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ABSTRACT

The pressure tensor (equivalent to the negative stress tensor) at both microscopic and macroscopic levels is fundamental to many aspects
of engineering and science, including fluid dynamics, solid mechanics, biophysics, and thermodynamics. In this Perspective, we review
methods to calculate the microscopic pressure tensor. Connections between different pressure forms for equilibrium and nonequilib-
rium systems are established. We also point out several challenges in the field, including the historical controversies over the definition
of the microscopic pressure tensor; the difficulties with many-body and long-range potentials; the insufficiency of software and com-
putational tools; and the lack of experimental routes to probe the pressure tensor at the nanoscale. Possible future directions are
suggested.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0132487

I. INTRODUCTION

Pressure, P, defined as the average force F per unit area acting
on a surface of area S, is one of the primary state variables, together
with the temperature, T, and composition, that determine the ther-
modynamic properties of a homogeneous system of molecules at
equilibrium. In such a system, the average force and the pressure
are the same in all directions, P is a scalar and is well defined even
at the microscale. Statistical mechanics informs us that P = PK

+ PC,
where superscript K indicates the contribution due to the kinetic
energy of the molecules and C indicates the configurational con-
tribution, i.e., that from the intermolecular forces and any external
field. For condensed phases, the configurational contribution to P is
usually dominant, especially at low temperatures. For a perfect gas at
equilibrium in the absence of an external field, or a real equilibrium
gas at low enough density that the influence of intermolecular forces
can be neglected, the configurational contribution is negligible, and
P = PK

= n(r)kBT, where n(r) is the number density at position r
and kB is the Boltzmann constant. For such a gas, this relation holds

even when the gas is nonuniform in density or composition as long
as the concept of a local average density, n(r), is valid.

For more general situations, for example an inhomogeneous
dense fluid, a nanoscale fluid or solid, or a nonequilibrium system,
the pressure P is a second-order tensor, depending on the direction
of both the force and of the surface it acts on. In general, P has
nine components P³´, where P³´ is the force per unit area in the
´-direction acting on a surface element normal to the ³-direction.
These components depend on position, r, and for nonequilibrium
systems they will also depend on time, t. Off-diagonal components
are the shear pressures (shear stress) and the diagonal components
are the direct pressures. In some specific types of systems, the num-
ber of nonvanishing components of P may be less than 9. For an
inhomogeneous fluid that is at equilibrium and not under strain,
for example, the off-diagonal components vanish and there are
only three nonvanishing components. Moreover, the condition of
mechanical (hydrostatic) equilibrium (the average rate of change of
linear momentum vanishes) often provides relations between the
remaining nonvanishing components.
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A difficulty in many applications is that the local (microscopic)
pressure tensor at some point r is not uniquely defined in nonequi-
librium systems or in equilibrium ones that are inhomogeneous.
Although the kinetic contribution, PK , is well defined, as noted
above, the configurational part, PC is not because the intermolec-
ular forces themselves are nonlocal. Thus, while the force between
molecules i and j, located at positions ri and rj, is well defined in
general, there is no well-defined way to assign a contribution to the
force acting on a surface element at some position r. This arbitrari-
ness in the force acting across the surface element dS seems to have
first been stated explicitly by Irving and Kirkwood (IK) in 1950.1

There, they stated the matter succinctly as follows:

“. . .all definitions (of the configurational pressure tensor)

must have this in common – that the stress between a pair

of molecules be concentrated near the line of centers. When

averaging over a domain large compared with the range of

intermolecular force, these differences are washed out, and

the ambiguity remaining in the macroscopic stress tensor is

of negligible order.”

This point was discussed in a footnote to an appendix to Irving
and Kirkwood’s paper and so was not noticed widely at the time.
It was of little consequence to these authors, who were primarily
interested in transport processes at the macroscale. However, it is
important for nanoscale systems, such as small nanoparticles, drops
and fluids confined within nanoporous materials or living cells, and
we expand on this later in this Perspective. The nonuniqueness of
the local pressure tensor, and its consequences for inhomogeneous
fluids and the properties of gas–liquid interfaces, was investigated in
the 1982 paper of Schofield and Henderson.2

While in this Perspective we shall mainly focus our discussion
on the local pressure tensor, in fields where the primary interest is in
nonequilibrium phenomena and solid mechanics, the stress tensor
σ(r, t) is usually used in place of the pressure tensor.1 These two
tensors differ only in sign,1,3

σ(r, t) = −P(r, t). (1)

The negative sign ensures that the stress tensor definition is con-
sistent with Newton’s law of viscous flow and that the viscosity is
positive. The terms “pressure tensor” and “stress tensor” are used
interchangeably in this Perspective and in much of the literature, the
sign change being understood.

The molecular level local pressure/stress tensor has been the
key to the depiction of the mechanical and thermodynamic picture
of many important phenomena. Its important role is evidenced by
a rapid growth of publications mentioning it (Fig. 1). In biophysics,
the local stress tensor has been applied to understand themechanical
properties of lipid bilayer membranes [see Fig. 2(a)].4–7 The struc-
ture and mechanics of the lipid membrane play a critical role in the
function of proteins involved in processes of transport, signaling,
and mechano-transduction. The local stress tensor also enables the
quantification of the mechanical state of proteins in glassy matrices.8

Such information is pivotal to a sophisticated design and control
of the lyophilization (freeze-drying) process for long-term storage
and stabilization of labile biomolecules in the food and pharma-
ceutical industries. In material science, the stress tensor has been
related to the structural deformation of materials upon adsorption,

FIG. 1. Number of papers that include the keywords “molecular dynamics” or
“Monte Carlo” and either “stress tensor” or “pressure tensor” in the last 50 years,
obtained from Google Scholar.58

and such a connection is useful formaterials characterization.9,10 For
gas–liquid11–13 or liquid–solid14,15 nucleation, the pressure tensor
profile provides a mechanical picture of the nucleus interfacing with
the surrounding environment; such a profile is useful for calculating
the Tolman length for interfacial free energy14 and for under-
standing the distinct structure of the nucleus15 [see Fig. 2(b)]. The
pressure tensor profile across the interfacial region is also essential
in a virial (or mechanical) route to the surface tension (see examples
for planar,3,16–19 spherical,3,11,12,20 and cylindrical21 interfaces). For
confined systems, the knowledge of the microscopic pressure tensor
paves the way for understanding phase transitions in nanopores22–24

and for developing sophisticated equations of state for confined
fluids.25,26 Recently, the microscopic pressure tensor has provided
a mechanistic understanding of high-pressure phenomena in con-
finement or near strongly wetting surfaces for advanced materials
synthesis and enhanced chemical processing.27 The high-pressure
phenomena include enhanced chemical reactions in pores that nor-
mally require a high pressure in the bulk28,29 and the formation and
stabilization of high-pressure phases in nanopores.30–32 For simple
non-reacting adsorption systems, high (tangential) pressures that
are about three to four orders of magnitude larger than the bulk
pressure were found in the adsorbed layers on carbon surfaces [see
Fig. 2(c)].33–35 This compression effect is caused by strong attractive
forces exerted on the adsorbate molecules by the surface, which leads
to a tightly packed adsorbed layer near the surface, and strong repul-
sions between adsorbate molecules.36–39 For more complex systems,
the mechanism behind the induced high pressure in confinement is
under active investigation.

The stress tensor also underpins fluid dynamics. It is the driving
force in continuum equations,40 is necessary for the understanding
of nonequilibrium molecular dynamics (NEMD),41,42 and is essen-
tial for calculating the viscosity in Newtonian fluids using both
equilibrium43,44 and nonequilibrium methods.45 Pressure/stress can
provide insight into tribology,46 reveal the slip length,47,48 and cap-
ture many aspects of multiphase flows, including the moving contact
line for the wetting behavior [see Fig. 2(d)]49,50 and dynamics of
active liquid interfaces.51 These molecular details can be included
in continuum-based engineering simulation, such as computational
fluid dynamics (CFD), through coupled simulation52,53 where stress
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FIG. 2. Illustration of applications for the microscopic pressure/stress tensor. (a) Local lateral (PL) and normal stress (PN) field in lipid membrane showing strong lipid
unsaturation in the tail group regions. Adapted with permission from Vanegas et al., J. Chem. Theory Comput. 10(2), 691–702 (2014). Copyright 2014 American Chemical
Society. (b) Tangential (PT ) and normal (PN) pressure profile in a solid–liquid nucleation system, showing strikingly lower pressure in the solid nucleus than the liquid
environment. Data taken from Ref. 15. (c) Snapshots and tangential and normal pressure profiles of Lennard-Jones argon (pink) confined in an atomistic carbon slit pore
(cyan) at 87.3 K and 1 bar bulk pressure with pore width of 51 Å. High tangential pressure near the surface indicates the strong compression effect inside the physisorbed
layers, shedding light on the understanding of high-pressure phenomena in more complex systems. Adapted from Long et al., J. Chem. Phys. 139(14), 144701 (2013) with
the permission of AIP Publishing. (d) The liquid–vapor–solid moving contact line: molecules from a molecular dynamics simulation shown with a Chebyshev function fitted
to the liquid–vapor interface to be used in the stress calculation. The setup is a liquid bridge between two sliding molecular walls,59 where the interface is split into bilinear
patches and the stress is obtained as the force acting over each patch of the area.60

coupling is useful in both fluid simulation54 and for solid mechan-
ics.55 Recently, machine learning models have focused on stresses
as the central property that should be predicted for predicting
atomic stress at grain boundaries56 or in coupling to continuum
models.57

In the applications cited above, the range of length and time
of interest can be very different and we comment on the effect
of these differences in later sections of this Perspective. We treat
equilibrium and nonequilibrium systems separately in what follows.
The Perspective is organized as follows: In Sec. II, we introduce
the fundamental pointwise forms of the pressure tensor. In Sec. III,
we describe the local pressure tensor for inhomogeneous systems
that are at thermodynamic equilibrium. We introduce a thermody-
namic route to the local pressure tensor, alternative to the common
mechanical route. In Sec. IV, we consider the definition of the pres-
sure tensor for nonequilibrium systems, where P depends on time
as well as position in space. In Sec. V, we point out several chal-
lenges associated with the microscopic pressure tensor along with
our perspectives on future developments. In Sec. V A, the historical
controversies over the microscopic pressure tensor are discussed in

detail. These include the nonuniqueness of the local pressure ten-
sor due to the arbitrary contour integral, the possibility of defining
a unique coarse-grained (CG) pressure through integration of the
local pressure over some spatial domain, and the questions over the
existence of the kinetic term in the stress tensor. In this review, we
focusmainly on the formalisms of the local pressure/stress tensor for
discrete particles that interact with short-range, isotropic, pairwise
potentials. Extensions to complex molecular and material systems
interacting with many-body and long-range potentials are discussed
in Sec. V B. Other practical aspects that are also examined include
current availability of software and computational tools (Sec. V C)
and the possible experimental routes to the validation of the micro-
scopic pressure tensor (Sec. V D). Finally, concluding remarks are
provided.

II. FUNDAMENTAL EQUATIONS FOR THE POINTWISE
PRESSURE TENSOR

The local pressure tensor for a particle (point-mass) system
with both spatial and temporal dependence can be written as1,2
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P(r, t) = PK(r, t) + PC(r, t), (2)

where PK(r, t) and PC(r, t) are kinetic and configurational contri-
butions, respectively, a tensor field defined at any given point in
space r and time t. The kinetic contribution describes the flux of
momentum,

P
K(r, t) = ï N

∑
i=1

pipi
mi

¶(r − ri)⟩, (3)

where the angular bracket ⟨⋅ ⋅ ⋅ð denotes ensemble average, N is the
total number of particles in the system, pi is the momentum of the
particle i and pipi is an outer product,mi is the mass of particle i, and
¶(r) = ¶(x)¶(y)¶(z) is the delta function for a vector position in a
Cartesian coordinate system. Here, the momentum may include a
streaming component, pi/mi = ṙi − u, due to the streaming velocity
u at point r being nonzero, where ṙi is the derivative with respect to
time of the particle position. Themechanical definition of the kinetic
pressure tensor in Eq. (3) corresponds to the ideal gas contribution
in an equilibrium system (see Sec. III A) butmust be defined in terms
of streaming velocity in a nonequilibrium system (see Sec. IV C).

For notational simplicity, we assume pairwise interactions here
(additional terms due to many-body interactions are considered
later in Sec. V B). The configurational pressure PC can be obtained
from the tensor product of pair forces between particles, Fij, and the
line of interactions rij (rij = rj − ri),

P
C(r, t) = 1

2
ï N

∑
i,j

FijrijOij¶(r − ri)⟩, (4)

where the pre-factor 1/2 accounts for double counting and the nota-
tion3N

i,j Fij = 3N
i=13N

j≠i Fij has been introduced as shorthand for the
double summation over all pairs of interactions. The Oij term is

known as the Irving–Kirkwood (IK) operator,1,61

Oij = 1 −
1

2!
rij ⋅

∂

∂r
+ ⋅ ⋅ ⋅ +

1

n!
(−rij ⋅ ∂

∂r
)n−1 + ⋅ ⋅ ⋅ , (5)

which is obtained as the Taylor expansion in space of the difference
between two Dirac delta functions for molecule i and j,

¶(r − ri) − ¶(r − rj) = −rij ⋅ ∂
∂r

Oij¶(r − ri). (6)

If the expansion in Eq. (5) is simply truncated at the zeroth-
order term, Oij = 1, we reach the so-called IK1 expression for the
configurational part of the pressure tensor,

IK1
P

C(r, t) = 1

2
ï N

∑
i,j

Fij rij¶(r − ri)⟩. (7)

This is the virial pressure applied locally at a point in space.62

For bulk homogeneous fluids where density is uniform throughout
the system, the IK1 approximation (Oij = 1) is exact.61 For inho-
mogeneous fluids, such as those confined in nanopores or near
interfaces, the IK1 approximation violates the mechanical equilib-
rium condition63,64 and will lead to erroneous results as interactions
with the surrounding fluids are not included.65 An exact form for the

configurational pressure tensor can be reached by rewriting the IK
operator using the fundamental theorem of contour integration,2,66

rijOij¶(r − ri) = .
Cij

¶(r − ℓ)dℓ, (8)

where Cij denotes an arbitrary contour from particle i to particle j
and ℓ is the corresponding contour vector. Substituting Eq. (8) into
Eq. (4), we arrive at the contour form of the configurational pressure
tensor,2

P
C(r, t) = 1

2
ï N

∑
i,j

Fij.
Cij

¶(r − ℓ)dℓ⟩. (9)

This equation is exact and allows the interaction between molecules
to be included at an arbitrary location unrelated to the molecules’
positions.

While the kinetic pressure tensor [Eq. (3)] is well defined,
the configurational part is nonunique due to the arbitrary con-
tour involved in the calculation [Eq. (9)].2 In practice, a particular
contour definition needs to be chosen to arrive at an operational
form of the local pressure tensor. By introducing a concept of sur-
face element dS, Harasima67 elegantly depicted two ways to assign
a force contribution across such a surface of atomic dimension,
which corresponds to two distinct definitions of the contour path.
The first contour definition is a straight line of interactions between
the molecules, known in the literature as the IK definition. It says
that a pairwise force contributes to the pressure tensor at a sur-
face element dS if the joining straight line (contour) between two
molecules passes through dS. This definition is consistent with
Newton’s assumption of impressed force between two points.68,69

The second definition was first implicitly adopted by Kirkwood and
Buff70 and later referred to as the Harasima definition. It says a pair
force contributes to the pressure tensor at the surface dS if one of the
molecules lies in the cylinder whose base is dS (the axial direction of
the cylinder is either parallel or perpendicular to the planar surface)
and the other molecule is located on the other side of the plane of
dS. Figures 3(a) and 3(b) illustrate the IK and Harasima definitions
of the contour for a planar interface. Assuming the IK definition, the
contour vector in Eq. (9) is simply ℓ = ri + ½rij with 0 ≤ ½ ≤ 171 and
Eq. (9) becomes

IK
P

C(r, t) = 1

2
ï N

∑
i,j

Fijrij+
1

0
¶(r − ri − ½rij)d½⟩. (10)

Alternative but equally valid contour definitions are possi-
ble. Figures 3(c) and 3(d) show possible variations of the IK and
Harasima contour definitions. In general, the IK contour definition
is arguably the most convenient and natural choice. It can be readily
implemented for a general three-dimensional (3D) pressure field72

and in systems having an arbitrary geometry.8 Compared to the
other widely adopted contour choice of Harasima, the IK definition
has been shown to be physically consistent in different coordinate
systems (spherical73 and cylindrical74 coordinates). If long-range
Coulombic interactions are present in the system, however, the
Harasima contour is preferred due to its compatibility and optimal
computational efficiency with the Ewald summation method.6,74 No
contour choice is more correct than the other in general.We will dis-
cuss this nonuniqueness problem further in detail in Sec. V A. For a
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FIG. 3. Four possible definitions of
contour connecting the particles i
and j for the local pressure tensor
in a system of planar geometry. (a)
Irving–Kirkwood (IK) definition. (b)
Harasima (H) definition. (c) A variation of
the Irving–Kirkwood (IK-VR) definition.
(d) A variation of the Harasima (H-VR)
definition. Due to the indistinguishability
of particles, contours Cij (in black,
from particles i to j) and Cji (in orange,
from particles j to i) are equivalent and
symmetric. Since the Cij and Cji overlap
for the IK and the H-VR definitions,
only the contour Cij is plotted for clarity.
All contours are projected onto the
xz-plane, and the z-direction is perpen-
dicular to the planar surface. These
possible contour definitions illustrate the
nonunique nature of the local pressure
tensor. Reprinted from Shi et al., J.
Chem. Phys. 154(8), 084502 (2021) with
the permission of AIP Publishing.

bulk homogeneous system, the local pressure tensor is invariant to
the choice of the contour definition. A spatial average of Eq. (9) over
the entire system simplifies to the virial pressure tensor.75

III. MICROSCOPIC PRESSURE TENSOR
IN EQUILIBRIUM SYSTEMS

For systems that are at thermodynamic equilibrium, the tempo-
ral dependence of the microscopic pressure tensor can be averaged
out in the corresponding ensemble, and the spatial dependence of
the pressure tensor is the main interest. Here we assume there is
no shearing, as is the case for the equilibrium system, so that the
off-diagonal elements in the pressure tensor simply vanish. In this
section, we first discuss how the local pressure tensor is formulated
in different geometries (coordinate systems) that are of practical
importance for inhomogeneous systems at equilibrium. We then
introduce a thermodynamic route to the microscopic pressure ten-
sor. The equivalence between the thermodynamic route and the
conventional mechanical (or virial) route is clarified.

A. Local pressure tensor in different geometries

1. Planar geometry

Systems that have planar interfaces are common and have been
extensively investigated. Examples include fluids confined in a slit-
shaped pore,35 two phases (e.g., gas and liquid) separated by a
planar interface,16 and planar self-assembled layers (e.g., planar lipid
bilayers).6,7 The Cartesian coordinate system is a convenient choice
for planar geometries [Fig. 4(a)]. Here we take the z-axis to be the
direction normal to the planar surface and assume homogeneity in
the xy-plane, so that the local pressure tensor is a function of the
z-position only. In the absence of external fields, the condition of
mechanical (hydrostatic) equilibrium must be satisfied:2

∇ ⋅ P = 0 (11)

which has two implications:76 (1) the tangential pressure PT has
no local gradient in directions parallel to the xy-plane that induce
flow anywhere; (2) the normal pressure PN should be a constant
throughout the system,

PN = Pzz = const. (12)

That is for a two-phase system in equilibrium (phases ³ and ´) sep-
arated by a planar interface, the normal pressure in the bulk phase ³
is equal throughout the interfacial region and into the bulk phase ´
(Fig. 5). For the slit-pore system, if we consider the material as a part
of the system rather than an external field (no gravity is considered
here), the normal pressure is constant across the entire pore.35 It is
worth noting that, due to the incommensurate packing of adsorbed
layers in a slit pore, the normal pressure oscillates as the pore size
increases.33 The normal pressure converges to the pressure of the
bulk phase that is in equilibrium with the adsorbed phase, in the
limit of an open surface (i.e., pore size is infinitely large).

The normal pressure is independent of the contour definition
in Eq. (9).35 By taking the normal (zz) component out of the pres-
sure tensor in Eq. (9) and integrating (averaging) over the x- and
y-directions (i.e., xy-surface), the normal pressure is given by

PN(z) = n(z)kBT + 1

2Sz
ï N

∑
i,j

zij
2

rij

1∣zij∣FijH( z − zizij
)H( zj − z

zij
)⟩,
(13)

where n(z) is the local number density at z-position. The surface
area is Sz = LxLy. If the sampling of the pressure tensor is carried out
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FIG. 4. Pressure tensor definition in sys-
tems having different geometries. (a)
Cartesian coordinates for a planar geom-
etry. (b) Spherical coordinates for a
spherical geometry. (c) Cylindrical coor-
dinates for a cylindrical geometry. (d) An
example of a more general coordinate
system in terms of vector surface normal
n³ (³ = x, y, z) where one (or more) sur-
face is a general function ñz = nz(x, y),
so that normal and tangential compo-
nents of the pressure tensor will depend
on surface position.

over the entire xy-plane, Lx and Ly will be the simulation box size
in the x- and y-directions, respectively; Lx and Ly can also represent
the size in the x- and y-directions for a specified region in the simula-
tion box, respectively, if the pressure tensor is only sampled over that
space.35 The scalar ij-pair force is Fij = −du(rij)/drij, where u(rij)
is the pair potential between particles i and j separated by a scalar
distance rij. zij = zj − zi is the z-component of vector rij, and H(x)
is the Heaviside step function [x > 0,H(x) = 1; x < 0,H(x) = 0;
H(0) = 1/2]. We note that although the normal pressure is often
written as a function of z as in Eq. (13) for use in molecular simula-
tions, it is essentially a constant according to Eq. (12). The first term

FIG. 5. Pressure tensor profile across a planar gas–liquid interface for the
argon–krypton mixture at T = 115.77 K, NAr/N = 0.5. These are smoothed molec-
ular dynamics results for the truncated, shifted LJ model, taken from Ref. 80.
The normal pressure PN is a constant (within statistical uncertainty) across the
interface, and the tangential pressure PT by the IK and Harasima definitions are
similar.

on the right-hand side of Eq. (13) is the kinetic (ideal gas) contribu-
tion to the pressure in equilibrium systems. It can be related to the
mechanical definition in Eq. (3) at the limit of thermal equilibrium,
by using the equipartition theorem,77

p2³
2m
=
kBT

2
, (14)

where p³ is the molecule’s momentum in the ³-direction with

³ = x, y, z78 and we use n(z) = ⟨3N
i=1 ¶(z − zi)⟩. We note that

Eq. (14) is valid in any classical system at thermal equilibrium,
where the momenta and the coordinates are uncorrelated. For
systems where quantum effects are significant, the equipartition
theorem does not hold and a quantum version of the theorem should
be applied.77 The second term in Eq. (13) is the configurational
contribution arising from intermolecular interactions.

While the pressure normal to the xy-plane is well defined, the
tangential pressure parallel to the plane is not uniquely defined
and depends on the intermolecular interaction contour definition.
Because the system is homogeneous in the xy-plane, the local tan-
gential pressure PT can be obtained by averaging over Pxx and Pyy.
Unlike the normal pressure, which is independent of z, the tangen-
tial pressure does depend on z. The local tangential pressure based
on the IK contour definition [Eq. (10)] is given by16,79

IK
PT(z) = n(z)kBT + 1

4Sz
ï N

∑
i,j

xij
2
+ yij

2

rij

1∣zij∣FijH( z − zizij
)

×H( zj − z
zij
)⟩. (15)
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Other equally valid contour definitions are possible. For example,
assuming the Harasima (H) definition leads to16,67

H
PT(z) = n(z)kBT + 1

4Sz
ï N

∑
i,j

xij
2
+ yij

2

rij
Fij¶(z − zi)⟩, (16)

where the Dirac delta function can be approximated as

¶(z − zi) = lim
�z→0

1

�z
Λz(zi)

= lim
�z→0

1

�z
[H(zi − z + �z

2
) −H(zi − z − �z

2
)], (17)

where Λz(zi) is the so-called boxcar or top-hat function of zi for
the interval from z − �z/2 to z + �z/2, which checks if zi is less
than z + �z/2 and greater than z − �z/2. In practice, we choose
�z ∼ 0.001Ã to numerically approximate the delta function where Ã
is the Lennard-Jones (LJ) diameter of the particle.We note that using
Λz from Eq. (17) without taking the limit, Eq. (16) is equivalent to
the 1D volume average (VA) form of the local pressure tensor. More
discussions on the VA formalism will be presented in Sec. IV D.

For gas–liquid interfaces, molecular simulation results show
that the IK and Harasima definitions yield tangential pressures
that differ by less than 10% (Fig. 5).16,80 For liquid–solid inter-
faces, the difference between these two contour definitions can be
considerably larger.34,35,63 The difference vanishes when the local
pressure tensor is integrated over the entire system (or at least
over the inhomogeneous interfacial region), which is the case for
the surface tension calculations.16 The hydrostatic (averaged) pres-
sure of the system can be calculated as the average of the trace of
the pressure tensor, P(z) = (Pxx(z) + Pyy(z) + Pzz(z))/3. Spatially
averaging P(z) over the entire system gives the bulk pressure, the
configurational part of which is consistent with the virial theorem of
Clausius.81,82 This bulk pressure is unique and independent of the
contour definition.

2. Spherical geometry

Examples of systems having a spherical geometry include
gas/liquid/solid nuclei in the nucleation and crystallization
process,11–13,15,83 fluids confined in spherical pores,84 and many
spherical or quasi-spherical nanoparticles such as core-filled
spherical nucleic acid.85 Due to the symmetry of the system, it
is convenient to calculate the local pressure tensor in spherical
coordinates, (R, º,ϕ) [Fig. 4(b)]. The local spherical pressure tensor
can be written as

P(R) = PRR(R)R̂R̂ + Pºº(R)θ̂θ̂ + Pϕϕ(R)ϕ̂ϕ̂, (18)

where PRR = PN is the normal pressure in the radial direction; Pºº

and Pϕϕ are the equivalent tangential components (PT) due to sym-

metry in the polar and azimuthal directions, respectively; and R̂, θ̂,
and ϕ̂ are unit vectors that are orthogonal to each other. Mechanical
equilibrium [Eq. (11)] dictates the following:

PT(R) = PN(R) + R

2

dPN(R)
dR

. (19)

In spherical coordinates, the Harasima-like definition of the
pressure tensor leads to unphysical results in the bulk system

due to the singularity near the origin.73,86 Therefore, the IK con-
tour definition is commonly adopted in the literature. The normal
(radial) pressure based on the IK contour definition is given by
Ref. 87 (detailed derivations for all components are available in the
supplementary material of Ref. 15),

IK
PRR(R) = n(R)kBT + 1

8ÃR2
ï N

∑
i,j

2

∑
k=1

∣rij ⋅ R̂½k ∣
rij

FijH(½k)H(1 − ½k)⟩,
(20)

where

R̂½k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xi + ½kxij)/R
(yi + ½kyij)/R
(zi + ½kzij)/R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

and ½k are the roots of a quadratic equation, (rij)2½2 + 2½ri ⋅ rij
+ (ri)2 − R2

= 0. The polar pressure is given by15

IK
Pºº(R) = n(R)kBT + 1

8ÃR2
ï N

∑
i,j

2

∑
k=1

(rij ⋅ θ̂ ½k)2∣rij ⋅ R̂½k ∣
Fij

rij
H(½k)H(1 − ½k)⟩,

(22)

where

θ̂½k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xi + ½kxij)(zi + ½kzij)/(Rdxy)
(yi + ½kyij)(zi + ½kzij)/(Rdxy)

−dxy/R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

and dxy =
√(xi + ½kxij)2 + (yi + ½kyij)2. The azimuthal component

is given by15

IK
Pϕϕ(R) = n(R)kBT + 1

8ÃR2
ï N

∑
i,j

2

∑
k=1

(rij ⋅ ϕ̂ ½k)2∣rij ⋅ R̂½k ∣
Fij

rij
H(½k)H(1 − ½k)⟩,

(24)

where

ϕ̂½k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(yi + ½kyij)/dxy
(xi + ½kxij)/dxy

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

In practice, to enhance the statistics, the tangential pressure is cal-
culated as the average of the polar and azimuthal components,
PT = (Pºº + Pϕϕ)/2.
3. Cylindrical geometry

Compared to the local pressure tensor for planar and spherical
geometries, the theoretical development in a cylindrical geometry
is generally overlooked. A complete derivation for the cylindrical
pressure tensor was made available very recently.21,74 The cylindrical
pressure tensor is useful for understanding the behavior of sys-
tems having cylindrical interfaces. Examples include self-assembled
micelles of a cylindrical shape,88,89 a solid nucleus having a cylindri-
cal shape,90,91 and molecules confined in cylindrical pores.74 Most of
the synthetized porous materials with a well-defined geometry have
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cylindrical or quasi-cylindrical pores, such as carbon nanotubes and
porous silica materials. The local cylindrical pressure tensor can be
written as [Fig. 4(c)]

P(R) = PRR(R)R̂R̂ + Pϕϕ(R)ϕ̂ϕ̂ + Pzz(R)ẑẑ, (26)

where PRR = PN is the normal pressure in the radial direction (R̂);
Pϕϕ is the tangential pressure in the azimuthal direction (ϕ̂); and Pzz

is the tangential pressure in the axial direction (ẑ) with Pzz ≠ Pϕϕ.
Mechanical equilibrium [Eq. (11)] dictates that

Pϕϕ(R) = PN(R) + RdPN(R)
dR

. (27)

Similar to the situation in spherical coordinates, the Harasima-
like contour definition leads to a cylindrical pressure tensor with an
unrealistic radial dependence near the origin in a bulk system.74 In
general, we suggest that any construction of the contour should not
depend on polar coordinates (i.e., radius and polar angles).74 While
a valid alternative to the Harasima-like definition in cylindrical
coordinates is possible,74 the IK contour definition naturally satis-
fies this polar-coordinate-independence condition, being a widely
adopted choice of contour. The normal component of the cylindrical
pressure tensor based on the IK contour definition is given by21,74

IK
PRR(R) = n(R)kBT + 1

4ÃR
ï N

∑
i,j

2

∑
k=1

∣rij ⋅ R̂½k ∣
rijL

FijH(½k)H(1 − ½k)⟩,
(28)

where L is the height of the cylinder. The unit radial vector is

R̂½k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xi + ½kxij)/R
(yi + ½kyij)/R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

and ½k are the roots of the equation R2
= (xi + ½xij)2 + (yi + ½yij)2.

The azimuthal component is written as74

IK
Pϕϕ(R)= n(R)kBT + 1

4ÃR
ï N

∑
i,j

2

∑
k=1

(rij ⋅ ϕ̂ ½k)2∣rij ⋅ R̂½k ∣
Fij

rijL
H(½k)H(1−½k)⟩,

(30)

where

ϕ̂½k =

⎛⎜⎜⎜⎜⎝
−(yi + ½kyij)/R
(xi + ½kxij)/R

0

⎞⎟⎟⎟⎟⎠
. (31)

Moreover, the axial component of the cylindrical pressure tensor is
given by

IK
Pzz(R) = n(R)kBT + 1

4ÃR
ï N

∑
i,j

2

∑
k=1

z2ij∣rij ⋅ R̂½k ∣
Fij

rijL
H(½k)H(1 − ½k)⟩.

(32)

We note that Eqs. (30) and (32) are equivalent to the correspond-
ing ones in Ref. 21 despite the difference in their appearance. Unlike
equations in Ref. 21 that should be averaged over a number of

ϕ and z values in the simulation for the azimuthal and axial pres-
sure, respectively, here we have already averaged over all possible
ϕ and z analytically through integration.74

4. Arbitrary geometry

While many systems of practical interest can be approximated
with the three aforementioned simple geometries (planar, spherical,
and cylindrical), there are still cases where systems have complex
shapes without well-defined symmetries, and special treatments are
needed. Typical methods for handling an arbitrary geometry involve
the discretization of the system into local micro-volumes of molec-
ular dimensions, and the local pressure tensor is evaluated either
on the surface of the local volume66 [Fig. 4(d)] or as a spatial aver-
age over such local space.8,72 A more general form of this kind is
discussed in Sec. IV D for nonequilibrium systems.

B. Thermodynamic route to the pressure tensor
and its equivalence to the mechanical route
in thermodynamic equilibrium

So far, we have only talked about the mechanical route to the
local pressure tensor, which is derived from the concept of “the
force acting across a surface element dS.” Equivalently, the pressure
tensor can also be derived from a thermodynamic definition. It is
instructive to start with the definition of the bulk (scalar) pressure
in a canonical (NVT) ensemble (generalization to other ensembles
is straightforward),

P = −( ∂A
∂V
)
N,T

, (33)

where A = −kBT lnQ is the Helmholtz free energy of the system
with N particles and a volume V at temperature T. The canonical
partition function Q is defined as82

Q =
1

Λ
3NN!

+ exp[−´U(rN)]drN , (34)

where rN ≡ r1, r2, . . . , rN represent the positions of all particles in the
system, Λ is the de Broglie wavelength, U is the total configurational
energy of the system, and ´ = 1/kBT. Following the pioneering work
of Eppenga and Frenkel92 on hard-core particles and Harismiadis
et al.93 on systems with continuous potentials, the bulk pressure can
be computed by considering a volume perturbation (VP) from V
to V′ = V + �V (particle coordinates are scaled accordingly), with
�V > 0 being an infinitesimal, isotropic change of the volume, and
Eq. (33) becomes93

VP
P ≈ −

A(V + �V) − A(V)
�V

=
kBT

�V
ln ï(1 + �V

V
)N exp(−´�U)⟩

V

, (35)

where �U = U(V + �V) − U(V) is the energy associated with
the increase in volume and the angular bracket with subscript V
denote a configurational average in the canonical ensemble over the
unperturbed system of volume V . We note that Eq. (35) includes
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both kinetic and configurational contributions to the pressure.
Equation (35) also assumes the volume change is positive; in prac-
tice, a central finite-difference approximation with both positive
and negative volume changes is recommended for better statis-
tics.94 Equation (35) is the VP method or thermodynamic route
to the pressure. A similar perturbation scheme for the surface
(test-area method) has also been developed to compute the surface
tension.95–97 This test-area method is advantageous over the con-
ventional pressure tensor route to the surface tension, especially for
small drops, because it can capture the entropic contributions due to
the fluctuations in the energy of deformation.98

Similarly, Eq. (33) can be rewritten to represent the diagonal
Cartesian components of the pressure tensor P³³ (³ = x, y, z),94

P³³ = −( ∂A
∂V
)
N,T,L´≠³

. (36)

In this case, instead of performing an isotropic change of the volume
as for the bulk pressure, only the simulation box dimension L³ in
the ³-direction is perturbed to L³ + �L³ while all other dimensions
L´(´ ≠ ³) are kept fixed. Now, we apply a common planar symme-
try, i.e., the z-axis is normal to the planar surface and the surface lies
in the xy-plane, and we assume Eq. (36) is locally valid (i.e., Q, A,
and V can be localized to a thin slab at z). By taking the partial
derivative in Eq. (36) exactly, we can derive a local form of the
pressure tensor,34,94,99

VP
P ³³(z) = n(z)kBT − ï ∂U(z)

∂V(z) ⟩
N,T,L´≠³

≈ n(z)kBT + kBT

�V(z) ln ï exp(−´�U(z))⟩
V

, (37)

where U(z) is the total configurational energy in an infinitesimally
thin slab at a z-position and V(z) = LxLy�z is the corresponding
volume of the thin slab of width �z. The first term on the right
of Eq. (37) is the kinetic contribution and the second term is the
configurational contribution due to intermolecular interactions. The
second line in Eq. (37) is a VP approximation similar to Eq. (35), but
here the infinitesimal virtual expansion is performed only in the ³-
direction, and �V(z) = S³�L³�z/Lz = S³¸L³�z/Lz , where S³ is the
surface area normal to the ³-direction and ¸ is a positive, infinitesi-
mal number. In practice, the coordinates of all particles in the system
(including those not in the thin slab at z) should be scaled by ¸.
�U(z) is the change of the total potential energy in the thin slab at
z due to the corresponding virtual volume expansion. For confined
fluids, for example, the total potential energy change should include
contributions from both fluid–fluid and fluid–solid interactions.

Different criteria of assigning potential energy in slabs will lead
to different local pressure tensor values,34,100 again reflecting the
nonuniqueness of the configurational contribution to the local pres-
sure tensor. The ambiguity associated with the localization of the
potential energy was also realized by Irving and Kirkwood.1 Figure 6
illustrates two ways of assigning a pair interaction potential in space,
labeled methods A and B. Method A assigns half of the pair poten-
tial energy, u(rij)/2, into the thin slab that contains particle i, and

the other half into the slab that contains particle j,34,101

FIG. 6. A schematic diagram showing the nonuniqueness involved in the dis-
tribution of potential energy in space for a slit-shaped pore system. A: Half of
the pair potential contributes to the thin slab containing particle i and the other
half contributes to the slab containing particle j. B: Pair potential is equally dis-
tributed in the space between two interacting particles. This illustration reflects the
nonuniqueness of the local pressure tensor from a thermodynamic perspective.

U(z) = 1

2

N

∑
i,j

u(rij)[H(zi − z + �z

2
) −H(zi − z − �z

2
)]. (38)

Using Eqs. (17) and (38), it is straightforward to show that the first
line of Eq. (37) (which is exact) for pairwise interactions will lead to
the Harasima definition of the local tangential pressure in Eq. (16)
by taking �z → 0 (see Ref. 74 for similar derivations in cylindrical
coordinates). Method B equally distributes the pair potential ¾(rij)
into slabs between two interacting particles i and j,34

U(z) = 1

2

N

∑
i,j

�z∣zij∣¾(rij)H( z − zizij
)H( zj − z

zij
). (39)

This energy attribution rule corresponds to the IK contour definition
for the local pressure tensor [Eq. (15)]. Similar to the integral con-
tour whose choice is restricted in polar coordinates (for example,
Harasima contour leads to invalid results in polar coordinates73,74),
the ways to assign the local energy should also be regulated under
certain conditions. Further studies are required to elucidate such
restrictions. Finally, we note that the nonuniqueness in assigning the
local energy may also explain the nonunique nature of the local heat
flux.102,103

Extension of the thermodynamic route to curved interfaces,
such as spherical76 and cylindrical shapes,21,76 is possible. How-
ever, caution should be exercised due to the conjugate nature of
polar components in the pressure tensor. For example, in spherical
coordinates, perturbing the R-coordinates will not result in radial
pressure because such rescaling also leads to perturbations in ϕ- and
º-directions.Wewill illustrate this point as follows: Let us assumewe
perform a small perturbation in the radial direction of a sphere hav-
ing a radius of R0, R

′

0 = (1 + ¸)R0, where ¸ is a positive, infinitesimal
number. The volume change of the entire system is
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�V = V′ −V = 3¸V , (40)

where in the last step we omit higher-order terms involving ¸2 and
¸3. By perturbing the radius, the reversible work (free energy change)
is done in all three polar directions,

�A = −(PRR + Pºº + Pϕϕ)+ R0

0
4Ãr2¸dr = −(PRR + Pºº + Pϕϕ)¸V.

(41)

The integral in Eq. (41) is carried out over the entire sphere
because the reversible work is done on the entire system (i.e., all
R-positions are rescaled with ¸). Using Eqs. (40) and (41), and the
thermodynamic definition of the pressure in Eq. (33), we get

P = −
1

4ÃR2
(∂A
∂R
)
N,T

=
(PN + 2PT)

3
, (42)

where PRR = PN is the normal pressure and Pºº = Pϕϕ = PT is the tan-
gential pressure due to symmetry. Equation (42) clearly shows that
perturbing the radial direction leads to a hydrostatic (bulk) pres-
sure of the system defined as an average of the trace of the spherical
pressure tensor. To decouple the normal and tangential pressure, we
take advantage of the mechanical equilibrium condition in Eq. (19).
Interested readers should refer to Ref. 76 for derivations of the local
version of Eq. (42).

In short, the thermodynamic route (VP method) gives an
equivalent form of pressure tensor to the one obtained from the
mechanical route for equilibrium fluid systems (with off-diagonal
elements being zero). Molecular simulation results indeed confirm
this equivalence.34,76,94,100 While both of them are useful for the cal-
culation of the pressure tensor profile in inhomogeneous systems,
they each have strengths and limitations. While the mechanical
route is useful in studying the solid phase, the thermodynamic route
is invalid in such a case. For a solid, the off-diagonal elements may
not be zero due to internal strain. That means if the solid is per-
turbated in one direction, as the thermodynamic route suggests, the
results will be a coupling of the shear modes and the direct pressure.
Nevertheless, the thermodynamic route is arguably more convenient
for systems interacting with complex intermolecular potentials (e.g.,
many-body interactions) where an explicit evaluation of the forces
might be computationally challenging. Moving away from thermo-
dynamic equilibrium, the mechanical route is the preferred choice,
as discussed in Sec. IV.

IV. MICROSCOPIC PRESSURE TENSOR
IN NONEQUILIBRIUM SYSTEMS

In this section, we extend the discussions of Sec. III to con-
sider the definition of pressure with temporal evolution, convection,
and flow in a moving reference frame. Moving away from equi-
librium, we expect variation of the pressure tensor to drive flows
and for the pressure/stress tensor to depend on time as well as
space (inhomogeneous). A simple example of this is a dynamic,
or hydrodynamic, equilibrium in steady-state Couette flow, where
the boundary conditions (or forcing/molecular walls) drive a flow
giving a linear velocity profile and a constant shear stress. Many dif-
ferent computational techniques have been developed to study this
system in nonequilibrium molecular dynamics (NEMD), includ-
ing SLLOD,104,105 Lees–Edwards boundary conditions,106 and the

application of shearing through tethered or fixed walls.107,108 More
generally, the onset of turbulence introduces convective terms that
are nonzero even in an average sense. Finally, the most general case
of nonequilibrium is an unsteady flow, where the gradient of convec-
tive transport and pressure together are equal to the time evolution
of momentum in the system,

∂Äu

∂t±
Time Evolution

+∇ ⋅ Äuu´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Convection

= −∇ ⋅ P, (43)

where Ä is the mass density and u is the streaming velocity. This
time-evolving flow can occur in bubble growth, moving contact
lines, onset of instabilities, and many other areas of fluid dynamics.

We start by discussing the importance of temporal evolution on
the definition of the stress tensor for a statistical mechanical ensem-
ble in Sec. IV A before simplifying to the case of a single trajectory
evolving in time in Sec. IV B. We discuss the problem of defining
kinetic pressure as we move away from equilibrium in Sec. IV C.
For the time evolution and convection, we need a clear mathemat-
ical framework for spatial localization of pressure valid away from
equilibrium, and these are discussed in Sec. IV D. In Sec. IV E, we
present recent studies and consider the most general case where the
framework itself can move in time, which is useful in multiphase
fluid flow with deforming interfaces. We then outline a more prag-
matic way to get this time evolution using mapping in Sec. IV F.
Finally, we discuss the statistical uncertainty involved in the pressure
tensor calculations in Sec. IV G.

A. Ensemble average and the time-evolving
phase space

Let B(rN ,pN) be some function of the 6N phase space variables.
The ensemble average ⟨Bð is then the 6N-dimensional integra-
tion over all position vectors and over all momenta vectors for an
ensemble having a probability density function f (rN ,pN ; t). Using
the assumption that phase space is bounded,1 and noting that for
momentum B = 3N

i=1miṙi¶(r − ri(t)), the time evolution of a phase
space averaged momentum is

∂

∂t
ï N

∑
i=1

miṙi¶(r − ri(t))⟩ = −∇ ⋅ ïPK
+ P

C ⟩, (44)

where ṙi is the first-order derivative of the particle position with
respect to time t. The right-hand side is the pressure introduced in
Eqs. (3) and (4).

There are at least two purposes served by the ensemble average:
the first is the practical reduction of noise and the second is to ensure
the validity of the Dirac delta function, which is not practically
meaningful outside an integral (here the 6N dimensional integral of
the ensemble average). The work of Noll109 integrates the Dirac delta
function over phase space and uses Noll’s lemma to address the Oij

operator of Eq. (5), giving a form with similarities to the line integral
of Eq. (8), but in Noll’s phase space integrated notation. The form
is included in Subsection 2 of the Appendix and interested readers
should refer to the review paper by Admal and Tadmor.78

B. A single trajectory in time

If the ensemble average is dropped, equivalent forms of
the pressure can still be obtained.41 This step is essential in
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order to derive general equations free from the requirement
of ensemble averaging, ∂⟨Bð/∂t → ∂B/∂t. Here, the form of
B = 3N

i=1miṙi¶(r − ri(t)) is as before. Applying the time derivative
of momentum results, after somemanipulation,41,42 in the following:

∂

∂t

N

∑
i=1

miṙi¶(r − ri(t))
= −

N

∑
i=1

miṙiṙi∇ ⋅ ¶(r − ri(t)) + N

∑
i=1

mir̈i¶(r − ri(t))
= −∇ ⋅ [PK

+ P
C]. (45)

Here, Newton’s law, Fi = mir̈i, is applied before expressing the force
in a pairwise manner and the delta functions are expanded as in the
original work of Irving and Kirkwood.1 The final right-hand side is
the pressure at any instant, as in Eq. (44), but without the ensemble
average. This has the advantage that it is a purely mechanical form
of the pressure. More importantly, it is the starting point for a more
general treatment.

However, we have introduced the formal mathematical prob-
lem to this pointwise pressure form that a Dirac delta function
now exists outside an integral, which makes it poorly defined. To
solve this problem, approaches in the literature approximate the
delta function as a mollified weighting function78,110–112 or approxi-
mate kernel.4,108,109 A weighting function can be chosen to have any
desired mathematical property, such as compact support or nor-
malization to unity. In this work, we do not approximate the delta
function, instead we evaluate the formal integral of the delta func-
tion over a local volume in space.113,114,116 This control volume or
“finite volume” form115 can be written in terms of surface tractions
and ensures the exact conservation of momentum during the single-
trajectory time evolution as shown in Sec. IV D. Our treatment is
equivalent to a choice of a uniform weighting function (a 3D boxcar
function)77 without any mollification. A weighting function may not
satisfy momentum conservation as it smears the momentum aver-
age over its functional form. This is analogous to the finite element
method where different shape functions give different momentum
distributions117 and only the zeroth-order element (a finite volume)
is conservative.115 In Sec. IV C, the importance and difficulty of
identifying and subtracting the hydrodynamic or streaming velocity
are discussed, particularly when we move away from the ensemble
picture.

C. Streaming velocity and the kinetic term

The dynamics of a fluid manifests itself through a velocity
field u(r, t) coupled with a scalar pressure P(r, t) at every point in
space. This fluid velocity can be thought of as the average coher-
ent motion of a stream of molecules, which we can define in terms
of an instantaneous form of the Irving–Kirkwood momentum and
density,

u(r, t) = Ä(r, t)u(r, t)
Ä(r, t) =

3N
i=1miṙi¶(r − ri)
3N

i=1mi¶(r − ri) . (46)

Here, Ä(r, t) is the mass density of the fluid and u(r, t) is the aver-
age velocity of the molecules, often known as the streaming velocity.

The kinetic pressure can then be defined by introducing the pecu-
liar velocity pi/mi, the particle motion not contributing to the net
velocity field,

pi
mi
= ṙi − u(r, t). (47)

A clear problem with the instant trajectory is apparent here: For
a single time step in a molecular simulation, there is no way to
split fluctuation and streaming parts. Of a molecular kinetic motion,
the contribution that becomes velocity and the contribution that is
kinetic pressure can only be determined with both spatial or tem-
poral averaging. We discuss the spatial averaging in Sec. IV D. The
length of temporal averaging will adjust measurements of veloc-
ity and requires some pragmatism in choice. However, this does
not mean that the use of a single trajectory is wrong, as will be
discussed below. In fact, chaotic trajectory divergence means an
ensemble approach is not always possible in situations away from
an attractor state,78,118 so piecewise temporal averaging may be the
only approach to get velocity in highly nonlinear systems.

Taking the kinetic term in Eq. (45), substituting in the pecu-
liar velocity of Eq. (47), and applying the definition of momentum
and density allow the total kinetic tensor to be written in terms of a
kinetic pressure and a convection term,

N

∑
i=1

miṙiṙi¶(r − ri) = N

∑
i=1

pipi
mi

¶(r − ri) + Ä(r, t)u(r, t)u(r, t). (48)

In an equilibrium system, the second term on the right (convec-
tion) is equal to zero. In the case of hydrodynamic equilibrium,
for example, in channel flow, convection is also negligible, and the
velocity varies in a well-defined way. This is true even in molecu-
lar systems down to 5–10 atomic diameters,42 e.g., a linear func-
tion u(y) ∼ y in Couette flow119 or parabolic in pressure-driven
Poiseuille flow u(y) ∼ y2.120 When the expected velocity profile is
known, such as in Couette or Poiseuille flow, it makes the definition
of peculiar velocity, pi/mi, straightforward.121 This idea of construct-
ing quantities with a known velocity inspired some of the earliest
nonequilibrium molecular dynamics (NEMD) simulation methods,
by applying a known forcing function, so that the resulting veloc-
ity is as expected.122 However, as molecular simulation increasingly
pushes to more complex nonequilibrium cases, a well-defined veloc-
ity profile is no longer possible. Examples of nonequilibrium sys-
tems include complex flow patterns around obstacles,123–125 rolling
or cells formed by thermal gradients,126,127 vortex formation,128

Taylor Couette flow,129,130 the Rayleigh–Taylor instability131,132 or
shock wave instability.133,134 There is also a recent explosion in
papers using molecular simulations in multiphase flows for films,
droplets, bubbles, and contact lines. We defer a consideration of
these to Sec. IV E, where a moving interface reference frame is
presented specifically for these types of problems. In all nonlin-
ear single-phase examples, the evolution of velocity is chaotic,
which makes the concept of an ensemble averaging problematic, as
different simulations would diverge given enough time.

Perhaps the most interesting and general example of splitting
the streaming velocity from the kinetic contribution is for turbulent
flow.135 This is shown in Fig. 7 for the smallest known cases of time-
steady turbulent flow136,137 but simulated in a molecular dynam-
ics simulation.138 This minimal-channel Couette flow exists at a
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FIG. 7. Turbulent Couette flow in a molecular simulation. (a) The evolution of iso-surfaces of turbulent kinetic energy (TKE) within a regeneration cycle with positive TKE in
blue and negative in orange. (b) The average pressure moving across the channel from channel center to the top wall (y = [−1, 1] in the wall-normal direction), showing

the contribution of kinetic pressure, PK
xy , and configurational pressure, PC

xy , which add to give total pressure, Pxy , and with the turbulent shear stress Äu′v′ give a constant

(black line) at all points in the channel (satisfying mechanical equilibrium). Note that all quantities are normalized by Ä0, the shear stress between the wall and first layer of
the fluid.

Reynolds number of 400, which requires N ≈ 300 × 106 molecules
taking an average density of 0.3 in LJ units and temperature cho-
sen to minimize viscosity. Convection is nonzero and velocity varies
in time, so we use Reynolds decomposition, u = u + u′, to define a
long-time-average streaming velocity u. This average velocity allows
us to define a turbulent fluctuating part, denoted here by the prime
u
′. This u′ is like the peculiar velocity in NEMD, a velocity that is

not contributing to the mean flow, but the fluctuations are large-
scale eddying motions instead of molecular fluctuations of pi. The
typical cycle of fluctuations is shown in Fig. 7(a) as the iso-surfaces
of squared velocity ∣u′∣2 = u′2 + v′2 +w′2 where u′, v′, and w′ are
the three velocity components. As with the kinetic pressure tensor,
knowing the average velocity allows the average fluctuations to be
identified, which is called the Reynolds stress tensor,

Äu′u′ = Äuu − Äuu. (49)

This is a dimensionally and physically the same form as the kinetic
pressure, the outer product of fluctuating velocity components, but
on a larger scale. Instead of small molecular fluctuations, it is the
average momentum carried by turbulent eddies that make up the
Reynolds stress. Indeed, Osborne Reynolds apparently defined this
stress, inspired by the subtraction of streaming velocity seen in
his earlier work on kinetic theory.139,140 The mean flow is time
stationary on a longer time scale, with the flow going through a
regeneration cycle, where the streaks break down the energizing flow
vortices before a regeneration occurs [Fig. 7(a)].This cycle repeats
indefinitely and a long-time average can be collected. The average
pressure and Reynolds shear stress in the top half of the symmetri-
cal channel are shown in Fig. 7(b) where the total shear contribution
is constant, i.e., [Äu′v′ + PK

xy + P
C
xy]/Ä0 = 1. Interestingly, the kinetic

and configurational contributions to shear stress are similar in mag-
nitude in Fig. 7(b). It is similar to the case of hydrodynamic stability

in laminar Couette flow, where adding the average Reynolds shear
stresses together with the shear pressure gives a constant, i.e., it sat-
isfies ∇ ⋅ [P + Äu′u′] = 0, and as a result du/dt = 0. This turbulent
equilibrium is a property of the relatively simple channel flow and
would not be true in general.

The off-diagonal components of the Reynolds stress tensor in
Eq. (49), e.g., Äu′v′ are like the shear stress PK

xy in that they include
x-momentum carried in the y-direction. As a result, the kinetic pres-
sure can be split into velocity existing on three length and time
scales,

ï N

∑
i=1

miṙiṙi¶(r − ri)⟩ = ï N

∑
i=1

pipi
mi

¶(r − ri)⟩
t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PK

+ Äu′u′ + Äuu. (50)

Here, we have included a time averaging, ⟨⋅ ⋅ ⋅ðt , over a shorter time
scale tMD. The overbar denotes an average over the length of the sim-
ulation, in this case tTotal. Equation (50) highlights a very interesting
insight into the time averaging process; as the averaging period of⟨⋅ ⋅ ⋅ðt increases relative to the overbar, the kinetic contribution will
increasingly be assigned to molecular kinetic shear stress PK and the
Reynolds stress will decrease, with the limit tMD → tTotal seeing all
turbulent fluctuations counted as kinetic pressure. In Eq. (50), we see
kinetic pressure as simply the first-order term in a series expansion
of fluctuations at increasing length and time scales. This is a source of
nonuniqueness in the kinetic pressure away from equilibrium, inti-
mately linked to the turbulent cascade, where fluctuations u′ form
a continuous spectrum of scales. In the turbulence literature, under-
standing andmodeling the range of turbulent scales aremain focuses
of research.141,142 This section shows that the uncertainty in split-
ting molecular motion into kinetic pressure and streaming velocity
is part of a larger picture in fluid dynamics. Here, flow is multi-scale
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over many orders of magnitude and care is needed to decide
which scales must be modeled. In experimental aerodynamics,
the pressure measured by a pitot tube, which physically slows the
flow velocity to zero, or stagnation, is known as the total pressure.
This is to distinguish it from static pressure due only to kinetic col-
lisions measured in a static flow. A complete picture of the kinetic
pressure and fluid flow will require a collaboration between the fluid
dynamics and NEMD communities.141,142

D. Localization of the pressure tensor in space

The field of NEMD closely mirrors fluid dynamics, where fluid
properties are defined on a field, which is expressed as a discrete
grid of values in CFD. For this reason, expressing the pressure on a
tessellating grid of cells is a natural choice to explore fluid phenom-
ena. This process starts by integrating the Irving–Kirkwood form of
pressure over a volume V in space, including the kinetic pressure
of Eq. (3) and the configurational pressure of Eq. (10) using the IK
contour,

+
V
[PK(r, t) + PC(r, t)]dV = N

∑
i=1

pipi
mi
+
V
¶(r − ri)dV

+
1

2

N

∑
i,j

Fijrij+
V
+

1

0
¶(r − ri − ½rij)d½dV

=

N

∑
i=1

pipi
mi

ϑi +
1

2

N

∑
i,j

Fijrij+
1

0
ϑ½d½, (51)

where ϑi and ϑ½ are the integral of the Dirac delta functions over
a finite volume, in the case of a cuboid centered at r = (x, y, z)
and having a dimensional �r. The function ϑi can be written as
ϑi = Λx(xi)Λy(yi)Λz(zi), where Λ³(³i) with ³ = x, y, z is the box-
car function introduced in Eq. (17) and ϑi = 1 when the particle i
is inside a cuboid and ϑi = 0 otherwise. Assuming a single average

value of pressure in a volume, ∫V PdV =
VA
P �V , Eq. (51) results in

the so-called volume average (VA) pressure tensor,

VA
P =

1

�V

⎡⎢⎢⎢⎢⎣
N

∑
i=1

pipi
mi

ϑi +
1

2

N

∑
i,j

Fijrijlij

⎤⎥⎥⎥⎥⎦, (52)

where �V is the local volume, and the shorthand lij = ∫ 1
0 ϑ½d½ gives

the fraction of the interaction contour ℓ inside the averaging vol-
ume.We note that the streaming velocity u(r, t), defined in Eq. (46),

is averaged over the same volume in the VA form [Fig. 8(a)],
i.e., u(r, t) = 3N

i=1miṙiϑi/3N
i=1miϑi. This VA pressure was originally

proposed in a 1D form for shockwaves by Hardy in 1982.110 It was
then extended by Cormier et al.143 to a spherical volume and made
more formal by Murdoch.111,112 For the case of the IK contour, the
fraction of line lij can be obtained exactly in a cube from plane–line

intersections shown in Fig. 8(b) or in a sphere87,144 or cylinder21

from surface–line intersections. For more complicated local volume
shapes, lij can be obtained by splitting the line into segments and
binning each segment numerically if it is inside the volume. As an
example, the Voronoi decomposition of Hatch and Debenedetti8 is
shown in Fig. 8(c). They developed a formalism that enables the cal-
culation of the local stress tensor on an atom or an arbitrary group
of atoms by averaging over the local volume of this group. The local
volume for a certain group was obtained using the Voronoi decom-
position method. In their formalism, the contour segment that is
within the volume V g of the targeting group of atoms contributes
to the local stress of this group. For instance, in Fig. 8(c), the red seg-
ment of the line connecting particles 3 and 4 contributes to the local
stress of the group composed of particles 2 and 5. In this way, it is
identical to the VA pressure of Eq. (52) using length of interaction
inside the volume, but, with the volumes chosen based on molecu-
lar structure. The presence of a molecule at the center of a volume
changes the measured pressure to include insight into the mate-
rial structure, with some similarity to the molecular centric radial
distribution function.144

On the other hand, the pressure tensor can be expressed in a
plane form. For example, by taking the three components of the VA
pressure tensor in Eq. (52) acting on the surface that is normal to the
x-direction, i.e., Px = [Pxx,Pxy,Pxz], and evaluating the limit that the
volume tends to zero in the x-direction, we arrive at145

lim
�x→0

VA
Px(r, t) = lim

�x→0

1

�x�y�z

⎡⎢⎢⎢⎢⎣
N

∑
i=1

pipix

mi
ϑi +

1

2

N

∑
i,j

Fijxijlij

⎤⎥⎥⎥⎥⎦
=

1

�Sx

⎡⎢⎢⎢⎢⎣
N

∑
i=1

pipix

mi
¶(x − xi)Λy(yi)Λz(zi)

+
1

2

N

∑
i,j

Fijxij+
1

0
¶(x − xi − ½xij)Λy(y½)Λz(z½)d½⎤⎥⎥⎥⎥⎦,

(53)

where �Sx = �y�z is the surface element normal to the x-direction.
In the limiting case, Eq. (17) is used to convert a boxcar function

FIG. 8. The volume average (VA) form of pressure tensor, showing (a) the molecules 2 and 4 are inside the local volume and contribute to the kinetic pressure; (b) the length
of line lij in the local volume used for the configurational pressure (contributions are shown in red); and (c) a more general implementation using Voronoi volumes, adapted
from H. W. Hatch and P. G. Debenedetti, J. Chem. Phys. 137(3), 035103 (2012) with the permission of AIP Publishing. In both (b) and (c), the IK contour is used.
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to a delta function. If we take limits of �y and �z to be the edges
of the simulation box with periodic boundaries, we have lim

�y→Ly
Λy

= lim
�z→Lz

Λz = 1, �Sx = Sx, and Eq. (53) simplifies to the method of

planes (MoP) pressure,61

Mop

P x(x) = 1

Sx

⎡⎢⎢⎢⎢⎣
N

∑
i=1

pipix

mi
¶(x − xi(t))

+
1

4

N

∑
i,j

Fij[sgn(x − xi) − sgn(x − xj)]⎤⎥⎥⎥⎥⎦. (54)

The integral along ½ has been evaluated to give signum
functions (for a contour, use ∮ xj

xi
¶(x − ℓx) f (ℓx)dℓx

= f (x)[H(x − xi) −H(x − xj)]), where sgn(x) = 1 for x > 0 and
sgn(x) = −1 for x < 0, and sgn(x) = 0 otherwise. The interpretation
of the differences in signum functions is that xi and xj have to be on
opposite sides of a yz-plane at x for the expression to be nonzero.
This is the condition that the interaction is crossing the surface,
and the force contribution is included. In this way, the MoP is most
clearly related to the force over area definition of mechanical stress.
The early work of Tsai65 postulated this form of stress in a molecular
system, but the work of Todd et al.61 derived it from statistical
mechanics for the first time and provided a convenient form to use
in molecular simulations. This was originally obtained through a
Fourier transform of the original Irving–Kirkwood equations.1,61

Working in Fourier space has the effect of averaging in the lateral
directions and so the pressure is for an infinite plane. Regardless
of the contour between two molecules, the contour must cross the
plane if these two molecules are located on either side of the plane.
The Fourier transform assumes an infinite periodic domain in y − z
and so avoids the need to choose an integral contour. However,
we can prove that, due to mechanical equilibrium, the ensemble
average of the MoP form in Eq. (54) is equivalent to Eq. (13), which
is derived directly from the contour form of the pressure tensor (see
Subsection 1 of the Appendix for derivation). It is worth noting
that the kinetic term in Eq. (54) still has the Dirac delta function,
which requires some treatment before it can be used in a molecular
simulation. Previous work writes the delta function as the sum of its
roots,146 which physically correspond to any crossing of the plane.
However, a kinetic pressure form that is more consistent with the
configurational term can be obtained by taking the integral of the
kinetic pressure over a time interval from t1 to t2 and using a change
of variables dt = dxi/ẋi to write

+
t+�t

t

MoP
P

K
x (x)dt = 1

Sx

N

∑
i=1
+

t2

t1

pipix

mi
¶(x − xi(t))dt

=
1

Sx

N

∑
i=1
+

xi(t2)

xi(t1)

pipix

miẋi
¶(x − xi(t))dxi

=
1

Sx

N

∑
i=1

pi[H(x − xi(t1)) −H(x − xi(t2))],
MoP
P

K
x (x) = 1

2�tSx

N

∑
i=1

pi[sgn(x − xi(t1)) − sgn(x − xi(t2))].
(55)

The final line uses H(x) = 1/2(sgn(x) + 1) to show the simi-
larity of form to the common MoP configurational part and
takes the average of the time integral on the left-hand side

∫ t+�t
t

MoP
P K

x dt ≈ �t
MoP
P K

x . Finally, we note that, to be consistent,
the momentum flux in these surface definitions pi is expressed
relative to a streaming velocity measured over the same sur-
face, so if dSix = [sgn(x − xi(t1)) − sgn(x − xi(t2))] then u(x, t)
= 3N

i=1miṙidSix/3N
i=1midSix.

The original MoP formulation61 only provides three pres-
sure components as in Eq. (54), on an infinite plane. As the
plane has a single normal component and is infinite in y and
z, this returns only a single pressure vector per plane. Han and
Lee147 used three mutually perpendicular planes converging at a
point to obtain all nine components of the pressure tensor and
also limited the planes to a local region of interest. For example,
using the boxcar function Λ of Eq. (17), we can write this Local
MoP (LP) for the kinetic and configurational pressure components
on a local plane that is normal to the y-direction, i.e., Pyx,Pyy,
and Pyz as

LP
P

K
y =

1

2�t�Sy

N

∑
i=1

pi

dSiy³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ[sgn(y − yi(t1)) − sgn(y − yi(t2))]Λx(xi)Λz(zi),
LP
P

C
y =

1

4�Sy

N

∑
i,j

Fij[sgn(y − yi) − sgn(y − yj)]Λx(xk)Λz(zk)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dSijy

,

(56)
where �t = t2 − t1 and the function denoted as dSiy checks if
molecule i is crossing the plane [Fig. 9(a)]. Function dSijy checks
the crossing of the plane for intermolecular interaction path between

FIG. 9. The local surface form of pressure, showing (a) the molecules 1 is entering the volume over a surface with x-normal and molecules 4 is leaving the y-normal surface,
with the momentum carried contributing to kinetic pressure. (b) the molecules interacting over the x-normal surface as red squares and y-normal surface as yellow squares
contribute to the configurational pressure Px and Py , respectively. (c) A more general volume with an arbitrary surface requiring a ray-tracing style solution to identify crossings
with additional terms for curvature and surface movement.60 In both (b) and (c), the IK contour is used.
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i and j [Fig. 9(b)]. Here, on the left-hand side of Eq. (56), we are using
the shorthand notation for the average pressure integrated over a

plane,
LP
Py�Sy ≈ ∫SyP ⋅ dSy. By localizing the pressure to a region of

a plane, we are forced to choose a contour between molecules as
different contours may or may not cross the corresponding plane
subsection. Using the IK contour, the boxcar function Λx(xk) in
Eq. (56) identifies if a crossing xk = xi + ½kxij is on the surface, with
½k being the value of ½ along the line of contour integration at the
point of crossing of the plane/surface. It is interesting to note that the
kinetic pressure in this form is also now dependent on the trajectory
“contour” of the molecules as they evolve in time, so that different
integration methods or time steps could result in different measured
crossings and therefore a nonuniqueness in the kinetic pressure. In
practice, molecules move by very small amounts in a time step, so
any difference is unlikely to be apparent.

For now, we have derived the surface pressure forms of Eq. (54)
(MoP) and Eq. (56) (LP) by taking the zero volume limit of the VA
form of Eq. (52). However, the localized surface pressure is more
rigorously derived by taking the derivative of the control volume
pressure in Eq. (51),148 which gives the six local surfaces pressures
bounding an enclosed region,

∇ ⋅+
V
[PK(r, t) + PC(r, t)]dV
= ( LPP+x − LP

P
−

x )�Sx + ( LPP+y − LP
P
−

y )�Sy + ( LPP+z − LP
P
−

z )�Sz
= .

S
[PK(r, t) + PC(r, t)] ⋅ dS = d

dt+VÄudV , (57)

where
LP
P+³ and

LP
P−³ (³ = x, y, z) denote the LP pressure tensor on

upper (+) and lower (−) ³-surfaces, corresponding to front/back,
right/left, and top/bottom pairs in the x-, y- and z-directions, respec-
tively [see Fig. 4(a) for the coordinate system]. The pressure on all
six surfaces of an enclosed volume is exactly equal to the momen-
tum change in time (to machine precision) due to the conservative
property of the finite volume form.115 This is denoted by the final

line in Eq. (57), which states that the integral around the bound-
ing surface is equal to the change inside that volume. It is also
possible to use this technique for any volume, for example, the
surface pressure for spherical volumes have been derived in the lit-
erature144 and we consider more general surfaces in Sec. IV E. To
show this conservation, we introduce the shorthand P± = P+ − P−

and define Advection to include the convective term and kinetic
pressure, a forcing term including configurational pressure on a
surface, and plot both against the change inside the volume, called
"accumulation” in Fig. 10.

This process of surface flux (SF) derivation can also allow more
general volumes, providing a form of pressure on any arbitrary sur-
face (e.g., a rippling surface), as shown in Sec. IV E. Mechanically,
each of the terms can be viewed as the tractions in a Cauchy tetra-
hedron, so using the three orthogonal planes on the top surfaces
with a traction force vector on each, cf. Fig. 4(a), the three surface

traction vector can be assembled to give P(r, t) = [ LPP +x , LPP +y , LPP +z ]T ,
which is a nine-component pressure tensor. A similar tensor could
be defined for the bottom set of surfaces defining the other tetrahe-
dron that together makes up the cube volume. It is worth noting that
these surface pressures can be derived directly as surface localization
of phase space quantities148 that satisfy the requirements of statisti-
cal mechanics.78 However, the real strength in these instantaneous
stresses on a bounding surface is that we can get the stress at any
instant that is directly responsible for a corresponding momentum
change inside the volume.

E. A moving reference frame

For interactions crossing an arbitrary surface that is itself
changing in time, we can define a volume that follows a feature of
the simulation. For example, we consider a two-dimensional exam-
ple of a liquid–vapor interface (projected onto the yz-plane) defined
by a generalized function À(y, z, t). Using this moving interface func-
tion, the volume average equation of Eq. (51) can be repurposed with
the boxcar function redefined as Λx = H(xi − x + �x/2 + À(y, z, t))
−H(xi − x − �x/2 + À(y, z, t)). Taking the derivative of Eq. (51)
gives the surface pressure, as before, but it is now on a curved and

FIG. 10. Conservation of momentum for
a control volume in a molecular dynam-
ics simulation, where the sum of the
molecules crossing the surface (advec-
tion) and forces acting over the surface
(forcing) is equal to momentum change
inside the volume (accumulation).
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moving surface and we refer to it as the surface flux (SF) pressure
SF
P.

Working through the mathematics, the kinetic and configurational
SF pressure tensor can be expressed as follows:66

Äuux +
SF
P

K+
x =

1

�t�Sx

N

∑
i=1

miṙi+
t2

t1

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋi +
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Configurational Curvature

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dS
+

½xd½. (58)

Equation (58) is identical to the LP pressure of Eq. (56) but
with all the extra terms accounting for interface curvature and
movement. The surface location that the molecular trajectory (or
intermolecular interaction) crosses is denoted by À+i (or À+½ ). The
dS+ix and dS+½x are functions which are nonzero only if these crossing
locations are on the particular patch of surface [a generalization
of the signum functions of Eq. (56)]. The underbraces highlight
the physical meaning of the various terms. The surface evolution
term accounts for the movement of the interface in time, and the
kinetic and configurational curvature terms ensure that the y and
z components are included on the x-surface. The convective term
is included on the left-hand side as surface movement makes it
more difficult to determine what is convection and what is kinetic
pressure. By introducing the definition for the surface normal vector
ñx = ∇³(À − x³)/∣∇³(À − x³)∣ and evaluating the integrals in
Eq. (58), we obtain a form of pressure purely in terms of the surface
normal (for a full derivation please see Ref. 60). We note that the
kinetic term in Eq. (58) has been written as a time integral, which
provides the symmetry with the configurational term discussed in
relation to Eq. (56) and makes the (numerical) implementation
identical to the configurational part. By taking the integral in
Eq. (58), we arrive at

Äuux +
SF
P

K+
x =

1

�t�Sx

N

∑
i=1

miṙi
ri12 ⋅ ñx∣ri12 ⋅ ñx∣dS+ + 1

�Sx

N

∑
i=1

miṙiϑt ,

SF
P

C+
x =

1

2�Sx

N

∑
i,j

Fij
rij ⋅ ñx∣rij ⋅ ñx∣dS+.

(59)

The surface evolution term is contained in the function
ϑt = [H(À(t2) − xi(t2)) − H(À(t1) − xi(t2))]Λy(yi(t2))Λz(zi(t2)),
where molecule positions are fixed and we count how many
molecules have left or entered the volume due to the movement of
the surface in the time interval between t1 and t2. For the kinetic
term, ri12 = ri2 − ri1 is the line of time evolution of a molecule i
between t1 and t2 mirroring the configurational term’s intermolecu-
lar (IK) contour rij = rj − ri. Assuming the IK contour, the equation
for a line is r½ = ri1 + ½ri12 where the value of ½ at the point of
crossing of the surface is ½k. There is no closed form equation to get
½k in general, but we can triangulate or split the surface into patches
and use a ray-tracing process to obtain the point of intersection

of a line and the surface.149 Once we obtain this crossing, it can
be inserted in the following expression for the use of Eq. (59) in
molecular simulations:

dS
+

=

Nroots

∑
k=1

[H(1 − ½k) −H(−½k)]Λy(yk)Λz(zk), (60)

which is nonzero only if the line crossing the surface is between the
start ½k = 0 and finish ½k = 1 of the line, and the point of crossing
in the y- and z-direction, yk and zk, respectively, falls between the
surface patch limits. Figure 9(c) illustrates the use of Eq. (59) on a
general surface.

If we neglect the surface evolution term in Eq. (58), the general
form of surface pressure is similar to the spherical and cylindri-
cal pressure tensors presented in Eqs. (20), (22), (28), and (30).
The surface normal ñx in Eq. (59) behaves like the radial (R̂) or
azimuthal (ϕ̂) unit vectors, providing the pressure tensor aligned
to the normal or tangential vector for a general surface varying in
both y and z, i.e., ñx = ñx(y, z). The function H(1 − ½k) −H(−½k)
in Eq. (60) collects only the interactions crossing the surface as the
function H(½k)H(1 − ½k) does in Eqs. (20), (22), (28), and (30).
The extra localization of the Λ functions could have been included
in the cylindrical and spherical forms of pressure if inhomogene-
ity along the surface were of interest. The general form presented
in Eq. (59) can provide a detailed picture of molecular stacking and
its effect on pressure near a much more complex surface, for exam-
ple, the intrinsic interface, obtained by refitting each time to a set
of molecules where a liquid meets a vapor.66 This uses sine and
cosine functions with wavelengths chosen to allow fitting down to
the molecular spacing. To capture instantaneous fluctuations about
the spherical shape, spherical harmonics or similar functions could
be used to capture the details of the molecular stress structure. These
approaches quickly become cumbersome in general, so in Sec. IV F,
we present a more pragmatic approach.

F. Coordinate transforms

Evaluating the pressure form in Eq. (59) on a time-evolving
surface requires an interface definition, together with an interac-
tion calculation for every pair of molecules crossing that interface.
As MD becomes a more common simulation tool, researchers are
increasingly tackling more complex interface geometries, which
require a more general fitted surface. This makes interface track-
ing increasingly more complex, and the resulting averaging grid can
become impossibly deformed. Instead, in this section we discuss a
process of collecting pressure values on a uniform grid and perform-
ing a transform afterward. Transforming the pressure requires two
steps. The first is a rotation of the pressure tensor so the pressure is
aligned with the normal to the surface. The second is a mapping so
the pressure we collect can be obtained either at a distance from the
surface or as a function moving along that interface. Through this
process, we also highlight an important subtlety in pressure tensor
studies: that the correct pressure tensor for a problem is dependent
on measuring location and alignment.

As an example, we consider the NEMD boiling simulation
shown in Fig. 11, a case of great practical interest.150–152 Here, a solid
wall of tetheredmolecules is heated by a thermostat from the bottom
and a phase change occurs in the liquid, starting at the bottom of a
nanoscale square pore in the wall. The liquid is set up as a finite film
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FIG. 11. An example of the use of map-
ping in obtaining a pressure relevant to
the geometry of a problem. The exam-
ple is a single snapshot in time of a
NEMD boiling simulation, where a bub-
ble starts from a square notch on a
wall and expands into a circular bubble
shown here. The bubble is clear in the
density field of (a) with blue vapor density
and yellow liquid density. The identified
interface points are shown as black pix-
els and the green line shows a fitted
circle arc used to get radius and angle.
(b) The pressure field of Pxx component
with blue indicating large negative val-
ues. (c) The pressure rotated using the
angle from the fitted circle and Eq. (61) to
give tangential pressure Pºº, with green
lines shown at ºb = −90○, −45○, 0○,
45○, and ºt = 90○ to guide the eye. The
arrow shows the whole 180○ arc. (d)
The mapped field using a Cartesian to
polar mapping, where the green lines
correspond to the ones from (c) between
ºb and ºt . (e) The average normal and
tangential pressure over the 180 arc.

with a large gas region above, and a bubble is allowed to nucleate
and grow. The simulation is pseudo-two-dimensional with a nomi-
nal thickness in z and with periodic boundaries. The bubble grows
initially inside the square pore, before extending beyond and form-
ing a roughly circular shape. Figure 11(a) shows the density field
where the yellow region is liquid with density of 0.7 in LJ units and
the dark blue region is vapor with density of 0.05 in LJ units. There
is no unique way to identify the liquid–vapor interface. In this work,
a simple thresholding operation Ä > 0.3 (LJ units) is performed to
identify the liquid, followed by a gradient operation to get the inter-
face location where the density gradient is nonzero. These interface
pixels are fitted using a least-square algorithm, with a circular arc to
the part of the bubble above the wall. The fitted arc has a radius and
angle used to rotate the pressure field Pxx in Fig. 11(b),153

PRR = Pxxcos
2º + Pyysin

2º + Pxy sin(2º),
Pºº = Pxxsin

2º + Pyycos
2º − Pxy sin(2º). (61)

It is worth noting that the pressure tensor is a measure of the align-
ment of force with a given coordinate axis, so any rotation of the
tensor is equally valid. Upon transform, this exposes a clear polar
(tangential) pressure Pºº around the interface in Fig. 11(c), simi-
lar to a hoop stress in a solid pressure vessel, which is what holds
the bubble’s shape. It is this tangential contribution that will be sig-
nificant in a Kirkwood–Buff surface tension calculation. In order
to get Pºº at a given radius, we need to average all values at the
same radius over º. Here, we apply this on the top half of the bub-
ble, to avoid the near-wall region. The integration limits are shown

in Fig. 11(c) by the double ended arrow between the angle at the
bottom denoted by ºb and the angle at the top denoted by ºt . We
use a mapping or projection from the Cartesian grid to a polar
grid. Interestingly, instantaneous local fluctuations about the per-
fect circle can be seen in this projection in the blue line of tangential
pressure in Fig. 11(d). We average along the interface, in this case
between ºb = −90

○ and ºt = 90
○ for both radial and tangential pres-

sure to obtain the plot in Fig. 11(e). This shows both the imbalance of
radial pressure PRR, which is driving the interface to grow, and the
contribution to surface tension due to the tangential pressure Pºº.
The resulting pressure is similar to the one that would be obtained
using Eqs. (20) and (22), but we have obtained it using data collected
from the simulation on a uniform grid and by fitting the interface
afterward. This technique is ideal for existing molecular dynamics
software packages that do not have a rich selection of pressure cal-
culation methods inbuilt, as discussed in Sec. V C, allowing uniform
fields to be repurposed.

G. Statistical uncertainty of different
pressure methods

One of the main difficulties of pressure tensor calculations is
the high level of noise relative to quantities such as Ä,u and T.
This is clearly observed in Fig. 11(b) where a noisy pressure field
gives a grainy appearance, which is absent from the density field
in Fig. 11(a). It is worth observing that what we term “noise” here
in NEMD are more concretely fluctuations about the time-evolving
averaged quantities of interest, which tends to obscure them. In
equilibrium systems, this noise can actually be the quantity of inter-
est, such as diffusion or viscosity obtained from the Green–Kubo
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formula43,44 or certain thermodynamic functions (e.g., heat capacity)
that are a measure of fluctuations.154 As discussed in Sec. IV C, these
fluctuationsmight contribute to the turbulent eddies, and so they are
important for an overall understanding of the flow. Hadjiconstanti-
nou et al.155 estimated that collecting pressure is orders ofmagnitude
worse in terms of statistics, which, they argue, makes coupling, pass-
ing averaged MD pressure values to be used as boundary conditions
in a continuum solver, untenable. For NEMD simulations, getting
good statistics becomes increasingly problematic as time-evolving
events can depend on a chaotic trajectory, making it difficult to cre-
ate a consistent ensemble. The example of boiling in Sec. IV F makes
this clear, where nucleation occurs at different times in the mem-
bers of an ensemble and the bubble growth proceeds in a varied and
apparently stochastic way. A general discussion on the topic of pres-
sure noise is difficult compared to other microscopic properties,156

as the statistical requirements are case specific, depending on rate of
time evolution in the system and choice of averaging volume size.
Often, we are forced to use a coarse spatial resolution in order to
provide sufficiently well-behaved pressure measurement.

To get a sense of the magnitude of this noise, Fig. 12 shows the
distribution ofmeasured pressure in a sub-volume of a large periodic
simulation box of reduced density 0.8.157 The distributions are Gaus-
sians for boxes of this size. Two cubic volume sizes are considered:
The large volume has a reduced cell side length of L = 13.7Ã and will
contain about N = 2000 molecules, while the smaller volume has a
reduced side length of 6.8Ã with around N = 250. The VA pressure
using Eq. (52) and the LP pressure using Eq. (56) are shown by solid
and dotted lines, respectively. The average pressure is roughly the
same for all cases with value ⟨Pxxð ≈ 0.9 reduced units shown by
the similar peak locations of the Gaussians in Fig. 12. Interestingly,
the VA measures show a much lower spread in the distribution,

e.g., standard deviations for the large volume std(VAPxx) = 0.16 vs

std(LPPxx) = 0.68, both in LJ units. This means standard deviation is

more than four times higher in the surface pressure measurement
than the volume average for the same number of samples. For the

FIG. 12. Comparison of the probability distribution function of Pxx using the VA
form (ℓij is length of line in a volume shown schematically in red on the top right)
and LP form (dS

ij
is surface crossing shown schematically as red crosses with

surface normal on the bottom right). For a reduced cell side length of 13.7 Ã, the
blue solid line on the main plot is the VA pressure and the dotted yellow line is
the LP pressure. For a reduced cell side length of 6.8 Ã, the green solid line is the
corresponding VA pressure and the dotted red line is the LP pressure. Data are
taken from Ref. 157.

smaller volume case, where the surface to volume ratio is improved
by a factor of two in favor of the surface measurement, the stan-
dard deviation of the LP pressure is still about three times that of
the volume average. One reason for this is apparent from the way
pressures are obtained, as shown schematically in Fig. 12 (top right
and bottom right). The VA scheme uses a continuous fraction of
all interactions based on the length of line in the volume, which
provides some smoothing as well as averaging from all interactions.
Meanwhile, the LP pressure includes a contribution only if the sur-
face is crossed, so fewer interactions are counted and these change
abruptly as molecules move until interactions suddenly no longer

cross a surface. Moreover, for
LP
Pxx only a single surface is used com-

pared to the entire volume for the VA, further reducing the samples
obtained in practice.

In conclusion, the VA pressure performs better at reducing
noise, giving between three and four times lower standard deviation
than a surface definition in this example. However, the conserva-
tive properties of the surface definition, as well as the ability to track
complex geometries, make surface pressure preferable in some cases.

V. CHALLENGES AND FUTURE DIRECTIONS

A. Controversies over the microscopic pressure tensor

The microscopic pressure or stress tensor has been a contro-
versial topic since the 1950s, largely due to the arbitrary contour
involved in the formalism [Eq. (9)]. In fact, even the concept of the
virial pressure introduced in 1870 by Clausius81 was not free of con-
troversy. The form of the virial pressure was questioned in 1895,
by a Basevi,158 who argued that by performing the integration in
time that the kinetic and configurational parts should cancel. This
argument was refuted by at least two articles159,160 with Gray160 not-
ing that “Basevi has, it seems to me, overlooked the fact that in the
theorem it is the forces acting on each particle relatively to the assumed
axes, and the correspondingmotions that must be taken into account.”
Such confusions about the assumed axis and corresponding motion
are apparently still a subject of confusion today together with the
nonuniqueness of the pressure tensor itself.

The nonuniqueness problem of the microscopic pressure ten-
sor is well known in the statistical mechanical community. It was
implicit in the paper of Kirkwood and Buff70 in 1949, and the
arbitrariness of the force acting across a surface element was then
discussed in an appendix of the seminal paper by Irving and
Kirkwood.1 Irving and Kirkwood’s warning did not attract much
attention, although it was apparently noticed by Harasima et al.67,161

when they studied the surface tension of liquids. The nonunique
nature of the microscopic pressure tensor became a focus in the
1980s, a time when molecular simulation was emerging as a tech-
nique to study complex systems that are critical in engineering,
biology, and physics. Schofield and Henderson,2 for the first time,
crystalized the ambiguity in the microscopic pressure tensor as an
emergent property of the arbitrary contour shown in Eq. (9). Since
then, many attempts have been made to find reasonable arguments
and additional constraints78,162–167 that limit the choice of the con-
tour. Until now, no consensus has been reached in the field,39,168

and there is no convincing justification for choosing one contour
definition over the other for general cases. The nonuniqueness of
the microscopic pressure tensor reflects the fact that there is no
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unequivocal way to assign a force [mechanical route, Eq. (9)] or
potential energy [thermodynamic route, Eq. (37)] to a point r in
space. In practice, the pressure is not measured at a point but over a
volume or surface, so the functional form of this kernel also matters
together with its location and shape. Any rotation or coordinate
transform of a stress tensor changes the relative magnitude of the
tensor components according to the orientation of the measure-
ment. This has led to the concept of principal components in stress
analysis,169 i.e., a rotation of the tensor, so that shear components are
zero, providing an invariant or unique stress. From a fluid dynamical
perspective, the local pressure tensor is subject to the so-called
“gauge transform” where one can add a constant, or even the curl of
any vector field, to the momentum density without affecting the
system dynamics.2,61 This is because it is the gradient of the stress
tensor that is well defined and not the stress tensor itself.

The other noteworthy controversy over the definition of the
stress tensor was raised by Zhou in 2003,170 where the inclusion of
the kinetic term in the stress definition was questioned. This con-
troversy is in part due to the different definitions of pressure/stress
tensor in the solid mechanics, thermodynamics, and fluid mechan-
ics literature. In the solid mechanics literature, the Cauchy stress
tensor is defined in terms of forces at zero temperature (i.e., no
kinetic part). Often, the temperature dependence is included using
an extra term in the continuum. Zhou’s argument, however, has
been refuted by multiple studies. Admal and Tadmor78 showed
that Zhou’s conclusions result from not considering the difference
between absolute and relative velocities. They also demonstrated
that the kinetic contribution to the stress is significant even for solid
systems at a finite temperature. Subramaniyan and Sun171 showed
the importance of temperature on stress in a thermoelastic study
using molecular dynamics. Hoover et al.172 achieved an excellent
agreement between atomistic mechanics and continuum mechan-
ics provided that both kinetic and configurational contributions to
the stress tensor are considered. It has been shown that the kinetic
contribution to the stress is a direct consequence of the canonical
transformation.8,173 We also note that the kinetic term is essential in
the pressure and stress tensor definitions for thermodynamic con-
sistency in the ideal gas limit (Sec. III). Away from thermodynamic
equilibrium, kinetic pressure is defined in terms of peculiar velocity,
the molecular velocity left after subtracting the streaming velocity
of the flow. This contribution is essential in the pressure, gradients
of which can drive flow in fluid dynamics, as well as in the shear
stress between the molecules, which underpins fluid viscosity. The
importance of kinetic pressure is most apparent when molecular
simulation includes turbulent flow (Sec. IV C), where the kinetic
contribution is shown in Fig. 7(b) to be as large as the configurational
shear stress in turbulent flow and essential as a direct continuation
of Reynolds stress below the scale of the measuring grid.

As molecular simulations find wider use both in fundamental
science and, increasingly, in industrial applications, the necessity of
finding an agreed definition of the microscopic pressure/stress ten-
sor has become more critical than ever. We now consider a few
promising contributions in this direction.

Motivated by the thermodynamic concept of pressure that is
conjugate to a finite volume instead of to a point, Shi et al.35 showed
that by spatially averaging the local (nonunique) pressure tensor
over a small region of space of molecular dimensions, it is possible
to define a coarse-grained (CG) microscopic pressure tensor that is

unique and free from ambiguities in the definition of the local pres-
sure tensor. In the case of fluids confined in a slit-shaped pore with
z-axis perpendicular to the flat surface, such unique CG pressure
tensor in the kth bin (k = 1, 2, 3, . . .) along the z-axis is given by

CG
P k =

1

�rk
+
�rk

P(r)dr = 1

�zk
+
�zk

P(z)dz, (62)

where the local (averaging) volume of the kth bin is �rk = LxLy�zk,
Lx and Ly are the constant lateral dimension of the pore surface in the
x- and y-directions, respectively, and �zk is the characteristic length
(width) of the kth bin that leads to a unique CG pressure tensor.
This CG pressure tensor has the same appearance as the conven-
tional VA definitions110,143,174,175 in Eqs. (51) and (52). However, the
CG pressure is essentially different from the VA pressure in terms of
the choice of the averaging region. For the CG pressure tensor, the
averaging volume is constrained to give a unique CG pressure, while
for the VA pressure tensor, the averaging volume is unrestricted and
thus the resulting VA pressure can still be subject to the arbitrary
choice of the integral contour.

To find the proper averaging region that will lead to a unique
CG pressure, Shi et al.35 carried out the integration of the local
tangential pressure over the z-direction analytically. They found
that the contour path connecting particles i and j, upon integra-
tion, is fully dictated by a function fC(½ij), where ½ij is the linearly
scaled z-distance from particle i to particle j (assuming zi < zj); thus
½ij = 0 amounts to z = zi and ½ij = 1 is z = zj. Taking advantage of
the symmetry of the contour path due to the indistinguishability of
particles, ten contour definitions were designed, equivalent to ten
unique functional forms for fC(½ij), as shown in Fig. 13(a). These
ten contours include IK, H, IK-VR, and H-VR definitions that are
introduced in Fig. 3. Using these ten types of contour definitions,
they found that integrating the nonunique local tangential pressure
over a certain z-distance leads to convergent integral results (within
numerical uncertainty) that are independent of the arbitrary con-
tour definitions [Fig. 13(b)].35 The CG pressure tensor that is defined
between these convergence points [see characteristic length �z1, �z2
marked in Fig. 13(b) for example] appears to be unique. Because
these characteristic lengths are comparable to the thickness of the
adsorbed layer [see density profile in Fig. 13(b)], the CG pressure
tensor has direct physical significance, representing the microscopic
pressure in an adsorbed layer.

The proposed CG scheme may serve as a unified solution
toward a unique microscopic pressure tensor that is free from ambi-
guities in contour definitions, averaging volume and shape, and
measurement locations. Future studies should focus on provid-
ing further simulation evidence and, ideally, rigorous mathematical
proof to support the existence of this unique CG pressure ten-
sor. Systems that are of particular interest for testing include those
having curved interfaces and arbitrary geometries and those with
moving reference frames.

Another possible aid to the problem of nonuniqueness are the
conservative properties of the control volume form of pressure out-
lined in Sec. IV D and demonstrated in Fig. 10. This simply states
that the pressure measured on surfaces that form an enclosed vol-
ume must exactly equal the momentum change inside.148,176 This is
valid arbitrarily far from equilibrium and can be checked for any
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FIG. 13. Simulation evidence for the uniqueness of the CG pressure tensor defined in Eq. (62).35 (a) Graphs showing ten functional forms for f C(½ij) with
½ij = (z − min(zi , zj))/∣zij ∣, corresponding to ten unique contour definitions. (b) Reduced number density profile (upper panel) for LJ argon adsorbed in a structure-

less carbon slit pore and the integral of the (configurational) local tangential pressure PC
xx(z) over z-direction using the ten contour definitions (bottom panel). Only the

adsorbate–adsorbate interactions contribute to the tangential pressure calculations. In this case, the characteristic lengths �zk that can lead to a unique CG pressure tensor
were chosen to be those that are comparable to the thickness of the adsorbed layer, and they are marked in the plot as �z1, �z2, etc. Adapted from Shi et al., J. Chem.
Phys. 154(8), 084502 (2021) with the permission of AIP Publishing.

form of interaction contour, and with deforming or moving vol-
umes,60 ensuring the pressure measurements satisfy Newton’s law.
A different choice of volume or contour will simply redistribute the
contribution to different terms in the tensor (as contributions are
counted on different faces, for example). This exact equality between
pressure and momentum change can help restrict the definition of
the microscopic pressure tensor to the one that ensures that we do
not violate Newton’s law.

B. Complex systems interacting with many-body
and long-range potentials

So far, we have only focused on the pressure tensor for sys-
tems of discrete particles that interact with short-range pairwise
potentials. It is of practical interest to extend these formalisms to
molecular and material systems that are controlled by more real-
istic interaction potentials. For example, in biological systems, the
internal structure of the molecule is mainly dictated by many-body
intramolecular interactions, such as angular, torsion, and improper
potentials. As for intermolecular potentials, in addition to the short-
range dispersion interactions, long-range Coulombic interactions
are commonly present in the system due to the uneven distribution
of charges in the molecule.

In general, the pressure tensor can be expressed in two equiv-
alent forms: an atomic form and a molecular form. The atomic
pressure tensor is defined in such a way that all forces on each atom
should be evaluated explicitly;177–179 these include contributions
from intermolecular interactions and intramolecular interactions
(e.g., bonded and bending forces, and constraint forces imposed
by the SHAKE algorithm180). The molecular pressure tensor takes
the molecule to be a rigid body (i.e., rigid body approximation181),

and only (nonbonded) intermolecular interactions contribute to the
pressure tensor.74,83,177–179 Compared to the atomic pressure tensor,
this molecular formalism neglects the intramolecular interactions
and thus loses the mechanical details of the internal structure of
the molecule. In addition, implementation of the molecular pres-
sure tensor requires defining the center of mass (COM) at which to
localize the momentum of a molecule.179 This definition of COM is
straightforward for small molecules, but it is by no means intuitive
for solid materials or polymer chains as they are usually modeled as
infinitely extended structures under periodic boundary conditions.
Therefore, the atomic pressure tensor is generally considered to be
more useful, and it has been widely applied to study the mechanical
properties of crystalline polymers,179 lipid bilayers,4,6,7 liposomes,182

proteins,8 metals, and alloys.183 In cases where molecules are small
and behave like rigid bodies (such as water, methane, or ethylene),
however, the molecular pressure tensor is more convenient. This
is because the molecular formalism circumvents the evaluation of
rigid constraints74,83,184 and thus potentially avoids the complexity
of the anisotropic kinetic term in the atomic pressure tensor near
interfaces.185 Sega et al.185 showed that, without considering such
an anisotropic kinetic term for rigid molecules, the surface tension,
calculated with only the configurational part of the atomic pressure
tensor, tends to deviate from the true value by about 9%–15% for
water systems.

The technical development for the atomic pressure/stress ten-
sor has been centered on the decomposition of a many-body poten-
tial into pairwise components, so that the typical pairwise formalism
based on Eq. (9) can be implemented. This force decomposition is
not unique,186 and a number of decomposition methods have been
proposed.4,78,175,182,187–190 A noticeable development is the so-called
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central force (CF) decomposition by Admal and Tadmor.78 In a CF
decomposition, the total force on atom i due to a m-body potential

U
[m](rm) is written as a summation of pairwise central forces (i.e.,

forces that are parallel to the vector rij),

Fi = −∇ri U
[m](rm) =∑j(≠i)

Fij
rij

rij
, (63)

where rm ≡ r1, r2, . . . , rm is a collection of particle positions in a
m-body cluster. Figure 14 illustrates the CF decomposition for
a three-body potential. While some popular force decomposition
methods violate the balance of linear175,189,191 or angular4 momen-
tum, the CF decomposition yields a symmetric stress tensor by
construction and satisfies the balance of both linear and angular
momentum.191 In practice, unknown parameters Fij are obtained
by solving a system of linear equations given in Eq. (63). Here, the
number of independent force equations is 3m −6 (as forces satisfy
the conservation of linear and angular momentum), and the num-
ber of unknown pairwise central terms is m(m − 1)/2. For m = 3, 4,
solving this system of linear equations is a well-posed math prob-
lem. For potentials beyond four-body interactions, however, the
number of unknown parameters is larger than the number of inde-
pendent equations, and the CF decomposition becomes nonunique.7

Torres-Sánchez et al.190 developed a covariant central force (cCF)
decomposition based on the Doyle–Ericksen relation of contin-
uum mechanics, rather than on the statement of balance of linear
momentum, as in the classical Irving–Kirkwood–Noll approach.
The cCF decomposition is consistent with the CF approach for
three- and four-body potentials but allows for many-body interac-
tions of arbitrarily high order.190,191 For pairwise potentials, all force
decomposition schemes result in the same pressure or stress tensor.
The nonunique scheme of the force decomposition is related to the
nonuniqueness of the local pressure tensor due to arbitrary contour.
One can argue that, using the thermodynamic route (Sec. III B),
no force decomposition is needed, but the problem now becomes

FIG. 14. Central force (CF) decomposition for a three-body potential. In a CF
decomposition,78 the total force on an atom Fi is decomposed into pairwise cen-
tral terms Fij ; the (unknown) magnitude of Fij can be obtained by solving a system
of linear equations in Eq. (63). In a non-CF decomposition, such as the scheme
proposed by Goetz and Lipowsky,4 the pairwise term is simply (Fj − Fi)/m with
m = 3 for a three-body potential; this pairwise term is noncentral, i.e., pair force is
not parallel to the vector rij .

the ambiguity in assigning many-body potential energy into a local
space.

The other technical challenge for both the atomic and molecu-
lar representations of the pressure tensor involves the consideration
of long-range Coulombic interactions. Unlike the short-range LJ
potential, the Coulombic potential decays very slowly in space, and it
is impossible to use a simple tail correction to account for the miss-
ing long-range part.192 Compared to the direct Coulomb sum, which
scales as O(N2) (where N is number of atoms or particles in the

system), the Ewald summation method193 is the standard method
used in molecular simulations to efficiently handle the Coulombic

interactions, scaling asO(N3/2). Better efficiency can be achieved by
modern, mesh-based Ewald methods,194 which scale asO(N logN).
While the algorithm for computing the bulk (macroscopic) pressure
tensor in the presence of the Coulombic interactions is well estab-
lished in the field,178,195 it is still a challenge to handle the Coulombic
or any long-range interaction in an efficient manner for the local
pressure tensor. Previous studies have focused on finding a suit-
able scheme for assigning the local force that is compatible with the
Ewald summation method. Since the k-space (Fourier space) part
of the Coulombic energy in the Ewald method is the most com-
putationally efficient in a non-pairwise form, the Harasima contour
definition turns out to be a better choice than the IK contour. This
can be understood by the delta function in theHarasima formulation
[Eq. (16)]; the delta function indicates that the configurational part
only contributes to the tangential pressure at planes wheremolecules
are present. This feature allows the per-atom form of the k-space
energy term to be naturally incorporated into the Harasima for-
mulation. Compatibility of the Ewald summation method with the
Harasima contour has been developed for the local tangential pres-
sure across a planar interface6,184,196 and for the local axial pressure
in a cylindrical geometry.74 Nevertheless, it is still possible to use the
IK contour with the Ewald method. Hatch and Debenedetti8 suc-
cessfully captured the full Coulombic energy using the IK contour
definition by writing the Ewald sum in an explicit pairwise form.
However, as expected, a pairwise form of the Ewald sum is compu-
tationally expensive. A computationally amenable alternative using
the IK contour is to consider the Coulombic potential up to a certain
cutoff radius,7,182 but such a treatment cannot guarantee a consis-
tent pressure profile because the Coulombic potential was treated
differently (with Ewald-based method) in the molecular simulations
and (with simple cutoff) in the pressure calculation. It is possible
to replace the bare Coulombic potential with a damped, shifted-
potential197 or a shifted-force198 one, which is generally called the
Wolf potential. TheWolf potential can reproduce the energetics and
dynamics of various systems to an acceptable accuracy compared to
the (exact) Ewald method. However, the error that might be intro-
duced to the pressure tensor by this (approximate) Wolf potential is
still unclear. We note that the preference of the Harasima contour
in the treatment of the Coulombic interactions does not imply that
the Harasima contour is more correct than the IK contour, but the
Harasima/Ewaldmethod clearly has advantages in its computational
efficiency.

Future breakthrough in this regard would rely on a better
understanding of the physical nature of the microscopic pressure
tensor in the presence of multi-body and Coulombic interactions.
The possibility to define a unique CG pressure tensor (Sec. V A)
will benefit the calculation of Coulombic contributions to the
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pressure tensor as we are free to choose the most convenient contour
(e.g., Harasima contour) without worrying about the physical and
numerical arbitrariness of the final results. Due to the convenience
in calculating the short-range interaction, it is also worthwhile to
systematically evaluate the uncertainty that a spherically truncated
or damped Coulombic potential will introduce to the pressure in
general, in comparison to the exact treatment using direct Coulomb
sum (without potential cutoff) or more efficient Ewald-based
methods.

C. Software and computational tools

Currently, the Large-scale Atomic/MolecularMassively Parallel
Simulator (LAMMPS) molecular dynamics software provides native
functionalities for calculating the local and global stress/pressure
tensor on the fly, and these compute commands are summarized in
Table I. In contrast, the Nanoscale Molecular Dynamics (NAMD)
software only provides a basic function to compute the pressure
tensor profile along the z-axis for systems having a planar geom-
etry.199 This specific implementation adopts the Harasima contour
definition, which allows an efficient computation of the Coulom-
bic contribution to the local pressure tensor based on the Ewald
method (see Sec. V B for details).6 The limited pressure or stress
tensor functionality in major molecular simulation software has
motivated the development of dedicated analysis tools. Nakamura
et al.72,200 prepared a patch file for the LAMMPS software that
enables the calculation of the local pressure tensor in Cartesian
and spherical coordinates. Vanegas et al.190,201 developed a com-
putational tool “GROMACS-LS” for the GROMACS software to
calculate the local stress in molecular systems. Admal et al.78,202

developed a post-analysis program “MDStressLab” that takes the
input data (particle coordinates, velocities, species, etc.) in a general
format, so it is compatible with different simulation software pro-
vided that the scripts for converting software-specific file format
are available. All of these dedicated analysis tools are capable of
calculating the 3D pressure or stress tensor field (as a volume
average value, Hardy definition) in systems having arbitrary geome-
tries. They differ in the availability of pressure/stress tensor defini-
tions, force decomposition schemes for many-body potentials, and
supported interaction potentials. Interested readers are referred to
the program’s user guide for details. Other pressure tensor codes that
were designed for specific coordinate systems and intermolecular
potentials are also available.203–205

At the moment, all available computational tools are more
or less limited in their definitions of the local pressure tensor, in
applicability to certain system geometries, and in the availability of
intermolecular potentials. Therefore, there is a strong motivation
to develop a general-purpose software in the future with a well-
documented user guide. As users may have personal preference for
molecular simulation packages, it is imperative to develop compat-
ibility of this pressure analysis software with different simulation
packages. This could be realized through support for a range of input
formats (or at least, scripts for converting file formats) or a gener-
alized cross-language functional interface that can be called from
any of the codes during the force calculation to tally the pressure.
Calculating the local pressure tensor is computationally expensive,
therefore parallelization of the computation using high-performance
central/graphics processing unit (CPU/GPU) would be essential in
the future.

TABLE I. Pressure or stress tensor functionalities available in the LAMMPS software. Note that the stress tensor is defined as the negative of the pressure tensor. More detailed
explanations and restrictions of these commands are available in the LAMMPS manual (https://docs.lammps.org/Manual.html, accessed on May 16, 2022, LAMMPS version 4
May 2022).

LAMMPS command Explanation

Compute stress/atom Computation of per-atom stress tensor. A virial contribution produced by a m-body potential is equally
assigned to each atom in the set, e.g., 1/4 of the dihedral virial to each of the four atoms. We note that this
function is commonly used for visualization purpose; caution should be exercised when interpreting this per-
atom value in a local fashion, which has some similarities to the IK1 approximation [Eq. (7)]. This command
works for long-range178 and many-body interactions.206

Compute pressure Computation of a scalar pressure and a global pressure tensor of the entire system206

Compute pressure/uef Computation of the pressure tensor in the reference frame of the applied flow field
Compute stress/mopa Computation of local stress tensor using the method of planes [Eq. (54)]; specifically, it computes three

components in directions ³x, ³y, and ³z, where ³ is the direction normal to the plane.61 The profile of the
stress can be computed with “compute stress/mop/profile” command.

Compute stress/Cartesiana,b Computation of coarse-grained profiles of the diagonal components of the local stress tensor in Cartesian
coordinates; the output stress tensor is averaged over a small local volume [Eq. (52) with a slab-like local
volume].174

Compute stress/sphericala,b Computation of profiles of the diagonal components of the local stress tensor in spherical coordinates
[Eq. (52) with a spherical-shell local volume]174

Compute stress/cylindera,b Computation of profiles of the diagonal components of the local pressure tensor in cylindrical coordinates
[Eqs. (28), (30), and (32)];21 this command does not consider periodic boundary conditions, so the system
should be large enough to ensure the boundary effect is negligible

aThe command works only for short-range pair interactions; i.e., if any bond, angle, dihedral, etc., contributions and k-space contributions (in Ewald summation method) for the

long-range Coulombic interactions are present in the system, the results will be incorrect.
bThe calculation is based on the IK contour definition.
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The development of a standard computational package for the
microscopic pressure tensor will also standardize the measurement
of pressure and enable the generation of a database of high-fidelity
pressure/stress data for systems of both engineering and scientific
interest. The availability of a large amount of data organized in a
curated database will help advance the process optimization and
materials design using machine learning and data science.

D. Experimental measurements of microscopic
pressure tensor

At the moment, it is still a challenge to directly measure or esti-
mate the pressure or stress tensor at the nanoscale from experiments,
and nearly all microscopic pressure or stress tensor results reported
in the literature so far are theoretical values. The difficulties come
from the limitation in experimental techniques to approach the
molecular level stress and from the nonuniqueness in the definition
of the microscopic pressure tensor. Advances in either side will
significantly benefit the other.

Gubbins et al. have demonstrated that the pressure tensor in a
molecular scale system could be estimated from experimental input
in simple equilibrium systems, such as for fluids adsorbed in a car-
bon slit-shaped pore. The normal pressure component, PN , in such
a system is a constant, and Śliwińska-Bartkowiak et al.207,208 demon-
strated that it is possible to estimate this pressure by measuring the
resulting changes in the interplanar distance of the activated carbon
fibers, using X-ray diffraction. The in-pore normal pressure can then
be estimated using Young’s equation, provided that the transverse
compressive modulus is known. Figure 15 shows that an agreement
has been achieved between the simulated normal pressure and the
experimental estimations, within the (rather large) uncertainties of
the latter, for CCl4 and H2O adsorbed in carbon slit pores.

For the tangential pressure, PT , the experimental estimation is
more challenging because the local tangential pressure is nonunique,
and the force does not act directly on the adsorbent material but
in a direction parallel to the wall. Thus, a noninvasive method is
needed.Molecular simulation and experimental results show that for
adsorbates that wet the pore walls, the adsorbed layers of molecules
very near to the wall are quasi-two-dimensional; this being particu-
larly pronounced for the contact layers next to the pore walls. This
observation enabled the development of a “2D route” to the effec-
tive tangential pressure inside a single adsorbed layer.209,210 In this
2D route, the behavior of a single adsorbed layer near the surface
is related to that of a strictly 2D reference film by projecting the

center of mass positions of the molecules in the layer onto the sur-
face plane. The 2D pressure P2D (in units of force per unit length) in
the reference film is then mapped back to the 3D pressure (in units
of force per unit area) by being divided by an effective length scale
leff in the direction normal to the surface. The effective tangential
pressure estimated by the 2D route is210

2D
PT ≡

P2D(T, Ä2D)
leff

, (64)

where T is temperature and Ä2D is the 2D density of the adsorbed
film. The 2D pressure P2D is a function of T and Ä2D, and the rela-
tion can be established by a 2D equation of state.209 Although P2D is

well defined,
2D
PT is not unique due to the arbitrary choice of leff . To

decide on a sensible choice of leff , it is instructive to rewrite Eqs. (64)

as a spatial (volume) average,210 i.e.,
2D
PT ≈ ∫leff PT(z)dz/leff . Based

on the results in Fig. 13, it is motivating to choose leff to be the
characteristic length �zk that is comparable to the thickness of an
adsorbed layer, so that the spatial average appears to be unique and
has a clear physical meaning. In this 2D route, experimental input
parameters are T, Ä2D, and leff . The 2D density Ä2D can be estimated
frommolecular simulations or adsorption theories or obtained from
particular experiments such as small-angle neutron diffraction. The
effective thickness of the layer leff can be estimated from molecu-
lar simulations and theories or from optical sensing experiments.211

Limitations of the 2D route include the following: (1) It neglects the
interactions between the layer of interest and its neighboring lay-
ers; (2) It may fail when the adsorbed layer deviates from a quasi-2D
structure, for example, in weakly wetting systems or for materials
with a rough surface.

Advanced experimental techniques have been developed to
estimate the scalar pressure at very small scales. These techniques
could serve as a foundation for future routes to approach the
microscopic pressure in its correct tensor form:

● Direct methods: The pressure can be directly estimated
by measuring the mechanical response of the system to a
physical probe, such as an atomic force microscopy (AFM)
tip.212–214 This method has been commonly adopted to esti-
mate the scalar pressure inside a nanobubble.212,214 For
example, the interaction force between the nanobubble and

FIG. 15. Molecular simulation and exper-
imental results for the normal pressure
of (a) CCl4 and (b) H2O adsorbed in slit
carbon pores of different pore width H,
at 300 K and 1 bar bulk pressure. The
experimental data were estimated using
Young’s equation based on the change
of interplanar distance of the activated
carbon fibers. Adapted with permission
from Long et al., Colloids Surf., A 437,
33–41 (2013). Copyright 2013 Elsevier.
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the AFM tip can be dynamically captured based on the AFM
cantilever’s instantaneous deflection. The internal pressure
of the nanobubble can be obtained by fitting the recorded
force–displacement curve to a theory that separates the
internal pressure of the confined fluids from the elastic
deformation of the solid materials.212 Another possible way
is to relate the pressure to the elastic properties of the system,
such as the elastic modulus, KT = ´

−1
T , where the isothermal

compressibility ´T is defined as

´T = −
1

V
(∂V
∂P
)
T

. (65)

´T of the confined fluids can be measured by ultra-

sonic experiments.215,216 However, the measured elastic
property is commonly interpreted as a macroscopic (scalar)
quantity averaged over all directions and the system volume,
instead of as a tensor.

● Indirect methods: The scalar microscopic pressure can be
sensed by molecular probes that are (mechanically, opti-
cally, thermally, etc.) susceptible to the pressure change of
the environment. Vasu et al.28 studied the effect of confine-
ment between two graphene layers on molecules that are
susceptible to deformation under pressure. By comparing
Raman spectra for the confined molecules with those for
the same molecules in the bulk phase, they estimated the

FIG. 16. A schematic knowledge flowchart relating different configurational pressure forms discussed in this Perspective. See Fig. 17 for a similar flowchart for the kinetic
pressure. Any form without angular brackets can be applied away from equilibrium.
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FIG. 17. A schematic knowledge
flowchart relating different kinetic pres-
sure forms discussed in this Perspective.
See Fig. 16 for a similar flowchart for the
configurational pressure.

“van der Waals” (scalar) pressure in the confined phase to
be 1–1.5 GPa. Another relevant example is using molec-
ular rotors as sensors to measure the local viscosity of a
fluid under extreme confinement conditions.217 The probe
molecular rotor changes its fluorescent properties due to the
pressure and shear of the surrounding fluids. This informa-
tion could allow an estimate of the pressure tensor in a fluid
away from equilibrium at very small scales.

An immediate challenge is the lack of rigorous relations that
connect the experimental measurements to the microscopic pres-
sure tensor in statistical mechanics. Future studies should focus on
establishing these fundamental relations to bridge the gap between
experiments and theories.

VI. CONCLUDING REMARKS

In this Perspective, we have reviewed several routes to calculate
the microscopic pressure tensor (equivalent to the negative stress
tensor) in both equilibrium and nonequilibrium systems. These for-
mulas can be generally divided into two types, depending onwhether
they were derived via mechanical or thermodynamic routes. The
mechanical (or “virial”) route follows themechanical concept of “the
force acting across a surface,” and it can be used in both equilibrium
and nonequilibrium systems. By contrast, the thermodynamic route
uses the thermodynamic definition of pressure, which is the negative
of the change in the Helmholtz free energy with respect to volume.
The thermodynamic route can only be used in equilibrium fluid sys-
tems where no shearing is present, but it is arguably preferable to the

mechanical route for systems interacting with complex (multi-body)
potentials.

We have categorized available pressure equations into dif-
ferent forms, based on where and how the microscopic pressure
tensor is measured. These include macroscopic (bulk), pointwise,
volume, and surface forms. We then attempt to show the underlying
connection between the different forms, highlighting the inherent
assumptions with the limitations of each of these choices. The equa-
tions and connections between different forms are summarized in
Fig. 16 for the configurational part of the pressure tensor and in
Fig. 17 for the corresponding kinetic part.

We have also pointed out four aspects that currently face
challenges and need further investigations. In brief, they are as
follows:

● Historical controversies over the definition of the micro-
scopic pressure tensor: Controversies are centered on the
nonuniqueness of the microscopic pressure tensor at a point
in space, resulting from the fact that the forces between
molecules do not act at a unique point in space; this difficulty
manifests itself in the equations as the arbitrary contour
involved in the calculations. However, coarse-graining over
a relatively small spatial region of space may result in a well-
defined pressure tensor, as has been shown recently for a
simple system.35 Abreakthrough in this regardmay open the
door to a thermodynamically and mechanically consistent
picture of nanoscale systems.

● Difficulties with many-body and long-range potentials:
This technical difficulty is outstanding for complex systems,
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such as those in biology. It is suggested that future research
focus on better understanding the physical nature of the
pressure tensor in the presence of many-body interactions
and on the development of convenient, accurate, and effi-
cient algorithms to account for long-range interactions in
the pressure tensor.

● Inadequate software and computational tools for the cal-
culation of the local pressure/stress tensor: To our knowl-
edge, no general-purpose software is available. Such software
and computational tools are essential to avoid confusion and
to overcome the knowledge barriers for nonexpert users and
are needed to accelerate the process optimization and mate-
rials design using machine learning and data science. The
ease of calculating the virial pressure results in its use when
running exiting software packages, often in cases where it is
invalid (e.g., confined flows).

● Lack of experimental methods to measure the pressure
tensor at the nanoscale: Advances in this regard require a
combined effort from both the experimental and theoreti-
cal/computational communities. A breakthrough inmeasur-
ing the microscopic pressure tensor will enable the deter-
mination of a wide range of thermodynamic and transport
properties at the nanoscale in the correct tensor form.

The microscopic pressure tensor is a pivotal property for a
wide range of disciplines and technologies, including fluid dynam-
ics, solid mechanics, biophysics, thermodynamics, nucleation and
crystallization, chemical manufacturing, and chemical separations.
We invite both experimentalists and theorists to contribute to this
field to enable a thorough and consistent understanding of tensorial
features of inhomogeneous systems.
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APPENDIX: ADDITIONAL DERIVATIONS

1. Linking the IK contour pressure to the MoP form

In this appendix, we derive the mathematical relationship
between the configurational part of the IK contour pressure
[Eqs. (13) and (15)] and the MoP pressure [Eq. (54)]. This is signifi-
cant as the MoP pressure is derived in Fourier space and valid away
from equilibrium, while the IK contour pressure is obtained by inte-
grating (averaging) over the x- and y-directions and generally used
only in an equilibrium system. Considering only the configurational
part of Eq. (13) and splitting Eq. (15) into two the different tangents,
with averaging notation ⟨⋅ ⋅ ⋅ð omitted for simplicity, we have

IK
P

C
N(z) = 1

2Sz

N

∑
i,j

zij
2

rij

1∣zij∣FijH( z − zizij
)H( zj − z

zij
), (A1)

IK
P

C
Tx(z) = 1

2Sz

N

∑
i,j

xij
2

rij

1∣zij∣FijH( z − zizij
)H( zj − z

zij
), (A2)

IK
P

C
Ty(z) = 1

2Sz

N

∑
i,j

yij
2

rij

1∣zij∣FijH( z − zizij
)H( zj − z

zij
). (A3)

For comparison, we rewrite the MoP pressure in Eq. (54) for three
components on the z-surface (the surface that is normal to the
z-direction); the configurational term gives

MoP
P

C
z (z) = 1

4Sz

⎡⎢⎢⎢⎢⎣
N

∑
i,j

Fij[sgn(z − zi) − sgn(z − zj)]⎤⎥⎥⎥⎥⎦. (A4)

Noting that the scalar force in Eqs. (A1)–(A3) can be related to
its vector form by Fij = Fijrij/rij and the projection of the pair
force in the ³-direction (³ = x, y, z) is Fij³ = Fij³ij/rij, we write
Eqs. (A1)–(A3) in a unified vector form as

IK
P

C
z (z) = 1

2Sz

N

∑
i,j

Fij ○ rij
1∣zij∣H( z − zizij

)H( zj − z
zij
), (A5)

where Fij ○ rij denotes the element-wise product of force vector
Fij and distance vector rij. The Heaviside function expressed as a
product gives identical behavior to the difference of two Heaviside
functions,

H( z − zi
zij
)H( zj − z

zij
) = H( z − zi

zij
) −H( z − zj

zij
). (A6)
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Using the property H(ax) = 1/2(sgn(a) sgn(x) + 1) to transform
Eq. (A6) to signum functions, we get

H( z − zi
zij
) −H( z − zj

zij
) = 1

2
[sgn( 1

zij
) sgn(z − zi) + 1]

−
1

2
[sgn( 1

zij
) sgn(z − zj) + 1]

=
1

2
sgn( 1

zij
)[sgn(z − zi) − sgn(z − zj)].

(A7)

Using the definition of the signum function sgn(zij) = zij/∣zij∣, the
product is sgn(1/zij) sgn(zij) = 1, so Eq. (A1) can be rewritten as

IK
P

C
N =

IK
P

C
zz =

1

2Sz

N

∑
i,j

zij∣zij∣Fijz 12 sgn( 1

zij
)[sgn(z − zi) − sgn(z − zj)]

=
1

4Sz

N

∑
i,j

Fijz[sgn(z − zi) − sgn(z − zj)] = MoP
P

C
zz. (A8)

Here, we obtain the equivalence between the normal MoP pressure
on a z-surface and the corresponding zz-component in the IK con-
tour pressure tensor (and note zz-component is independent of the
contour definition).

The tangential components, however, highlight a fundamental
difference between the IK contour pressure and the MoP pres-
sure. For example, considering the yy-component of Eq. (A3) and
rewriting it in the same way as Eq. (A8), it is trivial to show

IK
P

C
Ty =

IK
P

C
yy =

1

4Sz

N

∑
i,j

yij

zij
Fijy[sgn(z − zi) − sgn(z − zj)], (A9)

where we have an extra factor of yij/zij when compared to the normal

MoP pressure on a y-surface [similar to Eq. (56)]. The IK contour
pressure therefore uses extra molecular information by taking the yij
distance to calculate the direct y-pressure on a z-plane. This is, how-
ever, a departure from the Cauchy definition of pressure as shown
in Fig. 4(a), which requires the three different normal pressures to
be defined on orthogonal planes. Other form of the pressure, for
example, the VA pressure, uses this same quantity Fijyyij to get Pyy,

but in the VA form, this is weighted by the fraction of interaction
lij inside the volume. In contrast, the IK contour form accumulates
interactions crossing a z-plane and weights these by the length of
interaction in the surface normal direction zij as shown in Fig. 18.
We also note that averaging the IK contour pressure over a volume
should lead to the corresponding VA pressure form.

2. The Noll form of pressure

The Noll reformulation replaces the Dirac delta function

⟨¶(r − ri)⟩→ ⟨ f ∣ri = r⟩. This notation denotes an integral of prob-
ability density function f over all phase space except ri, which is then
replaced by r. Conditions are then placed on f , including a simi-
lar condition to the phase space bounded assumption of Irving and

FIG. 18. Schematic showing Pyy and Pzz on a single z-normal plane from the IK
contour method, while the MoP pressure defines a y-normal plane in order to get
Pyy .

Kirkwood. Equation (4) can be reformulated using Noll’s lemma to
replace the IK operator as

NOLL
P

C(r, t) = −1
2

N

∑
i,j
+
z
z+

1

0
ïFij f ∣ri = r+½z, rj = r− (1 − ½)z⟩d½dz.

(A10)

This states that the stress tensor at point r is a superposition of expec-
tation forces from all possible bonds that might pass point r, while
the integral over ½ “slides” from ri to rj along a vector z between the
molecules (see Ref. 78 for a sketch). This form is potentially more
general than the pair potential that is assumed by Eq. (8) where z = ℓ
can be a general contour.78 For the case of pairwise interactions,
z = rij = rj − ri, we can rearrange both equalities in the brackets to
show they are the same condition rj − (1 − ½)rij = ri + ½rij,

NOLL
P

C(r, t) = 1

2

N

∑
i,j
+
rij

rij+
1

0
ïFij f ∣ri + ½rij = r⟩d½drij, (A11)

which is similar to the form of line integral used throughout this
work. Note in general that we depart from the approach of Noll as
the equations we consider are derived without the use of an ensemble
average41,110,112 as discussed in Sec. IV.
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