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The framework of Mean-field Games (MFGs) is used for modelling the collective dynam-

ics of large populations of non-cooperative decision-making agents. We formulate and

analyze a kinetic MFG model for an interacting system of non-cooperative motile agents

with inertial dynamics and finite-range interactions, where each agent is minimizing a bi-

ologically inspired cost function. By analyzing the associated coupled forward-backward

in time system of nonlinear Fokker-Planck and Hamilton-Jacobi-Bellman equations, we

obtain conditions for closed-loop linear stability of the spatially homogeneous MFG equi-

librium that corresponds to an ordered state with non-zero mean speed. Using a combina-

tion of analysis and numerical simulations, we show that when energetic cost of control is

reduced below a critical value, this equilibrium loses stability, and the system transitions to

a travelling wave solution. Our work provides a game-theoretic perspective to the problem

of collective motion in non-equilibrium biological and bio-inspired systems.
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How can we understand phase transitions in collective motion of a population of motile

agents making individually optimal decisions over time ? Mean field game (MFG) theory

is a mathematical framework for modelling such systems. We study a system consisting of

a large number of agents that optimally modulate their acceleration to minimize the long

term average of a weighted sum of two costs. The first is the total energy use, and the second

penalizes the mismatch between the local mean speed and a preferred speed. We show that

the system transitions from a spatially homogeneous ordered state to a travelling wave as the

energetic cost is reduced below a critical value.

I. INTRODUCTION

This paper is concerned with phase transitions in the collective motion of optimal decision-

making non-cooperative motile agents. Collective motion and synchronization continues to be ac-

tively studied in many scientific domains1–6. In purely physical systems, the interactions between

particles are given by physical laws, and systems are studied using agent-based (or microscopic),

kinetic and hydrodynamics models that incorporate those laws. On the other hand, models for

systems involving decision-making agents, e.g., bird flocking, traffic, human crowds and robot

swarms, often incorporate other types of interactions such as collision avoidance, alignment, and

cohesion towards the mean. Most commonly, these latter types of interactions are captured in

phenomenological models using physical analogies.

A different, ‘inverse modelling’ approach7 is to stipulate that the collective behavior of a pop-

ulation of decision-making agents is a solution to a collective optimization or optimal control

problem. When considering large number of non-cooperative agents making sequential decisions,

the framework of Mean-Field Games (MFGs)8 is appropriate. In a MFG system, the collective be-

havior is the result of each agent solving an optimal control problem that depends on its own state

and control as well as the collective state9,10. MFGs formulated in continuous state space and time

are described by coupled set of forward-backward in time nonlinear partial differential equations

(PDEs). While standard kinetic or hydrodynamic equations used for modelling collective behavior

are initial value problems (IVP or evolution PDEs) , the MFG systems have a forward-backward

in time structure, and hence consist of boundary value problem (BVP in time PDEs) .

In evolution PDEs, phase transitions3,11,12 in collective behavior are studied via stability and
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bifurcation analysis of steady or time-periodic states. In recent years, similar questions are being

explored in the context of MFGs, where bifurcations can be interpreted as phase transitions in the

collective behavior of optimal decision-making agents as problem parameters such as the unit cost

of control are varied. While uniqueness of solutions in MFGs is guaranteed under certain mono-

tonicity conditions13, there is an increasing interest14? –21 in studying MFGs that don’t satisfy such

conditions and hence are expected to have multiple co-existing steady states.

In this context, starting with the seminal work of Yin et al.22, several authors have studied

the phase transition from a ‘disordered’ steady state to an ‘ordered’ travelling wave solution in

the MFG problem involving synchronization of oscillators23,24. The system involves globally

cost-coupled agents with first-order dynamics (i.e., without inertia), moving on a circular domain.

Hence, these MFG models can be understood as ‘inverse models’ for the Kuramoto dynamics25.

Other works16,17 have proved the existence of time-periodic solutions in certain classes of MFGs

set in periodic spatial domains.

In this paper, we study phase transitions in a MFG ‘inverse model’ for the kinetic Czirók

model26, where unlike all the works discussed above, the population consists of interacting in-

ertial agents, i.e., the agent dynamics are second-order in time, and the agents directly control

their acceleration. The original Czirók self-propelled particle (SPP) model was proposed as a 1D

simplification of the 2D Vicsek flocking model1. These biologically-inspired interacting particle

system models, first proposed in the 1990s, have proven highly influential in the development

of the field of active matter27. Various interactions considered in these models include velocity

alignment with the mean1, pairwise velocity alignment4, position-based alignment28,29, and hy-

drodynamic coupling30.

The ordered states of the Czirók model include spatially homogeneous equilibria and spatially

inhomogeneous travelling waves. We show that the kinetic MFG inverse model that we derive

from the Czirók model inherits these features. We provide a stability analysis of the spatially ho-

mogeneous equilibria of the kinetic MFG31. Further, we numerically show the phase transition in

the MFG to travelling waves as the equilibrium states lose stability when the unit cost of control

is reduced below a critical value. Our analysis combines techniques use to study generalized Ku-

ramoto models with inertia32,33, and invariant subspace methods employed in the study of Riccati

equations34,35 as well as linear-quadratic (LQ) MFGs36.
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II. CZIRÓK MODEL REVISITED

In this section, we briefly review the Czirók26,37 model, and provide a new stability analysis of

the coarse grained PDE, which sets the stage for the stability analysis of the MFG model in the

later sections.

The Czirók SPP model consists of n agents, where each agent is moving on a 1D periodic

domain [0, l]. The second-order dynamics of the ith agent are given by the stochastic differential

equation (SDE):

dxi = uidt, (1)

dui = [G(〈u〉i)−ui]dt +σdwi(t), (2)

where 〈u〉i =
1

n

n

∑
j=1

u jφ(‖x j −xi‖), and ‖x j −xi‖= min(|x j −xi|, l−|x j −xi|) is the distance on

the torus between the positions of the ith and jth agents. The wi are independent Brownian motions,

and σ is noise intensity. The finite-range interaction kernel φ(x)=
l

2
×1[0,1] with 1

l

∫

l

0 φ(‖x‖)dx=

1, and G(u)=
h+1

5
u− h

125
u3. Here, G(u)−u is the negative gradient of a potential whose minima

are the preferred mean speeds. Hence, the agent evolution can be considered as noisy gradient

descent that drives the population into a preferred collective state. Several studies have employed

the Czirók model and its variants with similar forcing terms to explain collective behavior seen in

nature38,39.

In the n → ∞ limit, the nonlinear PDE describing the evolution of density ρ(t,x,u) is given by

the Fokker-Planck equation

∂ρ(t,x,u)

∂ t
=u

∂ρ(t,x,u)

∂x
− ∂

∂u

([

G

(

∫ L

0

∫ ∞

−∞
u′φ(‖x′‖)ρ(t,x− x′,u′)du′dx′

)

−u

]

ρ(t,x,u)

)

+
1

2
σ2 ∂ 2ρ(t,x,u)

∂u2
. (3)

Note that this equation is degenerate since there is no diffusion in the spatial (x) variable. The

system has spatially homogeneous equilibrium states ρξ (u) of the form ρξ (u) =
1

l
Fξ (u), where

Fξ (u) =
1√
πσ2

e−(u−ξ )2/σ2
, and ξ is the mean speed of the population satisfying the fixed point

equation ξ = G(ξ ). This fixed point equation has a unique ‘disordered’ equilibrium with ξ = 0

for h < 4, and two additional ordered equilibria with ±ξ 6= 0 for h > 4.
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A. Linearization and the operator eigenvalue equation

We focus our stability analysis on the ordered (ξ 6= 0) spatially homogeneous equilibria which

exist when h > 4. It is known that for h > 4, the disordered equilibrium is unstable. We linearize

Eq. 3 around ρξ (u), and note that F ′
ξ (u) =−2(u−ξ )

σ2
Fξ (u). We take the perturbed state to be of

the form

ρ(t,x,u) = ρξ (u)+ ε
√

ρξ (u)ρ̄(t,x,u), (4)

and expand the perturbation ρ̄ using spatial Fourier decomposition:

ρ̄(t,x,u) = ∑
k=0,±1,±2,...

ρ̂k(t,u)e
i2πkx/l. (5)

We will work in the space of square-integrable complex-valued functions on the real line, i.e,

we will assume ρ̂(t, .) ∈ L2(R,du), with inner product 〈a,b〉 =
∫

∞

∞
ā(u)b(u)du. The resulting

linearized evolution equation for the kth Fourier mode is

∂ ρ̂k(t,u)

∂ t
= Lkρ̂k = (Lk

loc,1 +Lk
nonloc)ρ̂k, (6)

where

Lk
loc,1[ f ](u) =

[−i2πku

l
− [(u−ξ )2 −σ2]

2σ2

]

f (u)+
1

2
σ2 ∂ 2 f (u)

∂u2
, (7)

Lk
nonloc[ f ](u) =

2(u−ξ )

σ2

√

Fξ (u)G
′(ξ )φk

(

∫

u′
√

Fξ (u
′) f (u′)du′

)

. (8)

The eigenfunctions and eigenvalues of the operator Lk
loc,1 can be computed explicitly as follows.

We perform a change of variables33 u = g(v) = a1v + a2, where a1 = σ/
√

2 , and a2 = ξ −
2ikπσ2/l. With this substitution, the eigenvalue equation for Lk

loc,1 reduces to

αkρ̂loc,k =

[(

1

2
− v2

4
+ c2(k)

)

ρ̂loc,k +
∂ 2ρ̂loc,k

∂v2

]

. (9)

It is known40 that the eigenvalue Eq. 9 has solutions αk,p = −p+ c2(k), p = 0,1,2, . . . . Here

c2(k) = −2π2k2σ2

l2
− 2ikπξ

l
. The corresponding eigenfunctions are parabolic cylinder functions

Dp(v) = 2−
p
2 e

−v2

4 Hp(
v√
2
) = e

−v2

4 H̃p(v). Here Hp are the physicist’s Hermite polynomials and H̃p

are the probabilist’s Hermite polynomials. Hence, operator Lk
loc,1 also has the same eigenvalues

αk,p. Its eigenfunctions are ηk,p(u) = z(p)Dp(g
−1(u)) = z(p)Dp(

√
2

σ
(u− ξ +

2ikπσ2

l
)). Here
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z(p) =

√

1√
2πa1 p!

is a normalizing factor. The adjoint (Lk
loc,1)

∗ has eigenvalues ᾱk,p, and eigen-

functions ψk,p = η̄k,p. Note that due to our chosen normalization, 〈ηk,p,ψk,q〉 = δpq. Hence the

set {ηk,p,ψk,q}p=0,1,...,q=0,1,... form a biorthogonal eigenfunction basis set of L2[R,du].

With the eigenfunctions and eigenvalues of the local operator at hand, we can derive the char-

acteristic equation of full operator Lk as follows. Let (λ , ρ̂) be an eigenvalue-eigenfunction pair of

Lk. The eigenvalue equation is

λρ̂(u) = Lk
loc,1[ρ̂](u)+g0(u)〈 ¯̂ρ,s〉, (10)

where we have defined functions g0(u),
2(u−ξ )

σ2

√

Fξ (u)G
′(ξ )φk, and s(u), u

√

Fξ (u).

Let Rk
1,λ = (Lk

loc,1 − λ )−1 be the resolvent of Lk
loc,1. Then, the action of Rk

1,λ on an arbitrary

complex-valued function f(u) is Rk
1,λ [ f ](u) =

∞

∑
p=0

〈ψk,p, f 〉
αk,p −λ

ηk,p(u). Using this relation, Eq. 10 can

be rewritten as ρ̂ =−
∞

∑
p=0

〈ψk,p,g0〉〈 ¯̂ρ,s〉
αk,p −λ

ηk,p(u). Taking the inner product of the conjugate of this

expression with s, cancelling common terms on both sides, and another conjugate operation yields

the characteristic equation for Lk
loc,1:

1 =
∞

∑
p=0

〈ψk,p,g0〉〈η̄k,p,s〉
λ −αk,p

=
∞

∑
p=0

〈η̄k,p,g0〉〈η̄k,p,s〉
λ −αk,p

. (11)

To verify our analysis, we solve Eq. 11 for l = 10,h= 5, and 0.2≤σ ≤ 2.5 using 20 eigenfunctions

for each Fourier mode. As shown in Fig. 1, the k = 1 Fourier mode loses stability at σ = σc = 1.8,

which matches the prediction in Garnier et al.37.

(a) (b)

FIG. 1: (a) The real (solid) and imaginary (dashed) components of the eigenvalue of Lk (for h = 5,k = 1) closest to

the imaginary axis, as a function of noise intensity σ . The system is unstable for σ ≤ σc = 1.8 as the real part is

positive in that range. (b) The spectrum of Lk at the threshold of stability, σ = σc.
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Transition to traveling wave: When a spatially homogeneous equilibrium ρξ (u) (ξ 6= 0) loses

stability, the system converges to a stable traveling wave37, i.e., a time-varying spatially non-

homogeneous solution of the form ρ(t,x,v) = ρ̃(x−ωt,v). In Fig. 2, we show one such solution

obtained by numerically solving the IVP Eqs. 3 in the open-source software Dedalus41. We note

that such ‘density waves’ have been observed in swarms in nature, and there are several other SPP

models which also possess such solutions42–45.

FIG. 2: The marginal density
∫

R
ρ(t,x,v)dv of a travelling wave solution of the Czirók model Eq. 3 for

h = 5,σ = 0.8 < σc. This solution is the steady state reached upon perturbing the unstable spatially homogeneous

equilibrium ρξ (u), where
∫

R
ρξ (v)dv =

1

l
= 0.1.

III. A MEAN-FIELD GAME CZIRÓK MODEL

To construct the kinetic MFG model, we consider the interacting particle system of n agents, in

which the ith agent has the dynamics of the form

dxi = uidt, (12)

dui = αidt +σdwi(t), (13)

where (xi(t),ui(t)) are its position and speed, and αi(t) is its chosen control. Each agent seeks

to minimize the long term average of the sum of two costs. The first cost depends on a weighted

mean speed of the population around the agent’s position, and the other is a measure of the energy

spent by the agent. The total cost is

J = limsup
T→∞

1

T

∫ T

0
[c((xi,ui);(x,u)−i)+ rα2

i ]dt, (14)

with the cost-coupling function inspired by the interaction term in the Czirók model Eq. (2)

c((xi,ui);(x,u)−i) = ([G(〈u〉i)−ui])
2 , (15)
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where (x,u)−i = {(x1,u1),(x2,u2), . . . ,(xi−1,ui−1),(xi+1,ui+1), . . . ,(xn,un)} represents the rest of

the population. Here, r is the unit cost of control. While in the Czirók model each agent is

prescribed a certain force (or acceleration) function (the deterministic term on the r.h.s in Eq. 2),

in the MFG model the agent is also considering the energetic cost of its actions. In the n → ∞

population limit, we can approximate the cost-coupling function as15

c[ρ](t,x,u) =

[

G

(

∫∫

u′φ(‖x′‖)ρ(t,x− x′,u′)du′dx′
)

−u

]2

. (16)

Using standard techniques22,46, we can show that the corresponding MFG system consist of the

following nonlinear Fokker-Planck (FP) and Hamilton-Jacobi-Bellman (HJB) equations governing

the density ρ(x,u, t) and the relative value function h(x,u, t) respectively:

∂ρ

∂ t
=−u

∂ρ

∂x
+

1

2r

∂

∂u
{ρ

∂h

∂u
}+ σ2

2

∂ 2ρ

∂u2
, (17)

∂h

∂ t
= χ − c[ρ]−u

∂h

∂x
+

1

4r
(
∂h

∂u
)2 − σ2

2

∂ 2h

∂u2
, (18)

where χ is the minimum average cost. The PDEs can be solved given an initial density ρ(0., .), the

required final condition lim
t→∞

h(t, ., .,) = 0, and appropriate decay conditions in space. The optimal

control α(t,x,u) =− 1

2r

∂h

∂u
. It is easily verified that the (ρξ ∗(u),hξ ∗(u)) is a stationary solution to

the MFG equations, where ρξ ∗(u) =
1

l
Fξ ∗(u),Fξ ∗(u) =

1
√

π
√

rσ2
e−(u−ξ ∗)2/(

√
rσ2) and hξ ∗(u) =

√
r(u− ξ ∗)2. Here ξ ∗ is again the mean-speed of the population, satisfying G(ξ ∗) = ξ ∗, and

χ = σ2
√

r. Hence, similar to Czirók model discussed in Sec. II, the MFG model also possesses

three spatially homogeneous equilibria for h > 4, among which the two equilibria with ±ξ ∗ 6= 0

are the ordered states.

A. Linearization and the operator eigenvalue equation

We linearize the MFG Eqs. (17,18) around an ordered equilibrium (ρξ (u),hξ (u)) with

ξ = ξ ∗ 6= 0. As in section II A, we restrict the stability analysis to a class of density perturba-

tions that are exponentially decaying in u, i.e., we choose ρ(t,x,u) = ρξ (u)+ ε
√

ρξ (u)ρ̄(t,x,u),

where ρ̄(t,x, .) ∈ L
2{R,du}. In case of the value function, the perturbations are restricted

to have a bounded exponential growth rate, i.e., we choose h(t,x,u) = hξ (u) + ε
h̄(t,x,u)
√

ρξ (u)
,
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where h̄(t,x, .) ∈ L
2{R,du}. We expand the perturbations using spatial Fourier decompositions,

ρ̄(t,x,u) = ∑
k=0,±1,±2,...

ρ̂k(t,u)e
i2πkx/l , and h̄(t,x,u) = ∑

k=0,±1,±2,...

ĥk(t,u)e
i2πkx/l . With these sub-

stitutions, the linearized FP equation is

∂ ρ̂k(t,u)

∂ t
=− i2πku

l
ρ̂k − L̃locρ̂k −

1

rσ2
L̃locĥk, (19)

where L̃loc ,

[

[(u−ξ )2 −√
rσ2]

2rσ2

]

− σ2

2

∂ 2

∂u2
is a self-adjoint operator. Hence, Lk

loc,1 =− i2πku

l
−

L̃loc.

The linearized HJB equation is

∂ ĥk(t,u)

∂ t
=− i2πku

l
ĥk(t,u)+ L̃locĥk(t,u)− c̃[ρ̂k], (20)

where c̃[ρ̂k] = 2(ξ −u)G′(ξ )φk

√

Fξ (u)
(

∫

u′
√

Fξ (u
′)ρ̂k(t,u

′)du′
)

. We define Lk
loc,2 ,− i2πku

l
+

L̃loc = −(Lk
loc,1)

∗. The eigenvalues of Lk
loc,2 are βk,p = −ᾱk,p =

p√
r
− i2πkξ

l
+

2k2π2σ2r

l2
. The

corresponding eigenfunctions are ψk,p(u). The coupled system of equations for the linearized

MFG are

∂ ρ̂k(t,u)

∂ t
= Lk

loc,1ρ̂k(t,u)−
1

rσ2
L̃locĥk(t,u), (21)

∂ ĥk(t,u)

∂ t
=−c̃[ρ̂k]+Lk

loc,2ĥk(t,u). (22)

Let ({ρ̂k, ĥk},λ ) be a eigenfunction-eigenvalue pair for the linearized MFG system. The ab-

stract operator eigenvalue equation can be written as:

λ











ρ̂k

ĥk











=











Lk
loc,1 − 1

rσ2 L̃loc

0 Lk
loc,2





















ρ̂k

ĥk











+











0

−g(u)〈 ¯̂ρk,s〉











, (23)

where, g(u) , 2(ξ −u)
√

Fξ (u)G
′(ξ )φk, and s(u) = u

√

Fξ (u). Analogous to the development in

Sec. II A, we employ the resolvents Rk
1,λ of Lk

loc,1, and Rk
2,λ of Lk

loc,2 to obtain the characteristic

equation for the MFG eigenvalues. Here, Rk
2,λ [ f ](u) =

∞

∑
q=0

〈ηq, f 〉
βk,q −λ

ψk,q(u). Using this relation,

the second equation of Eqs. 23 can be written as

ĥk =
∞

∑
q=0

〈ηq,g〉〈 ¯̂ρk,s〉
βk,q −λ

ψk,q(u). Substituting this expression of ĥk in the first equation of Eqs. 23

yields

Rk
1,λ [ρ̂k](v) =

1

rσ2

∞

∑
q=0

〈ηq,g〉〈 ¯̂ρk,s〉
βk,q −λ

L̃loc[ψk,q](u). (24)

9



After applying (Rk
1,λ )

−1 to above equation, we take the inner product of the conjugate of the

resulting equation with s. Cancelling common factors from both sides, and taking the conjugate

again yields the characteristic equation for the MFG eigenvalues:

1 =
1

rσ2

∞

∑
p=0

∞

∑
q=0

〈η̄k,p,s〉〈ψ̄q,g〉〈η̄k,p, L̃loc[ψk,q]〉
(αk,p −λ )(βk,q −λ )

. (25)

B. Linear stability of the ordered MFG equilibria

Since a MFG system is a forward-backward system, the stability of an equilibrium (or more

general invariant sets such as periodic orbits or travelling waves) needs to be defined in a way

that captures the feedback nature of the system. Consider the linear two-point BVP on the time

interval [0,∞] consisting of the linearized MFG Eqs. (21,22) along with a prescribed initial density

perturbation ρ̂k(0, .), and final value function lim
t→∞

ĥk(t, .) = 0 (inherited from the HJB equation).

Definition 1. 15,22,47,48 A MFG equilibrium (ρξ ,hξ ) of the MFG system (17,18) is said to

be linearly stable if the above defined BVP has a unique solution (ρ̂k(t, .), ĥk(t, .)) such that

lim
t→∞

ρ̂k(t, .)→ 0. In other words, any initial density perturbation decays to 0 in the closed loop as

the time horizon goes to ∞.

To proceed with the stability analysis, we first obtain the explicit form of the linear BVP

discussed above, using the eigenfunction expansions ρ̂k(t,u) = ∑
p

Y1,p(t)ηk,p(u), and ĥk(t,u) =

∑
p

Y2,p(t)ψk,p(u). The prescribed initial condition on density fixes the value of Y1(0), and the final

condition on the value function becomes lim
t→∞

Y2(t) = 0. The ODE system obtained by inserting

the expansions into Eqs. (21,22) is





Ẏ1

Ẏ2



= N





Y1

Y2



 , (26)

where N ,





A1 B1

A2 B2



. The submatrices are (A1)q,p =αk,q−1δqp, (A2)q,p =−〈ηk,q−1,g(u)〉〈s(u),ηk,p−1〉,

(B1)q,p =
−1

rσ2
〈ψk,q−1, L̃locψk,p−1〉, and (B2)q,p = βk,q−1δqp. Using the properties of operators in-

volved, we make the following observations. First, A1 is diagonal, Re(σ(A1)) < 0, i.e., all

eigenvalues of A1 lie in the left half plane, and B2 = −A∗
1. Second, B1 is Hermitian, hence its
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eigenvalues are real, with Re(σ(B1)) ≤ 0. Finally, A2 is a rank-1 non-Hermitian matrix. The

characteristic equation of N = ∆+P1 is

det(∆+P1 −λ I) = det(∆−λ I)det(I+(∆−λ I)−1
P1) = 0, (27)

where ∆ =





A1 B1

0 B2



 is an upper block triangular matrix with explicitly known eigenvalues, and

P1 =





0 0

A2 0



 is the rank-1 ‘perturbation’. Note that this is the explicit form of the characteristic

Eq. 25.

Next, we recall some results on Hamiltonian matrices and Riccati theory35. A 2m×2m complex

matrix H is called Hamiltonian if JH+H∗J = 0, where J =





0 I

−I 0



. If H is Hamiltonian, and λ is

an eigenvalue of H, then −λ̄ is also an eigenvalue of H. Necessarily, every 2m×2m Hamiltonian

matrix is of the form

H =





A B

C D



 , (28)

where D=−A∗, and B and C are both Hermitian. Associated with H is a continuous time algebraic

(matrix) Riccati equation (CARE): XA−DX +XBX −C = 0. We say that an m×m matrix X that

solves the CARE is a stabilizing solution if A+BX is Hurwitz. We will need the following result:

Theorem 1. (Chen et al.49) Let H be a Hamiltonian matrix of Eq. 28, with A Hurwitz (i.e, all

its eigenvalues of A lie in the left half plane). Suppose H does not have any eigenvalues on the

imaginary axis. Then, there exists an orthogonal (‘Schur’) transformation V such that

V ∗HV =





H11 H12

0 H22



 , (29)

where all eigenvalues of H11 are the stable eigenvalues of H. If we block partition V =





V11 V12

V21 V22



,

then





V11

V21



 are the m stable Schur vectors corresponding to the stable block H11. Furthermore,

the matrix V11 is invertible, and X+ =V21V−1
11 is the unique Hermitian stablizing solution of CARE.
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Note that the matrix N in Eq. 26 is not Hamiltonian since A2 is not Hermitian. We consider its

‘symmetrized’ version, Ns =





A1 B1

A2 +A∗
2

2
B2



, which is a Hamiltonian matrix. Using the definitions

of the submatrices discussed above, it follows that the characteristic equation of Ns reduces to that

of N, i.e., Eq. 27. Hence N and Ns are similar matrices, i.e., they have the same eigenvalues. This

implies that there exists an invertible 2m× 2m complex matrix P s.t. Ns = P−1NP. Note P can

be numerically obtained by eigenvalue decomposition of N and Ns. Then we have the following

result:

Lemma 1. Suppose N defined in Eq. 26 does not have any eigenvalues on the imaginary axis.

Then, the BVP defined by Eq. 26 along with arbitrary initial condition Y1(0) = Y10, and final

condition lim
t→∞

Y2(t) = 0 has a solution (Y1(t),Y2(t)) s.t. lim
t→∞

Y1(t) = 0.

Proof. Since Ns and N are similar, Ns also doesn’t have any eigenvalues on the imaginary axis.

Then Ns satisfies the conditions of Theorem 1, since A1 is Hurwitz. Hence there exists a Hermitian

stabilizing solution X+ for CARE corresponding to Ns. Define U =





I 0

X+ I



, such that U−1 =





I 0

−X+ I



. Then, U−1NsU =





Ac B

0 −A∗
c



, where Ac =A1+B1X+ is a stable matrix by Theorem 1,

and we have used the fact the X+ solves the CARE. Now define new states (Z1,Z2) via PU





Z1

Z2



=





Y1

Y2



. Note that PU is invertible since it is the product of two invertible matrices. The BVP system

of Eq. 26 in the new variables is




Ż1

Ż2



=U−1P−1NPU





Z1

Z2



=





Ac B1

0 −A∗
c









Z1

Z2



 . (30)

From the second component of Eqs. 30, we get Z2(t) = e−A∗
ctZ2(0). Since Ac is Hurwitz, Z2 blows

up unless we pick Z2(0) = 0. This implies Z2(t) = 0 for all t ≥ 0. Using this in the first component

of Eqs. 30, we obtain Z1(t) = eActZ1(0), and hence, limt→∞ Z1(t) = 0. By invertibility of PU , the

above two results imply that lim
t→∞

Y1(t) = 0, and lim
t→∞

Y2(t) = 0.

Note that if P=





P11 P12

P21 P22



, the initial condition Z1(0) above is defined by (P11+P12X+)Z1(0)=

Y10. To obtain uniqueness, we need the additional assumption that (P11 + P12X+) is invert-

12



ible, in which case the unique solution is (Y1(t) = (P11 +P12X+)e
Act(P11 +P12X+)

−1Y10,Y2(t) =

(P21 +P22X+)e
Act(P11 +P12X+)

−1Y10).

From the above results, it follows that if the linearized MFG system of Eq. 25 has no eigenval-

ues on the imaginary axis, and the invertibility assumption holds, the equilibrium solution (ρξ ,hξ )

of the MFG system (17,18) is linearly stable.

C. Numerical results

To illustrate our theoretical results, we fix parameters L = 10,h = 5,σ = 2, and compute the

MFG eigenvalues (i.e., eigenvalues of matrix N) by numerically solving the algebraic Eq. 25

using 22 eigenfunctions for each Fourier mode, i.e., 0 ≤ p,q ≤ 21. As in the forward equation

case, the k = 1 Fourier mode is the relevant spatial mode for studying stability. Fig. 3 shows

the eigenspectrum for k = 1 for various values of the unit control cost r. Since the matrix N has

the same spectrum as the Hamiltonian matrix Ns, this spectrum is symmetric about the imaginary

axis. At r = 1.4, there are no imaginary axis eigenvalues. As r is decreased from 1.4, a pair

of eigenvalues approaches the imaginary axis, and eventually collides on it at rc ≈ 0.95. As r is

reduced futher, the two eigenvalue move away from each other up/down the imaginary axis.

(a) r=1.4 (b) r=1.1

(c) r=0.95 (d) r=0.8

FIG. 3: The spectrum (close to the imaginary axis) of the linearized MFG operator in Eq. 23 as the control cost r is

varied, for Fourier mode k = 1.

According to Lemma 1, this implies that for r > rc, the MFG equilibrium (ρξ ,hξ ) is linearly

stable in the sense of Definition 1. We use Schur decomposition to compute X+ using the formula

13



in Theorem 1, and follow the construction of the BVP solutions (Y1(t),Y2(t)) in Lemma 1. Figure

4 shows that the norm of the unique solution for an arbitrarily chosen Y10 for r = 1.4 decays to

zero. The critical value of unit control cost decreases upon increasing the noise intensity σ , as

shown in Fig. 5.

FIG. 4: The norm of Y1(t) (bold) and Y2(t) (dashed) as a function of time for the unique solution (Y1(t),Y2(t)) of

the BVP of Eq. 26. Here, r = 1.4 > rc, and k = 1. We choose an arbitrary Y1(0), and the corresponding value of

Y2(0) is assigned according to Lemma 1.

FIG. 5: The critical unit control cost rc as a function of σ , for h = 5.

Travelling wave solutions of the MFG

We look for solutions bifurcating from the spatially homogeneous equilibrium (ρξ ,hξ ) for

r < rc. It is known that MFGs exhibit the turnpike property50,51, i.e., the solution over a large

but finite time horizon spends most of its time near the solution of the infinite time problem (the

so-called ‘ergodic’ solution). We implment a Picard-iteration based algorithm for MFGs52 over

a large time-horizon in Dedalus, and find that for each r in an open interval r ∈ (rc − ε,rc), the

ergodic solution is a travelling wave solution of the form (ρ(x−ωt,u),h(x−ωt,u)) to the MFG

Eqs. (17,18). Fig. 6 shows the marginal density of the travelling wave solution for r = 0.8. No

travelling wave solutions were found for r > rc, in which case the algorithm always converged to

one of the two stable equilibria (ρ±ξ ∗ ,h±ξ ∗).
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FIG. 6: The marginal density
∫

R
ρ(t,x,v)dv of a travelling wave solution of the MFG Eqs. (17,18) for r = 0.8 < rc.

IV. CONCLUSIONS AND DISCUSSION

Via the MFG framework, we have studied transitions between distinct collective behaviors in a

population of non-cooperative motile inertial agents that are interacting with their neighbors over

a finite distance, and minimizing a biologically inspired cost function. The kinetic MFG model is

shown to mimic phase transitions previously observed in the phenomenological Czirók model.

The linear stability of the equilibrium states is equivalent to the existence of a unique decaying

solution to the linearized BVP (in time) derived from the nonlinear MFG PDE system. We provide

conditions on the spectrum of the linear operator for such a solution to exist. The explicit calcula-

tions are carried out using Fourier-Hermite discretization of the linearized PDE, and use properties

of Hamiltonian matrices and Riccati equations. The existence of a traveling wave solution of the

MFG when the equilibrium loses stability is shown numerically. A rigorous bifurcation analysis

will be taken up in a future work.

While non-equilibrium systems cannot be described by a variational principle, the MFG in-

verse modelling approach adopted here is based on a generalized optimality principle, which can

potentially be extended to kinetic and hydrodynamic descriptions of other systems with decision-

making agents. We plan to study some of these extensions in the near future.
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