it is useful to 
have maps that are purely Gaussian – i.e. are represented entirely by 
a power spectrum – rather than ones that contain a realistic level of 
nonlinearity/non-Gaussianity. We use the power spectrum measured 
on the N -body maps, which contain the rele v ant nonlinearities, to then 
create consistent Gaussian maps. These maps will by construction 
have the same nonlinear power spectra as the original maps. The 
method employed for doing this is the same as Giannantonio et al. 
( 2008 , see their appendix A). It involves computing all auto- and 
cross-spectra between the rele v ant fields on the simulated maps, and 
then using these spectra with random phases to generate spherical 
harmonic modes a ℓ m that are appropriately correlated to reproduce 
the input auto- and cross-power spectra. The a ℓ m can then be 
transformed to obtain a real-space map. By definition, such maps 
will have no higher-order information and be described entirely by 
their power spectra. 

If we have two maps X and Y , and want to generate Gaussian maps 
that have the same auto and cross-power spectrum as X and Y , we 
obtain the a ℓ m via 
a X ℓm = ηX 

ℓm T XX = ηX 
ℓm √ 

C XX 
ℓ , 

a Y ℓm = ηX 
ℓm T XY + ηY 

ℓm T YY 
= ηX 

ℓm C XY 
ℓ √ 
C XX 

ℓ + ηY 
ℓm 
√ 

C YY 
ℓ − ( C XY 

ℓ ) 2 
C XX 

ℓ , (10) 
where ηℓ m is a complex random normal variable with zero mean and 
unit variance, and T ij are coefficients derived from the power spectra, 
with a general form given by, 
T ij = 

⎧ 
⎪ ⎪ ⎨ 
⎪ ⎪ ⎩ 
√ 

C ji − ∑ j−1 
k= 1 ( T ik ) 2 , if i = j ; 

1 
T jj (C ji − ∑ j−1 

k= 1 T ik T jk ), if i > j . (11) 
and equations ( 10 ) and ( 11 ) abo v e hav e been reproduced from Omori 
( 2022 , see Appendix C). 

For producing real maps, the m = 0 coefficients must be handled 
separately as they should have no imaginary component (see ap- 
pendix B in Sellentin et al. 2023 , for an example). Thus, we explicitly 
remo v e their imaginary component, by setting Im( a ℓ m = 0 ) = 0, and 
then rescale the coefficients as a ℓm = 0 → √ 

2 a ℓm = 0 . 5 From these final 
a ℓ m values we generate the Gaussian maps using the HEALPY routine, 
alm2map . 

Note that when we post-process the Gaussian maps to mimic the 
DES year 3 observations (see Section 3.3 ), only the true convergence 
field is Gaussian. The procedures applied to the field to post-process 
it – such as non-Gaussian noise, and surv e y masks of complicated 
geometries – will still induce a non-zero non-Gaussianity in the final 
simulated convergence field, but these non-Gaussianities will not be 
cosmological in origin. 

5 F ormally, our comple x variable satisfies ⟨ η⟩ = 0 and ⟨ ηη∗⟩ = 1. Thus, 
the real and imaginary components of η have variance 0.5 each. For the 
a ℓ m = 0 coefficients, we remo v e their imaginary component, and so their real 
component must be rescaled for the coefficients to have the intended unit 
variance. 

3.2 Dark Energy Survey Year 3 (DES Y3) 
The Dark Energy Surv e y (The Dark Energy Surv e y Collaboration 
2005 ) is an optical imaging surv e y of 5000 deg 2 of the southern 
sky, and is currently the largest precision photometric data set for 
cosmology. We use the data from the Year 3 data release (Sevilla- 
Noarbe et al. 2021 ), and in particular the galaxy shape catalogues. 
This is the same data set used for the fiducial 2-point correlation 
function shear results (Amon et al. 2022 ; Secco et al. 2022a ) and 
harmonic power spectrum results (Doux et al. 2022 ), as well as the 
higher-order statistics such as the moments (Gatti et al. 2022 ), mass 
aperture (Secco et al. 2022b ), and peaks (Z ̈urcher et al. 2022 ). In 
this work, the Y3 METACALIBRATION galaxy shape catalogue (Gatti 
et al. 2021 ) is used to make a map of the ellipticities, which is then 
converted into a convergence map via the Kaiser Squires method 
(Kaiser & Squires 1993 ). This is the same technique used in previous 
works on the mass map (Chang et al. 2018 ; Jeffrey et al. 2021 ). We 
perform all our measurements and tests on these maps. 

We also use the DES Y3 PSF and reserved star shape catalogues 
from Jarvis et al. ( 2021 ) to estimate the impact of PSF contributions 
to the signal observed by our statistic. The shape catalogues are used 
to make a PSF ‘mass map’ the same way the galaxy ellipticities are 
used, and this mass map is used to test the PSF contributions (see 
Section 5.3 for more detail). The same star shape catalogue was used 
to test PSF contributions for both the shear 2-point function (Gatti 
et al. 2021 ) and the 3-point function (Gatti et al. 2022 ; Secco et al. 
2022b ). 
3.3 Making simulated DES Y3-like mass maps 
We modify the simulated convergence/mass maps described in the 
abo v e sections to include all the rele v ant observ ational ef fects of 
the DES Y3 data. Note that the main purpose of the maps is 
both to perform realistic forecasts of the cosmological constraints 
(Section 4 ), and to validate the contribution of different systematics 
to the CDFs data vector (Section 5 ). In this work, we do not use 
these simulations to get cosmology constraints from the DES Y3 
data vector. 

To make the mock maps, we start from the true convergence field, 
κ , and use an inverse Kaiser–Squires (KS) transform (Kaiser & 
Squires 1993 ) to obtain the two shear components, γ 1, 2 . The shear is 
the true observable of a weak lensing surv e y giv en we measure galaxy 
shapes. The KS transform can be quickly performed in harmonic 
space as 
γ ℓm 

E + iγ ℓm 
B = −

√ 
( ℓ + 2)( ℓ − 1) 

ℓ ( ℓ + 1) 
(

κℓm 
E + iκℓm 

B ), (12) 
where the subscripts denote the E-mode and B-mode 
shear/convergence maps respectively. In the full-sky limit, where we 
have no survey masks, this is an exact expression. The technique has 
been validated for realistic data and found to have adequate accuracy 
(Chang et al. 2018 ; Jeffrey et al. 2021 ). 

Redshift distribution/bins: We use four tomographic redshift 
bins with source galaxy n ( z) distributions matching DES Y3 (Myles 
et al. 2021 ); the mean redshifts of these bins are z mean ∈ { 0.336, 
0.521, 0.741, 0.935 } . The true shear maps corresponding to each bin 
are obtained via a weighted sum of the shear maps in each redshift, 
where the weights are the n ( z) distributions. 

Noise realization: The noise is obtained using the DES Y3 
METACALIBRATION shape catalogue from Gatti et al. ( 2021 ), using the 
same technique as Gatti et al. ( 2022 ). The galaxy shapes are randomly 
rotated to remo v e all spatial correlations of the galaxy ellipticities, 
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thus removing any cosmological signal. We then place galaxies in 
pixels of a NSIDE = 1024 map, and compute the weighted average 
of the shear components in each pixel of the map, γ noise 

1 , 2 ( ̂ n ), using 
the weights provided in the catalog. We add this noise to the true 
shear maps, γ 1, 2 , separately for each tomographic redshift bin. This 
ensures the Y3 data and the simulated noise maps have the exact 
same variations in source/surv e y depth, and as we will show later, 
these variations create a strong non-Gaussian feature in the map 
(Section 5.2 ). 

Multiplicati v e bias: The measured galaxy shapes have a bias of 
the order 1 per cent that has been calibrated using large suites of 
image simulations of the DES Y3 surv e y (MacCrann et al. 2022 ). 
We include these bias terms, m , in the maps by simply multiplying 
the shears as γ 1, 2 → (1 + m ) γ 1, 2 . 

Mask: We only use map pixels that have at least one DES Y3 
galaxy in each of the four redshift bins. All pixels that do not fall into 
this category are discarded, and this defines the survey mask which 
is used in all further analyses, both for the simulations and for the 
DES Y3 data. 

Kaiser-Squir es r econstruction: F ollowing the steps abo v e, we 
obtain a spin-2 shear field, γ 1, 2 , per DES Y3 tomographic redshift 
bin, that has noise, multiplicative bias, and a mask applied to it. We 
then convert this back to a convergence field using equation ( 12 ) to 
obtain a noisy convergence map for each redshift bin. We only use the 
E-mode convergence map in our analysis. This map is then used as 
our final DES Y3-like map. Other, more sophisticated map-making 
techniques have been explored in the Y3 data as a replacement to KS 
reconstruction. A detailed description can be found in Jeffrey et al. 
( 2021 ). The KS method remains the simplest method that is also 
quick and accurate. The simplicity in compute time is a particularly 
attractive feature here as we make O(10 4 ) mock DES Y3 maps in 
this work. Note that the mass maps we generate from DES Y3 data 
in Section 3.2 are also created by making the shear maps γ 1, 2 and 
using the KS transformation to obtain the convergence field. 

In Section 5 , we will add other effects to the mock maps – such as 
PSFs, higher-order shear effects, and so on – to test their impact on 
the measured signal and quantify which effects can be safely ignored 
and which effects may require scale cuts on the data vector. We do not 
address the impact of intrinsic alignments in this work, as it is often 
treated as a systematic that can be modelled, and thus marginalized 
o v er, in a full cosmological analysis as opposed to an effect that 
contaminates the data vector and requires scale cuts. For example, 
Z ̈urcher et al. ( 2022 ) present a framework to do such marginalization 
assuming a simple intrinsic alignments model that can be forward- 
modelled in the simulations, while Hoffmann et al. ( 2022 ) presents 
a more advanced and physically moti v ated way to incorporate the 
same into high-resolution simulations. 
4  C D F  ANA LYSIS  SETUP  A N D  FISHER  
C O N S T R A I N T S  
We define the CDF data vector for DES Y3 in Section 4.1 and show 
the Fisher information in this CDFs data vector, as well as data 
vectors of other closely related statistics, in Section 4.2 . 
4.1 Defining CDFs data vector 
In this work, we measure all possible 1-field and 2-field CDFs for the 
four tomographic bins of DES Y3. This results in four 1-field ‘auto’ 
CDFs, and six 2-field ‘cross’ CDFs. We measure the CDFs across 
10 smoothing scales, spaced logarithmically between 3.2 ′ and 200 ′ . 
The choice of scales matches the moments-based DES Y3 analysis 

of Gatti et al. ( 2022 ). For each scale, we use 7 thresholds k ∈ { −
20, −6, −2, 0, 20, 6, 20 } × 10 −3 . These were chosen by looking at 
the variance of the field at the smallest and largest smoothing scale, 
and ensuring at least two thresholds did not asymptote to 0 or 1 at 
each scale. Using the Fisher forecast below we have checked that 
these thresholds probe most of the rele v ant information while being 
practical to implement, and we do not perform a more methodic study 
of the optimal threshold choices. We have, ho we ver, verified that 
remo ving an y one of the sev en thresholds leads to a fractional change 
in the constraints of 5 per cent to 10 per cent. We did not test adding 
more thresholds as the longer data vector leads to poorer numerical 
convergence, which then makes it difficult to robustly identify the 
increase in constraining power provided by the additional thresholds. 
One could also include the 3-field and 4-field CDFs in the data vector. 
We have verified that for the cosmology parameters considered here 
and for the choice of thresholds listed abo v e, including these 3-field 
and 4-field CDFs do not impro v e the constraints relative to the 1-field 
plus 2-field case. 

For all CDF measurements, we only focus on the range of scales 
where 0.05 < CDF( k , θ ) < 0.95, which excludes the ∼2 σ region 
of the distribution for each threshold k and smoothing scale θ . This 
remo v es measurements of the tails of the distribution where noise can 
cause spurious signals, and it also helps remo v e re gions where the 
CDF has asymptoted to constant values of 0 or 1. We have confirmed 
that using different choices, such as 3 σ or 4 σ cuts, leads to a fractional 
difference of < 5 per cent in the Fisher constraints. While the tails of 
the distribution are a sensitive probe of the non-Gaussian information, 
they are also much noisier and so the actual constraining power from 
this region of the distribution is not significant. The ‘bulk’ of the 
distribution – for example, the 1 σ to 2 σ region – is still quite sensitive 
to non-Gaussian features while being less susceptible to noise (e.g. 
Friedrich et al. 2020 ; Uhlemann et al. 2020 ). 

Our initial data vector has size N = 10z-bins × 10scales ×
7thresholds = 700 data points. The procedure abo v e of focusing 
only on 0.05 < CDF < 0.95 remo v es more data points as multiple 
thresholds reach asymptotic behaviour of CDF = 0 and CDF = 1 at 
large smoothing scales, especially for the lower redshift bins where 
the variance of the convergence field is lower. 6 In practice, the data 
vector for DES Y3-like maps has N = 460 points. Note that different 
thresholds reach these asymptotic values at different scales. Fig. 1 
illustrates this behaviour. 

Fig. 3 presents the data vector measured on the DES Y3 data as 
well as different simulations described in Section 3.1 . The 1-field 
(2-field) CDFs are shown in the diagonal (off-diagonal) panels. The 
coloured lines show P ( κθ > k ), the fraction of the map that exceeds 
a given threshold at a given smoothing scale, where each colour is a 
different threshold. At a fixed threshold, the probability is driven to 
0 or 1 with larger θ , and this behaviour is discussed in Section 2.1 . 

The threshold k = 0 is special as it is the mean of the 1D 
marginal distributions, and so its probability for the 1-field CDFs 
is P ≈ 0.5 across all scales. 7 In the 2-field case the probability for 
k = 0 is P ( κθ , 1 > 0, κθ , 2 > 0) ≈ 0.25 but has scale-dependent 
6 The density field has a higher variance at lower redshifts, but the lensing 
kernel has a lower amplitude for low-redshift sources and so the variance of 
the convergence field increases with redshift. 
7 Fig. 1 shows the true convergence field is log-normal on small scale, and 
thus has P ( κθ > 0) ̸= 0.5. Ho we ver, for noisy convergence fields, the 
noise dominates the cosmological signal on small scales and this noise 
is a symmetric distribution (the odd moments are zero, as discussed in 
Section 5.2 ). This restores the measurements to P ( κθ > 0) ≈ 0.5 as mentioned. 
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Figure 3. The fiducial data vector used in this work. Coloured solid lines are measurements of the CDFs on DES Y3 mass maps, dark dashed lines are from the 
A23 suite, dotted lines are from T17, and the dashed-dotted lines are from just shape noise maps with no cosmological signal. All simulated maps have the same 
DES Y3 shape noise field, surv e y mask, n ( z ) distribution, and are put through the same convergence reconstruction method. The panels show 1-field or 2-field 
CDFs for different bin combinations, with the specific combination denoted in the corner of each panel. There are clear differences between the noise-only 
CDFs and the DES Y3 data CDFs, particularly on larger scales and in higher redshift bins, which are the expected imprints for a cosmological signal in the 
lensing convergence maps. The A23 and T17 simulation predictions are a decent match to the Y3 data. 
deviations. This is because the correlation between the two fields 
alters this probability, and this correlation has a scale dependence, 
meaning the deviations from P ≈ 0.25 will also be scale-dependent as 
expected. 

We can also see a clear visual difference between the CDFs of 
the shape noise field (dashed-dotted) and those of the observed 
convergence field. In particular, the 1-field CDFs of the (3, 3) bin 
show the clearest difference at larger scales. The shape noise field has 
a notably smaller variance than the observed convergence field, and 
this causes the CDFs to asymptote to 0 or 1 more quickly compared 
to the CDFs of the data. We also find that the T17 predictions are 
quite similar to those of A23, and that the simulations are generally 
a decent match to the data. 
4.2 Fisher information 
We use the data vectors and covariance matrices constructed from 
the A23 simulations to perform a Fisher forecast for three wCDM 
parameters that are the target of current and future lensing surv e ys –
,m , σ 8 , and w 0 . We measure three broad types of summary statistics 
for this forecast: 

Gaussian Statistics , such as angular power spectra and the second 
moments of the field are well known for being sensitive to only the 
variance of the field, and the variance is often denoted the Gaussian 
part of the distribution. These statistics provide a good baseline for 
cosmological constraints obtained from current fiducial analyses, 
which primarily use such Gaussian statistics. The angular power 
spectra are measured in 20 bins in the range 10 < ℓ < 2048. The 
second moments are measured on the maps smoothed with a tophat 
across 10 scales that are logarithmically spaced in the range 3.2 ′ < 
θ < 200 ′ . 

Higher-order moments are a natural extension to the second 
moments where one averages higher powers of the fields, ⟨ κN ⟩ . The 
most common one is the third moment (or skewness), though the 
fourth moment (or kurtosis) has also been measured in lensing data 
before across a smaller range of angular scales 2 ′ < θ < 8 ′ (Van 
Waerbeke et al. 2013 ). In this work we measure the second and third 
moments in the range 3.2 ′ < θ < 200 ′ . 

Finally, the CDF is the non-Gaussian statistic that is the focus of 
this work. The data vector definition is described in Section 4.1 , and 
the measurement on DES Y3 data and some simulated mock maps 
is shown in Fig. 3 . 
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Note that the data vectors of these higher-order statistics tend to be 
long, and this is particularly an issue when computing the covariance 
numerically, as the number of realizations needed for the covariance 
increases with the data vector size. Ho we ver, the A23 simulation 
suite contains 8000 DES Y3-like maps, and this number is far larger 
than the length of any data vector computed in this work. 

We can now estimate the Fisher information with the standard 
approach, 
F ij = ∑ 

m,n 
d ̃  X m 
d θi (C −1 )

mn d ̃  X n 
d θj , (13) 

where d ̃  X m 
dθi is the mean deri v ati ve of point m in data vector X with 

respect to parameter θ i , where the mean is computed using 400 DES 
Y3 realizations (see Appendix C and Fig. C1 ). C −1 is the inverse of 
the numerically estimated covariance matrix and this is computed 
while accounting for the Hartlap factor (Hartlap, Simon & Schneider 
2007 ), 
C −1 → N sims − N data − 2 

N sims − 1 C −1 . (14) 
The Hartlap factor for all data vectors in this work is " 0.9. We 
hav e v erified that the Fisher information – for all the statistics we 
present – changes by < 1 per cent even if we halve the number 
of realizations used to compute the covariance matrix, from N = 
8000 → 4000. Similarly, halving the number of realizations used 
in computing the deri v ati ves, N = 400 → 200, changes the Fisher 
information by < 1 per cent for most statistics; the one exception is 
the CDFs, where the change in Fisher information is still at the 5–10 
per cent le vel. Ho we ver, a numerical uncertainty of this level does 
not change our qualitative interpretations below. 

Fig. 4 shows the Fisher information of each statistic. The parameter 
constraints are obtained by inverting the Fisher matrix of equation 
( 13 ). First, we see that the angular power spectra and the second 
moments have indistinguishable constraints, and this is the expected 
behaviour as one is simply a transformation of the other; given the C ℓ , 
one can predict the second moments exactly via an integral, and vice 
versa. 8 We also see that the CDFs measured on a Gaussian version 
of the simulated Y3-like fields, shown by the grey dotted line in the 
diagonal panels, have constraints very consistent with those of the 
power spectrum and second-moment. We show in Appendix B that 
the statistics used in this figure all follow a Gaussian likelihood even 
when measured on fully nonlinear, non-Gaussian fields – which is 
not al w ays the case for higher-order statistics as has been found in 
previous works (Park et al. 2022 ; Euclid Collaboration 2023 ). 

Including the third moment alongside the second moment im- 
pro v es the constraints significantly for all parameters. This is primar- 
ily because of the different de generac y directions for the different 
moments (Gatti et al. 2020 , 2022 ). 

The CDFs impro v e the F oM compared to the combination of 
second and third moments. This confirms that there is still usable 
information beyond the third moment in the convergence field, 
particularly in constraining ,m . Ho we ver, the modest improvement 
in going from the second + third moments to the CDFs (when 
compared to the increase from second moments to second + third 
moments) shows that there is less information from the fourth 
moment and beyond. We explicitly check the information content 
8 This assumes we measure both harmonic space and real space o v er a wide 
enough range of scales to perform the transform. The agreement between C ℓ 
and second moments in Fig. 4 then implies we chose an appropriately wide 
range of scales. 

Figure 4. The Fisher information of different statistics for σ 8 , ,m and w 0 
when using DES Y3-like data. The power spectra and second moment probe 
only the Gaussian information and their contours o v erlap completely (the 
peach contour is hidden underneath the purple). Adding the third moment 
significantly impro v es the constraints, and the CDF, which approximately 
contains all moments, impro v es upon that a non-ne gligible but diminishing 
amount. The de generac y direction of second + third moments and the CDFs 
is also visibly different, and combining them leads to a further 20–30 per cent 
impro v ement in constraints. The black dashed lines in the diagonal panels 
show the 1D constraints from CDFs measured on a purely Gaussian field, 
and these are consistent with those from the other Gaussian statistics. The 
constraints are tabulated in Table 1 . 
of the fourth and fifth moments later in Fig. 6 . We have separately 
verified that the constraining power of the moments approach agrees 
better with that of the CDFs if we include the fourth and fifth moments 
in the former. 

In general, we find that the CDFs do better than the combination 
of the second and third moments by around ≈ 20 per cent in 
the three parameters we focus on (Table 1 ). They are also more 
compact, meaning the data vector for the CDFs ( N = 460) is notably 
smaller than the data vectors for the higher-order moments – from 
progressively including the fourth moment ( N = 650) or fifth moment 
( N = 1210) – while still providing constraints that are better than 
using up to the fifth moment. Combining the CDFs with the second 
and third moments leads to constraints that are 20–30 per cent better 
than using just the second and third moments. We hav e v erified in 
Appendix B that the combined data vector also follows a Gaussian 
likelihood. 

We also use the Figure of Merit (FoM), which is defined as the 
inverse of the area/volume of the ellipsoid formed by the parameter 
constraints, 
FoM θ = 

√ 
1 

det ( F −1 ) θ , (15) 
where θ is the subset of parameters used to define the FoM and in 
our case is θ ∈ { ,m , σ 8 , w 0 } . The FoM metric provides a concise 
way to summarize the constraining power in a multidimensional 
parameter space. We list the FoM values of our data vectors in 
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Table 1. The Fisher information constraints for a joint analysis of ,m , σ 8 , 
and w 0 , the Figure of Merit [FoM, equation ( 15 )], and the size of the data 
v ectors. All F oM v alues are normalized by that of the Po wer Spectra. We 
show results from DES Y3 on Cosmic Shear (Amon et al. 2022 ; Secco et al. 
2022a ), second and third moments (Gatti et al. 2022 ), and Peaks (Z ̈urcher 
et al. 2022 ). For KiDS 1000, we show results from cosmic shear (Asgari 
et al. 2021b ) and a field-level analysis (Fluri et al. 2022 ). For HSC Y3, we 
show cosmic shear in real space (Li et al. 2023 ) and harmonic space (Dalal 
et al. 2023 ). The DES constraints from second + third moments use more 
conserv ati ve analysis choices (scale cuts, nuisance parameters, etc.) than the 
Fisher forecast here, resulting in the looser constraints. 
Analysis σ ( ,m ) σ ( σ 8 ) σ ( w 0 ) FoM N dof 

Fisher information (this work) 
Power spectra 0.037 0.064 0.24 1.00 200 
2nd moment 0.037 0.064 0.24 1.02 100 
2nd + 3rd moments 0.023 0.029 0.15 2.95 300 
CDFs 0.018 0.025 0.15 3.47 460 
CDFs + moments 0.016 0.021 0.12 5.01 760 

DES Y3 
Cosmic shear 0.051 0.083 –
2nd + 3rd moments 0.030 0.050 –
Peaks 0.060 0.099 –

KiDS-1000 
Cosmic shear 0.050 0.080 –
Field level 0.096 0.206 0.29 

HSC Y3 
Cosmic shear ( ξ±) 0.050 0.090 –
Cosmic shear ( C ℓ ) 0.065 0.120 –

Table 1 . Including the third moments impro v es the F oM, relativ e to 
the second moments, by a factor of 3. Including the CDFs impro v es 
it by 15 per cent, relative to the FoM of the combination of the second 
and third moments. Combining the CDFs with the second and third 
moments impro v es the latter’s FoM by 65 per cent and the former’s 
FoM by 40 per cent. 
5  L ENSING  CDFS  IN  D E S  Y 3  DATA  
We now discuss measurements of the CDF on the DES Y3 data in 
Section 5.1 , including the non-Gaussian aspect of the noise field in 
Section 5.2 , and then detail the contributions from different effects 
that can impact the inference process: PSFs in Section 5.3 , source 
clustering in Section 5.4 , higher-order shear effects in Section 5.5 
and baryonic effects in Section 5.6 . Finally, we discuss scale cuts in 
Section 5.7 . 
5.1 CDF measurement and signal-to-noise 
In Fig. 3 , we have already shown the DES Y3 measurements in solid 
lines, with the noise-only data vector in dotted grey lines and the 
A23 version of DES Y3-like map in the grey dashed lines. There is 
a clear cosmological signal as evidenced by the difference between 
the noise-only and DES Y3 measurements. Fig. 5 no w sho ws the 
signal-to-noise of the cosmological component for each data point 
in the data vector. This is computed as the residuals normalized 
by the uncertainty, S/N = | CDF Y3 − CDF N | / σ (CDF A23 ). We then 
also combine the statistical significance of the individual points, 
accounting for the covariance between them, and find a total signal- 
to-noise of S / N = 45 . 3. 

If the difference between the signal + noise and noise-only fields 
is a difference in only their even moments (e.g. variance and kurtosis) 

then for the 1-field CDFs (the ‘autocorrelation’ part) in Fig. 5 , the 
S/N of a positive threshold should be similar to that of a ne gativ e 
threshold of the same amplitude. We see some indication of this 
via visual inspection of the 1-field CDF of the third and fourth 
tomographic bin. We also see an asymmetry in the S/N, and this 
is a sign of an additional skewness caused by the signal field – for 
example, in the (0, 0) bin the amplitude of the yellow line ( k = 
0.006) is higher than the light blue one ( k = −0.006). Thus, we can 
also visually see indications that this statistic captures non-Gaussian 
signatures. 

Note that while we quote a signal-to-noise for the full set of 
residuals, we do not use it as a robust estimate of the amount 
of information. This is because the CDFs respond to noise and 
signal nonlinearly, 9 so a χ2 statistic is not the ideal way to quantify 
deviations if the deviations are large , which is the case between 
measurements of the noise-only maps and the noisy convergence 
maps. The interpretation of a χ2 in the large-deviation regime is 
unclear. Note that this is not a problem for our Fisher forecast as the 
residuals are small given the shifts in the cosmology parameters, as 
needed for the deri v ati ves, are also small. 

Given the results of Fig. 4 , where we find the CDFs are a useful 
and complementary statistic for constraining cosmology, and Fig. 
5 , where we find the CDFs in DES Y3 have a clear cosmological 
signal with signs of both the Gaussian and non-Gaussian part, we 
w ould lik e to now test the robustness of this statistic to the rele v ant 
observ ational ef fects in the Y3 weak lensing data. We will explore 
exactly this in the following subsections: 

(i) Naturally we would want to kno w ho w much of the cosmo- 
logical information seen in Fig. 5 is non-Gaussian – this requires a 
more precise understanding of the non-Gaussianity in the noise field 
(Section 5.2 ). 

(ii) The measured shape of galaxies will have some contributions 
from the PSF, which can then lead to non-cosmological spatial 
correlations of the galaxy ellipticities – we find this is negligible 
(Section 5.3 ). 

(iii) Source galaxies, which trace the density field, will be clus- 
tered and this can impact the observed convergence field – this has a 
noticeable impact (Section 5.4 ). 

(iv) The source clustering also leads to correlations between the 
shape noise field and the convergence field, as seen in the CDFs –
we can model this correlation ef fecti vely (Section 5.4 ). 

(v) The impact of ignoring higher-order shear effects when mod- 
elling the data vector – this is also negligible (Section 5.5 ). 

(vi) The effect of baryonic physics on our statistics – as expected 
from previous works, this is important (Section 5.6 ). 

(vii) Given the tests above, we detail the analysis choices one 
would need to make – under our current modelling ability – to 
robustly infer cosmology using the CDFs (Section 5.7 ). 

The impact from other common systematic factors, such as n ( z) 
uncertainties, multiplicative bias uncertainties, and intrinsic align- 
ments, is not considered here. These effects can all be marginalized 
in the inference and modelling process when obtaining cosmological 
constraints via the CDFs data vector. Such marginalization has 
already been performed for multiple different analyses of higher- 
order statistics (e.g. Gatti et al. 2022 ; Z ̈urcher et al. 2022 ). 

9 Even in the Gaussian case, the CDF heuristically goes as ∫ exp [1/ σ 2 ] dx , so 
changes in σ lead to highly nonlinear responses in the CDF. 
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Figure 5. The S/N of the DES Y3 data vector. There is a clear signal observed in the CDFs with S/N = 45.3 which is slightly higher than, but generally 
consistent with, the S/N of the 2-point analyses in DES (S/N = 40.2, see section IV of Secco et al. 2022b ). We show the S/N from individual bin combinations 
as text in the upper left panels. The upper right text in a panel denotes the bin combinations used in a certain CDF measurement. Note that the measurements 
are significantly correlated so one cannot trivially add the S/N of different bins together. 
5.2 Non-Gaussianity of shape noise fields 
To quantify the level of cosmological non-Gaussianity observed by 
the CDFs, one first needs to understand the non-Gaussianity in the 
noise field. This is particularly rele v ant for us as the CDFs are 
sensitive to all moments of the field, meaning all moments of the 
cosmological signal but also all moments of the noise field. For this 
particular investigation, we will switch to using the fields’ moments 
to summarize the noise field and cosmological field at different 
orders. We do this as the moments can easily isolate the signal from 
different orders, which helps disentangle the information contained 
in the CDFs. 

Fig. 6 shows the second to fifth moments of DES Y3 mass map, 
as well as the shape noise map, for the fourth tomographic bin. 
We find that there is a significant non-Gaussianity in the noise, 
particularly in the fourth moment and on small scales. Such a feature 
is naturally expected if the field of source galaxy number counts is 
not uniform. In the limit that the galaxy counts are uniform across 
the whole DES Y3 footprint, then ev ery pix el in the map has the 
same number of galaxies, and thus would have the same shape noise 
per pixel. In reality, the number of source galaxies per pixel varies 
across the footprint, either from surv e y observing conditions or from 
the intrinsic clustering of sources due to structure formation (see 
Section 5.4 or Fig. 9 ). In this case, the noise variance per pixel varies 
across the footprint, and summing the individual Gaussian noise 
distributions within the pixels results in a Gaussian mixture model 
that is symmetric about the x = 0 mean, but can have a significant 
non-Gaussianity in its even cumulants/moments starting from the 
kurtosis/fourth moment. This is also consistent with the fact that we 
detect no odd moments in the noise field. 

We also see in Fig. 6 that for DES Y3-like data the cosmological 
signal exists only in the third and fourth moments. At the fifth 
moment, the measurement is already consistent with no signal. The 
noise field has a third moment that is consistent with 0 across the 
full range of scales. For the fourth moment, ho we ver, the noise has 
a larger fourth moment than the cosmological signal. We can infer 
this by seeing that the fourth moment of the observed field is very 
similar to that of the noise-only field. 

The significance of the fourth moment in Fig. 6 highlights the 
need to accurately model the noise field, since almost all the non- 

Figure 6. The moments of the fourth tomographic bin, as a function of 
smoothing scales, for the DES Y3 map, the noise-only maps, and the A23 
maps. The fourth and fifth moments (bottom panels) have their disconnected 
components subtracted out. The bands show 1 σ uncertainties for the noise- 
only and A23 maps from the O(10 4 ) realizations used in this work. The 
moments are re-scaled by θa n as a visualization choice, where a n = n /2 and 
n ∈ { 2, 3, 4, 5 } is the moment order. The second and third moments have 
significant information beyond the noise. The fourth moment is significant on 
the smallest scales, but this contribution is entirely from the noise field since 
the blue/orange and green lines are almost perfectly o v erlaid. On larger scales, 
there is a weak, cosmological signal. The fifth moment is fully consistent with 
no signal across all scales. 

Gaussianity on small scales is coming from the shape noise field 
rather than the convergence field. Note that some previous works 
have also shown a strong detection of the fifth moment in the 
convergence field from data (Van Waerbeke et al. 2013 ), but they 
analyse the total fifth moment ⟨ κ5 ⟩ , whereas here we only consider 
the connected component, which is obtained as ⟨ κ5 ⟩ − 10 ⟨ κ2 ⟩⟨ κ3 ⟩ , 
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where ⟨ κ2 ⟩⟨ κ3 ⟩ is the disconnected component. 10 Accounting for this 
disconnected component is important when isolating the signal in the 
higher orders. For example, Gaussian distrib utions ha ve a non-zero 
fourth moment that must be accounted for – by subtracting out this 
‘disconnected’ piece – when measuring non-Gaussian features via 
the fourth moment. A similar scenario occurs for the fifth moment, 
where we subtract contributions from lower orders, namely the 
product of the second and third moments. 
5.3 PSF contributions 
So far we have assumed that spatial correlations between the 
measured galaxy shapes are a purely cosmological signal. Ho we ver, 
this is not guaranteed to be the case as the ellipticities from the PSF 
can have spatial correlations as well. These correlations have been 
studied e xtensiv ely for the 2-point functions (Jarvis et al. 2021 ), and 
the work from Gatti et al. ( 2021 ); Amon et al. ( 2022 ) have explicitly 
shown their contributions to the cosmological signal/constraints from 
2-point functions are negligible. This test has also been done at the 
3-point function level (Gatti et al. 2022 ; Secco et al. 2022b ) and 
found the contributions continue to be negligible. We now replicate 
this test at the CDF level, which will test the contribution of the PSFs 
to all higher-order moments . 

First, we detail the different PSF contributors to the galaxy shapes. 
The lensing convergence is obtained from the lensing shear maps, 
which in turn are obtained from individual galaxy ellipticities. The 
measured ellipticity of a single galaxy can be separated into distinct 
components, 
e obs = e gal + e shear + αe psf, true + β+ e psf, err + γ+T e psf, true , (16) 
where e gal is the intrinsic ellipticity of a given galaxy, e shear is 
the ellipticity modification due to weak lensing from foreground 
structure, e psf, true is the PSF ellipticity, + e psf, err is the PSF ellipticity 
error 11 , and + T e psf, true is the PSF size error 12 The first quantity of 
equation ( 16 ) is assumed to average to zero, ⟨ e gal ⟩ = 0, while the 
PSF components can still make a non-zero mean contribution. The 
coefficients, α, β, γ connect the PSF components to their effective 
contributions on the measured shear. The values of these coefficients 
can be measured directly from the data, and we use the values 
reported in Gatti et al. ( 2021 , see their table 2) of α = 0.001, β = 
1.09 and γ = −0.5. These PSF-based ellipticities can then be used 
to make a ‘PSF mass map’ in the same way galaxy ellipticities are 
used to make the DES Y3 mass map. In practice, we make three PSF 
maps for each of the three PSF components in equation ( 16 ) and sum 
them together in the end. 

We test the impact of PSFs on the CDFs by comparing mea- 
surements between two types of maps. The first type of map is 
the sum of the cosmological signal from the A23 simulations, the 
Y3-like shape noise field, and a PSF mass map for each of the 
three individual PSF terms of equation ( 16 ). The second type of 
map contains the same signal and noise fields as the first, but the 
PSF mass map is now created after rotating all the PSF-related 
10 The factor of 10 can be seen by writing all unique combinations of 
⟨ κ i κ j ⟩⟨ κk κ l κm ⟩ , which is the disconnected fifth moment, with i , j , k , l , m 
∈ { 0, 1, 2, 3 } . There are 10 unique combinations. 
11 This is defined as e psf, true − e psf , which is the difference between the 
ellipticity of a star (the ‘true’ PSF) and that of the PSF model e v aluated at the 
star’s position. 
12 This is defined as + T = ( T psf, true − T psf )/ T psf , the fractional difference 
between the size of a star (the ‘true’ PSF size) and the size of the PSF model 
e v aluated at the location of the star. 

ellipticities in random directions. Thus the first map preserves 
any PSF-based spatial correlation signals, whereas the second map 
remo v es such correlations. Therefore, the residuals between the CDF 
measurements on these two maps quantify the significance of the PSF 
ellipticities being spatially correlated, which in turn quantifies how 
much this non-cosmological spatial correlation will contaminate our 
signal. 13 Note that we add the same PSF mass map to all tomographic 
bins. We make 8000 DES Y3 maps of each type, using the 8000 
independent realizations in the A23 suite. All results are averages 
o v er these realizations. 

We show in Fig. 7 the significance of the residuals between these 
two maps as measured by the CDFs, averaged over 8000 realizations. 
The results show that the significance of the PSF contribution is below 
0.1 σ for all bins, scales, and thresholds. More importantly, we also 
show the cosmology signal seen by the CDFs – the same results from 
Fig. 5 – and find the PSF contribution is multiple orders of magnitude 
below the cosmological signal, which has a significance of 3 σ–10 σ . 
This also confirms that the PSF contributions at the DES Y3 data 
quality are negligible even beyond the 3-point information. 

Note that there are some dipping/valley features in both the dashed 
and solid lines, which are locations where the residuals switched 
between positive and negati ve v alues. 14 This crossing implies there 
are scales where the residuals from the cosmological signal, at a 
giv en conv ergence threshold, are zero. This does not coincide with 
the scales where the same zero crossing occurs for the PSFs. So in 
principle, for a given threshold, there can be certain scales where 
the PSFs contribute more than the cosmological signal. Ho we ver, 
this contribution would still be between 1 –10 per cent of the 
measurement uncertainty and thus is not a concern for cosmological 
constraints. 
5.4 Source clustering 
Surv e ys observ e the lensing field sampled at the location of source 
galaxies, and the ellipticities of these source galaxies are then used 
to infer the original lensing and convergence fields. The standard 
prediction for the convergence correlations has an additional correc- 
tion because the source galaxies do not uniformly sample the lensing 
field and are themselves clustered giv en the y trace the underlying, 
clustered density field. 

This clustering of source galaxies impacts the observ ed conv er- 
gence as follows: the n ( z) of a surv e y details the weighting of the 
convergence field at different redshifts, and is computed across the 
whole surv e y footprint. Ho we ver, the precise n ( z) v aries across the 
sk y. F or e xample, at redshift X in direction ̂  a , we can hav e a significant 
o v erdensity of structure. This means the n ( z) in the ˆ a direction has 
more galaxies at redshift X , and the n ( z) must be reweighted ac- 
cordingly. We will refer to this effect henceforth as source clustering 
(SC), as was first denoted in Bernardeau ( 1998 ), though this effect 
has also been called source–lens clustering (Hamana et al. 2002 ). 
The effect of source clustering is not present in the fiducial post- 
processing technique described in Section 3.3 . Ho we ver, it can be 
13 One could also compare maps with and without the PSF mass map. 
Ho we ver, this would simply show that the PSF shapes are elliptical, which is 
already a well-established fact (Jarvis et al. 2021 ). 
14 Such a feature is expected if the noise-only measurement has a certain shape 
to it. Other higher-order statistics, such as weak lensing peaks, also find nodes 
in their data vector where signal − noise = 0 (Z ̈urcher et al. 2022 , see 
their fig. 5). This does not imply a lack of any cosmological signal, and is 
simply a consequence of the different shapes of the observed data vector and 
noise-only data vector. 
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Figure 7. The difference in CDFs measured on tw o DES Y3-lik e simulated maps. One contains the Y3 PSF mass map, and the other contains a PSF mass map 
obtained after rotating all the PSF-based ellipticities. The contribution of any correlations from the PSF (solid lines) is below < 0.1 σ and is statistically negligible 
for all thresholds (different colours). It is also 2–3 orders of magnitude below the cosmological signal in DES Y3 (dotted lines). The total signal-to-noise of 
PSF-induced correlations is 0.3 σ . 
included through the prescription detailed in Gatti et al. ( 2023 , see 
their equation 5) and previously used in Gatti et al. ( 2020 ), 
γSC ( ̂ n ) = ∫ n ( z)(1 + b g δ( ̂ n , z)) γ ( ̂ n , z)d z ∫ 

n ( z)(1 + b g δ( ̂ n , z))d z , (17) 
where n ( z) is the source redshift distribution of the tomographic 
bin, averaged across the survey footprint, δ( ̂ n , z) and γ ( ̂ n , z) are the 
density and true shear maps at a given direction/pixel and redshift, 
and b g is the source galaxy bias. In simple terms, equation ( 17 ) 
modulates the n ( z) across the surv e y footprint by reweighting it in 
a direction-dependent way using the density fields. Note that Gatti 
et al. ( 2023 ) take b g = 1, which we follow in this work as well, 
and this is a fair approximation for source galaxies which tend to 
be mostly blue galaxies. We make 8000 DES Y3 maps with source 
clustering, using the 8000 independent realizations in the A23 suite. 
All results are averages over these realizations. 

In Fig. 8 , we show the difference in the CDF data vector measured 
on a convergence field with/without source clustering. Both sets 
of simulations have the same noise field, which is described in 
Section 3.3 . Thus, Fig. 8 presents the impact of source clustering 
on the cosmological signal. We find here that the impact on the 
CDFs is at most 0.1 − 0.5 σ , and it is generally 1–10 per cent 
that of the cosmological signal. Gatti et al. ( 2020 , 2023 ) show the 
impact of source clustering on the second and third moments is at the 
1 –10 per cent level as well. Krause et al. ( 2021 ) show that the source 
clustering effect on cosmic shear 2-point functions leads to negligible 
bias ( < 0.15 σ ) in cosmological parameter constraints, but this result 
is obtained after performing fiducial scale cuts which remo v e scales 
where the impact of source clustering is most prominent. Thus these 
findings are still consistent with our statement abo v e that source 
clustering is a 0.5 σ effect on small scales. 

We have thus far checked the impact of source clustering on the 
convergence field. Ho we ver, source clustering will also induce a 
correlation between the true convergence field and the shape noise 
field. Both the convergence field and the source galaxy number 
density field depend on the density field, and are thus correlated 
with one another. Given the noise depends inversely on the source 
galaxy number density as σκ ∝ 1 / √ 

n gal , the convergence field is 
anticorrelated with the noise field. For example, consider two redshift 
bins A and B, with z A > z B . If there is an o v erdensity in bin B, it 
would simultaneously induce a large convergence in bin A and a 
suppressed noise in bin B, causing an anticorrelation between the 
convergence field of bin A and the noise field of bin B. 

Gatti et al. ( 2023 ) describe a simple modification of the noise field 
that models this correlation, 
γSC , noise ( ̂ n ) = F ( ̂ n ) ( ∫ 

n ( z) dz ∫ 
n ( z)(1 + b g δ( ̂ n , z))d z 

)1 / 2 
γnoise ( ̂ n ) , (18) 

where the definitions are the same as equation ( 17 ), with γnoise ( ̂ n ) as 
the shape noise field, which is obtained as described in Section 3.3 ; 
by using the DES Y3 galaxy shape catalog, and randomly rotating 
the galaxy orientations. The density factor in equation ( 18 ) varies 
the number counts of source galaxies across the sky according to the 
underlying density field. This is the same source clustering effect 
discussed abo v e but we now consider its effect on the shear noise 
field, γ noise , rather than the true shear field, γ . As a consequence of 
the density-based reweighting, the even moments (variance, kurtosis 
etc.) of the modified noise field, γSC , noise ( ̂ n ), are slightly inconsistent 
with those of the original noise field γnoise ( ̂ n ). The factor F ( ̂ n ) 
is implemented as a correction for this inconsistency [see section 
3 of Gatti et al. ( 2023 ) for a more detailed discussion], and is 
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Figure 8. The difference in CDFs measured on two DES Y3-like simulated maps, where one map contains source clustering and the other does not. The 
signal from source clustering (solid lines) is at 0.1 σ−0.5 σ and generally contributes ≈ 5 –10 per cent to the total signal. The total signal-to-noise of source 
clustering-induced residuals is 1.3 σ . 
modelled as 
F ( ̂ n ) = A √ 

1 − Bσ 2 ( ̂ n ) , (19) 
where σ 2 ( ̂ n ) = γ 2 

noise , 1 ( ̂ n ) + γ 2 
noise , 2 ( ̂ n ) is the shear variance, summed 

o v er both components, in a giv en direction/pix el and for a given noise 
realization. The coefficients A and B are calibrated in Gatti et al. 
( 2023 ) for the four DES Y3 bins using the COSMOGRID simulations, 
with values A ∈ { 0.97, 0.985, 0.990, 0.995 } and B ∈ { 0.1, 0.05, 
0.035, 0.035 } . We have verified that the results of Fig. 9 below are 
insensitive to the inclusion/exclusion of F ( ̂ n ) in equation ( 18 ), which 
is expected as they focus on the correlations between fields, rather 
than the covariance between them. 

The correction to the noise field in equation ( 18 ) is known to 
impro v e the modelling of the third moments, which are sensitive 
to such convergence–shape noise correlations (Gatti et al. 2023 ). 
We post-process our simulations using equations ( 17 ) and ( 18 ) to 
obtain convergence maps with such correlations. We then quantify 
the statistical significance of these correlations, as determined 
by the CDFs measured on these maps. The CDFs are a useful 
tool here as they inherit the properties of the kNN distributions, 
which are the discrete-field version of the CDFs and are a higher 
signal-to-noise estimator than the 2-point function for determining 
whether two fields are correlated (Banerjee & Abel 2021b , see their 
fig. 5). 

Fig. 9 shows the convergence–shape noise correlation as seen in 
the CDFs. Instead of the 2-field CDFs, we show the cross-component 
defined in equation ( 6 ) and normalize it by the uncertainty in these 
correlations, estimated across 1000 DES Y3 realizations. Thus, the 
presented quantity can be interpreted as a significance of correlation. 
In the left panels are the results from DES Y3 and from the A23 
simulations with source clustering. The DES Y3 result is the mean 
data vector from correlating the same DES Y3 mass map with 
1000 different noise maps. The right panels show A23 simulations 

without source clustering, and finally the A23 simulations with purely 
Gaussian noise and no surv e y mask. 

The exclusion of source clustering leads to a simulated model that 
is clearly different from what is observed in the data, and including 
source clustering brings the model and data into good agreement. 
The right panels of Fig. 9 show that even if we do not include 
source clustering, there are correlations between the simulated mock 
maps. Such correlations are expected due to the surv e y observing 
properties. The first such cause is surv e y depth variations, which 
modulate the source galaxy number density across the sky in the 
same way for all noise realizations and tomographic bins. The second 
is the presence of a common surv e y mask when we perform the KS 
reconstruction, which induces features in the map that are correlated 
across independent noise realizations given they all share the same 
mask. The black dashed lines in the right panels of Fig. 9 confirm that 
a full-sky analysis with Gaussian shape noise and no surv e y mask –
which by construction has remo v ed the surv e y property-based effects 
discussed abo v e – has no conv ergence–shape noise correlations. 

Focusing on the top row of the left panels, we see correlations mea- 
sured by positive thresholds flip signs depending on the tomographic 
bin of the convergence field (indexed as A S ). In the absence of source 
clustering, the KS inversion artefacts cause a positive correlation 
between the noise and signal field. As we consider convergence fields 
of higher redshift bins (leaving the noise field fixed at a particular 
redshift bin), source clustering effects grow in amplitude and result 
in a 3-point anticorrelation between the noise and convergence field 
(Gatti et al. 2022 , see their Fig. 14). This causes measurements from 
positiv e (ne gativ e) thresholds to take ne gativ e (positiv e) ψ values. 
The threshold-dependent differences in the sign of ψ highlight the 
non-Gaussian nature of the induced correlations. 

Fig. 9 also shows that convergence–shape noise correlations are 
statistically significant in the data vector and so are a necessary 
component in forward-modelling the CDFs. This is also true of 
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Figure 9. The correlation between two fields, which are the observed convergence field – either from DES Y3 data or forward modelled from simulations –
and the simulated Y3-like shape noise fields. We find a significant detection of correlation. The panels show the index of the tomographic bin for the observed 
field (S) and the shape noise field (N). The left panels show the DES Y3 data and the A23 simulations with source clustering. The right panels show a subset 
of correlations for two other types of simulations – one with no source clustering, and one with Gaussian noise and no surv e y mask. The simulations with no 
source clustering show a clear difference from those with it included. Howev er, ev en without source clustering, the observed field is correlated with the noise 
field, and this is due to performing KS reconstruction with a surv e y mask. We also measure the CDFs on full sky maps that use Gaussian noise and no surv e y 
mask. In this regime, the signal and noise fields are completely uncorrelated as expected. The total signal-to-noise of the convergence–shape noise correlation, 
computed as the difference between the ‘With SC’ and ‘No SC’ models, is 13 σ . The ‘With SC’ model is within 3.5 σ of the Y3 measurements. 
other higher-order statistics. The analysis of Gatti et al. ( 2022 ) 
found correlations between the signal and noise field but was 
able to denoise the measurements to remo v e this effect. This was 
possible as they used the third moments of the field as their statistic, 
⟨ κ3 

obs ⟩ = ⟨ ( κsignal + κnoise ) 3 ⟩ , and so the noise-dependent terms – such 
as ⟨ κsignal κ2 

noise ⟩ – that contributed to the measured moments, ⟨ κ3 
obs ⟩ , 

could be subtracted exactly. This can be done for moments of any 
order. For statistics like the CDFs, ho we ver, the data vectors depend 
on the noise in a nonlinear way, and a simple subtraction will not 
remo v e all convergence–shape noise correlations. In this case, we 
are reliant on an accurate forward model of the shape noise field. 15 
5.5 Higher-order shear effects 
In equation ( 16 ), the contribution to the measured ellipticity from the 
cosmological component is written as e shear . This is then connected 
to the shear field, γ , as e shear = γ /(1 − κ). In the limit of κ ≪ 1, 
this is approximated to leading order as γ /(1 − κ) ≈ γ . Thus, the 
measured ellipticities are assumed to directly trace the shear γ , and 
we ignore higher-order terms, the first of which is γ κ . 16 The effect 
of this approximation is generally known to be subdominant to the 
cosmological signal (Krause & Hirata 2010 ). The specific impact on 
the second and third moments measured in DES Y3 is also known to 
be negligible, especially when compared to the uncertainties in the 
15 It may still be possible to approximately denoise the CDFs, but we have 
not explored this possibility in this work. 
16 This can be seen by expanding the reduced shear expression as a Taylor 
series around κ = 0, which gives γ /(1 − κ) ∼ γ (1 + κ + κ2 /2 + . . . ). 

Y3 measurements and to other effects such as baryon imprints (Gatti 
et al. 2020 , see their fig. 4). 

In Fig. 10 , we show the residuals between CDF measurements 
made on a mass map where the input true shear field is just γ and a 
map where the input field is actually γ /(1 − κ). Note that by using 
γ /(1 − κ) rather than the approximation γ (1 + κ + . . . ) we test 
the impact of ignoring all higher-order terms in the reduced shear 
approximation, rather than just the leading order correction, γ κ . 
We then perform the full post-processing pipeline with both map 
versions. We make 8000 DES Y3 maps for both versions, and our 
results are averages over all realizations. The differences at the data 
v ector lev el are within < 0.1 σ and are subdominant to the signal 
by multiple orders of magnitude. The impact of this approximation 
increases with redshift, which is expected as the variance of the κ
field increases for source galaxies at higher redshift, and so ignoring 
the 1/(1 − κ) factor has a larger significance. 

This result also provides a validation for magnification effects, 
which at leading order in κ modify the shear as γ → γ (1 + q κ), where 
q is some O(1) constant. As was the case with the PSF contributions, 
these effects have been quantified up to the 3-point function for DES 
Y3 (Gatti et al. 2020 ), and we have now implicitly extended it to 
include higher-order moments through our focus on the CDFs. 
5.6 Baryon imprints 
Finally, we check the impact of baryon modelling on this statistic. 
Over the past decades, it has been well-established that galaxy 
formation processes like gas cooling and AGN (Active Galactic 
Nuclei) feedback can alter the distribution of total matter within 
and around haloes (Blumenthal et al. 1986 ; Gnedin et al. 2004 ; 
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Figure 10. The difference in CDFs depending on whether or not we account for reduced shear effects, + P = P RS − P fid . The high-redshift bins, especially 
when looking at the 2-field CDFs, see the largest impact given source planes at high redshift have larger values of κ and thus the 1/(1 − κ) term for the reduced 
shear is larger. The deviations are still within ! 0.1 σ in all cases and are 2–3 orders of magnitude below the cosmological signal. The total signal-to-noise of 
reduced shear-induced residuals is 0.3 σ . 
Duffy et al. 2010 ), which consequently will impact the weak 
lensing signal (Chisari et al. 2018 ). These baryonic imprints have 
a strong mass/redshift dependence (Lo v ell et al. 2018 ; Beltz- 
Mohrmann & Berlind 2021 ; Anbajagane, Evrard & Farahi 2022a ) 
and this mass/redshift-dependent impact on the halo potential can 
vary across simulation prescriptions (e.g. Shao, Anbajagane & Chang 
2022 ; Anbajagane et al. 2022b ). 

Recently, Schneider et al. ( 2019 ) implemented a halo-based model 
that can alter N -body simulations – which are cheaper to run than 
full hydrodynamic simulations with galaxy formation – to then 
model the baryon imprints on the density/convergence field. This 
technique provides a higher-level, approximate galaxy formation 
model that depends only on ‘macro’ properties like the halo baryon 
fraction, the baryon density profiles, dark matter density profile 
etc. and the flexibility manifesting from the method’s approximate 
nature is particularly useful both for matching the range of halo 
property scaling relations found in the latest hydro simulations (e.g. 
Anbajagane et al. 2020 , 2022b ; Lim et al. 2021 ; Cui et al. 2022 ; 
Lee et al. 2022 ; Stiskalek et al. 2022 ; Anbajagane, Evrard & Farahi 
2022a ) and for handling differences between the evolution of gas in 
observations and simulations as found in different analyses (e.g. Hill 
et al. 2018 ; Amodeo et al. 2021 ; P ande y et al. 2022 ; Anbajagane 
et al. 2022c , 2023a ). 

In this section, we once again compute residuals between CDFs 
measured on maps from N -body simulations and maps that have 
been ‘baryonified’. Both sets of maps used in this section come from 
the COSMOGRID suite, and the baryonification was performed with 
the same model as Schneider et al. ( 2019 ). The parameters of the 
baryonification model were all given their default values, except for 
some of the gas model parameters which we given values of M c = 
13.82 and ν = 0. These parameters are part of a reparametrization 

done in Fluri et al. ( 2022 ) and control the gas density profiles’ slopes. 
We take the true convergence fields from COSMOGRID and post- 
process them using the same pipeline described in Section 3.3 . We 
make 800 DES Y3 cutouts from each set of maps. All results are 
av erages o v er these realizations. 

Fig. 11 shows the residuals due to baryonic imprints on DES 
Y3-like mock maps. In all cases, the baryon impacts are below 1 σ . 
Ho we ver, note that the maps from COSMOGRID have a resolution of 
NSIDE = 512, and thus the pixel resolution is 6.4 ′ arcmin, instead of 
the 3.2 ′ arcmin minimum scale used in this work. Since the baryons’ 
dominant contribution is on smaller scales, it is likely that the true 
residuals at 3 ′ < θ < 6.4 ′ are actually larger than what is presented 
in Fig. 11 but are currently suppressed due to the pixel resolution 
of the COSMOGRID maps. Nevertheless, we can state that the baryon 
imprints for θ > 10 ′ have a significance that is approximately 1–2 
orders of magnitude below the cosmological signal. 

The impact is also highest for the extreme thresholds in the CDF –
the k = −0.006 and k = −0.020 thresholds – and this has been seen in 
previous, theoretical works. Osato, Liu & Haiman ( 2021 ) compared 
hydrodynamic simulations with a dark matter-only counterpart and 
showed the lensing PDF can be impacted by more than 10 per cent at 
the tails of the distribution (see their fig. 5). Sunseri, Li & Liu ( 2023 ) 
used the same set of simulations to show that the impact of baryons 
on haloes, filaments, and voids af fects dif ferent parts of the matter 
PDF. 
5.7 Scale cuts 
In the abo v e sections, we hav e determined the impact of different 
systematics and modelling approximations on the CDF data vector. 
Some systematics are negligible for the whole data vector, such 
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Figure 11. The difference in CDFs measured on dark matter-only (DMO) simulations and ‘baryonified’ DMO simulations. As expected, baryon imprints are 
a significant effect on the data v ector. The gre y band shows the scales below θ < 6.4 ′ , which is the pixel resolution of the COSMOGRID DES Y3 maps, and is 
a factor of 2 larger than the other maps we consider in this work. Thus, the baryon effects we estimate below that scale are an underestimate of the true effect 
given the pixel resolution will suppress these effects. The total signal-to-noise of baryon imprints is 3.5 σ , though this is a lower bound given the suppression 
due to map resolution. 
as the PSFs (Section 5.3 ) and the reduced shear approximation 
(Section 5.5 ), while others are prominent at a subset of scales, such 
as baryon imprints (Section 5.6 ). Thus, using the CDFs to robustly 
infer cosmological constraints will require us to discard some parts 
of the fiducial data vector – namely the parts where the amplitude of 
the systematics is high – and obtain constraints using the remaining 
fraction of the data vector. 

Amongst all the systematic effects considered in this work, the 
most significant are the baryon imprints (Fig. 11 ) and the source 
clustering effect (Fig. 8 ). These will determine how the data vector 
is truncated. Our scale cuts are determined by requiring that the 
parameter bias due to unmodelled systematic effects is below a 
certain threshold. We compute this bias using the extended Fisher 
formalism of Amara & R ́efr ́egier ( 2008 ) and Asgari et al. ( 2021a ), 
+ bias 

p = ∑ 
q 

(
F −1 )

pq d ̃  X fid 
d p C −1 (˜ X biased − ˜ X fid ) , (20) 

where both p and q are inde x es o v er the cosmological parameters 
of interest. The average bias in the data vector, ˜ X biased − ˜ X fid , is 
a quantity we have already computed and presented in the above 
subsections. We then summarize this bias-per-parameter, + bias 

p , into 
a bias for the full N-D posterior as 
δ = √ ∑ 

p,q + bias 
p ( C −1 ) pq + bias 

q , (21) 
where C is the covariance of the parameters, and so C −1 is just the 
Fisher matrix, F . Our procedure for scale cuts is simply removing 
data points until δ < X , where X is some chosen threshold. We will 
use X ∈ { 0.3, 0.2, 0.1 } . The choice X = 0.3 matches the tests done 
in the main methodology pipeline for DES Y3 (e.g. Krause et al. 

2021 ; Amon et al. 2022 ; Secco et al. 2022a ) while the other values 
are chosen to explore more stringent cuts that could be reflective of 
Stage IV surv e ys. Note that this threshold, X , is somewhat arbitrary, 
but that is not a concern as our goal is to see how the scale-cuts for the 
CDFs compare to those for the moments; as long as the same choices 
are applied across both statistics, the arbitrariness of the choices is 
not rele v ant. 

The other component we must decide is how to determine and 
discard data points to achieve the condition δ < X , as there is 
significant freedom in doing so. We could throw away all data points 
for every bin/threshold corresponding to aperture scales below a 
certain chosen v alue. Ho we ver, the choice of a fixed scale threshold 
is suboptimal as the impact of systematics at a chosen scale varies 
across bins and thresholds (as seen in any of the Figures abo v e). 
Thus, our choice here is a scale cut done bin-by-bin (and threshold- 
by-threshold, in the case of CDFs) and follows the approach of Amon 
et al. ( 2022 ); Secco et al. ( 2022a ). We compute the chi-squared of 
a given effect in a specific tomographic bin combination (and also 
specific threshold, in the case of CDFs), and remo v e the data points 
corresponding to the smallest scales until we satisfy the relation, 
( ̃  X sub , biased − ˜ X sub , fid ) C −1 

sub ( ̃  X sub , biased − ˜ X sub , fid ) T < +χ2 
thresh , (22) 

where ˜ X sub , biased and ˜ X sub , fid are subsets of the data vectors used in 
equation ( 20 ), where the subsets correspond to specific tomographic 
bin combination (and threshold, when using CDFs), C sub is the 
covariance matrix of the subset, and +χ2 

thresh is the maximum change 
in χ2 we allow for the full data vector. In practice, we vary +χ2 

thresh 
until the parameter bias goes below our required threshold. The data 
points that have been removed to achieve this condition define the 
scale cuts. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/4/5530/7310886 by guest on 10 D
ecem

ber 2024



5548 DES Collaboration 

MNRAS 526, 5530–5554 (2023) 

Table 2. The Fisher information constraints presented in this work for CDFs 
measured on simulations and for a joint analysis of ,m , σ 8 , and w 0 , but 
after implementing various types of scale cuts. From top to bottom, we do (i) 
simple, fixed angular scale cuts, and then cuts based on (ii) baryonic imprints 
and (iii) source clustering. The cuts are made by removing data points until 
δ < X , where δ – defined in equation ( 21 ) – is the total parameter bias in a 
full N-D parameter space. We show the size of the modified data vector in 
the rightmost column. The FoM is quoted relative to the FoM of the CDFs 
constraints with no scale cuts. 
Scale Cut σ ( ,m ) σ ( σ 8 ) σ ( w 0 ) FoM N dof 

Fixed angular cuts 
θ > 3 ′ 0.018 0.025 0.15 1.0 460 
θ > 10 ′ 0.022 0.032 0.18 0.85 410 
θ > 20 ′ 0.025 0.035 0.21 0.59 270 

Baryonic imprints cuts 
δ < 0.3 0.033 0.053 0.33 0.14 129 
δ < 0.2 0.035 0.061 0.39 0.10 100 
δ < 0.1 0.036 0.062 0.42 0.08 92 

Source clustering cuts 
δ < 0.3 0.038 0.063 0.44 0.07 84 
δ < 0.2 0.038 0.078 0.57 0.05 71 
δ < 0.1 0.042 0.109 0.82 0.03 34 

Once the scale-cuts have been defined, we recompute the Fisher 
constraints using the truncated data vector; the results for the CDFs 
are tabulated in Table 2 . The table also shows constraints from 
generic scale cuts, where we set a fixed minimum angular scale for 
all tomographic bins and all thresholds. For the fixed angular scale 
cuts of 3.2 ′ , 10 ′ , 20 ′ , baryonic effects cause a parameter bias of δ = 
1.2, 0.6, and 0.3, respecti vely. Cutting all scales belo w 20 ′ causes 
a fractional change of ≈ 30 per cent in the constraints. At these 
scale cuts, the CDFs are comparable to combining second and third 
Moments, and we have verified that combining the CDFs with the 

moments still leads to a 30 per cent impro v ement in the constraints. 
The PSFs and reduced shear effect have no impact on scale cuts so we 
do not show them here. Note that, as was discussed in Section 5.6 , the 
impact of baryonic effects is an underestimate given the baryonified 
COSMOGRID maps used to estimate the effect have a 6.4 ′ minimum 
resolution scale. Baryon effects are more impactful at smaller scales 
and will be more than 10 per cent of the signal if the resolution limit 
is corrected. Ho we ver, for our goal of consistently comparing the 
impacts on CDFs and Moments, this suppression is not a limiting 
factor. 

Table 2 shows that baryon imprints and source clustering both 
cause notable differences in the parameter constraints, especially in 
σ 8 and w 0 . The FoM in the 3D parameter space drops by a factor 
of nearly 10 after implementing these scale cuts, which highlights 
the growing need to impro v e modelling of these effects instead of 
robustly trimming the data vector to be insensitive to the effects. 
Note that while the impact of source clustering on determining the 
scale cuts is larger than that of the baryonic imprints – which is 
counter to the standard expectation – this is once again because of 
the suppression of baryon effects on the small scales due to the 
resolution scale of the COSMOGRID data products. 

Fig. 12 and Table 3 also show the results from defining scale 
cuts using both baryon imprints and source clustering, and doing 
so for CDFs and for the second and third moments. This provides 
a self-consistent reference to compare the two data vectors. The 
combination of scale cuts is done by looking at both baryonic effects 
and source clustering, and at each data point we pick the amplitude 
of the effect that is highest, i.e. E = max | Baryons, SC | for each data 
point. We find that the moments’ constraints are comparable to the 
CDFs’ after these scale cuts. Once we remo v e w 0 from the analysis 
the scale cuts cause only a factor of 3 degradation of the FoM as 
opposed to the factor of 10 if we include w 0 . 

Generally, one may expect the CDFs to be less sensitive to these 
effects than the moments; reduced shear, source clustering, and 
baryon imprints are all effects that grow with the amplitude of the 

Figure 12. The Fisher constraints from CDFs (left) and second + third moments (right) measured on simulations. We present four cases, where we either have 
no scale cuts or cut the data vector so the parameter bias in the ,m − σ 8 − w 0 contour is below a certain value; see equation ( 21 ). The CDFs and the moments 
have comparable constraints, which are denoted in Table 3 . 
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Table 3. The Fisher information constraints presented in this work for a joint 
analysis of either ,m , σ 8 , and w 0 (top two) or just ,m and σ 8 (bottom two), 
but after implementing scale cuts to reduce the parameter bias. We show the 
constraints, after scale cuts, for both the CDFs and for the combination of 
second and third moments. We show the size of the modified data vector in 
the rightmost column. The FoM is quoted relative to the FoM of the CDFs 
constraints with no scale cuts. 
Scale Cut σ ( ,m ) σ ( σ 8 ) σ ( w 0 ) FOM N dof 

CDFs, All cuts ( ,m , σ 8 , w 0 ) 
δCDF < 0 . 3 0.037 0.063 0.44 0.07 84 
δCDF < 0 . 2 0.037 0.074 0.52 0.05 75 
δCDF < 0 . 1 0.040 0.102 0.75 0.03 49 

2nd and 3rd moments, all cuts ( ,m , σ 8 , w 0 ) 
δMoments < 0.3 0.037 0.050 0.34 0.13 109 
δMoments < 0.2 0.040 0.076 0.50 0.06 86 
δMoments < 0.1 0.045 0.105 0.74 0.03 58 

CDFs, all cuts ( ,m , σ 8 ) 
δCDF < 0 . 3 0.033 0.050 – 0.27 99 
δCDF < 0 . 2 0.035 0.053 – 0.20 79 
δCDF < 0 . 1 0.038 0.057 – 0.16 52 

2nd and 3rd moments, all cuts ( ,m , σ 8 ) 
δMoments < 0.3 0.031 0.044 – 0.34 118 
δMoments < 0.2 0.036 0.051 – 0.22 91 
δMoments < 0.1 0.044 0.058 – 0.12 4 
density field and/or the convergence field. This means they impact 
the tails of the density/lensing distribution the most and leave the 
‘bulk’ of the PDF – roughly the 68 per cent or the 95 per cent region 
centred around the median – relatively unaffected. The moments 
are defined as an integral over the whole distribution and so cannot 
isolate just parts of it. The CDFs on the other hand can perform such 
an isolation. They fundamentally only probe whether or not a pixel’s 
conv ergence is abo v e a giv en threshold; thus, if the convergence is 
well abo v e/below the threshold, the measurement of the CDFs is 
unaffected by that pixel value shifting around due to various effects. 
F or e xample, the ne gativ e thresholds k < 0 will be unaffected by 
the baryon imprints in massive haloes, as massive haloes exist in 
κ > 0 regions and baryon imprints reduce the κ value but al w ays 
keep it positive, and so the convergence around haloes will al w ays 
be abo v e the k < 0. Of course, if the κ values of interest are near 
a threshold, then any shifts will have a stronger impact on the CDF 
measurements at that threshold. This argument also suggests there 
are a particular choice of thresholds that balance constraining power 
while alleviating such systematics. We have not explored such an 
optimal selection. In Table 3 , we also redo the scale cuts but now 
leave out w 0 when computing the total parameter bias, as this is a 
closer match to the procedures used in Stage III surv e ys (e.g. Krause 
et al. 2021 ). Our qualitative findings remain the same even in this 
case. 
6  C O N C L U S I O N S  
In this work, we have explored the use of the Cumulative Distribution 
Functions (CDFs) of the convergence field as a summary statistic for 
e xtracting cosmological information, dra wing on the dev elopment 
of the kNN distributions for the discrete fields. The CDFs are a 
convenient, succinct summary of the field that approximately capture 
all higher moments of the field in a significantly shorter data vector 
that is also quicker to compute. We explore the theoretical advantages 
of using these CDFs and check their sensitivity to the rele v ant 
practical challenges in extracting robust cosmology constraints from 
Y3-like data. The conclusions of this work are as follows: 

(i) For scales of 3 ′ < θ < 200 ′ and tomographic bins of DES 
Y3, the CDFs have better constraints on ,m , σ 8 and w when 
compared to those from the combination of both second and third 
Moments (Fig. 4 ). This impro v ement is modest, but the CDFs still 
have a slightly different degeneracy direction to the moments, and 
combining the CDFs and moments leads to the constraints improving 
by 20 –30 per cent . 

(ii) The CDFs measured on a Gaussian field provide Fisher 
constraints that are completely consistent with the angular power 
spectra and second Moments computed on the fully nonlinear, non- 
Gaussian field (Fig. 4 ). The CDFs and moments all have Gaussian 
likelihoods as well (Fig. B1 ). 

(iii) The DES Y3 noise field is highly non-Gaussian, with a very 
significant fourth moment (Fig. 6 ). There is some cosmological signal 
at large scales in the fourth moment, but none in the fifth moment. 

(iv) We create a PSF ‘mass map’ for testing PSF contributions at 
the map level, and show the signal from PSF shapes is 2–3 orders of 
magnitude below the cosmological signal (Fig. 7 ). This validates not 
only the CDFs, but also indirectly validates the minimal impact of 
the PSFs on information beyond the third moment (existing works 
have already validated them at the second and third moment level). 

(v) The presence or lack of spatial correlations in the source galaxy 
number counts, i.e. ‘source clustering’, impacts the convergence field 
model at the 1–10 per cent level (Fig. 8 ). 

(vi) The CDFs are sensitive to correlations between the conver- 
gence field and the shape noise field, induced by source clustering. 
We detect these correlations at 13 σ , and can adequately model them 
in the simulated maps (Fig. 9 ). 

(vii) The reduced shear approximation changes the cosmological 
signal at the 1 –5 per cent level (Fig. 10 ), while baryon imprints are 
1 –10 per cent of the cosmological signal (Fig. 11 ). 

(viii) We perform scale cuts that limit the parameter bias due to 
systematic effects under a certain level. The cut CDF data vector has 
comparable constraining power to the cut data vector of the second 
and third Moments (Table 2 and Fig. 12 ). 

Optimizing the summary of fields is a rich area of study, with 
a variety of approaches and outcomes. The CDFs, through their 
sensitivity to all moments of the field, probe both the cosmological 
signal at all these orders as well as any potential modelling challenges 
that surface at these orders (e.g. the high kurtosis of the noise field 
that does not impact 2-point and 3-point functions). This sensitivity 
to all orders becomes a more rele v ant trait as we extend our analyses 
to smaller scales, which are more nonlinear and thus more non- 
Gaussian. It may also become rele v ant in constraining – and/or 
marginalizing o v er – the impact of baryons on the density field; these 
effects happen pre-dominantly within haloes, and so are localized 
around the most nonlinear regions of the density field and thus will 
have non-Gaussian signatures. The CDFs might also be one of the few 
ways to probe the highest orders of information in the field. They are 
more robust given they can isolate specific parts of the distribution, 
and this is in contrast to the higher order moments which will be 
increasingly sensitive to noise/outliers in the tails of the distribution. 
Thus, if there is significant, usable higher-order information in the 
cosmological field (for example, in future surveys with different 
noise levels and sensitivities), the CDF may be one of the only ways 
to robustly access it. 

While efforts have already been made to obtain cosmology from 
up to the third moment, we show there remains some information 
beyond the third moment that can likely be accessed in a robust 
manner, i.e. without worrying about systematics. Effects like reduced 
shear, source clustering, and baryons have some impact that is at 
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the 0 . 1 per cent –10 per cent level depending on the effect and 
the angular scale. After enacting scale cuts to reduce the bias on 
cosmological constraints to be within 0.3 σ , the CDF data vector 
still provides constraints better than those of the second and third 
moment data vector. We have identified that accurate modelling 
of the noise field at higher orders is the current limiting factor 
in robustly inferring cosmology from statistics like the CDFs. 
Alternatively, an accurate way of denoising the CDFs – which 
ef fecti vely bypasses requirements in modelling the noise field by 
removing its contribution from the data vector – would enable robust 
cosmology constraints with the CDFs. 

Finally, we note that even though this work has specifically 
focused on validating the CDF as a summary statistic, the validation 
results have significant implications for the broader range of lensing 
convergence statistics discussed in the literature. The key underlying 
information is the distribution of convergence as a function of scale, 
P ( κθ ), and the CDFs are a convenient and compact way of sum- 
marizing this distribution/information. Other statistics summarize 
this distribution in different ways, such as lensing-in-cells 17 and 
Minkowski Functionals. 18 As has been discussed abo v e, another 
closely connected statistic is the moments of the field, ⟨ κn 

θ ⟩ , which 
are a further summary of the distribution, P ( κθ | θ ), and computing 
moments to an arbitrarily high order is equi v alent to computing the 
CDF to arbitrarily many thresholds. 

As we mo v e towards Stage IV surv e ys with wider surv e y areas and 
deeper observations – both leading to higher precision measurements 
– other systematics could become rele v ant. As a rough example, the 
LSST Year 10 data set will have ∼3 times the surv e y area as DES 
Y3 and ∼5 times the source galaxy number density as DES Y3 
(The LSST Dark Energy Science Collaboration 2018 ), which leads 
to a factor of 4 increase in precision of the data vector and in the 
significance of any systematic we discuss in this work. The reduced 
shear effect (Fig. 10 ) – which can be safely ignored in Stage III 
surv e ys – will likely need to be included in the model for Stage IV, 
especially for LSST’s highest redshift bins as the amplitude of the 
ef fect gro ws with redshift. Ho we ver, this component can be tri vially 
included via simulation-based modelling using the same approach 
we used to include its effects in our simulations (Section 5.5 ). Source 
clustering will also be a necessary modelling ingredient for Stage IV 
surv e ys as its signal-to-noise will exceed 1 for LSST. While this 
modelling can also be done through simulation-based modelling, it 
requires some galaxy bias prescription (equation ( 17 )) which would 
introduce a modelling uncertainty that has yet to be quantified. 
Additionally, we discussed that the Born approximation is adequate 
for modelling the weak lensing field under DES-like uncertainties. 
Ho we ver, pre vious works have shown that for Stage IV data quality 
we will require ray-tracing when using higher-order statistics (Petri, 
Haiman & May 2017 ). 

These effects abo v e – reduced shear, source clustering, and Born 
approximation – impact all statistical summaries of the lensing field, 
including the standard 2pt and 3pt functions. Systematics that will 
uniquely impact the CDFs are then effects that generate a fourth 
moment and beyond. We have already found in this work that the 
17 This is the lensing-focused analogue of counts-in-cells, where the latter 
is the distribution of tracer counts within a given volume, P ( k tr | V ). If we 
replace trace counts with lensing convergence, then we obtain lensing-in- 
cells. 
18 The CDFs are the same as the zeroth-order Minkowski functional, though 
in our formalism we also introduce a cross-correlation method – inspired by 
the formalism for kNNs in Banerjee & Abel ( 2021b ) – which is traditionally 
not used/defined for the Minkowski Functionals. 

fourth moment of the noise field is a highly rele v ant modelling 
component for the CDFs. In DES Y3, this was primarily sourced by 
the surv e y depth fluctuations as well as the intrinsic, cosmological 
clustering of source galaxies. In general, ho we v er, an y process that 
spatially modifies the shape noise per galaxy or the number of 
galaxies per pixel will generate the fourth moment. For Stage IV 
surv e ys, the precision will be high enough that effects such as 
spatially v arying multiplicati ve bias – which impacts the measured 
variance of the shape distribution – could also be a required modelling 
component, but we must first quantify how much this bias will 
actually vary across the sky. 

The validation steps performed in this work have implications 
for the statistics mentioned abo v e – lensing-in-cells, Minkowski 
Functionals, field moments etc. For example, it is likely that PSF 
ellipticity correlations will be a few orders of magnitude below 
the cosmological signal for all of these statistics. A similar case 
can be made for the impact of source clustering and the reduced 
shear approximation. Of course, it is still ideal to perform a separate 
validation for those statistics to explicitly verify their robustness 
to these effects, but the results of this work indicate – given the 
statistics all summarize the same underlying distribution, P ( κθ | θ ) –
that it is likely these other statistics will also be robust to these. By 
using the CDFs, which are approximately summarizing all higher 
order moments, we have tested these systematics at the map level 
and beyond the third moment. We hope the methodologies for map- 
level tests that we employed and/or introduced in this work enable 
more checks of the large library of higher-order statistics that are 
being developed for the convergence field, and thus enhance the 
trustworthiness of these newer statistics. 
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APPENDIX  A :  3-FIELD  CDFS  A N D  B E YO N D  
Formally, in the Gaussian limit, the 3-field CDF contains no new 
information beyond those from the 2-field CDFs, since they can also 
be described completely by the multi v ariate normal in equation ( 8 ). 
Thus, the 3-field CDFs can be predicted exactly using the covariance 
of the fields as a function of smoothing scale. 

We show this explicitly in Fig. A1 . We make measurements of 
the 3-field and 4-field CDFs on Gaussian fields, and then exactly 
predict the measurements given the covariance matrix as a function 
of smoothing scale. The covariance matrix is measured directly on 

Figure A1. Measurements for the 3-field and 4-field CDFs on the noiseless 
DES Y3-like simulations (coloured lines), and a theoretical prediction in the 
limit of the field being Gaussian (black, dashed lines). The latter follows the 
same procedure of Section 2.3 . The Gaussian model fits the data well, as is 
expected in this limit. The bin indices show the different tomographic bins 
used in the measurement. 
the map. We have verified the residuals between the measured N -field 
CDFs and the prediction is within 0.1 σ , where σ comes solely from 
cosmic variance. This test is an extension of Fig. 2 for N -field CDFs 
of higher N . 
APPENDI X  B:  GAUSSI ANI TY  O F  C OVA R I A N C E  
MATRI X  
The process of performing a Fisher forecast, or obtaining constraints 
using likelihood minimization, assumes the likelihood of the data 
vector is Gaussian, i.e. the measurement uncertainty in the data vector 
is distributed as a multi v ariate Gaussian. We test here the validity of 
that assumption. We do so by first transforming every realization i of 
a data vector by removing its mean, S i = D i − ⟨ D ⟩ , where the mean 
is computed o v er all i realizations. We then compute χ2 = S i C −1 S i , 
where C is the covariance matrix estimated using all realizations of 
D . In the limit that the likelihood is Gaussian, the distribution of χ2 
must follow a standard χ2 distribution. 

In Fig. B1 , we show the measured and expected distributions for 
four different data vectors, and in all cases we find the measured 
distributions match the expected Gaussian-limit distributions. We 
also compute a Kolmogoro v–Smirno v statistic to quantify the level of 
agreement between the measured and expected distribution (Peacock 
1983 ). This validates that the Fisher formalism is an accurate way 
to estimate potential constraints from the statistics considered in this 
work. Some additional techniques can also be used to quantify this 
Gaussianity of the likelihood (Park et al. 2022 ; Euclid Collaboration 
2023 ), and they are roughly similar to the approach we have taken 
here. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/4/5530/7310886 by guest on 10 D
ecem

ber 2024

http://dx.doi.org/10.1093/mnras/stab1172
http://dx.doi.org/10.1093/mnras/sty2339
http://dx.doi.org/10.1093/mnras/stab2870
http://dx.doi.org/10.1093/mnras/stx2793
http://dx.doi.org/10.48550/arXiv.astro-ph/9312028
http://dx.doi.org/10.1103/PhysRevD.107.043516
http://dx.doi.org/10.1093/mnras/stab1515
http://arxiv.org/abs/2212.07420
http://dx.doi.org/10.1093/mnras/stab395
http://dx.doi.org/10.1103/PhysRevD.105.123526
http://arxiv.org/abs/2204.05435
http://dx.doi.org/10.1051/0004-6361/201935988
http://dx.doi.org/10.1093/mnras/202.3.615
http://dx.doi.org/10.1051/0004-6361/201833481
http://dx.doi.org/10.1103/PhysRevD.91.103511
http://dx.doi.org/10.1103/PhysRevD.95.123503
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201526681
http://dx.doi.org/10.1051/0004-6361/201935201
http://dx.doi.org/10.1186/s40668-017-0021-1
http://dx.doi.org/%2010.1088/1475-7516/2019/03/020
http://dx.doi.org/10.1103/PhysRevD.105.023515
http://dx.doi.org/10.1103/PhysRevD.105.103537
http://arxiv.org/abs/2305.16134
http://dx.doi.org/10.3847/1538-4365/abeb66
http://dx.doi.org/10.1093/mnras/stx2837
http://arxiv.org/abs/2212.05964
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1093/mnras/stac1609
http://dx.doi.org/10.1103/PhysRevD.107.023514
http://dx.doi.org/10.3847/1538-4357/aa943d
http://arxiv.org/abs/astro-ph/0510346
http://arxiv.org/abs/1809.01669
http://dx.doi.org/10.1093/mnras/staa1155
http://dx.doi.org/10.1093/mnras/stt971
http://dx.doi.org/10.3847/1538-4365/ab9d82
http://dx.doi.org/10.1093/mnras/stac1551
http://dx.doi.org/10.1086/309009
http://dx.doi.org/10.1088/1475-7516/2021/01/028
http://dx.doi.org/10.1093/mnras/stac078


Beyond the 3rd moment with CDFs 5553 

MNRAS 526, 5530–5554 (2023) 

Figure B1. The chi-squared distributions of the data vectors (solid lines), 
compared with a theoretical chi-squared distribution (dotted black line) 
with N dof given by the size of the data vector. In the Gaussian likelihood 
limit, the theoretical distributions will match the measured distribution. A 
Kolmogoro v–Smirno v test shows the probability that the observed and ex- 
pected distributions are similar exceeds p > 0.1. The data vectors considered 
in this work have a sufficiently Gaussian likelihood. 
APPEN D IX  C :  D E P E N D E N C E  O F  DATA  
V E C TO R  O N  C O S M O L O G Y  
In Fig. C1 , we show the derivative of the CDF measurement with 
the three cosmology parameters we have varied in Section 4.2 . For 
brevity, we only show the derivative for the 1-field CDF of the fourth 
tomographic bin. At fixed threshold, the scale-dependence of the 
deri v ati ves v aries across the parameters, particularly at larger scales. 
At smaller scales, the deri v ati ves with respect to ,m and σ 8 have 
larger amplitudes for the ne gativ e tail ( k = −0.02) than the positive 
tail ( k = 0.02). The deri v ati ve for k = 0 (green line) is near-zero in 
the 1-field CDFs, but we have checked that it is significantly non- 
zero for 2-field CDFs; this difference between the 1-field and 2-field 
behaviour is similar to that seen in Fig. 3 . Any change in the k = 0 
line for 1-field CDFs means the median of the distribution (and thus, 
the shape of the distribution) is being altered. 
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