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ABSTRACT

Widefield surveys probe clustered scalar fields — such as galaxy counts, lensing potential, etc. — which are sensitive to different
cosmological and astrophysical processes. Constraining such processes depends on the statistics that summarize the field. We
explore the cumulative distribution function (CDF) as a summary of the galaxy lensing convergence field. Using a suite of N-body
light-cone simulations, we show the CDFs’ constraining power is modestly better than the second and third moments, as CDFs
approximately capture information from all moments. We study the practical aspects of applying CDFs to data, using the Dark
Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions
from the point spread function and reduced shear approximation are < 1 per cent of the total signal. Source clustering effects and
baryon imprints contribute 1-10 per cent. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrade
these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We detect correlations
between the observed convergence field and the shape noise field at 130°. The non-Gaussian correlations in the noise field must
be modelled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool.

Key words: large-scale structure of Universe —cosmology: observations.

processes, to the intragalaxy scales where the gas and stellar phase

1 INTRODUCTION space exhibit distinct structures from the rich physics of magneto-

The structure in the Universe — namely the distribution of matter —
contains significant information on all kinds of physical processes;
from the largest cosmological scales that probe the initial conditions
of the Universe, to the galaxy and halo scales that probe both nonlin-
ear gravitational evolution and baryonic imprints due to astrophysical

* E-mail: dhayaa@uchicago.edu

hydrodynamics. It is clear that the observed fields are abundant with
information on both cosmology and astrophysics. It is then pertinent
to question how best to extract the information from these fields,
i.e. how best to maximize the constraints we can place on physical
phenomena through measurements of these fields.

In the scenario where the field is a mean-zero Gaussian random
field that is isotropic and homogeneous, the only degree of freedom
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for the field is the covariance between the pixels/voxels in real space
(or alternatively, the power spectra in Fourier space). In such a
scenario, it is clear that the maximal constraining power is obtained
by measuring the power spectra, i.e. the only degree of freedom. For
cosmological fields, the initial conditions seeding structure formation
are Gaussian to a very good approximation, as has been verified
by the cosmic microwave background (CMB) observations (Planck
Collaboration 2016b, 2020), and a large part of the cosmological
information in the resulting late time density field is still Gaussian,
i.e. encoded in the variance of the field. Thus, the power spectra are
a good way to extract information from the late-time fields as well.
However, there still remains significant, additional information
beyond the power spectra. Even in the fiducial ACDM case — where
ACDM is the cosmological model with cold dark matter (CDM)
and the cosmological constant A — and the initial conditions contain
no primordial non-Gaussianities, the presence of nonlinear, grav-
itational evolution generates signatures beyond the power spectra.
This is commonly called ‘higher-order information’.! and represents
information in the field that is not captured by the power spectra. Such
information still encodes signatures from cosmological and astro-
physical processes, and is often highly complementary to the 2-point
constraints; as aresult, the combination of power spectra with higher-
order information leads to constraints that are better than the trivial
sum of the individual parts (e.g. Fluri et al. 2018, 2019, 2022; Gatti
etal. 2020; Ziircher et al. 2021; Gatti et al. 2022; Lanzieri et al. 2023).
There exists a rich body of literature on different, complementary
ways to extract this non-Gaussian information from continuous scalar
fields like the density field or the weak lensing convergence field.
The N-point correlation functions (or their Fourier equivalents, the
poly-spectra) are the most well known and widely used statistic,
and measure the correlation of N points in space, where the points
are separated by some distances. For N = 3, these statistics are
computationally expensive to compute, and for N = 4 they are mostly
prohibitive unless measured in specific limiting cases. Given this,
many alternative methods have been explored to capture some/all
of this information in a computationally inexpensive way. Some of
the most commonly known/used methods include moments (Petri
et al. 2015; Chang et al. 2018; Peel et al. 2018; Gatti et al. 2020,
2022), Minkowski Functionals (Mecke, Buchert & Wagner 1994;
Blake, James & Poole 2014; Petri et al. 2015; Parroni et al. 2020),
density-split statistics (Friedrich et al. 2018; Gruen et al. 2018) and
more. Similar statistics exist for the discrete fields, such as counts-in-
cells (Baugh, Gaztanaga & Efstathiou 1995; Adelberger et al. 1998)
and the k-nearest neighbour (kNN) distributions (Banerjee & Abel
2021a, b). For the weak lensing field, the 3-point information has
been pursued either through the direct measurement (Fu et al. 2014;
Secco et al. 2022b) or approximate summaries like the density-split
statistics (Friedrich et al. 2018; Gruen et al. 2018), mass aperture
moments (Secco et al. 2022b), field moments (Petri et al. 2015; Gatti
etal. 2020, 2022), and integrated shear functions (Halder et al. 2021).
Weak-lensing peaks (Kratochvil, Haiman & May 2010; Martinet
et al. 2018; Shan et al. 2018; Ziircher et al. 2022) probe a specific,
fixed combination of N-point functions, as is the case with other
statistics like cosmic void distribution functions (Davies et al. 2021)
and persistent homology (Heydenreich, Briick & Harnois-Déraps

"Power spectra are referred to as ‘2-point statistics’ and they capture up to
second-order information as they are fundamentally a variance measure and
contain two orders of the field. ‘Higher-order’ here refers to higher than
second-order information, which needs to be captured by beyond 2-point
statistics, or sometimes referred to as ‘higher-order statistics’.
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2021; Heydenreich et al. 2022). Field-level inference tools are also
employed (Fluri et al. 2018, 2019, 2022; Jeffrey et al. 2020), while
others explore machine learning-informed, but still interpretable,
statistics such as scattering transforms (Cheng & Ménard 2021) and
wavelet phase harmonics (Allys et al. 2020).

An outstanding question is identifying the ‘maximally’ infor-
mative statistic for summarizing, and extracting constraints from,
the fully nonlinear late-time density/convergence field. This is
an unsolved problem given we do not a priori know the exact
cosmological information contained in the different non-Gaussian
signatures (including those beyond the 3-point function) across both
linear and nonlinear scales. Thus, to ensure we use all the available
cosmological information in the field, it is desirable to consider
statistics that capture all orders of statistical information (rather
than just one order, or a specific combination of orders). The kNN
distributions have been formally shown to be such a statistic for
discrete tracers (Banerjee & Abel 2021a) as they capture volume
integrals of all N-point auto/cross-correlation functions of the field.
While these kNN distributions are constructed for discrete tracer
fields, Banerjee & Abel (2023) demonstrated that the analogous
statistic for continuous fields are the CDFs of the field smoothed on
different length-scales.

The CDFs —or the probability distribution functions (PDFs), which
are interchangeable ideas given they are connected by a linear integral
transform — are the main statistic of focus in this work and have been
theoretically known as a good non-Gaussian statistic for lensing
fields since more than two decades ago (Jain, Seljak & White 1998;
Kruse & Schneider 2000). The CDF is also an intuitive, visually
informative statistic for non-Gaussian features and is often used to
check and validate reconstructed lensing fields (White & Hu 2000;
Chang et al. 2018; Jeftrey et al. 2021). Previous works have also
shown that the lensing PDF significantly improves constraints in
wCDM compared to the standard 2-point functions (Giblin, Cai &
Harnois-Déraps 2023), while more works have shown the utility
of the 3D matter density PDF in probing both wCDM and other
extended cosmologies (Friedrich et al. 2020; Uhlemann et al. 2020;
Boyle et al. 2021; Cataneo et al. 2022; Gough & Uhlemann 2022).

While the benefits of using the CDF — namely the level of
cosmological non-Gaussianity it can capture — have been explored
in the past, this has mostly been in the more idealistic regime where
some key observational factors were not included in the analysis.
Thus, while we have had a prior understanding of the benefits of using
PDFs/CDFs of the lensing field, we currently have an incomplete
picture of the practical challenges in using this statistic to infer
cosmological constraints.

In this work, we measure the CDFs of the lensing field from the first
three years (Y3) of the Dark Energy Survey (DES) data and validate
that the common lensing systematics — such as point spread function
(PSF) contributions, reduced shear approximation, source clustering,
and baryon imprints — have an impact on this statistic that is either
negligible or can be adequately mitigated. Many of these tests have
been extensively performed for 2-point statistics (Gatti et al. 2021)
and have also been done for some 3-point statistics (Gatti et al. 2022;
Secco et al. 2022b). The CDFs are sensitive to information at all
orders, and validating the impact of these observational/modelling
systematics on the CDFs also provides validation for higher-order
information beyond the 3-point.

This work is organized as follows: first, we introduce the formalism
for the CDFs in Section 2. In Section 3, we describe the data sets
and simulations used in this work, as well as the procedures used
to forward-model the simulations to match the DES Y3 data. In
Section 4, we define the data vector used for the rest of this work,
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and also demonstrate the Fisher constraining power of the CDFs
for DES Y3-like data. In Section 5, we measure the CDFs on the
DES Y3 weak lensing maps, and quantify the signal-to-noise of the
measurements. We then validate the impact of different effects —
PSF contributions, source clustering, reduced shear approximation,
and baryonic imprints — on this statistic and discuss any scale cuts
required to mitigate these effects. Finally, we conclude in Section 6.

2 CDF FORMALISM

We begin in Section 2.1 by describing the formalism of the CDF
statistics used in this work, including the exact measurement pro-
cedure. In Section 2.2, we briefly review the kNN distributions,
which are a recently introduced statistic for discrete tracers that
summarize all higher-order information, and we discuss how the
analogous, continuous-field statistic is the CDF. Finally, in Section
2.3, we validate the CDFs using Gaussian fields. Note that the CDFs
are closely related to other statistics in the literature and we will
describe these later on in Section 6.

2.1 Cumulative distribution functions

The CDFs? used in this work are defined as follows. Given a set of
uniform/random points in a field, with spheres of radius r around
each point, the CDFs summarize the fraction of spheres that have an
enclosed density —i.e. the mean density within radius — that exceeds
a chosen threshold. In 2D, the density becomes a surface density,
¥, and the radius is a projected aperture, 6. The calculation of the
fraction of points whose enclosed surface densities exceed a threshold
can be formally written down using the following expression,

CDF(8, k) = P(ky > k), (D

where ky = k(< 0) is the average surface overdensity within an
aperture 0. This measurement can also be trivially modified to use the
surface density, rather than overdensity, just switching x — (1 +
«), where ¥ is the mean surface density field. It can also be done with
the surface mass, by simply multiplying the surface density with the
aperture area associated with scale 6.

For a given map, the CDF measurement is performed as follows:

First, we fill the map with a grid of points. Without loss of
generality, we take these points to be located at the centre of the
HEALPix pixels (with NSIDE = 1024), as this greatly simplifies
the calculations. Increasing the number of points in the grid (i.e. the
number of pixels) will improve the precision of the measurement, as
is the case with the traditional 2-point correlations.

Second, we pick a certain aperture scale, 6, and for each point we
compute kg, the convergence smoothed on scale . The smoothing
is done in harmonic space using a harmonic tophat filter
Ji1(£0)

0
where J;(x) is the Bessel function of the first order. The choice of
tophat over a Gaussian filter is because the former allows for an easy
interpretation of an enclosed quantity within a given physical scale.
Our computing procedure is the same for any other choice of filter
as well.

Third, we measure what fraction of the grid points satisfy the
inequality in equation (1), which is the probability, P(ky > k). The

B() =2

(@)

2The entire formalism could also be done using PDFs instead of CDFs. The
latter is simply a more natural/convenient choice when connecting to the KNN
formalism, as we describe in Section 2.2.
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choice of thresholds is a degree of freedom in the measurement, and
we describe our choices in Section 4.1.

Fourth and finally, steps 2 and 3 are repeated for a range of scales
and thresholds to extract the distribution, P(ky > k), for different
choices of 8. The exact choice of scales and thresholds used in this
work is described in Section 4.1.

Fig. 1 illustrates how the CDFs are constructed in a given field,
and highlights some generic features of the CDFs. In the limit where
the variance 0> — oo, we expect P(ky > k) — 0.5, and where o2
— 0, then we expect P(ky > k) — 0if k > 0, and P(ky > k) — 1if
k < 0.In Fig. 1 we see that all curves are closer to P = 0.5 on small
scales where the field’s variance is high compared to the threshold
values, and move towards P = 0 or P = 1 on large scales where the
large smoothing scale suppresses the field’s variance to values lower
than the thresholds. Additionally, we see P(ky > 0) & 0.4 at small
scales, where the distribution is log-normal (see top panels of Fig.
1) and so the median of the distribution is not the same as the mean,
(k) = 0. At large scales, we find P(ky > 0) & 0.5 as the distribution
becomes more Gaussian.

Thinking in 3D space, the CDFs extract P(> p | R), the condi-
tional distribution of the enclosed mean density given radius, as well
as P(R| > p), the conditional distribution of radii or volumes given
a density threshold. These two distributions can be related using
Bayes’ theorem,

P(> p)
P(R)

P(>p|R)=P(R| > p) 3)
Note that given the enclosed density p and spherical radius R, we can
easily obtain a mass M = %nR3 p. So the above can be rewritten as
P(> M)
P(>M|R)=PR| >M)———. “)
P(R)

equation (3) better elucidates the connection between the CDFs and
the ideas from halo collapse. The quantity P(> 200p, | R) is simply
the fraction of volumes that contain a halo, where the haloes are
identified/defined as overdensities of at least p > 200p., with p.
being the critical density of the Universe.

We can also generalize the CDF formalism to multifield probes by
computing the joint CDFs of multiple fields; this is simply,

P(ko,1 > ki, kg2 > k2 10), )

where «p, 1 and kg , are two different fields (e.g. different tomo-
graphic bins of a single type of field, or different types of fields).
While we are allowed to choose different values for the thresholds
k; and ky, we will enforce k = k; = k, henceforth for simplicity in
the data vector. In this work, we will consider the cross-correlation
between tomographic bins as part of our measurement. Note that
the 2-field version of the CDFs formally contains all the 1-field
information as well. This connection is identical to how 2D PDFs
contain the marginal 1D distributions within them.> We will use
both 1-field and 2-field CDFs as part of our main data vector. The
3-field and 4-field CDFs will formally have additional information
beyond the 1-field and 2-field CDFs, though our tests have shown
there is only marginal improvement in cosmological constraints for
the analysis choices described here (e.g. tomographic bin, angular
scales, and thresholds).

3A simple example is the 2D CDF, P(kg,1 > ki, kg2 > ko | 0) taken in the
limit k = —oo. In this case, g, 2 is always above the threshold k> and so
the 2D CDF reduces to a 1D CDF, P(kg,1 > ki, kp2 > ko |0) = P(kg,1 >
ki |6).
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Figure 1. Bottom: The probability that k¢, the average convergence within circles of apertures 8, exceeds a chosen threshold k. We use seven thresholds and
show measurements for a noiseless convergence field corresponding to the fourth tomographic redshift bin in DES Y3. The solid lines are converted to dotted
ones when the CDFs fall into the 99.7 percent (30) tail. The grey—blue line is always in the tail for this particular measurement. Top: The PDFs of «y for
different choices of aperture, 6. The three aperture scales that we show PDFs for are indicated by the vertical grey lines in the bottom panel. The PDFs are
estimated from noiseless convergence fields and are smoothed with a Gaussian for visualization purposes. The vertical lines in these top three panels are the
thresholds we use. The probability to exceed is the integral from each threshold up to P(k = 00). For high thresholds, we have a lower probability to exceed and

vice versa for low thresholds.

For some tests, we will also post-process the 2-field CDFs to isolate
just the cross-covariance/correlation. This is done by performing the
redefinitions described in Banerjee & Abel (2021b),

¥1,2(k) = CDF »(k) — CDF; (k)CDF,(k), (6)

which takes the joint probability to exceed in two different fields
and removes the product of the individual probability to exceed for
each field. The quantity v ,(k) is O if the fields are completely
uncorrelated, and non-zero otherwise. The sign of ¥, »(k), for any
threshold k, indicates the sign of the correlation between the two
fields at that threshold.

We can also extend this formalism to more than 2 fields (e.g.
a triplet ABC, where each letter is a field index). While we do
not consider such measurements in our analysis here, we note their
potential utility both for cosmological information, but also as further
compressions of the data vector. Note that there is no benefit to
repeating a field twice (e.g. the triplet AAB, where A is repeated
twice) if we also fix the threshold k for all the fields. The joint
probability P(k| > k, k1 > k, ko > k) is exactly similar to P(x; > k,
Ky > k).

While we have discussed the CDFs in terms of lensing conver-
gence, it is not necessary to be limited to this quantity. For example,
one could consider the kinetic or thermal Sunyaev—Zeldovich fields
(Sunyaev & Zeldovich 1972; Carlstrom, Holder & Reese 2002),
which are generated by baryons in haloes and thus inherit the non-
Gaussian features of the structure traced by these haloes.

2.2 Connection to KNN distributions for discrete fields

The kNN distributions (Banerjee & Abel 2021a, b) are a novel
way to summarize the clustering in a field of discrete tracers, such
as galaxies or haloes. They have been formally shown to capture
volume integrals of all N-point functions of the tracer field, but
can be computed in O(N log N) time, where N is the number of
tracers. Thus, they have the same computational efficiency as a 2-
point correlation function, but capture integrals of all the information
held in the N-point functions (2-point, 3-point, 4-point, etc.). This
statistic has already been measured in observational data, particularly
to quantify the signal-to-noise of all correlations (both Gaussian and
non-Gaussian) in a clustered field (Wang, Banerjee & Abel 2022).
The kNNs are computed by taking a field of tracers with a
known number density n,, and then generating a large set of
random points in this field as one would for computing an N-point
clustering function (although a set of uniform points would be a
sufficient choice as well). For each point, one computes the distance
to the nearest tracer neighbour. The distribution of distances to
the kth nearest neighbour forms a kNN distribution. This statistic
is probing the distribution P(V | > k), i.e. the distribution of
volumes that contain at least k, tracers, where k, takes integer
values. Assuming spherical volumes, this can be reformulated as
the distribution P(R| > k). Given kNNs depend on the counts
of tracers enclosed within a volume, it is sensitive to volume
integrals of all the correlation functions. However, the fact that the
sensitivity is to a volume integral of the functions means signals

MNRAS 526, 5530-5554 (2023)
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from specific configurations of the N-point functions will be mixed
together.*

In the limit of n, — o0, the number counts threshold >k
becomes a density threshold >p, and the conditional distribution
becomes P(R| > p) which can be related, using Bayes’ theorem,
to the distribution probed by the CDFs, P(> p|R). A detailed
discussion on this connection between kNNs and CDFs can be
found in Banerjee & Abel (2023, see their section 2.1). The analytic
connection between the two statistics directly confirms that the CDFs
can be formally shown to contain all volume integrals of higher-
order functions, and this makes them better suited for summarizing
a field, where we do not a priori know the exact cosmological
information contained in all the non-Gaussian signatures of the field.
In addition, this connection means the CDFs are the natural statistic
to cross-correlate discrete and continuous fields while using the KNN
formalism for the former (Banerjee & Abel 2023).

2.3 Consistency relations for Gaussian fields

In the Gaussian limit of P (k) = N (ks; 11, o) — where N is a normal
distribution with mean . and variance o' — there are three degrees
of freedom for the CDF: the mean and variance of the map at
each aperture scale, and the threshold k. The threshold is an input
parameter, and the mean of the map is taken to be 1 = 0 given « is
derived from the overdensity field and so is defined as a perturbation
field with the mean background subtracted. Thus, the variance is the
only unconstrained parameter, and this variance can also be measured
directly on the map. Formally, a Gaussian CDF is parametrized as,

CDF(k) = 1 /OON( )d 1[1+ f(k_“)] 7
=1- X —p,o)dx = - er .
k a 2 o2

We can thus use the variance measured from the map smoothed
on a given scale, 6, to predict the CDFs at that scale. For a purely
Gaussian field, the measurements and predictions must agree. The
same exercise is trivially extended for the 2-field CDFs. In the
Gaussian limit, the joint PDF of any set of fields is given by a
multivariate normal distribution,

1 -
PDF = xp | = 5@ —W'T "k -l ®)

.
VQr)yrdet®
where the column vector ¥ = {ki, k3, ... k,} are the kappa value in
each field, and denote the point in multidimensional space where we
evaluate the probability. The PDF in equation (8) can be integrated,
assuming some set of thresholds for each field, to obtain the CDF.
Recall that in this work we set all thresholds to the same value k. We
also use ; = 0. The unknown degrees of freedom for the distribution
are then entirely in the covariance matrix. Thus if we know this
covariance matrix, we can always predict the CDFs exactly.

We verify this in Fig. 2 for our analysis setup. The top panel
shows the 2-field CDF measured on noiseless, simulated maps whose
signal mimics the DES Y3 data used in this work (see Section 3.2
for more details). In particular, the convergence map has the same
redshift distribution as the third and fourth tomographic bins. These
are all Gaussian maps made by post-processing N-body products, as
detailed below in Section 3.1.4. The dashed lines (prediction) are

4For the 2-point function, there is no configuration information as the
correlations depend on just distance, r. For N-point correlations of N >
3, the geometry connecting the N points will contain additional information,
though the exact information contained in this geometry remains an open
question.
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Figure 2. Top: The 2-field CDFs averaged over 1000 noiseless, full-sky,
Gaussian convergence maps. The n(z) for the two fields corresponds to the
third and fourth DES Y3 redshift bins. The solid lines switch to dotted when
the CDF is outside the range [0.003, 0.997] (approximately corresponding
to the 30 bounds). The black dashed lines show the predictions for the
CDFs given the covariance of the two fields at a given smoothing scale, 6;
under the assumption the fields are Gaussian, the predictions must match
the measurement. Bottom: The difference between the CDF measurement
and Gaussian-field predictions, AP = Ppeas — Ptheory normalized by the
uncertainty in the CDFs — where the uncertainty is cosmic variance and is the
observational limit for measurement uncertainty — estimated from the 1000
realizations. The grey band shows A/o < 0.1. In all cases, the difference,
AP, is within this region and is completely negligible.

consistent with the solid ones (measurement). The bottom panel
shows the Gaussian model predictions are within 0.050 of the
measurements, where the o of the data vector is just cosmic variance
and thus represents the observational limit in precision.

3 DATA

We first describe in Section 3.1 the different simulations used in
our analysis. We then detail the DES Y3 data in Section 3.2 and
in Section 3.3 we describe how the simulated maps are forward
modelled to imitate the DES Y3 data.

All maps used in this work are made with the HEALPIX convention
of NSIDE = 1024. This corresponds to a pixel scale of 3.2 arcmin.
The one exception are the products used from the COSMOGRID suite,
described in Section 3.1.3, which are NSIDE = 512.

3.1 Simulations

While the CDF is a statistic that can be used to summarize any
scalar field, in this work we are specifically interested in the lensing
convergence, «, which is a line-of-sight integral of the density field,

3 HZQ [ (e —xj) . d
iz = 5 T [tz M Mg
2 ¢ 0 a(Zj)X.; dz Z

&)

where z; is the redshift of the ‘source’ plane/galaxies being lensed, it
is the pointing direction on the sky, § is the overdensity field, x is the
comoving distance from an observer to a given redshift, a is the scale
factor, Hy is the Hubble constant, €2, is the matter energy density
fraction at z = 0, and c is the speed of light. We use the shorthand
x(zs) = x5 and x(z)) = x;j.

We model this convergence using full-sky density maps from dif-
ferent N-body simulations, with each simulation serving a different
purpose in this work. We detail these different simulations below.
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Such simulations are uniquely suited for modelling these fields in
the nonlinear regime. For quasi-linear and linear regimes, analytic
models can also be utilized (e.g. Barthelemy et al. 2023).

3.1.1 Anbajagane23 simulations (A23)

In this work, we use a suite of N-body simulations run with the
PKDGRAV3 solver (Potter, Stadel & Teyssier 2017), where the suite
has been specialized for performing Fisher forecasts for widefield
surveys. This simulation suite, formally denoted the ULAGAM suite
but referred to in this work by the abbreviation ‘A23” for simplicity,
is described in Anbajagane et al. (2023b). We describe here just the
essential features of the runs and the relevant data products used
in this work. The A23 simulations are run in 14~ Gpc boxes,
starting at z = 127, with N = 5123 dark matter particles. The
initial conditions for all simulations are obtained from the QUIJOTE
suite (Villaescusa-Navarro et al. 2020), and so the simulations are
essentially light-cone runs of the QUUOTE simulations specialized for
widefield survey analyses. The original QUUJOTE suite was designed
for studying the Fisher information of the nonlinear structure, as well
as building emulators sampling different cosmological parameters,
but the data products are inadequate for producing mock light-cones
of the lensing/density field. These products include snapshots and
halo catalogues at only five redshifts, which is too coarse a redshift
resolution for building light-cones. Hence we have rerun a subset
of these simulations to create accurate full-sky lensing and density
maps.

The suite contains simulations for computing the derivatives
of the lensing/density field with respect to multiple cosmological
parameters, of which three are of interest to us — 2,,, g, and w. For
each parameter, the suite contains 100 full-sky simulations where the
parameter takes values slightly higher than the fiducial, and another
100 full-sky simulations where the value is lower than the fiducial.
These two sets are used to compute the derivatives of a summary
statistic with respect to €2,,, g, and w. The fiducial cosmology is
from Planck Collaboration (2016a), and the derivatives are computed
over differences of AQ2,, =0.02, Aog =0.03 and Aw = 0.05, which
are all the same settings as the QUUIOTE suite. The suite also has 2000
simulations at the fiducial cosmology which are used to compute the
covariance matrix for our data vector. Since each all-sky map can
have 4 completely independent DES footprints, we have a total of
8000 estimates of each summary statistic to use for the covariance,
and 400 independent estimates of the derivative of the summary
statistic with respect to each parameter.

While the original QUUOTE suite was run using GADGET3 (last
described in Springel 2005), we use PKDGRAV3 which has already
been employed extensively to perform both theoretical studies of
the lensing field as well as simulation-based analyses of data from
different weak lensing surveys (Fluri et al. 2019; Gatti et al. 2022;
Ziircher et al. 2022). The PKDGRAV3 solver automatically builds
light-cones as it solves the gravitational dynamics of the system
forward in time, and so our final outputs are the light-cone shells —
i.e. HEALPIX maps — of the density field at different redshifts. The
simulation box is tiled/repeated as needed to construct large enough
volumes to then build full-sky light-cones to a given redshift. This
repetition will bias any large-scale correlations in the light-cone, but
in this work we only consider scales much smaller than the box size.

The simulations have a total of 100 time-steps/shells, with 95
shells between 0 < z < 10. This gives us a high redshift resolution
of between Az &~ 0.01 — 0.05 in that redshift range, with the exact
value depending on the shell. The time-steps in this redshift range
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are spaced uniformly in proper time, ¢, and this corresponds to
different z and comoving distances depending on the cosmology.
These density shells are then post-processed via equation (9), with
the integral over z; replaced by a simple discrete sum, to create
a lensing convergence field at each source plane redshift, z;. This
technique uses the Born approximation, which computes the total
effective deflection due to lensing but along an undeflected ray path.
A more precise calculation uses full ray-tracing, which calculates
these deflections while constantly deflecting/updating the ray path.
Petri, Haiman & May (2017) found the Born approximation leads to
differences of < 5 per cent for the third moments statistic we will
use in Section 4.2, but this is subdominant to the current uncertainties
of ~ 15 per cent.

Note we have not performed any resolution-convergence tests.
The numerical requirements for this work are less stringent as we
do not use the simulations for cosmological inference, but rather
for (i) performing a Fisher analysis (Section 4.2), where the relevant
quantities are relative and not absolute differences in the simulations
as we vary cosmological parameters, and for (ii) computing
covariance matrices for our systematic checks (Section 5).

3.1.2 Takahashil7 simulations (T17)

The Takahashil7 simulations (Takahashi et al. 2017) are a suite of
N-body simulations run at a WMAP9 cosmology (Hinshaw et al.
2013), and have a higher particle resolution than the A23 suite, with
20483 particles. They, however, have lower redshift resolution than
the A23 suite with 38 shells between 0 < z < 5. The shells are
spaced equally in comoving distance, with widths of 150 Mpc A",
and this leads to redshift spacing of roughly §z ~ 0.05 — 0.2. The
T17 simulations have been used to model/test higher-order statistics
in many works (Gatti et al. 2020; Secco et al. 2022b; Gong et al.
2023; Heydenreich et al. 2023; Munshi et al. 2023) for modelling,
validation etc. and so we measure our statistics on these simulations
for completeness. There are 108 independent full-sky maps, and that
gives us a total of 432 DES Y3 cutouts.

3.1.3 Cosmogrid

COSMOGRID is a large suite of simulations that span the wCDM
parameter space, including the sum of the neutrino masses, and are
designed for simulation-based modelling of widefield survey data
(Kacprzak et al. 2023). They were run using PKDGRAV3, similar to the
A23 simulations, and have a 900 Mpc/h box size with 8323 particles.
The simulations are run at 2500 points spanning the parameter space,
with 7 realizations at each point. They have 140 time-steps, with 70
equally spaced steps in proper time between 4 < z < 99, and another
70 equally spaced steps in proper time between 0 < z < 4. The
spacing is different in each of the two regimes.

In this work, we use COSMOGRID to test the impact of baryons on
the lensing CDF statistic. For this purpose, we use the fiducial runs
which are 200 simulations run at fixed cosmology (Kacprzak et al.
2023, see their table 2). We use both the default N-body run as well
as the run post-processed using the method of Schneider et al. (2019)
so the density field looks like that of a hydrodynamic simulation with
baryons. We discuss this more in Section 5.6. While the raw maps
are available at NSIDE = 2048, the maps post-processed to look
like those of hydrodynamic simulations are provided only at NSIDE
= 512 —which is lower than the fiducial resolution of NSIDE = 1024
used in this work — and we discuss the impact of this in Section 5.6
as well.

MNRAS 526, 5530-5554 (2023)
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3.1.4 Gaussian maps

For the purpose of validating non-Gaussian statistics, it is useful to
have maps that are purely Gaussian — i.e. are represented entirely by
a power spectrum — rather than ones that contain a realistic level of
nonlinearity/non-Gaussianity. We use the power spectrum measured
on the N-body maps, which contain the relevant nonlinearities, to then
create consistent Gaussian maps. These maps will by construction
have the same nonlinear power spectra as the original maps. The
method employed for doing this is the same as Giannantonio et al.
(2008, see their appendix A). It involves computing all auto- and
cross-spectra between the relevant fields on the simulated maps, and
then using these spectra with random phases to generate spherical
harmonic modes ay,, that are appropriately correlated to reproduce
the input auto- and cross-power spectra. The ag, can then be
transformed to obtain a real-space map. By definition, such maps
will have no higher-order information and be described entirely by
their power spectra.

If we have two maps X and Y, and want to generate Gaussian maps
that have the same auto and cross-power spectrum as X and Y, we
obtain the ay, via

X _ X XX _ X |,XX
Ay _anT = Nm CK ’

Y _ X XY Y YY
Ay = némT + anT

CXY (CXY)2
), [ O -

, 10
X e o

X
= Nem

where 7, is a complex random normal variable with zero mean and
unit variance, and T}; are coefficients derived from the power spectra,
with a general form given by,

[Cii — Zi;;(]‘ik)z’
TV = (11)
ﬁ(cﬁ - T”‘Tf"‘>, ifi > j.

ifi = j;

and equations (10) and (11) above have been reproduced from Omori
(2022, see Appendix C).

For producing real maps, the m = 0 coefficients must be handled
separately as they should have no imaginary component (see ap-
pendix B in Sellentin et al. 2023, for an example). Thus, we explicitly
remove their imaginary component, by setting Im(ay,, = o) = 0, and
then rescale the coefficients as @y — v/2aum—o.> From these final
am values we generate the Gaussian maps using the HEALPY routine,
alm2map.

Note that when we post-process the Gaussian maps to mimic the
DES year 3 observations (see Section 3.3), only the true convergence
field is Gaussian. The procedures applied to the field to post-process
it — such as non-Gaussian noise, and survey masks of complicated
geometries — will still induce a non-zero non-Gaussianity in the final
simulated convergence field, but these non-Gaussianities will not be
cosmological in origin.

5Formally, our complex variable satisfies (n) = 0 and (yn*) = 1. Thus,
the real and imaginary components of n have variance 0.5 each. For the
aem = o coefficients, we remove their imaginary component, and so their real
component must be rescaled for the coefficients to have the intended unit
variance.
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3.2 Dark Energy Survey Year 3 (DES Y3)

The Dark Energy Survey (The Dark Energy Survey Collaboration
2005) is an optical imaging survey of 5000 deg” of the southern
sky, and is currently the largest precision photometric data set for
cosmology. We use the data from the Year 3 data release (Sevilla-
Noarbe et al. 2021), and in particular the galaxy shape catalogues.
This is the same data set used for the fiducial 2-point correlation
function shear results (Amon et al. 2022; Secco et al. 2022a) and
harmonic power spectrum results (Doux et al. 2022), as well as the
higher-order statistics such as the moments (Gatti et al. 2022), mass
aperture (Secco et al. 2022b), and peaks (Ziircher et al. 2022). In
this work, the Y3 METACALIBRATION galaxy shape catalogue (Gatti
et al. 2021) is used to make a map of the ellipticities, which is then
converted into a convergence map via the Kaiser Squires method
(Kaiser & Squires 1993). This is the same technique used in previous
works on the mass map (Chang et al. 2018; Jeffrey et al. 2021). We
perform all our measurements and tests on these maps.

We also use the DES Y3 PSF and reserved star shape catalogues
from Jarvis et al. (2021) to estimate the impact of PSF contributions
to the signal observed by our statistic. The shape catalogues are used
to make a PSF ‘mass map’ the same way the galaxy ellipticities are
used, and this mass map is used to test the PSF contributions (see
Section 5.3 for more detail). The same star shape catalogue was used
to test PSF contributions for both the shear 2-point function (Gatti
et al. 2021) and the 3-point function (Gatti et al. 2022; Secco et al.
2022b).

3.3 Making simulated DES Y3-like mass maps

We modify the simulated convergence/mass maps described in the
above sections to include all the relevant observational effects of
the DES Y3 data. Note that the main purpose of the maps is
both to perform realistic forecasts of the cosmological constraints
(Section 4), and to validate the contribution of different systematics
to the CDFs data vector (Section 5). In this work, we do not use
these simulations to get cosmology constraints from the DES Y3
data vector.

To make the mock maps, we start from the true convergence field,
k, and use an inverse Kaiser—Squires (KS) transform (Kaiser &
Squires 1993) to obtain the two shear components, y | ». The shear is
the true observable of a weak lensing survey given we measure galaxy
shapes. The KS transform can be quickly performed in harmonic
space as

y,g +zy§ :—UWCCE +l/c§ ), (12)

where the subscripts denote the E-mode and B-mode
shear/convergence maps respectively. In the full-sky limit, where we
have no survey masks, this is an exact expression. The technique has
been validated for realistic data and found to have adequate accuracy
(Chang et al. 2018; Jeffrey et al. 2021).

Redshift distribution/bins: We use four tomographic redshift
bins with source galaxy n(z) distributions matching DES Y3 (Myles
et al. 2021); the mean redshifts of these bins are zmen € {0.336,
0.521,0.741, 0.935}. The true shear maps corresponding to each bin
are obtained via a weighted sum of the shear maps in each redshift,
where the weights are the n(z) distributions.

Noise realization: The noise is obtained using the DES Y3
METACALIBRATION shape catalogue from Gatti et al. (2021), using the
same technique as Gatti et al. (2022). The galaxy shapes are randomly
rotated to remove all spatial correlations of the galaxy ellipticities,
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thus removing any cosmological signal. We then place galaxies in
pixels of a NSIDE = 1024 map, and compute the weighted average
of the shear components in each pixel of the map, yl‘f‘ﬁi”e(ﬁ), using
the weights provided in the catalog. We add this noise to the true
shear maps, y 1,2, separately for each tomographic redshift bin. This
ensures the Y3 data and the simulated noise maps have the exact
same variations in source/survey depth, and as we will show later,
these variations create a strong non-Gaussian feature in the map
(Section 5.2).

Multiplicative bias: The measured galaxy shapes have a bias of
the order 1 percent that has been calibrated using large suites of
image simulations of the DES Y3 survey (MacCrann et al. 2022).
We include these bias terms, m, in the maps by simply multiplying
the shears as y 1, — (1 +m)y 2.

Mask: We only use map pixels that have at least one DES Y3
galaxy in each of the four redshift bins. All pixels that do not fall into
this category are discarded, and this defines the survey mask which
is used in all further analyses, both for the simulations and for the
DES Y3 data.

Kaiser-Squires reconstruction: Following the steps above, we
obtain a spin-2 shear field, y », per DES Y3 tomographic redshift
bin, that has noise, multiplicative bias, and a mask applied to it. We
then convert this back to a convergence field using equation (12) to
obtain a noisy convergence map for each redshift bin. We only use the
E-mode convergence map in our analysis. This map is then used as
our final DES Y3-like map. Other, more sophisticated map-making
techniques have been explored in the Y3 data as a replacement to KS
reconstruction. A detailed description can be found in Jeffrey et al.
(2021). The KS method remains the simplest method that is also
quick and accurate. The simplicity in compute time is a particularly
attractive feature here as we make ((10*) mock DES Y3 maps in
this work. Note that the mass maps we generate from DES Y3 data
in Section 3.2 are also created by making the shear maps y; , and
using the KS transformation to obtain the convergence field.

In Section 5, we will add other effects to the mock maps — such as
PSFs, higher-order shear effects, and so on — to test their impact on
the measured signal and quantify which effects can be safely ignored
and which effects may require scale cuts on the data vector. We do not
address the impact of intrinsic alignments in this work, as it is often
treated as a systematic that can be modelled, and thus marginalized
over, in a full cosmological analysis as opposed to an effect that
contaminates the data vector and requires scale cuts. For example,
Ziircher et al. (2022) present a framework to do such marginalization
assuming a simple intrinsic alignments model that can be forward-
modelled in the simulations, while Hoffmann et al. (2022) presents
a more advanced and physically motivated way to incorporate the
same into high-resolution simulations.

4 CDF ANALYSIS SETUP AND FISHER
CONSTRAINTS

We define the CDF data vector for DES Y3 in Section 4.1 and show
the Fisher information in this CDFs data vector, as well as data
vectors of other closely related statistics, in Section 4.2.

4.1 Defining CDFs data vector

In this work, we measure all possible 1-field and 2-field CDFs for the
four tomographic bins of DES Y3. This results in four 1-field ‘auto’
CDFs, and six 2-field ‘cross’ CDFs. We measure the CDFs across
10 smoothing scales, spaced logarithmically between 3.2" and 200'.
The choice of scales matches the moments-based DES Y3 analysis
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of Gatti et al. (2022). For each scale, we use 7 thresholds k € { —
20, —6, —2, 0, 20, 6, 20} x 1073, These were chosen by looking at
the variance of the field at the smallest and largest smoothing scale,
and ensuring at least two thresholds did not asymptote to 0 or 1 at
each scale. Using the Fisher forecast below we have checked that
these thresholds probe most of the relevant information while being
practical to implement, and we do not perform a more methodic study
of the optimal threshold choices. We have, however, verified that
removing any one of the seven thresholds leads to a fractional change
in the constraints of 5 per cent to 10 per cent. We did not test adding
more thresholds as the longer data vector leads to poorer numerical
convergence, which then makes it difficult to robustly identify the
increase in constraining power provided by the additional thresholds.
One could also include the 3-field and 4-field CDFs in the data vector.
We have verified that for the cosmology parameters considered here
and for the choice of thresholds listed above, including these 3-field
and 4-field CDFs do not improve the constraints relative to the 1-field
plus 2-field case.

For all CDF measurements, we only focus on the range of scales
where 0.05 < CDF(k, ) < 0.95, which excludes the ~20 region
of the distribution for each threshold k and smoothing scale 6. This
removes measurements of the tails of the distribution where noise can
cause spurious signals, and it also helps remove regions where the
CDF has asymptoted to constant values of 0 or 1. We have confirmed
that using different choices, such as 3¢ or 4o cuts, leads to a fractional
difference of < 5 per cent in the Fisher constraints. While the tails of
the distribution are a sensitive probe of the non-Gaussian information,
they are also much noisier and so the actual constraining power from
this region of the distribution is not significant. The ‘bulk’ of the
distribution — for example, the 1o to 20 region —is still quite sensitive
to non-Gaussian features while being less susceptible to noise (e.g.
Friedrich et al. 2020; Uhlemann et al. 2020).

Our initial data vector has size N = 10z-bins x 10scales x
Tthresholds = 700 data points. The procedure above of focusing
only on 0.05 < CDF < 0.95 removes more data points as multiple
thresholds reach asymptotic behaviour of CDF = 0 and CDF =1 at
large smoothing scales, especially for the lower redshift bins where
the variance of the convergence field is lower.® In practice, the data
vector for DES Y3-like maps has N = 460 points. Note that different
thresholds reach these asymptotic values at different scales. Fig. 1
illustrates this behaviour.

Fig. 3 presents the data vector measured on the DES Y3 data as
well as different simulations described in Section 3.1. The 1-field
(2-field) CDFs are shown in the diagonal (off-diagonal) panels. The
coloured lines show P(«y > k), the fraction of the map that exceeds
a given threshold at a given smoothing scale, where each colour is a
different threshold. At a fixed threshold, the probability is driven to
0 or 1 with larger 0, and this behaviour is discussed in Section 2.1.

The threshold k = 0 is special as it is the mean of the 1D
marginal distributions, and so its probability for the 1-field CDFs
is P ~ 0.5 across all scales.” In the 2-field case the probability for
k= 01is P(kg,1 > 0, k9o > 0) = 0.25 but has scale-dependent

5The density field has a higher variance at lower redshifts, but the lensing
kernel has a lower amplitude for low-redshift sources and so the variance of
the convergence field increases with redshift.

7Fig. 1 shows the true convergence field is log-normal on small scale, and
thus has P(kg > 0) # 0.5. However, for noisy convergence fields, the
noise dominates the cosmological signal on small scales and this noise
is a symmetric distribution (the odd moments are zero, as discussed in
Section 5.2). This restores the measurements to P(kg > 0) 22 (0.5 as mentioned.
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Figure 3. The fiducial data vector used in this work. Coloured solid lines are measurements of the CDFs on DES Y3 mass maps, dark dashed lines are from the
A23 suite, dotted lines are from T17, and the dashed-dotted lines are from just shape noise maps with no cosmological signal. All simulated maps have the same
DES Y3 shape noise field, survey mask, n(z) distribution, and are put through the same convergence reconstruction method. The panels show 1-field or 2-field
CDFs for different bin combinations, with the specific combination denoted in the corner of each panel. There are clear differences between the noise-only
CDFs and the DES Y3 data CDFs, particularly on larger scales and in higher redshift bins, which are the expected imprints for a cosmological signal in the
lensing convergence maps. The A23 and T17 simulation predictions are a decent match to the Y3 data.

deviations. This is because the correlation between the two fields
alters this probability, and this correlation has a scale dependence,
meaning the deviations from P ~ 0.25 will also be scale-dependent as
expected.

We can also see a clear visual difference between the CDFs of
the shape noise field (dashed-dotted) and those of the observed
convergence field. In particular, the 1-field CDFs of the (3, 3) bin
show the clearest difference at larger scales. The shape noise field has
a notably smaller variance than the observed convergence field, and
this causes the CDFs to asymptote to O or 1 more quickly compared
to the CDFs of the data. We also find that the T17 predictions are
quite similar to those of A23, and that the simulations are generally
a decent match to the data.

4.2 Fisher information

We use the data vectors and covariance matrices constructed from
the A23 simulations to perform a Fisher forecast for three wCDM
parameters that are the target of current and future lensing surveys —
Q, g, and wy. We measure three broad types of summary statistics
for this forecast:
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Gaussian Statistics, such as angular power spectra and the second
moments of the field are well known for being sensitive to only the
variance of the field, and the variance is often denoted the Gaussian
part of the distribution. These statistics provide a good baseline for
cosmological constraints obtained from current fiducial analyses,
which primarily use such Gaussian statistics. The angular power
spectra are measured in 20 bins in the range 10 < ¢ < 2048. The
second moments are measured on the maps smoothed with a tophat
across 10 scales that are logarithmically spaced in the range 3.2" <
6 <200

Higher-order moments are a natural extension to the second
moments where one averages higher powers of the fields, («"). The
most common one is the third moment (or skewness), though the
fourth moment (or kurtosis) has also been measured in lensing data
before across a smaller range of angular scales 2’ < 6 < 8 (Van
Waerbeke et al. 2013). In this work we measure the second and third
moments in the range 3.2" < 6 < 200'.

Finally, the CDF is the non-Gaussian statistic that is the focus of
this work. The data vector definition is described in Section 4.1, and
the measurement on DES Y3 data and some simulated mock maps
is shown in Fig. 3.
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Note that the data vectors of these higher-order statistics tend to be
long, and this is particularly an issue when computing the covariance
numerically, as the number of realizations needed for the covariance
increases with the data vector size. However, the A23 simulation
suite contains 8000 DES Y3-like maps, and this number is far larger
than the length of any data vector computed in this work.

We can now estimate the Fisher information with the standard
approach,

dx dx
F, = § =" (c! =, 13
1 p— dgl ( )mn dej ( )
where 4¥n is the mean derivative of point m in data vector X with

do;
respect to parameter 6;, where the mean is computed using 400 DES

Y3 realizations (see Appendix C and Fig. C1). C~! is the inverse of
the numerically estimated covariance matrix and this is computed
while accounting for the Hartlap factor (Hartlap, Simon & Schneider
2007),

Nsims - Ndata -2
Nsims -1

The Hartlap factor for all data vectors in this work is 2 0.9. We
have verified that the Fisher information — for all the statistics we
present — changes by < 1 per cent even if we halve the number
of realizations used to compute the covariance matrix, from N =
8000 — 4000. Similarly, halving the number of realizations used
in computing the derivatives, N = 400 — 200, changes the Fisher
information by < 1 per cent for most statistics; the one exception is
the CDFs, where the change in Fisher information is still at the 5-10
percent level. However, a numerical uncertainty of this level does
not change our qualitative interpretations below.

Fig. 4 shows the Fisher information of each statistic. The parameter
constraints are obtained by inverting the Fisher matrix of equation
(13). First, we see that the angular power spectra and the second
moments have indistinguishable constraints, and this is the expected
behaviour as one is simply a transformation of the other; given the C,,
one can predict the second moments exactly via an integral, and vice
versa.® We also see that the CDFs measured on a Gaussian version
of the simulated Y3-like fields, shown by the grey dotted line in the
diagonal panels, have constraints very consistent with those of the
power spectrum and second-moment. We show in Appendix B that
the statistics used in this figure all follow a Gaussian likelihood even
when measured on fully nonlinear, non-Gaussian fields — which is
not always the case for higher-order statistics as has been found in
previous works (Park et al. 2022; Euclid Collaboration 2023).

Including the third moment alongside the second moment im-
proves the constraints significantly for all parameters. This is primar-
ily because of the different degeneracy directions for the different
moments (Gatti et al. 2020, 2022).

The CDFs improve the FoM compared to the combination of
second and third moments. This confirms that there is still usable
information beyond the third moment in the convergence field,
particularly in constraining €2,,. However, the modest improvement
in going from the second + third moments to the CDFs (when
compared to the increase from second moments to second + third
moments) shows that there is less information from the fourth
moment and beyond. We explicitly check the information content

c' > c . (14)

8This assumes we measure both harmonic space and real space over a wide
enough range of scales to perform the transform. The agreement between C,
and second moments in Fig. 4 then implies we chose an appropriately wide
range of scales.
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Figure 4. The Fisher information of different statistics for o', 2, and wq
when using DES Y3-like data. The power spectra and second moment probe
only the Gaussian information and their contours overlap completely (the
peach contour is hidden underneath the purple). Adding the third moment
significantly improves the constraints, and the CDF, which approximately
contains all moments, improves upon that a non-negligible but diminishing
amount. The degeneracy direction of second + third moments and the CDFs
is also visibly different, and combining them leads to a further 20-30 per cent
improvement in constraints. The black dashed lines in the diagonal panels
show the 1D constraints from CDFs measured on a purely Gaussian field,
and these are consistent with those from the other Gaussian statistics. The
constraints are tabulated in Table 1.

of the fourth and fifth moments later in Fig. 6. We have separately
verified that the constraining power of the moments approach agrees
better with that of the CDFs if we include the fourth and fifth moments
in the former.

In general, we find that the CDFs do better than the combination
of the second and third moments by around & 20 per cent in
the three parameters we focus on (Table 1). They are also more
compact, meaning the data vector for the CDFs (N = 460) is notably
smaller than the data vectors for the higher-order moments — from
progressively including the fourth moment (N = 650) or fifth moment
(N = 1210) — while still providing constraints that are better than
using up to the fifth moment. Combining the CDFs with the second
and third moments leads to constraints that are 20-30 per cent better
than using just the second and third moments. We have verified in
Appendix B that the combined data vector also follows a Gaussian
likelihood.

We also use the Figure of Merit (FoM), which is defined as the
inverse of the area/volume of the ellipsoid formed by the parameter
constraints,

/ 1
FOMQ = m, (15)

where 6 is the subset of parameters used to define the FoM and in
our case is 0 € {Qp, os, wo}. The FoM metric provides a concise
way to summarize the constraining power in a multidimensional
parameter space. We list the FoM values of our data vectors in
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Table 1. The Fisher information constraints for a joint analysis of 2, o3,
and wo, the Figure of Merit [FoM, equation (15)], and the size of the data
vectors. All FoM values are normalized by that of the Power Spectra. We
show results from DES Y3 on Cosmic Shear (Amon et al. 2022; Secco et al.
2022a), second and third moments (Gatti et al. 2022), and Peaks (Ziircher
et al. 2022). For KiDS 1000, we show results from cosmic shear (Asgari
et al. 2021b) and a field-level analysis (Fluri et al. 2022). For HSC Y3, we
show cosmic shear in real space (Li et al. 2023) and harmonic space (Dalal
et al. 2023). The DES constraints from second + third moments use more
conservative analysis choices (scale cuts, nuisance parameters, etc.) than the
Fisher forecast here, resulting in the looser constraints.

Analysis o(Qm) o(og) o(wg) FoM Nyof

Fisher information (this work)

Power spectra 0.037 0.064 0.24 1.00 200

2nd moment 0.037 0.064 0.24 1.02 100
2nd + 3rd moments 0.023 0.029 0.15 2.95 300
CDFs 0.018 0.025 0.15 3.47 460
CDFs + moments 0.016 0.021 0.12 5.01 760
DES Y3
Cosmic shear 0.051 0.083 -
2nd + 3rd moments 0.030 0.050 -
Peaks 0.060 0.099 -
KiDS-1000
Cosmic shear 0.050 0.080 -
Field level 0.096 0.206 0.29
HSC Y3
Cosmic shear (£ 1) 0.050 0.090 -
Cosmic shear (Cy) 0.065 0.120 -

Table 1. Including the third moments improves the FoM, relative to
the second moments, by a factor of 3. Including the CDFs improves
it by 15 per cent, relative to the FoM of the combination of the second
and third moments. Combining the CDFs with the second and third
moments improves the latter’s FoM by 65 per cent and the former’s
FoM by 40 per cent.

5 LENSING CDFS IN DES Y3 DATA

We now discuss measurements of the CDF on the DES Y3 data in
Section 5.1, including the non-Gaussian aspect of the noise field in
Section 5.2, and then detail the contributions from different effects
that can impact the inference process: PSFs in Section 5.3, source
clustering in Section 5.4, higher-order shear effects in Section 5.5
and baryonic effects in Section 5.6. Finally, we discuss scale cuts in
Section 5.7.

5.1 CDF measurement and signal-to-noise

In Fig. 3, we have already shown the DES Y3 measurements in solid
lines, with the noise-only data vector in dotted grey lines and the
A23 version of DES Y3-like map in the grey dashed lines. There is
a clear cosmological signal as evidenced by the difference between
the noise-only and DES Y3 measurements. Fig. 5 now shows the
signal-to-noise of the cosmological component for each data point
in the data vector. This is computed as the residuals normalized
by the uncertainty, S/N = |CDFy; — CDFy|/c(CDFa33). We then
also combine the statistical significance of the individual points,
accounting for the covariance between them, and find a total signal-
to-noise of S/N = 45.3.

If the difference between the signal + noise and noise-only fields
is a difference in only their even moments (e.g. variance and kurtosis)
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then for the 1-field CDFs (the ‘autocorrelation’ part) in Fig. 5, the
S/N of a positive threshold should be similar to that of a negative
threshold of the same amplitude. We see some indication of this
via visual inspection of the 1-field CDF of the third and fourth
tomographic bin. We also see an asymmetry in the S/N, and this
is a sign of an additional skewness caused by the signal field — for
example, in the (0, 0) bin the amplitude of the yellow line (k =
0.006) is higher than the light blue one (k = —0.006). Thus, we can
also visually see indications that this statistic captures non-Gaussian
signatures.

Note that while we quote a signal-to-noise for the full set of
residuals, we do not use it as a robust estimate of the amount
of information. This is because the CDFs respond to noise and
signal nonlinearly,” so a x? statistic is not the ideal way to quantify
deviations if the deviations are large, which is the case between
measurements of the noise-only maps and the noisy convergence
maps. The interpretation of a x2 in the large-deviation regime is
unclear. Note that this is not a problem for our Fisher forecast as the
residuals are small given the shifts in the cosmology parameters, as
needed for the derivatives, are also small.

Given the results of Fig. 4, where we find the CDFs are a useful
and complementary statistic for constraining cosmology, and Fig.
5, where we find the CDFs in DES Y3 have a clear cosmological
signal with signs of both the Gaussian and non-Gaussian part, we
would like to now test the robustness of this statistic to the relevant
observational effects in the Y3 weak lensing data. We will explore
exactly this in the following subsections:

(1) Naturally we would want to know how much of the cosmo-
logical information seen in Fig. 5 is non-Gaussian — this requires a
more precise understanding of the non-Gaussianity in the noise field
(Section 5.2).

(i) The measured shape of galaxies will have some contributions
from the PSF, which can then lead to non-cosmological spatial
correlations of the galaxy ellipticities — we find this is negligible
(Section 5.3).

(iii) Source galaxies, which trace the density field, will be clus-
tered and this can impact the observed convergence field — this has a
noticeable impact (Section 5.4).

(iv) The source clustering also leads to correlations between the
shape noise field and the convergence field, as seen in the CDFs —
we can model this correlation effectively (Section 5.4).

(v) The impact of ignoring higher-order shear effects when mod-
elling the data vector — this is also negligible (Section 5.5).

(vi) The effect of baryonic physics on our statistics — as expected
from previous works, this is important (Section 5.6).

(vii) Given the tests above, we detail the analysis choices one
would need to make — under our current modelling ability — to
robustly infer cosmology using the CDFs (Section 5.7).

The impact from other common systematic factors, such as n(z)
uncertainties, multiplicative bias uncertainties, and intrinsic align-
ments, is not considered here. These effects can all be marginalized
in the inference and modelling process when obtaining cosmological
constraints via the CDFs data vector. Such marginalization has
already been performed for multiple different analyses of higher-
order statistics (e.g. Gatti et al. 2022; Ziircher et al. 2022).

9Even in the Gaussian case, the CDF heuristically goes as Jexp [1/02]dx, so
changes in o lead to highly nonlinear responses in the CDF.
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Figure 5. The S/N of the DES Y3 data vector. There is a clear signal observed in the CDFs with S/N = 45.3 which is slightly higher than, but generally
consistent with, the S/N of the 2-point analyses in DES (S/N = 40.2, see section IV of Secco et al. 2022b). We show the S/N from individual bin combinations
as text in the upper left panels. The upper right text in a panel denotes the bin combinations used in a certain CDF measurement. Note that the measurements
are significantly correlated so one cannot trivially add the S/N of different bins together.

5.2 Non-Gaussianity of shape noise fields

To quantify the level of cosmological non-Gaussianity observed by
the CDFs, one first needs to understand the non-Gaussianity in the
noise field. This is particularly relevant for us as the CDFs are
sensitive to all moments of the field, meaning all moments of the
cosmological signal but also all moments of the noise field. For this
particular investigation, we will switch to using the fields’ moments
to summarize the noise field and cosmological field at different
orders. We do this as the moments can easily isolate the signal from
different orders, which helps disentangle the information contained
in the CDFs.

Fig. 6 shows the second to fifth moments of DES Y3 mass map,
as well as the shape noise map, for the fourth tomographic bin.
We find that there is a significant non-Gaussianity in the noise,
particularly in the fourth moment and on small scales. Such a feature
is naturally expected if the field of source galaxy number counts is
not uniform. In the limit that the galaxy counts are uniform across
the whole DES Y3 footprint, then every pixel in the map has the
same number of galaxies, and thus would have the same shape noise
per pixel. In reality, the number of source galaxies per pixel varies
across the footprint, either from survey observing conditions or from
the intrinsic clustering of sources due to structure formation (see
Section 5.4 or Fig. 9). In this case, the noise variance per pixel varies
across the footprint, and summing the individual Gaussian noise
distributions within the pixels results in a Gaussian mixture model
that is symmetric about the x = 0 mean, but can have a significant
non-Gaussianity in its even cumulants/moments starting from the
kurtosis/fourth moment. This is also consistent with the fact that we
detect no odd moments in the noise field.

We also see in Fig. 6 that for DES Y3-like data the cosmological
signal exists only in the third and fourth moments. At the fifth
moment, the measurement is already consistent with no signal. The
noise field has a third moment that is consistent with O across the
full range of scales. For the fourth moment, however, the noise has
a larger fourth moment than the cosmological signal. We can infer
this by seeing that the fourth moment of the observed field is very
similar to that of the noise-only field.

The significance of the fourth moment in Fig. 6 highlights the
need to accurately model the noise field, since almost all the non-
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Figure 6. The moments of the fourth tomographic bin, as a function of
smoothing scales, for the DES Y3 map, the noise-only maps, and the A23
maps. The fourth and fifth moments (bottom panels) have their disconnected
components subtracted out. The bands show 1o uncertainties for the noise-
only and A23 maps from the O(10%) realizations used in this work. The
moments are re-scaled by 8 as a visualization choice, where a, = n/2 and
ne {2, 3, 4, 5} is the moment order. The second and third moments have
significant information beyond the noise. The fourth moment is significant on
the smallest scales, but this contribution is entirely from the noise field since
the blue/orange and green lines are almost perfectly overlaid. On larger scales,
there is a weak, cosmological signal. The fifth moment is fully consistent with
no signal across all scales.

Gaussianity on small scales is coming from the shape noise field
rather than the convergence field. Note that some previous works
have also shown a strong detection of the fifth moment in the
convergence field from data (Van Waerbeke et al. 2013), but they
analyse the total fifth moment («>), whereas here we only consider
the connected component, which is obtained as (k%) — 10(x?)(x3),
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where (k2) (x3) is the disconnected component.'® Accounting for this
disconnected component is important when isolating the signal in the
higher orders. For example, Gaussian distributions have a non-zero
fourth moment that must be accounted for — by subtracting out this
‘disconnected’ piece — when measuring non-Gaussian features via
the fourth moment. A similar scenario occurs for the fifth moment,
where we subtract contributions from lower orders, namely the
product of the second and third moments.

5.3 PSF contributions

So far we have assumed that spatial correlations between the
measured galaxy shapes are a purely cosmological signal. However,
this is not guaranteed to be the case as the ellipticities from the PSF
can have spatial correlations as well. These correlations have been
studied extensively for the 2-point functions (Jarvis et al. 2021), and
the work from Gatti et al. (2021); Amon et al. (2022) have explicitly
shown their contributions to the cosmological signal/constraints from
2-point functions are negligible. This test has also been done at the
3-point function level (Gatti et al. 2022; Secco et al. 2022b) and
found the contributions continue to be negligible. We now replicate
this test at the CDF level, which will test the contribution of the PSFs
to all higher-order moments.

First, we detail the different PSF contributors to the galaxy shapes.
The lensing convergence is obtained from the lensing shear maps,
which in turn are obtained from individual galaxy ellipticities. The
measured ellipticity of a single galaxy can be separated into distinct
components,

eobs — egul + esheur + aepsf,lrue + IBAepsf,err + )/ATGPSf’tme, (16)

where e is the intrinsic ellipticity of a given galaxy, e is

the ellipticity modification due to weak lensing from foreground
structure, eP" " is the PSF ellipticity, AeP" ™ is the PSF ellipticity
error'!, and ATePs" ™ is the PSF size error'?> The first quantity of
equation (16) is assumed to average to zero, (€%¥) = 0, while the
PSF components can still make a non-zero mean contribution. The
coefficients, o, 8, y connect the PSF components to their effective
contributions on the measured shear. The values of these coefficients
can be measured directly from the data, and we use the values
reported in Gatti et al. (2021, see their table 2) of « = 0.001, 8 =
1.09 and y = —0.5. These PSF-based ellipticities can then be used
to make a ‘PSF mass map’ in the same way galaxy ellipticities are
used to make the DES Y3 mass map. In practice, we make three PSF
maps for each of the three PSF components in equation (16) and sum
them together in the end.

We test the impact of PSFs on the CDFs by comparing mea-
surements between two types of maps. The first type of map is
the sum of the cosmological signal from the A23 simulations, the
Y3-like shape noise field, and a PSF mass map for each of the
three individual PSF terms of equation (16). The second type of
map contains the same signal and noise fields as the first, but the
PSF mass map is now created after rotating all the PSF-related

10The factor of 10 can be seen by writing all unique combinations of
(rcik j) (K pi ik ), which is the disconnected fifth moment, with i, j, k, I, m
€ {0, 1, 2, 3}. There are 10 unique combinations.

This is defined as ePsf:te — P wwhich is the difference between the
ellipticity of a star (the ‘true’ PSF) and that of the PSF model evaluated at the
star’s position.

12This is defined as AT = (TT’Sf’ true _ TT’Sf)/TPSf, the fractional difference
between the size of a star (the ‘true’ PSF size) and the size of the PSF model
evaluated at the location of the star.
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ellipticities in random directions. Thus the first map preserves
any PSF-based spatial correlation signals, whereas the second map
removes such correlations. Therefore, the residuals between the CDF
measurements on these two maps quantify the significance of the PSF
ellipticities being spatially correlated, which in turn quantifies how
much this non-cosmological spatial correlation will contaminate our
signal.'’ Note that we add the same PSF mass map to all tomographic
bins. We make 8000 DES Y3 maps of each type, using the 8000
independent realizations in the A23 suite. All results are averages
over these realizations.

We show in Fig. 7 the significance of the residuals between these
two maps as measured by the CDFs, averaged over 8000 realizations.
The results show that the significance of the PSF contribution is below
0.1¢ for all bins, scales, and thresholds. More importantly, we also
show the cosmology signal seen by the CDFs — the same results from
Fig. 5 — and find the PSF contribution is multiple orders of magnitude
below the cosmological signal, which has a significance of 30—-10c.
This also confirms that the PSF contributions at the DES Y3 data
quality are negligible even beyond the 3-point information.

Note that there are some dipping/valley features in both the dashed
and solid lines, which are locations where the residuals switched
between positive and negative values.'* This crossing implies there
are scales where the residuals from the cosmological signal, at a
given convergence threshold, are zero. This does not coincide with
the scales where the same zero crossing occurs for the PSFs. So in
principle, for a given threshold, there can be certain scales where
the PSFs contribute more than the cosmological signal. However,
this contribution would still be between 1-10 per cent of the
measurement uncertainty and thus is not a concern for cosmological
constraints.

5.4 Source clustering

Surveys observe the lensing field sampled at the location of source
galaxies, and the ellipticities of these source galaxies are then used
to infer the original lensing and convergence fields. The standard
prediction for the convergence correlations has an additional correc-
tion because the source galaxies do not uniformly sample the lensing
field and are themselves clustered given they trace the underlying,
clustered density field.

This clustering of source galaxies impacts the observed conver-
gence as follows: the n(z) of a survey details the weighting of the
convergence field at different redshifts, and is computed across the
whole survey footprint. However, the precise n(z) varies across the
sky. For example, at redshift X in direction @, we can have a significant
overdensity of structure. This means the n(z) in the a direction has
more galaxies at redshift X, and the n(z) must be reweighted ac-
cordingly. We will refer to this effect henceforth as source clustering
(SC), as was first denoted in Bernardeau (1998), though this effect
has also been called source—lens clustering (Hamana et al. 2002).
The effect of source clustering is not present in the fiducial post-
processing technique described in Section 3.3. However, it can be

130ne could also compare maps with and without the PSF mass map.
However, this would simply show that the PSF shapes are elliptical, which is
already a well-established fact (Jarvis et al. 2021).

14Such a feature is expected if the noise-only measurement has a certain shape
to it. Other higher-order statistics, such as weak lensing peaks, also find nodes
in their data vector where signal — noise = 0 (Ziircher et al. 2022, see
their fig. 5). This does not imply a lack of any cosmological signal, and is
simply a consequence of the different shapes of the observed data vector and
noise-only data vector.
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Figure 7. The difference in CDFs measured on two DES Y3-like simulated maps. One contains the Y3 PSF mass map, and the other contains a PSF mass map
obtained after rotating all the PSF-based ellipticities. The contribution of any correlations from the PSF (solid lines) is below <0.1o and is statistically negligible
for all thresholds (different colours). It is also 2-3 orders of magnitude below the cosmological signal in DES Y3 (dotted lines). The total signal-to-noise of

PSF-induced correlations is 0.30.

included through the prescription detailed in Gatti et al. (2023, see
their equation 5) and previously used in Gatti et al. (2020),

J @)1 + byb(h, 2))y (h, 2)dz
Jn()(1 + bgd(h, 2))dz

Ysc(h) = (17)

where n(z) is the source redshift distribution of the tomographic
bin, averaged across the survey footprint, 5(fi, z) and y (i, z) are the
density and true shear maps at a given direction/pixel and redshift,
and b, is the source galaxy bias. In simple terms, equation (17)
modulates the n(z) across the survey footprint by reweighting it in
a direction-dependent way using the density fields. Note that Gatti
et al. (2023) take b, = 1, which we follow in this work as well,
and this is a fair approximation for source galaxies which tend to
be mostly blue galaxies. We make 8000 DES Y3 maps with source
clustering, using the 8000 independent realizations in the A23 suite.
All results are averages over these realizations.

In Fig. 8, we show the difference in the CDF data vector measured
on a convergence field with/without source clustering. Both sets
of simulations have the same noise field, which is described in
Section 3.3. Thus, Fig. 8 presents the impact of source clustering
on the cosmological signal. We find here that the impact on the
CDFs is at most 0.1 — 0.5¢0, and it is generally 1-10 percent
that of the cosmological signal. Gatti et al. (2020, 2023) show the
impact of source clustering on the second and third moments is at the
1-10 per centlevel as well. Krause et al. (2021) show that the source
clustering effect on cosmic shear 2-point functions leads to negligible
bias (<0.150) in cosmological parameter constraints, but this result
is obtained after performing fiducial scale cuts which remove scales
where the impact of source clustering is most prominent. Thus these
findings are still consistent with our statement above that source
clustering is a 0.5¢0 effect on small scales.

We have thus far checked the impact of source clustering on the
convergence field. However, source clustering will also induce a
correlation between the true convergence field and the shape noise
field. Both the convergence field and the source galaxy number
density field depend on the density field, and are thus correlated
with one another. Given the noise depends inversely on the source
galaxy number density as o,  1/,/ng1, the convergence field is
anticorrelated with the noise field. For example, consider two redshift
bins A and B, with z4 > zp. If there is an overdensity in bin B, it
would simultaneously induce a large convergence in bin A and a
suppressed noise in bin B, causing an anticorrelation between the
convergence field of bin A and the noise field of bin B.

Gatti et al. (2023) describe a simple modification of the noise field
that models this correlation,

[ n(z)dz
J n()(1 + be8(h, 2))dz

12
Vsc, noise(ﬁ) = F(ﬁ) ( ) ynoise(ﬁ)s (18)

where the definitions are the same as equation (17), with yyoise (1) as
the shape noise field, which is obtained as described in Section 3.3;
by using the DES Y3 galaxy shape catalog, and randomly rotating
the galaxy orientations. The density factor in equation (18) varies
the number counts of source galaxies across the sky according to the
underlying density field. This is the same source clustering effect
discussed above but we now consider its effect on the shear noise
field, ¥ noise, rather than the true shear field, . As a consequence of
the density-based reweighting, the even moments (variance, kurtosis
etc.) of the modified noise field, ysc, noise (1), are slightly inconsistent
with those of the original noise field yp.ise(). The factor F(i)
is implemented as a correction for this inconsistency [see section
3 of Gatti et al. (2023) for a more detailed discussion], and is
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Figure 8. The difference in CDFs measured on two DES Y3-like simulated maps, where one map contains source clustering and the other does not. The
signal from source clustering (solid lines) is at 0.10 —0.5¢ and generally contributes &~ 5-10 per cent to the total signal. The total signal-to-noise of source

clustering-induced residuals is 1.30.

modelled as

F(h) = Ay/1 — Bo2(f), (19)

where o2(f) = y2.. | () 4 Vi (D) is the shear variance, summed
over both components, in a given direction/pixel and for a given noise
realization. The coefficients A and B are calibrated in Gatti et al.
(2023) for the four DES Y3 bins using the COSMOGRID simulations,
with values A € {0.97, 0.985, 0.990, 0.995} and B € {0.1, 0.05,
0.035, 0.035}. We have verified that the results of Fig. 9 below are
insensitive to the inclusion/exclusion of F(ii) in equation (18), which
is expected as they focus on the correlations between fields, rather
than the covariance between them.

The correction to the noise field in equation (18) is known to
improve the modelling of the third moments, which are sensitive
to such convergence—shape noise correlations (Gatti et al. 2023).
We post-process our simulations using equations (17) and (18) to
obtain convergence maps with such correlations. We then quantify
the statistical significance of these correlations, as determined
by the CDFs measured on these maps. The CDFs are a useful
tool here as they inherit the properties of the kNN distributions,
which are the discrete-field version of the CDFs and are a higher
signal-to-noise estimator than the 2-point function for determining
whether two fields are correlated (Banerjee & Abel 2021b, see their
fig. 5).

Fig. 9 shows the convergence—shape noise correlation as seen in
the CDFs. Instead of the 2-field CDFs, we show the cross-component
defined in equation (6) and normalize it by the uncertainty in these
correlations, estimated across 1000 DES Y3 realizations. Thus, the
presented quantity can be interpreted as a significance of correlation.
In the left panels are the results from DES Y3 and from the A23
simulations with source clustering. The DES Y3 result is the mean
data vector from correlating the same DES Y3 mass map with
1000 different noise maps. The right panels show A23 simulations
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without source clustering, and finally the A23 simulations with purely
Gaussian noise and no survey mask.

The exclusion of source clustering leads to a simulated model that
is clearly different from what is observed in the data, and including
source clustering brings the model and data into good agreement.
The right panels of Fig. 9 show that even if we do not include
source clustering, there are correlations between the simulated mock
maps. Such correlations are expected due to the survey observing
properties. The first such cause is survey depth variations, which
modulate the source galaxy number density across the sky in the
same way for all noise realizations and tomographic bins. The second
is the presence of a common survey mask when we perform the KS
reconstruction, which induces features in the map that are correlated
across independent noise realizations given they all share the same
mask. The black dashed lines in the right panels of Fig. 9 confirm that
a full-sky analysis with Gaussian shape noise and no survey mask —
which by construction has removed the survey property-based effects
discussed above — has no convergence—shape noise correlations.

Focusing on the top row of the left panels, we see correlations mea-
sured by positive thresholds flip signs depending on the tomographic
bin of the convergence field (indexed as .A). In the absence of source
clustering, the KS inversion artefacts cause a positive correlation
between the noise and signal field. As we consider convergence fields
of higher redshift bins (leaving the noise field fixed at a particular
redshift bin), source clustering effects grow in amplitude and result
in a 3-point anticorrelation between the noise and convergence field
(Gatti et al. 2022, see their Fig. 14). This causes measurements from
positive (negative) thresholds to take negative (positive) ¥ values.
The threshold-dependent differences in the sign of i highlight the
non-Gaussian nature of the induced correlations.

Fig. 9 also shows that convergence—shape noise correlations are
statistically significant in the data vector and so are a necessary
component in forward-modelling the CDFs. This is also true of
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Figure 9. The correlation between two fields, which are the observed convergence field — either from DES Y3 data or forward modelled from simulations —
and the simulated Y3-like shape noise fields. We find a significant detection of correlation. The panels show the index of the tomographic bin for the observed
field (S) and the shape noise field (N). The left panels show the DES Y3 data and the A23 simulations with source clustering. The right panels show a subset
of correlations for two other types of simulations — one with no source clustering, and one with Gaussian noise and no survey mask. The simulations with no
source clustering show a clear difference from those with it included. However, even without source clustering, the observed field is correlated with the noise
field, and this is due to performing KS reconstruction with a survey mask. We also measure the CDFs on full sky maps that use Gaussian noise and no survey
mask. In this regime, the signal and noise fields are completely uncorrelated as expected. The total signal-to-noise of the convergence—shape noise correlation,
computed as the difference between the “With SC” and ‘No SC’ models, is 130. The “With SC’ model is within 3.5¢ of the Y3 measurements.

other higher-order statistics. The analysis of Gatti et al. (2022)
found correlations between the signal and noise field but was
able to denoise the measurements to remove this effect. This was
possible as they used the third moments of the field as their statistic,
(Kgbs> = ((Ksignal + Knoise)”)» and so the noise-dependent terms — such
as (Ksignallffoise) — that contributed to the measured moments, (/cgbs),
could be subtracted exactly. This can be done for moments of any
order. For statistics like the CDFs, however, the data vectors depend
on the noise in a nonlinear way, and a simple subtraction will not
remove all convergence—shape noise correlations. In this case, we
are reliant on an accurate forward model of the shape noise field."

5.5 Higher-order shear effects

In equation (16), the contribution to the measured ellipticity from the
cosmological component is written as e, This is then connected
to the shear field, y, as eh*™ = y/(1 — k). In the limit of ¥ K 1,
this is approximated to leading order as y/(1 — k) = y. Thus, the
measured ellipticities are assumed to directly trace the shear y, and
we ignore higher-order terms, the first of which is y«.'® The effect
of this approximation is generally known to be subdominant to the
cosmological signal (Krause & Hirata 2010). The specific impact on
the second and third moments measured in DES Y3 is also known to
be negligible, especially when compared to the uncertainties in the

151t may still be possible to approximately denoise the CDFs, but we have
not explored this possibility in this work.

16This can be seen by expanding the reduced shear expression as a Taylor
series around « = 0, which gives y/(1 — k) ~y(1 +« + K22+ ...

Y3 measurements and to other effects such as baryon imprints (Gatti
et al. 2020, see their fig. 4).

In Fig. 10, we show the residuals between CDF measurements
made on a mass map where the input true shear field is just y and a
map where the input field is actually y/(1 — «). Note that by using
y/(1 — k) rather than the approximation y(1 4+ k + ...) we test
the impact of ignoring all higher-order terms in the reduced shear
approximation, rather than just the leading order correction, y«.
We then perform the full post-processing pipeline with both map
versions. We make 8000 DES Y3 maps for both versions, and our
results are averages over all realizations. The differences at the data
vector level are within <0.1o and are subdominant to the signal
by multiple orders of magnitude. The impact of this approximation
increases with redshift, which is expected as the variance of the «
field increases for source galaxies at higher redshift, and so ignoring
the 1/(1 — k) factor has a larger significance.

This result also provides a validation for magnification effects,
which at leading order in ¥ modify the shearas y — y (1 + g« ), where
q is some (1) constant. As was the case with the PSF contributions,
these effects have been quantified up to the 3-point function for DES
Y3 (Gatti et al. 2020), and we have now implicitly extended it to
include higher-order moments through our focus on the CDFs.

5.6 Baryon imprints

Finally, we check the impact of baryon modelling on this statistic.
Over the past decades, it has been well-established that galaxy
formation processes like gas cooling and AGN (Active Galactic
Nuclei) feedback can alter the distribution of total matter within
and around haloes (Blumenthal et al. 1986; Gnedin et al. 2004;
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Figure 10. The difference in CDFs depending on whether or not we account for reduced shear effects, AP = PRS — Pfid_ The high-redshift bins, especially
when looking at the 2-field CDFs, see the largest impact given source planes at high redshift have larger values of « and thus the 1/(1 — «) term for the reduced
shear is larger. The deviations are still within < 0.1o in all cases and are 2-3 orders of magnitude below the cosmological signal. The total signal-to-noise of

reduced shear-induced residuals is 0.30.

Duffy et al. 2010), which consequently will impact the weak
lensing signal (Chisari et al. 2018). These baryonic imprints have
a strong mass/redshift dependence (Lovell et al. 2018; Beltz-
Mohrmann & Berlind 2021; Anbajagane, Evrard & Farahi 2022a)
and this mass/redshift-dependent impact on the halo potential can
vary across simulation prescriptions (e.g. Shao, Anbajagane & Chang
2022; Anbajagane et al. 2022b).

Recently, Schneider et al. (2019) implemented a halo-based model
that can alter N-body simulations — which are cheaper to run than
full hydrodynamic simulations with galaxy formation — to then
model the baryon imprints on the density/convergence field. This
technique provides a higher-level, approximate galaxy formation
model that depends only on ‘macro’ properties like the halo baryon
fraction, the baryon density profiles, dark matter density profile
etc. and the flexibility manifesting from the method’s approximate
nature is particularly useful both for matching the range of halo
property scaling relations found in the latest hydro simulations (e.g.
Anbajagane et al. 2020, 2022b; Lim et al. 2021; Cui et al. 2022;
Lee et al. 2022; Stiskalek et al. 2022; Anbajagane, Evrard & Farahi
2022a) and for handling differences between the evolution of gas in
observations and simulations as found in different analyses (e.g. Hill
et al. 2018; Amodeo et al. 2021; Pandey et al. 2022; Anbajagane
et al. 2022c, 2023a).

In this section, we once again compute residuals between CDFs
measured on maps from N-body simulations and maps that have
been ‘baryonified’. Both sets of maps used in this section come from
the COSMOGRID suite, and the baryonification was performed with
the same model as Schneider et al. (2019). The parameters of the
baryonification model were all given their default values, except for
some of the gas model parameters which we given values of M, =
13.82 and v = 0. These parameters are part of a reparametrization
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done in Fluri et al. (2022) and control the gas density profiles’ slopes.
We take the true convergence fields from COSMOGRID and post-
process them using the same pipeline described in Section 3.3. We
make 800 DES Y3 cutouts from each set of maps. All results are
averages over these realizations.

Fig. 11 shows the residuals due to baryonic imprints on DES
Y3-like mock maps. In all cases, the baryon impacts are below lo.
However, note that the maps from COSMOGRID have a resolution of
NSIDE = 512, and thus the pixel resolution is 6.4’ arcmin, instead of
the 3.2’ arcmin minimum scale used in this work. Since the baryons’
dominant contribution is on smaller scales, it is likely that the frue
residuals at 3’ < 6 < 6.4 are actually larger than what is presented
in Fig. 11 but are currently suppressed due to the pixel resolution
of the COSMOGRID maps. Nevertheless, we can state that the baryon
imprints for & > 10" have a significance that is approximately 1-2
orders of magnitude below the cosmological signal.

The impact is also highest for the extreme thresholds in the CDF —
the k = —0.006 and k = —0.020 thresholds — and this has been seen in
previous, theoretical works. Osato, Liu & Haiman (2021) compared
hydrodynamic simulations with a dark matter-only counterpart and
showed the lensing PDF can be impacted by more than 10 per cent at
the tails of the distribution (see their fig. 5). Sunseri, Li & Liu (2023)
used the same set of simulations to show that the impact of baryons
on haloes, filaments, and voids affects different parts of the matter
PDF.

5.7 Scale cuts

In the above sections, we have determined the impact of different
systematics and modelling approximations on the CDF data vector.
Some systematics are negligible for the whole data vector, such
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Figure 11. The difference in CDFs measured on dark matter-only (DMO) simulations and ‘baryonified” DMO simulations. As expected, baryon imprints are
a significant effect on the data vector. The grey band shows the scales below 6 < 6.4’, which is the pixel resolution of the COSMOGRID DES Y3 maps, and is
a factor of 2 larger than the other maps we consider in this work. Thus, the baryon effects we estimate below that scale are an underestimate of the true effect
given the pixel resolution will suppress these effects. The total signal-to-noise of baryon imprints is 3.50, though this is a lower bound given the suppression

due to map resolution.

as the PSFs (Section 5.3) and the reduced shear approximation
(Section 5.5), while others are prominent at a subset of scales, such
as baryon imprints (Section 5.6). Thus, using the CDFs to robustly
infer cosmological constraints will require us to discard some parts
of the fiducial data vector — namely the parts where the amplitude of
the systematics is high — and obtain constraints using the remaining
fraction of the data vector.

Amongst all the systematic effects considered in this work, the
most significant are the baryon imprints (Fig. 11) and the source
clustering effect (Fig. 8). These will determine how the data vector
is truncated. Our scale cuts are determined by requiring that the
parameter bias due to unmodelled systematic effects is below a
certain threshold. We compute this bias using the extended Fisher
formalism of Amara & Réfrégier (2008) and Asgari et al. (2021a),
Ay =2 (F ), ddX;dC" (Rbiwea = Xia) (20)

q

where both p and ¢ are indexes over the cosmological parameters
of interest. The average bias in the data vector, )N(biasgd -X fid, 1S
a quantity we have already computed and presented in the above
subsections. We then summarize this bias-per-parameter, A;i“*, into
a bias for the full N-D posterior as

8 = \/Z Abias(C1y,,, Abias, Q1)

p.q

where C is the covariance of the parameters, and so C~! is just the
Fisher matrix, F. Our procedure for scale cuts is simply removing
data points until § < X, where X is some chosen threshold. We will
use X € {0.3, 0.2, 0.1}. The choice X = 0.3 matches the tests done
in the main methodology pipeline for DES Y3 (e.g. Krause et al.

2021; Amon et al. 2022; Secco et al. 2022a) while the other values
are chosen to explore more stringent cuts that could be reflective of
Stage IV surveys. Note that this threshold, X, is somewhat arbitrary,
but that is not a concern as our goal is to see how the scale-cuts for the
CDFs compare to those for the moments; as long as the same choices
are applied across both statistics, the arbitrariness of the choices is
not relevant.

The other component we must decide is how to determine and
discard data points to achieve the condition § < X, as there is
significant freedom in doing so. We could throw away all data points
for every bin/threshold corresponding to aperture scales below a
certain chosen value. However, the choice of a fixed scale threshold
is suboptimal as the impact of systematics at a chosen scale varies
across bins and thresholds (as seen in any of the Figures above).
Thus, our choice here is a scale cut done bin-by-bin (and threshold-
by-threshold, in the case of CDFs) and follows the approach of Amon
et al. (2022); Secco et al. (2022a). We compute the chi-squared of
a given effect in a specific tomographic bin combination (and also
specific threshold, in the case of CDFs), and remove the data points
corresponding to the smallest scales until we satisfy the relation,

()N(sub,biased — Xaub.id) Cot (isub,biased - )?sub,ﬁd)r < AXiresns (22)

where X, sub,biased and X sub,fia are subsets of the data vectors used in
equation (20), where the subsets correspond to specific tomographic
bin combination (and threshold, when using CDFs), Cy, is the
covariance matrix of the subset, and A2 ., is the maximum change
in x* we allow for the full data vector. In practice, we vary Ax: .
until the parameter bias goes below our required threshold. The data
points that have been removed to achieve this condition define the
scale cuts.
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Table 2. The Fisher information constraints presented in this work for CDFs
measured on simulations and for a joint analysis of Qp, og, and wq, but
after implementing various types of scale cuts. From top to bottom, we do (i)
simple, fixed angular scale cuts, and then cuts based on (ii) baryonic imprints
and (iii) source clustering. The cuts are made by removing data points until
8 < X, where § — defined in equation (21) — is the total parameter bias in a
full N-D parameter space. We show the size of the modified data vector in
the rightmost column. The FoM is quoted relative to the FoM of the CDFs
constraints with no scale cuts.

Scale Cut o(Qm) o(og) o(wo) FoM Ndof
Fixed angular cuts

0 >3 0.018 0.025 0.15 1.0 460

0> 10 0.022 0.032 0.18 0.85 410

0 > 20 0.025 0.035 0.21 0.59 270
Baryonic imprints cuts

6 <03 0.033 0.053 0.33 0.14 129

§<0.2 0.035 0.061 0.39 0.10 100

6 <0.1 0.036 0.062 0.42 0.08 92
Source clustering cuts

6 <03 0.038 0.063 0.44 0.07 84

§<0.2 0.038 0.078 0.57 0.05 71

5§ <0.1 0.042 0.109 0.82 0.03 34

Once the scale-cuts have been defined, we recompute the Fisher
constraints using the truncated data vector; the results for the CDFs
are tabulated in Table 2. The table also shows constraints from
generic scale cuts, where we set a fixed minimum angular scale for
all tomographic bins and all thresholds. For the fixed angular scale
cuts of 3.2, 10, 20/, baryonic effects cause a parameter bias of § =
1.2, 0.6, and 0.3, respectively. Cutting all scales below 20’ causes
a fractional change of ~ 30 per cent in the constraints. At these
scale cuts, the CDFs are comparable to combining second and third
Moments, and we have verified that combining the CDFs with the

CDFs, No Cuts
6<0.3
6<0.2
6<0.1
0.9}
600.8*
07}
_0.57 L
S -10f s
_1.57 L
02 03 07 0.8 09 -15-1.0-05
Qm Og Wo

moments still leads to a 30 per cent improvement in the constraints.
The PSFs and reduced shear effect have no impact on scale cuts so we
do not show them here. Note that, as was discussed in Section 5.6, the
impact of baryonic effects is an underestimate given the baryonified
COSMOGRID maps used to estimate the effect have a 6.4’ minimum
resolution scale. Baryon effects are more impactful at smaller scales
and will be more than 10 per cent of the signal if the resolution limit
is corrected. However, for our goal of consistently comparing the
impacts on CDFs and Moments, this suppression is not a limiting
factor.

Table 2 shows that baryon imprints and source clustering both
cause notable differences in the parameter constraints, especially in
og and wy. The FoM in the 3D parameter space drops by a factor
of nearly 10 after implementing these scale cuts, which highlights
the growing need to improve modelling of these effects instead of
robustly trimming the data vector to be insensitive to the effects.
Note that while the impact of source clustering on determining the
scale cuts is larger than that of the baryonic imprints — which is
counter to the standard expectation — this is once again because of
the suppression of baryon effects on the small scales due to the
resolution scale of the COSMOGRID data products.

Fig. 12 and Table 3 also show the results from defining scale
cuts using both baryon imprints and source clustering, and doing
so for CDFs and for the second and third moments. This provides
a self-consistent reference to compare the two data vectors. The
combination of scale cuts is done by looking at both baryonic effects
and source clustering, and at each data point we pick the amplitude
of the effect that is highest, i.e. £ = max |Baryons, SC| for each data
point. We find that the moments’ constraints are comparable to the
CDFs’ after these scale cuts. Once we remove w, from the analysis
the scale cuts cause only a factor of 3 degradation of the FoM as
opposed to the factor of 10 if we include wy.

Generally, one may expect the CDFs to be less sensitive to these
effects than the moments; reduced shear, source clustering, and
baryon imprints are all effects that grow with the amplitude of the

Moments, No Cuts
6<0.3
6<0.2
6<0.1
0.9F
& 0.8}
0.7}
_057 .
S -1.0f s
_15, .
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Figure 12. The Fisher constraints from CDFs (left) and second + third moments (right) measured on simulations. We present four cases, where we either have
no scale cuts or cut the data vector so the parameter bias in the Q;, — 0§ — wo contour is below a certain value; see equation (21). The CDFs and the moments

have comparable constraints, which are denoted in Table 3.
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Table 3. The Fisher information constraints presented in this work for a joint
analysis of either Qp,, 03, and wy (top two) or just 2, and o'g (bottom two),
but after implementing scale cuts to reduce the parameter bias. We show the
constraints, after scale cuts, for both the CDFs and for the combination of
second and third moments. We show the size of the modified data vector in
the rightmost column. The FoM is quoted relative to the FoM of the CDFs
constraints with no scale cuts.

Scale Cut o (2m) o(og) o(wg) FOM Naof
CDFs, All cuts (Q2m, 08, Wo)
8CDF < 0.3 0.037 0.063 0.44 0.07 84
SCDF < 0.2 0.037 0.074 0.52 0.05 75
8CDF < 0.1 0.040 0.102 0.75 0.03 49
2nd and 3rd moments, all cuts (Q2m, 08, Wo)
SMoments < 0.3 0.037 0.050 0.34 0.13 109
SMoments < 0.2 0.040 0.076 0.50 0.06 86
SMoments < 0.1 0.045 0.105 0.74 0.03 58
CDFs, all cuts (2m, 08)
8CDF < 0.3 0.033 0.050 - 0.27 99
8CDF < 0.2 0.035 0.053 - 0.20 79
8CDF < 0.1 0.038 0.057 - 0.16 52
2nd and 3rd moments, all cuts (Qm, 08)
SMoments < 0.3 0.031 0.044 - 0.34 118
SMoments < 0.2 0.036 0.051 - 0.22 91
SMoments < 0.1 0.044 0.058 - 0.12 4

density field and/or the convergence field. This means they impact
the tails of the density/lensing distribution the most and leave the
‘bulk’ of the PDF — roughly the 68 per cent or the 95 per cent region
centred around the median — relatively unaffected. The moments
are defined as an integral over the whole distribution and so cannot
isolate just parts of it. The CDFs on the other hand can perform such
an isolation. They fundamentally only probe whether or not a pixel’s
convergence is above a given threshold; thus, if the convergence is
well above/below the threshold, the measurement of the CDFs is
unaffected by that pixel value shifting around due to various effects.
For example, the negative thresholds &k < 0 will be unaffected by
the baryon imprints in massive haloes, as massive haloes exist in
k > 0 regions and baryon imprints reduce the x value but always
keep it positive, and so the convergence around haloes will always
be above the k < 0. Of course, if the « values of interest are near
a threshold, then any shifts will have a stronger impact on the CDF
measurements at that threshold. This argument also suggests there
are a particular choice of thresholds that balance constraining power
while alleviating such systematics. We have not explored such an
optimal selection. In Table 3, we also redo the scale cuts but now
leave out wy when computing the total parameter bias, as this is a
closer match to the procedures used in Stage III surveys (e.g. Krause
et al. 2021). Our qualitative findings remain the same even in this
case.

6 CONCLUSIONS

In this work, we have explored the use of the Cumulative Distribution
Functions (CDFs) of the convergence field as a summary statistic for
extracting cosmological information, drawing on the development
of the kNN distributions for the discrete fields. The CDFs are a
convenient, succinct summary of the field that approximately capture
all higher moments of the field in a significantly shorter data vector
that is also quicker to compute. We explore the theoretical advantages
of using these CDFs and check their sensitivity to the relevant
practical challenges in extracting robust cosmology constraints from
Y3-like data. The conclusions of this work are as follows:
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(i) For scales of 3 < 6 < 200" and tomographic bins of DES
Y3, the CDFs have better constraints on £2,, og and w when
compared to those from the combination of both second and third
Moments (Fig. 4). This improvement is modest, but the CDFs still
have a slightly different degeneracy direction to the moments, and
combining the CDFs and moments leads to the constraints improving
by 20-30 per cent.

(ii)) The CDFs measured on a Gaussian field provide Fisher
constraints that are completely consistent with the angular power
spectra and second Moments computed on the fully nonlinear, non-
Gaussian field (Fig. 4). The CDFs and moments all have Gaussian
likelihoods as well (Fig. B1).

(iii) The DES Y3 noise field is highly non-Gaussian, with a very
significant fourth moment (Fig. 6). There is some cosmological signal
at large scales in the fourth moment, but none in the fifth moment.

(iv) We create a PSF ‘mass map’ for testing PSF contributions at
the map level, and show the signal from PSF shapes is 2-3 orders of
magnitude below the cosmological signal (Fig. 7). This validates not
only the CDFs, but also indirectly validates the minimal impact of
the PSFs on information beyond the third moment (existing works
have already validated them at the second and third moment level).

(v) The presence or lack of spatial correlations in the source galaxy
number counts, i.e. ‘source clustering’, impacts the convergence field
model at the 1-10 per cent level (Fig. 8).

(vi) The CDFs are sensitive to correlations between the conver-
gence field and the shape noise field, induced by source clustering.
We detect these correlations at 130, and can adequately model them
in the simulated maps (Fig. 9).

(vii) The reduced shear approximation changes the cosmological
signal at the 1-5 per cent level (Fig. 10), while baryon imprints are
1-10 per cent of the cosmological signal (Fig. 11).

(viii) We perform scale cuts that limit the parameter bias due to
systematic effects under a certain level. The cut CDF data vector has
comparable constraining power to the cut data vector of the second
and third Moments (Table 2 and Fig. 12).

Optimizing the summary of fields is a rich area of study, with
a variety of approaches and outcomes. The CDFs, through their
sensitivity to all moments of the field, probe both the cosmological
signal at all these orders as well as any potential modelling challenges
that surface at these orders (e.g. the high kurtosis of the noise field
that does not impact 2-point and 3-point functions). This sensitivity
to all orders becomes a more relevant trait as we extend our analyses
to smaller scales, which are more nonlinear and thus more non-
Gaussian. It may also become relevant in constraining — and/or
marginalizing over — the impact of baryons on the density field; these
effects happen pre-dominantly within haloes, and so are localized
around the most nonlinear regions of the density field and thus will
have non-Gaussian signatures. The CDFs might also be one of the few
ways to probe the highest orders of information in the field. They are
more robust given they can isolate specific parts of the distribution,
and this is in contrast to the higher order moments which will be
increasingly sensitive to noise/outliers in the tails of the distribution.
Thus, if there is significant, usable higher-order information in the
cosmological field (for example, in future surveys with different
noise levels and sensitivities), the CDF may be one of the only ways
to robustly access it.

While efforts have already been made to obtain cosmology from
up to the third moment, we show there remains some information
beyond the third moment that can likely be accessed in a robust
manner, i.e. without worrying about systematics. Effects like reduced
shear, source clustering, and baryons have some impact that is at
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the 0.1 percent—10 per cent level depending on the effect and
the angular scale. After enacting scale cuts to reduce the bias on
cosmological constraints to be within 0.30, the CDF data vector
still provides constraints better than those of the second and third
moment data vector. We have identified that accurate modelling
of the noise field at higher orders is the current limiting factor
in robustly inferring cosmology from statistics like the CDFs.
Alternatively, an accurate way of denoising the CDFs — which
effectively bypasses requirements in modelling the noise field by
removing its contribution from the data vector — would enable robust
cosmology constraints with the CDFs.

Finally, we note that even though this work has specifically
focused on validating the CDF as a summary statistic, the validation
results have significant implications for the broader range of lensing
convergence statistics discussed in the literature. The key underlying
information is the distribution of convergence as a function of scale,
P(ky), and the CDFs are a convenient and compact way of sum-
marizing this distribution/information. Other statistics summarize
this distribution in different ways, such as lensing-in-cells!” and
Minkowski Functionals.'® As has been discussed above, another
closely connected statistic is the moments of the field, (k/), which
are a further summary of the distribution, P(ky | 6), and computing
moments to an arbitrarily high order is equivalent to computing the
CDF to arbitrarily many thresholds.

As we move towards Stage IV surveys with wider survey areas and
deeper observations — both leading to higher precision measurements
— other systematics could become relevant. As a rough example, the
LSST Year 10 data set will have ~3 times the survey area as DES
Y3 and ~5 times the source galaxy number density as DES Y3
(The LSST Dark Energy Science Collaboration 2018), which leads
to a factor of 4 increase in precision of the data vector and in the
significance of any systematic we discuss in this work. The reduced
shear effect (Fig. 10) — which can be safely ignored in Stage III
surveys — will likely need to be included in the model for Stage IV,
especially for LSST’s highest redshift bins as the amplitude of the
effect grows with redshift. However, this component can be trivially
included via simulation-based modelling using the same approach
we used to include its effects in our simulations (Section 5.5). Source
clustering will also be a necessary modelling ingredient for Stage IV
surveys as its signal-to-noise will exceed 1 for LSST. While this
modelling can also be done through simulation-based modelling, it
requires some galaxy bias prescription (equation (17)) which would
introduce a modelling uncertainty that has yet to be quantified.
Additionally, we discussed that the Born approximation is adequate
for modelling the weak lensing field under DES-like uncertainties.
However, previous works have shown that for Stage IV data quality
we will require ray-tracing when using higher-order statistics (Petri,
Haiman & May 2017).

These effects above — reduced shear, source clustering, and Born
approximation — impact all statistical summaries of the lensing field,
including the standard 2pt and 3pt functions. Systematics that will
uniquely impact the CDFs are then effects that generate a fourth
moment and beyond. We have already found in this work that the

7This is the lensing-focused analogue of counts-in-cells, where the latter
is the distribution of tracer counts within a given volume, P(ky | V). If we
replace trace counts with lensing convergence, then we obtain lensing-in-
cells.

I8The CDFs are the same as the zeroth-order Minkowski functional, though
in our formalism we also introduce a cross-correlation method — inspired by
the formalism for kNNs in Banerjee & Abel (2021b) — which is traditionally
not used/defined for the Minkowski Functionals.

MNRAS 526, 5530-5554 (2023)

fourth moment of the noise field is a highly relevant modelling
component for the CDFs. In DES Y3, this was primarily sourced by
the survey depth fluctuations as well as the intrinsic, cosmological
clustering of source galaxies. In general, however, any process that
spatially modifies the shape noise per galaxy or the number of
galaxies per pixel will generate the fourth moment. For Stage IV
surveys, the precision will be high enough that effects such as
spatially varying multiplicative bias — which impacts the measured
variance of the shape distribution — could also be a required modelling
component, but we must first quantify how much this bias will
actually vary across the sky.

The validation steps performed in this work have implications
for the statistics mentioned above — lensing-in-cells, Minkowski
Functionals, field moments etc. For example, it is likely that PSF
ellipticity correlations will be a few orders of magnitude below
the cosmological signal for all of these statistics. A similar case
can be made for the impact of source clustering and the reduced
shear approximation. Of course, it is still ideal to perform a separate
validation for those statistics to explicitly verify their robustness
to these effects, but the results of this work indicate — given the
statistics all summarize the same underlying distribution, P (kg | 6) —
that it is likely these other statistics will also be robust to these. By
using the CDFs, which are approximately summarizing all higher
order moments, we have tested these systematics at the map level
and beyond the third moment. We hope the methodologies for map-
level tests that we employed and/or introduced in this work enable
more checks of the large library of higher-order statistics that are
being developed for the convergence field, and thus enhance the
trustworthiness of these newer statistics.
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APPENDIX A: 3-FIELD CDFS AND BEYOND

Formally, in the Gaussian limit, the 3-field CDF contains no new
information beyond those from the 2-field CDFs, since they can also
be described completely by the multivariate normal in equation (8).
Thus, the 3-field CDFs can be predicted exactly using the covariance
of the fields as a function of smoothing scale.

We show this explicitly in Fig. A1. We make measurements of
the 3-field and 4-field CDFs on Gaussian fields, and then exactly
predict the measurements given the covariance matrix as a function
of smoothing scale. The covariance matrix is measured directly on
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Figure A1. Measurements for the 3-field and 4-field CDFs on the noiseless
DES Y3-like simulations (coloured lines), and a theoretical prediction in the
limit of the field being Gaussian (black, dashed lines). The latter follows the
same procedure of Section 2.3. The Gaussian model fits the data well, as is
expected in this limit. The bin indices show the different tomographic bins
used in the measurement.

the map. We have verified the residuals between the measured N-field
CDFs and the prediction is within 0.1¢, where o comes solely from
cosmic variance. This test is an extension of Fig. 2 for N-field CDFs
of higher N.

APPENDIX B: GAUSSIANITY OF COVARIANCE
MATRIX

The process of performing a Fisher forecast, or obtaining constraints
using likelihood minimization, assumes the likelihood of the data
vector is Gaussian, i.e. the measurement uncertainty in the data vector
is distributed as a multivariate Gaussian. We test here the validity of
that assumption. We do so by first transforming every realization i of
a data vector by removing its mean, S; = D; — (D), where the mean
is computed over all i realizations. We then compute x? = S;C~'S;,
where C is the covariance matrix estimated using all realizations of
D. In the limit that the likelihood is Gaussian, the distribution of x?
must follow a standard y? distribution.

In Fig. B1, we show the measured and expected distributions for
four different data vectors, and in all cases we find the measured
distributions match the expected Gaussian-limit distributions. We
also compute a Kolmogorov—Smirnov statistic to quantify the level of
agreement between the measured and expected distribution (Peacock
1983). This validates that the Fisher formalism is an accurate way
to estimate potential constraints from the statistics considered in this
work. Some additional techniques can also be used to quantify this
Gaussianity of the likelihood (Park et al. 2022; Euclid Collaboration
2023), and they are roughly similar to the approach we have taken
here.
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Figure B1. The chi-squared distributions of the data vectors (solid lines),
compared with a theoretical chi-squared distribution (dotted black line)
with Ngof given by the size of the data vector. In the Gaussian likelihood
limit, the theoretical distributions will match the measured distribution. A
Kolmogorov—Smirnov test shows the probability that the observed and ex-
pected distributions are similar exceeds p > 0.1. The data vectors considered
in this work have a sufficiently Gaussian likelihood.

APPENDIX C: DEPENDENCE OF DATA
VECTOR ON COSMOLOGY

In Fig. C1, we show the derivative of the CDF measurement with
the three cosmology parameters we have varied in Section 4.2. For
brevity, we only show the derivative for the 1-field CDF of the fourth
tomographic bin. At fixed threshold, the scale-dependence of the
derivatives varies across the parameters, particularly at larger scales.
At smaller scales, the derivatives with respect to 2, and og have
larger amplitudes for the negative tail (k = —0.02) than the positive
tail (k = 0.02). The derivative for k = 0 (green line) is near-zero in
the 1-field CDFs, but we have checked that it is significantly non-
zero for 2-field CDFs; this difference between the 1-field and 2-field
behaviour is similar to that seen in Fig. 3. Any change in the k =0
line for 1-field CDFs means the median of the distribution (and thus,
the shape of the distribution) is being altered.
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