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The framework of Mean-field Games (MFGs) is used for modelling the collective dynam-
ics of large populations of non-cooperative decision-making agents. We formulate and
analyze a kinetic MFG model for an interacting system of non-cooperative motile agents
with inertial dynamics and finite-range interactions, where each agent is minimizing a bi-
ologically inspired cost function. By analyzing the associated coupled forward-backward
in time system of nonlinear Fokker-Planck and Hamilton-Jacobi-Bellman equations, we
obtain conditions for closed-loop linear stability of the spatially homogeneous MFG equi-
librium that corresponds to an ordered state with non-zero mean speed. Using a combina-
tion of analysis and numerical simulations, we show that when energetic cost of control is
reduced below a critical value, this equilibrium loses stability, and the system transitions to
a travelling wave solution. Our work provides a game-theoretic perspective to the problem

of collective motion in non-equilibrium biological and bio-inspired systems.



How can we understand phase transitions in collective motion of a population of motile
agents making individually optimal decisions over time ? Mean field game (MFG) theory
is a mathematical framework for modelling such systems. We study a system consisting of
a large number of agents that optimally modulate their acceleration to minimize the long
term average of a weighted sum of two costs. The first is the total energy use, and the second
penalizes the mismatch between the local mean speed and a preferred speed. We show that
the system transitions from a spatially homogeneous ordered state to a travelling wave as the

energetic cost is reduced below a critical value.

I. INTRODUCTION

This paper is concerned with phase transitions in the collective motion of optimal decision-
making non-cooperative motile agents. Collective motion and synchronization continues to be ac-
tively studied in many scientific domains!=6. In purely physical systems, the interactions between
particles are given by physical laws, and systems are studied using agent-based (or microscopic),
kinetic and hydrodynamics models that incorporate those laws. On the other hand, models for
systems involving decision-making agents, e.g., bird flocking, traffic, human crowds and robot
swarms, often incorporate other types of interactions such as collision avoidance, alignment, and
cohesion towards the mean. Most commonly, these latter types of interactions are captured in
phenomenological models using physical analogies.

A different, ‘inverse modelling” approach’ is to stipulate that the collective behavior of a pop-
ulation of decision-making agents is a solution to a collective optimization or optimal control
problem. When considering large number of non-cooperative agents making sequential decisions,
the framework of Mean-Field Games (MFGs)? is appropriate. In a MFG system, the collective be-
havior is the result of each agent solving an optimal control problem that depends on its own state
and control as well as the collective state”!°. MFGs formulated in continuous state space and time
are described by coupled set of forward-backward in time nonlinear partial differential equations
(PDESs). While standard kinetic or hydrodynamic equations used for modelling collective behavior
are initial value problems (IVP or evolution PDEs) , the MFG systems have a forward-backward
in time structure, and hence consist of boundary value problem (BVP in time PDEs) .

3,11,12

In evolution PDEs, phase transitions in collective behavior are studied via stability and
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bifurcation analysis of steady or time-periodic states. In recent years, similar questions are being
explored in the context of MFGs, where bifurcations can be interpreted as phase transitions in the
collective behavior of optimal decision-making agents as problem parameters such as the unit cost
of control are varied. While uniqueness of solutions in MFGs is guaranteed under certain mono-

9 _
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tonicity conditions!3, there is an increasing interes in studying MFGs that don’t satisfy such

conditions and hence are expected to have multiple co-existing steady states.

In this context, starting with the seminal work of Yin et al.?2, several authors have studied
the phase transition from a ‘disordered’ steady state to an ‘ordered’ travelling wave solution in
the MFG problem involving synchronization of oscillators?>?*. The system involves globally
cost-coupled agents with first-order dynamics (i.e., without inertia), moving on a circular domain.
Hence, these MFG models can be understood as ‘inverse models’ for the Kuramoto dynamicszs.

Other works'®!7 have proved the existence of time-periodic solutions in certain classes of MFGs

set in periodic spatial domains.

In this paper, we study phase transitions in a MFG ‘inverse model’ for the kinetic Czirék
model?®, where unlike all the works discussed above, the population consists of interacting in-
ertial agents, i.e., the agent dynamics are second-order in time, and the agents directly control
their acceleration. The original Czirdk self-propelled particle (SPP) model was proposed as a 1D
simplification of the 2D Vicsek flocking model'. These biologically-inspired interacting particle
system models, first proposed in the 1990s, have proven highly influential in the development
of the field of active matter?’. Various interactions considered in these models include velocity
alignment with the mean!, pairwise velocity alignment*, position-based alignment*®2°, and hy-

drodynamic coupling®.

The ordered states of the Czir6k model include spatially homogeneous equilibria and spatially
inhomogeneous travelling waves. We show that the kinetic MFG inverse model that we derive
from the Czir6k model inherits these features. We provide a stability analysis of the spatially ho-
mogeneous equilibria of the kinetic MFG?!. Further, we numerically show the phase transition in
the MFG to travelling waves as the equilibrium states lose stability when the unit cost of control
is reduced below a critical value. Our analysis combines techniques use to study generalized Ku-

32,33

ramoto models with inertia’~>>, and invariant subspace methods employed in the study of Riccati

equations34’35 as well as linear-quadratic (LQ) MFGs3°.
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II. CZIROK MODEL REVISITED

In this section, we briefly review the Czir6k26-37

model, and provide a new stability analysis of
the coarse grained PDE, which sets the stage for the stability analysis of the MFG model in the
later sections.

The Czir6k SPP model consists of n agents, where each agent is moving on a 1D periodic
domain [0,!]. The second-order dynamics of the ith agent are given by the stochastic differential

equation (SDE):

dx; = u;dr, (D
du; = [G((u>,) — u,-]dt —+ dei(l‘), )

1 n
where (u); = — Z uj@(||xj —xi||), and ||x; —x;|| = min(|x; —x;|,/ — |x; — x;|) is the distance on
n &

J
the torus between the positions of the i and jth agents. The w; are independent Brownian motions,

l
and o is noise intensity. The finite-range interaction kernel ¢ (x) = 5% 1jp,1) with % i ZO O(|lx|))dx=

h+1 h
—g u— EMS. Here, G(u) — u is the negative gradient of a potential whose minima

are the preferred mean speeds. Hence, the agent evolution can be considered as noisy gradient

1,and G(u) =

descent that drives the population into a preferred collective state. Several studies have employed
the Czir6k model and its variants with similar forcing terms to explain collective behavior seen in

nature38’39.

In the n — oo limit, the nonlinear PDE describing the evolution of density p(¢,x,u) is given by

the Fokker-Planck equation

ap(t,x,u 2p(t,x,u 0 L oo
pllont) 22Ut O (|6 ([ [ wotvptex—ratraiar ) -] pirxan)

1 ,d%p(t,x,u)
+§G ou

3)

Note that this equation is degenerate since there is no diffusion in the spatial (x) variable. The

1
system has spatially homogeneous equilibrium states pg () of the form pg (u) = 7F§ (u), where

1
Fe(u) = 2e_(“_&f)z/ * and & is the mean speed of the population satisfying the fixed point
o
equation & = G(&). This fixed point equation has a unique ‘disordered’ equilibrium with & =0
for h < 4, and two additional ordered equilibria with +& # 0 for & > 4.
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A. Linearization and the operator eigenvalue equation

We focus our stability analysis on the ordered (£ # 0) spatially homogeneous equilibria which

exist when 2 > 4. It is known that for 2 > 4, the disordered equilibrium is unstable. We linearize

2 —
Eq. 3 around pg (u), and note that Fé (u) = —(MG—2€)F5 (u). We take the perturbed state to be of
the form
p(t,x,u) = pe(u) +&y/pe(u)p(r,x,u), 4)

and expand the perturbation p using spatial Fourier decomposition:
pltxu)y= Y  prltu)e™ (5)
k=0,+£1,42,...

We will work in the space of square-integrable complex-valued functions on the real line, i.e,
we will assume p(t,.) € L?>(R,du), with inner product (a,b) = [ a(u)b(u)du. The resulting

linearized evolution equation for the kth Fourier mode is

IPi(t,u)

ot - kajk - (L;(OC,I +Lﬁ0nloc)p\k’ (6)
where
—i27k —&)?—o? 1 ,0?
et = | =5 - =22 4 S22 S G

oo 100 = 22 [re06 @00 [\ [Fst)saran). ®

The eigenfunctions and eigenvalues of the operator L;‘O .1 can be computed explicitly as follows.

We perform a change of variables®® u = g(v) = a;v + as, where a; = 6/\/§ ,and a; = & —

2ikma? /1. With this substitution, the eigenvalue equation for L;‘o el reduces to

OPloc ik = K% — :—2 + Cz(k)) Piock + 825;6,1(} : 9)
It is known*" that the eigenvalue Eq. 9 has solutions 0y , = —p+c2(k),p = 0,1,2,.... Here
(k) =— 271-2;;262 — 2ikl7r§ . The corresponding eigenfunctions are parabolic cylinder functions
Dy(v) = ZQepr(%) = e%ﬂﬁp (v). Here H,, are the physicist’s Hermite polynomials and H,
are the probabilist’s Hermite polynomials. Hence, operator Lf‘o el also has the same eigenvalues

: : 2 2ikwo?
o - Its eigenfunctions are M ,(u) = z(p)Dp(g7 ' (u)) = z(p)Dp(\/?_(u —E+ : ;

)). Here



1
z(p) = | ———— is a normalizing factor. The adjoint (L¥ _)* has eigenvalues @ ,, and eigen-
V2map! ’ ’

functions Yy , = M . Note that due to our chosen normalization, (M, D l//k’q> = 8,4. Hence the
set {Nk.p> Vk.q} p=0,1.....g—0,1,... form a biorthogonal eigenfunction basis set of L?[R,dul.

With the eigenfunctions and eigenvalues of the local operator at hand, we can derive the char-
acteristic equation of full operator L* as follows. Let (A, p) be an eigenvalue-eigenfunction pair of

L¥. The eigenvalue equation is

Aﬁ(u) locl[ﬁ](u)—i_go(u)(ﬁvs)v (10)

where we have defined functions go(u) , [ F (u)G' (&) O, and s(u) = uy [ Fe ().

Let Rl’ (Ll oc.1 —A)~! be the resolvent of Ll oc.1” Then the action of R¥ 1.2 Onan arbitrary
complex-valued function f(u) is R , [f](u) = Z fxll/k’P ’JX MNk,p(u). Using this relation, Eq. 10 can
’ p= 0 k7p -

be rewritten as p = — Z wnk, p»(u). Taking the inner product of the conjugate of this
p=0 -

expression with s, cancelling common terms on both sides, and another conjugate operation yields

the characteristic equation for Ll oc1:

. - <lljk7p’g0><ﬁk,pvs> _ S <ﬁk7p7g0><ﬁk,p7s>
I_Z )V—O%p _Z l—O%p '

(1)

p=0 p=0
To verify our analysis, we solve Eq. 11 for/ =10,2=35, and 0.2 < o < 2.5 using 20 eigenfunctions
for each Fourier mode. As shown in Fig. 1, the kK = 1 Fourier mode loses stability at 0 = 6, = 1.8,

which matches the prediction in Garnier et al.?’.
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FIG. 1: (a) The real (solid) and imaginary (dashed) components of the eigenvalue of L (for h = 5,k = 1) closest to
the imaginary axis, as a function of noise intensity ¢. The system is unstable for ¢ < o, = 1.8 as the real part is

positive in that range. (b) The spectrum of L at the threshold of stability, o = o,.



Transition to traveling wave: ~ When a spatially homogeneous equilibrium pg (u) (& #£0) loses

stability, the system converges to a stable traveling wave’’

, 1.e., a time-varying spatially non-
homogeneous solution of the form p(z,x,v) = p(x — wt,v). In Fig. 2, we show one such solution
obtained by numerically solving the IVP Egs. 3 in the open-source software Dedalus*!. We note

that such ‘density waves’ have been observed in swarms in nature, and there are several other SPP

4245

models which also possess such solutions

0.11 4

0.1

S

t 0 0 5 2

FIG. 2: The marginal density f]R p(t,x,v)dv of a travelling wave solution of the Czir6k model Eq. 3 for
h=35,0 = 0.8 < o.. This solution is the steady state reached upon perturbing the unstable spatially homogeneous

ilibri h =-=0.1.
equilibrium pg (u), w erepr;;(v)dv ] 0

III. A MEAN-FIELD GAME CZIROK MODEL

To construct the kinetic MFG model, we consider the interacting particle system of n agents, in

which the ith agent has the dynamics of the form

dx; = u;dr, (12)
du; = oydr + dei(l‘), (13)

where (x;(¢),u;(t)) are its position and speed, and o;(¢) is its chosen control. Each agent seeks
to minimize the long term average of the sum of two costs. The first cost depends on a weighted
mean speed of the population around the agent’s position, and the other is a measure of the energy

spent by the agent. The total cost is

1 T
J=limsup— [ [e((xi,u;); (x,u) ;) + ro?]dr, (14)
T—ow 1 J0

with the cost-coupling function inspired by the interaction term in the Czir6k model Eq. (2)
2
c((riyui); (6, u) i) = ([G((w)i) —wil)”, (15)
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where (x,u)_; = {(x1,u1), (x2,u2), ..., (Xi—1,4i—1), (Xit-1,Ui+1),-- -, (xn,un)} represents the rest of
the population. Here, r is the unit cost of control. While in the Czir6k model each agent is
prescribed a certain force (or acceleration) function (the deterministic term on the r.h.s in Eq. 2),
in the MFG model the agent is also considering the energetic cost of its actions. In the n — oo

population limit, we can approximate the cost-coupling function as'?

clp)(t,x, 1) = [(//wnxn (tx— xu)dudx’) ] (16)

Using standard techniques®>*®

, we can show that the corresponding MFG system consist of the
following nonlinear Fokker-Planck (FP) and Hamilton-Jacobi-Bellman (HJB) equations governing

the density p(x,u,t) and the relative value function & (x,u,t) respectively:

ap _ 8p+1 o,  dh, oc2d%p

o Yo TP T o (17
doh oh 1 ,0h, o%d%h
o APl G T e 1o

where Y is the minimum average cost. The PDEs can be solved given an initial density p(0.,.), the

required final condition ZILm h(t,.,.,) = 0, and appropriate decay conditions in space. The optimal
1 oh
control o (z,x,u) = R Itis easily verified that the (pg«(u),he+(u)) is a stationary solution to
rou
1

1
the MFG equations, where pg« (1) = =Fe«(u), Fe«(#) = ——
q P+ (u) = 7 Fex (u), Fy-(u) ol

Vr(u—E*)2. Here £* is again the mean-speed of the population, satisfying G(£*) = &*, and

ef(ufé*)z/(\/;az) and hg*(u) =

X = 62\/7. Hence, similar to Czir6k model discussed in Sec. II, the MFG model also possesses
three spatially homogeneous equilibria for 4 > 4, among which the two equilibria with +£* # 0

are the ordered states.

A. Linearization and the operator eigenvalue equation

We linearize the MFG Egs. (17,18) around an ordered equilibrium (pg(u),he (1)) with
& =E&*#£0. As in section IT A, we restrict the stability analysis to a class of density perturba-
tions that are exponentially decaying in u, i.e., we choose p(t,x,u) = pg(u) + €,/ pe ()P (t,x,u),
where p(t,x,.) € L2{R,du}. In case of the value function, the perturbations are restricted

h(t
to have a bounded exponential growth rate, i.e., we choose h(f,x,u) = hé(u) + € ( ,x,u)’

pe(u)




where A(t,x,.) € L>{R,du}. We expand the perturbations using spatial Fourier decompositions,

pltxu)= Y, Pr(t,u)e®™ ! and h(t,x,u) = Y hye(t,u)e™>™/1 . With these sub-
k=0,+£1,42,... k=0,+1,42,...
stitutions, the linearized FP equation is
AP (t,u) R2ku ,, ., 1. .
—_— == — LipePr — — Lipchi, 19
ot i Pk locPk 12 loctk ( )
. _EV2 2 2 52 Dk
where L;,, = [(u 62)r62\/;6 ]} — %a— is a self-adjoint operator. Hence, Lz ocd = ! 7; “_
Lloc-
The linearized HJB equation is
Iy (t,u 2mku » A R
ka(t = G 1) 4 Tag ) — ), 20)
ST A / ¢ o [2Tku
where ¢[pr] =2(&E —u)G' (&) dr, / F, (f u) Py (t,u)du ) We define Lj,. , = —
N RrkE 2k*m’o?
Lipe = (Lfoc 1)*. The eigenvalues ofL ¢ are Bip=—0k,= % ! ; & + 2 L The
r

corresponding eigenfunctions are Y ,(u). The coupled system of equations for the linearized

MFG are

dPx(t,u R 1 . .

% = Lécoalpk(tv M) - PLlochk(ta u)v (21)
Iy (1,
I elpy] + Ly o). @)

Let ({pr,/c},A) be a eigenfunction-eigenvalue pair for the linearized MFG system. The ab-

stract operator eigenvalue equation can be written as:

Pr Ly, —sLioc| | Pr 0
A = + , (23)
by 0 L, i —g(u)(Pr,s)

where, g(u) = 2(& —u), /Fz (u)G' (&), and s(u) = u,/Fz (u). Analogous to the development in

Sec. I A, we employ the resolvents R 1.2 of L¥ and R’g 5 of Lf‘oc , to obtain the characteristic

- <nq’f>
Zz)ﬁkq_’l

loc,1°

equation for the MFG eigenvalues. Here, R’i A Lf] () = Vi 4(u). Using this relation,

the second equation of Eqs. 23 can be written as

hy = Z %Wk,q( ). Substituting this expression of h in the first equation of Egs. 23
q=0 q

yields

T[ ) pka >~
R} 4P er ZO 2’3 7 Lol Wegl () (24)




After applying (R]f l)*l to above equation, we take the inner product of the conjugate of the
resulting equation with s. Cancelling common factors from both sides, and taking the conjugate

again yields the characteristic equation for the MFG eigenvalues:

rlk S an ><ﬁk,pazloc[‘//k,q]> 25
r&ZZ CPED Ve R 29

p=04¢=0
B. Linear stability of the ordered MFG equilibria

Since a MFG system is a forward-backward system, the stability of an equilibrium (or more
general invariant sets such as periodic orbits or travelling waves) needs to be defined in a way
that captures the feedback nature of the system. Consider the linear two-point BVP on the time
interval [0, oo] consisting of the linearized MFG Egs. (21,22) along with a prescribed initial density

perturbation P (0, .), and final value function zh_}m I (t,.) = O (inherited from the HIB equation).

Definition 1. 22474 A MFG equilibrium (pg,he) of the MFG system (17,18) is said to
be linearly stable if the above defined BVP has a unique solution (py(t,.),h(t,.)) such that
tli_>m Pr(t,.) — 0. In other words, any initial density perturbation decays to 0 in the closed loop as

the time horizon goes to oo.

To proceed with the stability analysis, we first obtain the explicit form of the linear BVP

discussed above, using the eigenfunction expansions Py (,u) ZYLP Nk,p(u), and flk(t,u) =
ZYZ, () Wi p(u). The prescribed initial condition on density fixes the value of Y1 (0), and the final

condition on the value function becomes tle Y>(t) = 0. The ODE system obtained by inserting

the expansions into Egs. (21,22) is

Yl Y
| =N : (26)
Y Y,
Al By :
where N £ PN The submatrices are (A1)g,p = Ok g—10qp, (A2)g.p = —(Mkg—1,8(u)) (s(t), Mk p—1)>
2 By

—1 -

(Bi)g,p = ?(th,l,LlOClyk,p,Q and (B2)q,p = PBr,g—104p- Using the properties of operators in-
r

volved, we make the following observations. First, A; is diagonal, Re(c(41)) < 0, i.e., all

eigenvalues of Ay lie in the left half plane, and B; = —A’lk. Second, B; is Hermitian, hence its
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eigenvalues are real, with Re(co(B;)) < 0. Finally, A; is a rank-1 non-Hermitian matrix. The

characteristic equation of N = A+ # is

det(A+ P — Al) =det(A— Al)det (I+ (A— QL]I)_1 1) =0, 27)
Ay By | . o . :
where A = is an upper block triangular matrix with explicitly known eigenvalues, and
0 B
00|, . . . -
P = is the rank-1 “perturbation’. Note that this is the explicit form of the characteristic
A O

Eq. 25.

Next, we recall some results on Hamiltonian matrices and Riccati theory>>. A 2m x 2m complex

0
matrix H is called Hamiltonian if JH +H*J =0, where J = . If H is Hamiltonian, and A is
-I0

an eigenvalue of H, then —A is also an eigenvalue of H. Necessarily, every 2m x 2m Hamiltonian

matrix is of the form

A B
H = ; (28)
CD
where D = —A*, and B and C are both Hermitian. Associated with H is a continuous time algebraic

(matrix) Riccati equation (CARE): XA — DX + XBX — C = 0. We say that an m X m matrix X that

solves the CARE is a stabilizing solution if A+ BX is Hurwitz. We will need the following result:

Theorem 1. (Chen et al.*) Let H be a Hamiltonian matrix of Eq. 28, with A Hurwitz (i.e, all
its eigenvalues of A lie in the left half plane). Suppose H does not have any eigenvalues on the

imaginary axis. Then, there exists an orthogonal (‘Schur’) transformation 'V such that

H\ H
vy = | TR (29)
. . . Viit Viz
where all eigenvalues of Hy1 are the stable eigenvalues of H. If we block partition V = ,
Var Va2

Vi
then are the m stable Schur vectors corresponding to the stable block Hy;. Furthermore,
Vai

the matrix Vi1 is invertible, and X, = V> V]_l1 is the unique Hermitian stablizing solution of CARE.
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Note that the matrix N in Eq. 26 is not Hamiltonian since A, is not Hermitian. We consider its

Ay B
‘symmetrized’ version, Ny = Ay +A3 , which is a Hamiltonian matrix. Using the definitions

of the submatrices discussed above, it follows that the characteristic equation of N; reduces to that
of N, 1.e., Eq. 27. Hence N and N; are similar matrices, i.e., they have the same eigenvalues. This
implies that there exists an invertible 2m x 2m complex matrix P s.t. Ny = P~!NP. Note P can
be numerically obtained by eigenvalue decomposition of N and Ns. Then we have the following

result:

Lemma 1. Suppose N defined in Eq. 26 does not have any eigenvalues on the imaginary axis.
Then, the BVP defined by Eq. 26 along with arbitrary initial condition Y,(0) = Yo, and final

condition tlim Y>(t) = 0 has a solution (Y (t),Y>(t)) s.t. tlim Yi(t) =0.
— 00 —» 0

Proof. Since Ny and N are similar, N also doesn’t have any eigenvalues on the imaginary axis.

Then N; satisfies the conditions of Theorem 1, since A; is Hurwitz. Hence there exists a Hermitian
I 0
stabilizing solution X, for CARE corresponding to Ns. Define U = , such that U~! =
X, 1
I 0 Ac

B
. Then, U"'N,U = , where A, = A; + B X, is a stable matrix by Theorem 1,
—X; I 0 —A;

Z
and we have used the fact the X solves the CARE. Now define new states (Z;,Z;) via PU M=
%)

. Note that PU is invertible since it is the product of two invertible matrices. The BVP system
6)

of Eq. 26 in the new variables is

Z Z A, B Z

=vtpize [T = 0 T T (30)
V) Z> 0 —Aj; Z

From the second component of Egs. 30, we get Z,(t) = e <! Z,(0). Since A, is Hurwitz, Z, blows

up unless we pick Z,(0) = 0. This implies Z,(z) = 0 for all # > 0. Using this in the first component

of Egs. 30, we obtain Z; (t) = ¢*'Z;(0), and hence, lim; ,.,Z(t) = 0. By invertibility of PU, the

above two results imply that lli_>m Y1(t) =0, and tli_>m Y>(t) =0. O
: Py Ppp -y . .
Note that if P = , the initial condition Z; (0) above is defined by (P11 + P12X+)Z;(0) =
Py Py

Y10 To obtain uniqueness, we need the additional assumption that (Pj; + Pj2X;) is invert-
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ible, in which case the unique solution is (Y1 () = (Py; + P;pX, )ee! (Piy + PioXy )~ Yo, Ya(t) =
(Po1 + PX. )e (P + PiaXy )~ 'Yo).

From the above results, it follows that if the linearized MFG system of Eq. 25 has no eigenval-
ues on the imaginary axis, and the invertibility assumption holds, the equilibrium solution (pg, )

of the MFG system (17,18) is linearly stable.

C. Numerical results

To illustrate our theoretical results, we fix parameters L = 10,h = 5,0 = 2, and compute the
MEFG eigenvalues (i.e., eigenvalues of matrix N) by numerically solving the algebraic Eq. 25
using 22 eigenfunctions for each Fourier mode, i.e., 0 < p,qg < 21. As in the forward equation
case, the k = 1 Fourier mode is the relevant spatial mode for studying stability. Fig. 3 shows
the eigenspectrum for k = 1 for various values of the unit control cost . Since the matrix N has
the same spectrum as the Hamiltonian matrix Ny, this spectrum is symmetric about the imaginary
axis. At r = 1.4, there are no imaginary axis eigenvalues. As r is decreased from 1.4, a pair
of eigenvalues approaches the imaginary axis, and eventually collides on it at . =~ 0.95. As r is

reduced futher, the two eigenvalue move away from each other up/down the imaginary axis.

0 . 0

_1 o0 0y o o _1 ooooooooo

-2 -2 .

-3 -3

-10 0 10 -10 0 10
(@r=14 d)r=1.1

0 0

_1 LN ] ’ ’ . _1 ..........

-2 . -2

-3 -3

-10 0 10  -10 0 10
(c) r=0.95 (d) r=0.8

FIG. 3: The spectrum (close to the imaginary axis) of the linearized MFG operator in Eq. 23 as the control cost r is

varied, for Fourier mode k = 1.

According to Lemma 1, this implies that for r > r., the MFG equilibrium (p¢,h¢ ) is linearly

stable in the sense of Definition 1. We use Schur decomposition to compute X, using the formula
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in Theorem 1, and follow the construction of the BVP solutions (Y (¢),Y>(¢)) in Lemma 1. Figure
4 shows that the norm of the unique solution for an arbitrarily chosen Yjo for r = 1.4 decays to
zero. The critical value of unit control cost decreases upon increasing the noise intensity o, as

shown in Fig. 5.

0.04

0.02 \‘

0 5 10

FIG. 4: The norm of Y| (¢) (bold) and ¥>(¢) (dashed) as a function of time for the unique solution (¥; (¢),Y>(t)) of
the BVP of Eq. 26. Here, r = 1.4 > r., and k = 1. We choose an arbitrary ¥; (0), and the corresponding value of

Y,(0) is assigned according to Lemma 1.

15 45 2 2.5

FIG. 5: The critical unit control cost 7. as a function of o, for 4 = 5.

Travelling wave solutions of the MFG

We look for solutions bifurcating from the spatially homogeneous equilibrium (pg,hg) for

051§ e, the solution over a large

r < re. It is known that MFGs exhibit the turnpike property
but finite time horizon spends most of its time near the solution of the infinite time problem (the
so-called ‘ergodic’ solution). We implment a Picard-iteration based algorithm for MFGs>? over
a large time-horizon in Dedalus, and find that for each r in an open interval r € (r. — €,1,), the
ergodic solution is a travelling wave solution of the form (p(x — wt,u),h(x — wt,u)) to the MFG
Egs. (17,18). Fig. 6 shows the marginal density of the travelling wave solution for r = 0.8. No

travelling wave solutions were found for r > r., in which case the algorithm always converged to

one of the two stable equilibria (04 g+, hie-).
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0.09

FIG. 6: The marginal density pr(t,x, v)dv of a travelling wave solution of the MFG Egs. (17,18) for r = 0.8 < r.

IV. CONCLUSIONS AND DISCUSSION

Via the MFG framework, we have studied transitions between distinct collective behaviors in a
population of non-cooperative motile inertial agents that are interacting with their neighbors over
a finite distance, and minimizing a biologically inspired cost function. The kinetic MFG model is

shown to mimic phase transitions previously observed in the phenomenological Czir6k model.

The linear stability of the equilibrium states is equivalent to the existence of a unique decaying
solution to the linearized BVP (in time) derived from the nonlinear MFG PDE system. We provide
conditions on the spectrum of the linear operator for such a solution to exist. The explicit calcula-
tions are carried out using Fourier-Hermite discretization of the linearized PDE, and use properties
of Hamiltonian matrices and Riccati equations. The existence of a traveling wave solution of the
MFG when the equilibrium loses stability is shown numerically. A rigorous bifurcation analysis

will be taken up in a future work.

While non-equilibrium systems cannot be described by a variational principle, the MFG in-
verse modelling approach adopted here is based on a generalized optimality principle, which can
potentially be extended to kinetic and hydrodynamic descriptions of other systems with decision-

making agents. We plan to study some of these extensions in the near future.
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