

View

Online


Export
Citation

RAPID COMMUNICATION |  NOVEMBER 19 2020

The Young–Laplace equation for a solid–liquid interface 
P. Montero de Hijes  ; K. Shi  ; E. G. Noya  ; E. E. Santiso  ; K. E. Gubbins  ; E. Sanz  ; C. Vega  

J. Chem. Phys. 153, 191102 (2020)
https://doi.org/10.1063/5.0032602

 CHORUS

Articles You May Be Interested In

Loss and recovery of Gibbsianness for X Y models in external fields

J. Math. Phys. (December 2008)

Thermodynamic derivations of the mechanical equilibrium conditions for fluid surfaces: Young’s and
Laplace’s equations

Am. J. Phys. (December 2005)

Locality and nonlocality of classical restrictions of quantum spin systems with applications to quantum
large deviations and entanglement

J. Math. Phys. (February 2015)

https://pubs.aip.org/aip/jcp/article/153/19/191102/199286/The-Young-Laplace-equation-for-a-solid-liquid
https://pubs.aip.org/aip/jcp/article/153/19/191102/199286/The-Young-Laplace-equation-for-a-solid-liquid?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0001-8873-8445
javascript:;
https://orcid.org/0000-0002-0297-1746
javascript:;
https://orcid.org/0000-0002-6359-1026
javascript:;
https://orcid.org/0000-0003-1768-8414
javascript:;
https://orcid.org/0000-0003-0546-080X
javascript:;
https://orcid.org/0000-0001-6474-5835
javascript:;
https://orcid.org/0000-0002-2417-9645
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0032602&domain=pdf&date_stamp=2020-11-19
https://doi.org/10.1063/5.0032602
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0032602/15580849/191102_1_accepted_manuscript.pdf
https://pubs.aip.org/aip/jmp/article/49/12/125208/231206/Loss-and-recovery-of-Gibbsianness-for-XY-models-in
https://pubs.aip.org/aapt/ajp/article/73/12/1139/1056146/Thermodynamic-derivations-of-the-mechanical
https://pubs.aip.org/aip/jmp/article/56/2/023301/97493/Locality-and-nonlocality-of-classical-restrictions


The Journal
of Chemical Physics

COMMUNICATION scitation.org/journal/jcp

The Young–Laplace equation for a solid–liquid
interface

Cite as: J. Chem. Phys. 153, 191102 (2020); doi: 10.1063/5.0032602

Submitted: 9 October 2020 • Accepted: 3 November 2020 •

Published Online: 19 November 2020

P. Montero de Hijes,1 K. Shi,2 E. G. Noya,3 E. E. Santiso,2 K. E. Gubbins,2 E. Sanz,1

and C. Vega1,a)

AFFILIATIONS

1Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias,

Ciudad Universitaria, Madrid 28040, Spain
2Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
3Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119,

28006 Madrid, Spain

a)Author to whom correspondence should be addressed: cvega@quim.ucm.es

ABSTRACT

The application of the Young–Laplace equation to a solid–liquid interface is considered. Computer simulations show that the pressure inside
a solid cluster of hard spheres is smaller than the external pressure of the liquid (both for small and large clusters). This would suggest a
negative value for the interfacial free energy. We show that in a Gibbsian description of the thermodynamics of a curved solid–liquid interface
in equilibrium, the choice of the thermodynamic (rather than mechanical) pressure is required, as suggested by Tolman for the liquid–gas
scenario. With this definition, the interfacial free energy is positive, and the values obtained are in excellent agreement with previous results
from nucleation studies. Although, for a curved fluid–fluid interface, there is no distinction between mechanical and thermal pressures (for a
sufficiently large inner phase), in the solid–liquid interface, they do not coincide, as hypothesized by Gibbs.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0032602., s

I. INTRODUCTION

Under certain conditions (i.e., constant number of particles
N, volume V, and temperature T), it is possible to have a spheri-
cal phase in equilibrium with another phase around it. There, the
Helmholtz free energy F is a local/global minimum representing a
metastable/stable equilibrium state.1–8 This equilibrium implies that
T and chemical potential ¾ are homogeneous. Thus, ∇T(r) = 0 and
∇¾(r) = 0, where r is the position vector. However, the number
density Ä(r) = dN(r)/dV(r) and the pressure tensor p(r) are inho-
mogeneous.9,10 By taking the center of mass of the cluster (COM) as
the origin and using spherical coordinates,

p(r) = pN(r)[erer] + pT(r)[eºeº + eϕeϕ], (1)

where er, eº, and eϕ are the unitary vectors. Then, the condition of

mechanical equilibrium,∇ ⋅ p = 0, implies9–11

pT(r) = pN(r) + r

2

dpN

dr
. (2)

In the late 1970s and 1980s, Rusanov, Rowlinson, and Gub-
bins and co-workers pioneered the application of computer simu-
lations to study fluid–fluid spherical interfaces at equilibrium.1,11,12

Lately, there has been a revival in the study of these systems,5,6,8,13–27

including also solid–fluid curved interfaces.4,7,28–31 In fact, we
have recently shown that the stable equilibrium observed in the
isochoric-isothermal (NVT) ensemble is an unstable equilibrium in
the isobaric-isothermal (NpT) ensemble that corresponds to a max-
imum in the Gibbs free energy G. Thus, nucleation can be studied
via both stable and unstable equilibrium as they are two sides of the
same coin.7,8

The best thermodynamic description of a system with a curved
interface in equilibrium can be found in the book of Rowlinson and
Widom.9,32 Following in the spirit of Gibbs, one assumes twomacro-
scopic phases that are homogeneous up to the interface and accounts
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for an additional contribution due to the interface itself. Taking into
account that ¾ is homogeneous,

F = N¾ − pint
4

3
ÃR

3
− pext(V − 4

3
ÃR

3) + 4ÃR
2
µ, (3)

where µ is the interfacial free energy, R is the radius of the spheri-
cal phase, and pint and pext are the respective internal and external
pressures.

At a molecular scale, there is some arbitrariness in determining
R. Since F, ¾, pint , and pext are fixed, changing R also changes µ. There
are two popular choices for R. The first is the Gibbs dividing surface,
R = Re, for which the number of excess particles is zero (meaning
that particles belong either to the solid or to the liquid, but not to the
interfacial region). The second is the surface of tension, R = Rs, for
which µ is a minimum (µs).

Actually, by taking the notational derivative (i.e., an arbi-
trary change in R without any physical change in the system), one
obtains9,32

pint − pext =
2µ

R
+ [ dµ

dR
]. (4)

By definition, [dµ/dR] = 0 when R = Rs leading to the cele-
brated Young–Laplace equation,

pint − pext =
2µs

Rs
. (5)

Since µs is positive, this equation shows that the pressure inside
the spherical phase is higher than outside and the difference depends
on µs and Rs. Simulation studies of fluid–fluid phases by Gubbins
and co-workers11 and Vrabec and co-workers33 have confirmed the
higher pressure of the internal phase. However, this equation has not
been tested for a solid–fluid curved interface. This is the goal of this
letter.

II. METHODOLOGY

Recently, we simulated several solid clusters in equilibrium
with a liquid7 via the pseudo-hard-sphere PHS continuous poten-
tial34 (hereafter, simply HS), which allows us to simulate with the
standard molecular dynamics package GROMACS.35

Here, for three selected clusters labeled IV, VII, and VIII in our
previous work7 (see Ref. 7 for further details on the size of these solid
clusters and the way they were obtained using NVT simulations),
we launch new trajectories (in the NVT ensemble) saving configu-
rations very often allowing us to compute the pressure tensor. Since
the definition of the pressure tensor is locally arbitrary, we choose to
use the Irving–Kirkwood36 convention in which the forces between
two particles act in the line connecting them. Further details can
be found in the supplementary material (SM). In addition, density
profiles are provided.

The simulation details including the interaction potential,
GROMACS setup, and order parameter to label particles as solid or
liquid are exactly the same as in our previous work.7 We shall use
here reduced units. The lengths are given in units of Ã (i.e., the hard

sphere diameter), the time unit is Ã
√
m/(kT), the densities are given

as Ä =N/VÃ3, the pressures are given in units of kT/Ã3, the interfacial
free energies are given in units of kT/Ã2, and the chemical potentials
are given in units of kT. The pressure profiles are computed up to
half of the simulation box L/2, whereas the density profiles, following
Ref. 37, cover the whole system.

III. RESULTS

The density profile and the normal and tangential components
of the pressure tensor are presented in Fig. 1. The values of the den-
sities of the solid and the liquid when they reach a plateau and that
of the pressure (far from the interface) are presented in Table I.
These are obtained by averaging the data from the corresponding
plateaus.

Close to the interface, the normal and tangential components of
the pressure tensor are different, albeit, far from it, both are identi-
cal. Surprisingly, the pressure inside (solid) is smaller than outside
(liquid). This result, in principle, contradicts the Young–Laplace
equation. Notice though that having a lower pressure for the solid
phase does not violate the mechanical equilibrium condition, which
only requires a certain relation between pN and pT [Eq. (2)].

This is opposite to the fluid–fluid curved interface. Actually,
all previous studies on curved interfaces with fluid phases found
higher pressure for the internal phase.1,11,12 Here, for a solid spher-
ical cluster, we found lower pressure in the internal phase. One
may think that this behavior is peculiar for HS, for which there are
no attractive forces. However, recently, Gunawardana and Song31

have reported a similar behavior for a solid cluster of Lennard-Jones
particles surrounded by liquid.

Interestingly, one can already learn the behavior of the curved
interface by analyzing the behavior of the pressure tensor for the
planar interface. It turns out that, in the interfacial region of a pla-
nar interface, pT < pN for fluid–fluid interfaces38 and pT > pN for
solid–fluid interfaces.39 Thus, a simple analysis of the behavior of
the pressure tensor for the planar interface is sufficient to know if
one will have higher or lower pressure in the internal spherical phase
[see Eq. (2)]. It is also interesting to point out that the pressure of the
external phase, pext , is identical to the average pressure of the system,⟨pð, obtained from the virial equation applied to the entire system
provided that the normal and tangential components are identical at
L/2, as demonstrated in the supplementary material.

Although one must accept the fact that the pressure inside a
solid cluster is smaller than the pressure outside, the consequence of
this appears to be dramatic as this would imply (apparently) from the
Young–Laplace equation that µ is negative.40 The Young–Laplace
equation is explained in any textbook of physics, and now, we have a
problem about how to use it in the case of a solid cluster surrounded
by liquid. How to reconcile the results of this work with the Young–
Laplace equation? The key was provided by Tolman in his celebrated
paper discussing the variation of µ with R in a droplet. In particular,
there is a remark by Tolman,41 which we believe is highly important
in this context. The remark is as follows (adapting his notation to
this paper):

“In applying Eqs. (2.2) and (2.3) to very small droplets, it is to
be noted that pint and Äint are to be taken as the pressure and density
for a large mass of internal phase in a condition at the temperature

J. Chem. Phys. 153, 191102 (2020); doi: 10.1063/5.0032602 153, 191102-2

Published under license by AIP Publishing



The Journal
of Chemical Physics

COMMUNICATION scitation.org/journal/jcp

FIG. 1. Radial density (top) and pres-
sure (bottom) profiles from the COM for
clusters IV (left) and VIII (right). For the
meaning of p

¾

sol
, see the main text. ⟨pð

is the average pressure of the system,
as obtained from the virial theorem. p̄(r)
is the average pressure at a distance
r, as given by (2/3)pT (r) + (1/3)pN (r).
The solid black line is a fit to pN data,
while the red dashed line is obtained
from Eq. (2) using the pN fit. In the radial
density plot, we show the value of Ä′sol,
which would be the density of a bulk solid
at psol , and Ä′liq, which would be the den-

sity of a bulk liquid at pliq. In the pressure
profile, we show p′sol, which would be the
pressure of a bulk solid having the den-
sity Äsol , and p′liq, which would be the

pressure of a bulk liquid having the den-
sity Äliq. The value labeled as pnucleation

sol

corresponds to pnucleation
sol

= pliq+2µs/Rs

when using the value of µs and Rs from

nucleation studies.7

of interest to give the same value of ¾ as that of the vapor (cf. Gibbs,
Ref. 1, p. 253).”

Notice that Tolman was describing the equilibrium between a
droplet of liquid and its vapor. However, it also applies for the solid–
liquid interface as we are about to show. Therefore, when using the
formalism of Gibbs,42 the pressure of the internal spherical phase
should not be taken as its actual value but rather from that of a bulk
having the same ¾ as the external phase. Similar reasoning was also
used by ten Wolde and Frenkel.43

Determining the exact value of ¾ of inhomogeneous sys-
tems of high density is very difficult44 (notice though some recent
progress45). Thus, we do not know the exact value of ¾ for the three
systems considered in this work. However, to illustrate our main
point, this is not crucial. We shall assume that the external liquid has
bulk behavior so that ¾ in the system corresponds to that of a bulk
liquid at pliq. In the inset of Fig. 2(a), ¾(p) for solid and liquid bulks

are presented (obtained via thermodynamic integration46 from

TABLE I. Densities and pressures determined at the respective plateaus in the den-
sity and pressure profiles. The difference in pressure is also given as �p = psol − pliq.
The notation of IV, VII, and VIII refers to the clusters labeled in this way in Ref. 7.

Label Rs Äsol Äliq psol pliq �p

IV 10.791 1.0613 0.9619 12.6046 12.7437 −0.1391
VII 15.20 1.0548 0.9560 12.3053 12.4047 −0.0994
VIII 17.467 1.0529 0.9541 12.2199 12.3003 −0.0804

p = 11.648 that is the coexistence pressure47 where ¾ is identical in
both phases).

Taking, for instance, system VIII where pliq = 12.3003 and
psol = 12.2199, it is possible to determine ¾ for a bulk liquid phase
at this pressure and also the pressure of a solid that has the same
value of ¾, which we found to be p

¾

sol
= 12.37. The superscript ¾

reminds us that this pressure is not the mechanical pressure of the
solid but rather the pressure of a bulk solid that has the same ¾ as
that of a bulk liquid at pliq. We shall denote this as the thermo-
dynamical pressure (as opposed to the mechanical pressure psol).
Notice that p

¾

sol
> pliq > psol. This finding suggests that the clus-

ter must be different from a perfect bulk at the same pressure psol;
otherwise, ¾ could not be homogeneous and no equilibrium could
be reached. In order to find differences, we followed the evolution
of the closest particles to the COM finding that the solid cluster is
a “living” structure that can melt in a certain region and grow in
another while keeping the size approximately constant. As can be
seen in Fig. 2(b), the selected particles ended up quite close to the
interface and some of them changed their neighbor. This is likely
due to the presence of vacancies in the cluster that lead to a relative
diffusion. By computing such diffusion for the cluster as well as for
solid bulks with and without vacancies at pVIIIsol , we could estimate
the cluster to have about one vacancy per four thousand particles
(1/4000). More relevant is the distribution of distances from a given
particle to its 12th closest neighbor considering only particles that
fulfill COM < r < 10Ã in order to avoid surface effects (setting the
upper limit in 7Ã did not produce any difference). As shown in
Fig. 2(c), such distribution is shifted to higher distances with respect
to a bulk with and without vacancies indicating a tiny expansion
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FIG. 2. (a) Difference in pressure between the solid cluster and the liquid as
a function of 1/Rs: upper curve—p

¾

sol
−pliq; lower curve—psol − pliq. Note that

there are two sets for the mechanical �p. The solid black circles are esti-
mated (for all clusters in Ref. 7) by using the respective densities and the
equation of state (EOS) rather than by performing a more costly pressure
tensor calculation, as was done for the empty circles. The former is system-
atically smaller than the latter, suggesting that the cluster differs slightly from
a bulk. In the inset of this panel, the chemical potential of both phases is
shown. (b) Snapshots of the solid cluster VIII in the initial configuration and
after some time. Only solid particles within the system are shown. We fol-
lowed the ten closest particles to the COM and their first coordination shells
(cyan and red spheres). The remaining solid particles are shown as blue
dots. In red, an example of solid particle that changed neighbor. (c) Maximum
in the probability distribution function of the closest 12th neighbor consid-
ering cluster VIII and solid bulks with and without vacancies at pVIII

sol
. The

ratios 1/1000 and 1/2000 mean the proportion of vacancy per number of par-
ticles for the considered bulks. Only the particles at COM < r < 10Ã were
considered.

TABLE II. Thermodynamic pressure of the solid and the difference with the pressure
of the liquid phase (from Table I). By using the values of µs from nucleation studies,
we estimated the term 2µs/Rs and found it to be in excellent agreement with the
difference in pressure obtained when using p¾.

Label Rs p
¾

sol
�p¾ 2µs/Rs

7

IV 10.791 12.8627 0.1190 0.1164
VII 15.20 12.4846 0.0799 0.0793
VIII 17.467 12.3700 0.0697 0.0694

in the cluster lattice. Further work is needed to completely under-
stand this. Nevertheless, it is clear that the cluster is not identical
to a bulk solid with or without vacancies at the same mechanical
pressure.

Therefore, for the solid–liquid interface, the Young–Laplace
equation must be written as

p
¾

sol
− pliq =

2µs

Rs
. (6)

In Table II, the value of p
¾

sol
for the three systems consid-

ered in this work is presented along with the difference in pressure
�p¾ = p

¾

sol
− pliq.

As can be seen,�p¾ is positive. Thus, by using Tolman’s sugges-
tion, one recovers a “normal” Young–Laplace equation. In previous
work where the same clusters (IV, VII, and VIII) were studied, we
obtained the values of µs from nucleation studies. Since, according to
Eq. (6), �p¾ corresponds to 2µs/Rs, it is of interest to analyze whether
our previously reported values of µs and Rs are consistent with this
difference of pressures. As shown in Table II, results are fully con-
sistent. Thus, the physical meaning of 2µs/Rs obtained for the values
of µs and Rs from nucleation studies7,48 is now clear. Note that, for
a fluid–fluid interface, there is no difference between p

¾
int and pint

(for a sufficiently large inner phase), whereas, in a solid–liquid sys-
tem, we could not find such agreement even for very large clusters.
We have plotted the difference in pressure between the solid and
liquid as a function of 1/Rs in Fig. 2(a). As can be seen, there is no
evidence that this difference can become positive for a certain value
of Rs.

The idea that, for the solid–liquid interface, the difference in
pressure between the phases may not lead to µ was already insin-
uated by Gibbs. Later, Cahn,49 Cammarata,50,51 and others52 sug-
gested that the strain, which is present in solids and not in fluids,
was behind this.

IV. CONCLUSIONS

In summary, we have computed the pressure tensor for a HS
system at constant N, V, and T where one has a stable solid clus-
ter in contact with a liquid away from coexistence conditions. We
found that the internal pressure (solid) is lower than the external
one (liquid). This would lead to a negative µ. However, as sug-
gested by Tolman (and insinuated by Gibbs), defining a thermal
pressure for the inner phase, which corresponds to that of a solid
with the same chemical potential as the external liquid, allows us
to recover a normal Young–Laplace equation, where the pressure of
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the internal phase is higher, leading to a positive µ. The values of µ
from this scheme are in excellent agreement with recent results from
nucleation studies. Thus, for a solid–liquid interface, one should dis-
tinguish between the mechanical and the thermodynamic pressure.
This distinction is not so necessary for a fluid–fluid curved interface
as they are comparable.25,51 However, it is crucial in understanding
the meaning of the Young–Laplace equation for a solid–fluid inter-
face. Computer simulations have been the key to solve this subtle
issue.

SUPPLEMENTARY MATERIAL

See the supplementary material for a description of the sys-
tem and its interaction potential, details on the pressure tensor cal-
culation, values for the fitting parameters, and the demonstration
that the average pressure in the system equals the external pressure.
Additional figures and information can also be found.
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