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Abstract

Observations and theory suggest that core-collapse supernovae can span a range of explosion energies, and when
sub-energetic the shockwave initiating the explosion can decelerate to speeds comparable to the escape speed of
the progenitor. In these cases, gravity will complicate the explosion hydrodynamics and conceivably cause the
shock to stall at large radii within the progenitor star. To understand these unique properties of weak explosions,
we develop a perturbative approach for modeling the propagation of an initially strong shock into a time-steady,
infalling medium in the gravitational field of a compact object. This method writes the shock position and the post-
shock velocity, density, and pressure as series solutions in the (time-dependent) ratio of the freefall speed to the
shock speed, and predicts that the shock stalls within the progenitor if the explosion energy is below a critical
value. We show that our model agrees very well with hydrodynamic simulations, and accurately predicts (for
example) the time-dependent shock position and velocity and the radius at which the shock stalls. Our results have
implications for black hole formation and the newly detected class of fast X-ray transients (FXTs). In particular, we
propose that a “phantom shock breakout”—where the outer edge of the star falls through a stalled shock—can
yield a burst of X-rays without a subsequent optical/UV signature, similar to FXTs. This model predicts the rise

time of the X-ray burst, 4, and the mean photon energy, k7, are anticorrelated, approximately as T' o< #;

5/8

Unified Astronomy Thesaurus concepts: Analytical mathematics (38); Core-collapse supernovae (304);
Hydrodynamics (1963); Shocks (2086); X-ray transient sources (1852)

1. Introduction

Most massive stars end their lives in spectacular fashion in
what are known as core-collapse supernovae (CCSNe), which
are initiated when the star runs out of nuclear fuel in its core,
causing the core to collapse under its own self-gravity. During
the core collapse, electron capture causes the core to become
increasingly destabilized due to the diminishing support from
electron degeneracy pressure and at the same time produces an
abundance of neutrons. The byproduct of this neutron-rich and
electron-deficient environment is a proto-neutron star (PNS).
As the density of the PNS increases, the equation of state
stiffens due to the repulsive strong nuclear force and neutron
degeneracy pressure. This causes the PNS to “bounce,”
creating an outward-propagating shockwave. If the shockwave
is energetic enough, it will propagate through and unbind the
overlying stellar envelope in a CCSN (Arnett 1966). However,
while the fiducial energy of the ejected mass in a CCSN is on
the order of ~10°'erg, there is both observational and
theoretical evidence that not all CCSNe are highly energetic
or even successful (e.g., Horiuchi et al. 2011; Smartt 2015;
Adams et al. 2017a; Kuroda et al. 2022). Multiple CCSNe are
observed on a nightly basis by time-domain surveys such as the
Zwicky Transient Facility (Bellm & Kulkarni 2017), the All-
Sky Automated Search for Supernovae (Shappee et al. 2014),
and—imminently—the Rubin Observatory /LSST (Ivezic et al.
2019). It is therefore important to understand the physical
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conditions that lead to failed, nearly failed, and successful
CCSNe.

During the initial propagation of the shockwave that follows
the PNS bounce, it encounters an infalling ambient medium
and loses energy through the dissociation of heavy nuclei, and
eventually stalls at a radius R ~ 100-200 km (Bethe 1990 and
references therein). However, the formation of the PNS is
accompanied by the release of ~10°7erg of gravitational
binding energy in the form of neutrinos. During this radiation
of mass-energy, neutrino annihilations deposit energy in the
post-shock region, which heats the region behind the shock and
may drive a successful explosion (Colgate & White 1966;
Bethe & Wilson 1985). Without such a revival mechanism, the
shock will remain stalled and material will continue to accrete
onto the neutron star until a black hole is formed.

The transition between the stalled accretion shock phase and
explosion in these neutrino-powered supernovae occurs when
the neutrino luminosity of the PNS exceeds a critical value.
This critical neutrino luminosity, L., was initially calculated
by Burrows & Goshy (1993), who showed that for a fixed mass
accretion rate there exists a PNS neutrino luminosity such that
no steady-state solution exists in the region between the PNS
and the stalled accretion shock. They then argued that any PNS
neutrino luminosity above this critical value will result in the
revival of the stalled shock and lead to a successful supernova.
Using this critical luminosity along with the results obtained by
Duncan et al. (1986)—who studied neutrino driven winds of
neutron stars—Burrows & Goshy (1993) also found an
estimate for supernova energies. Their results showed that the
total mechanical energy imparted into the supernova after the
blast, E,, is oL,>>, which implies that a wide range of
supernova energies can exist due to the steep power law in L,,.
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The physics behind the existence of L%, has since been
studied to better understand both failed and successful CCSNe.
For example, Pejcha & Thompson (2012) showed that an
“antesonic” condition exists, such that L% . corresponds to a
constant ratio of the sound speed to the escape velocity in the
accretion flow. Gogilashvili & Murphy (2022) derived a “force
explosion condition” for a successful explosion and from
which they obtained the critical neutrino luminosity and
antesonic conditions, thus uniting the two conditions. In a
follow-up paper, they also showed that their condition is
consistent with one-dimensional (1D), spherically symmetric
simulations (Gogilashvili et al. 2023). Three-dimensional
simulations of CCSNe have recently been performed (see
Miiller et al. 2017; O’Connor & Couch 2018; Summa et al.
2018; Burrows et al. 2019; Vartanyan et al. 2019), which
demonstrate that the incorporation of neutrino heating can lead
to a successful explosion in some cases.

While the revival mechanism for successful explosions is
still uncertain, the eventual escape of the shockwave from the
star—should it be revived by neutrino heating or other effects
—is constrained by the energy behind the blast (following the
deposition of energy and momentum by neutrinos) and the
properties of the overlying stellar envelope. This aspect of the
“explodability” of the star can be understood through an
analysis of the propagation of the shockwave and the post-
shock gas, and self-similarity—which reduces the Euler (or
Navier—Stokes) equations to a set of ordinary differential
equations that can be solved straightforwardly and numerically
(or, in special cases, analytically)—is among the most useful
methods in this regard. Perhaps the most well-known self-
similar solution to the Euler equations is the Sedov-Taylor
blastwave (Sedov 1946; Taylor 1950), which can be used to
describe the propagation of the shock as well as the post-shock
fluid variables when the supernova energy is large compared to
the binding energy of the star. However, this inequality is not
always satisfied, and there are scenarios in which the energy of
the blast is comparable to the binding energy of the star. In
such cases, the gravitational field and infalling material will be
relevant in determining the dynamics of the shock, making the
Sedov-Taylor blastwave inapplicable. However, it was
recently shown (Coughlin et al. 2018, 2019; Ro et al. 2019;
Coughlin 2023) that there is a distinct class of self-similar,
weak-shock solutions to the fluid equations, in which the Mach
number is only marginally greater than 1. These solutions also
result in fallback accretion onto the compact object, and are
relevant to completely failed supernovae where the shock is
always sub-energetic (and, in this case, the shock is generated
through the mass lost to neutrinos and the hydrodynamical
response of the overlying envelope; Nadezhin 1980).

Here we focus on the bridge between these two regimes.
That is, we study the transition of a shock with an initial
velocity much greater than the freefall speed into one with a
velocity comparable to the freefall speed due to the presence of
a gravitational field, ultimately to understand low-energy
supernova explosions.* In Section 2, we provide an analytical
estimate for the minimum energy of a successful supernova by
assuming that the explosion is initially strong, such that the

4 Yalinewich (2021) considered a similar setting, but for a medium with an
initial density profile p o r~2, for which the Sedov—Taylor shock velocity also
scales as the freefall speed. As such, their solutions are still self-similar,
whereas our work investigates the more general scenario in which self-
similarity is violated owing to the difference in scaling between the strong-
shock velocity (with radius) and the freefall speed.
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Sedov-Taylor scaling for the shock velocity is initially upheld,
and equating this velocity to the infall speed. We show that
when the density profile of the ambient medium scales as
ocr /2, this estimate also results from equating the explosion
energy to the binding energy of the overlying envelope, but for
other power-law density profiles these two methods yield
distinct energy estimates. In Section 3, we analytically solve
the fluid equations, which account for the gravitational field of
a point mass, through a series expansion of the shock position
and fluid variables in the initially small (and time-dependent)
ratio of the freefall speed to the shock speed. Therefore, for a
shock that is initially strong, these perturbations account for
small corrections to the unperturbed, Sedov-Taylor solution
but will become increasingly important as the shock decelerates
and its speed becomes comparable to the freefall speed. This
solution predicts that the shock will stall after propagating a
finite distance, which we use to derive a minimum-energy
condition for a successful explosion. In Section 4, we compare
our analytical model with 1D hydrodynamical simulations,
performed with FLASH (Fryxell et al. 2000). We show that our
method is able to very accurately predict the time-dependent
propagation of the shock and the radius at which the shock
stalls, as well as the post-shock fluid velocity, density, and
pressure profiles.

In Section 5, we discuss the astrophysical and observational
implications of our findings as well as caveats of our work. In
particular, we discuss black hole formation, as well as the
possible generation of a wunique astrophysical transient
generated by the passing of the outer envelope of a star
passing through a stalled shock. We show that the observa-
tional signatures of such an event, which we term a “phantom
shock breakout,” are consistent with the newly observed class
of fast X-ray transients (FXTs), which are short flashes of soft
X-rays of as-yet-unknown origin. We summarize and conclude
in Section 6.

2. Analytic Estimates

After the shock stalls and is revived, it reaches a radius
where it is no longer accelerating due to the energy provided by
neutrinos and enters an energy-conserving regime. We
characterize this radius by an ambient density p; and length
scale R;. We initially assume that the medium into which the
shock is propagating has a density profile p #—>/? and that the
gas is in time-steady and pressureless freefall. It therefore
follows that the total mass swept up by the shockwave is

R
M =~ pR3 =~ pin(—) ) (1)

R;
If the energy E~ MV is conserved, then the shock speed
varies as a function of shock position as

~3/4 ~3/4
vo CE(RYY (R o
PR \ R; R;

where Vi = JE / (pin). The infalling material, on the other

hand, has a speed v = \/2GM,;/R, where M, is the mass of
the neutron star. The shock velocity therefore falls off at a
faster rate than that of the infalling material, and there will be a
point when the velocity of the infalling material is greater than
the velocity of the shock. At this distance the shock will stall
under the ram pressure of the overlying gas, and equating the
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shock speed to the freefall speed shows that this radius, which
we denote R, is

[ R 4 6M
"\ R R,

4
= R,=R; % = R161_4- 3)
\/ 2GM15/Ri
Here we defined
6 = l 2G_M @)
Vil R

as the ratio of the freefall speed to the shock speed, which, if
the shock is initially strong and in the Sedov—Taylor regime,
should be much less than 1. Equation (3) shows that the stall
radius is a very sensitive function of this ratio, which arises
from the fact that the Sedov-Taylor velocity falls off only
slightly faster than the freefall speed. Therefore, small changes
in the initial velocity of the shock correspond to large changes
in the location at which it stalls, e.g., a change in ¢; by a factor
of 2 results in a change in the stall radius by over an order of
magnitude.

We can also use our definition of V; in terms of the energy to
write the stall radius in terms of the initial explosion energy;
doing so gives

E (R)3/4 2GM
iR\ R;

2
LR (_EY
R GMas piR;?

A successful explosion will occur if Ry > R,, where R, is the
radius of the star. Setting R, = R, then yields a lower limit on
the energy that will yield a successful explosion:

1/2
R
E> GMnspiRiz(F*) , (6)

i

where, using fiducial values associated with supergiant progenitors
(see Figure 10) of M= 1.5M, p,=10">gcm >, R;=10"cm,
and R, = 10'* cm, we obtain an estimate for E that is of the order
10 erg.

The preceding analysis let the ambient medium be in time-
steady freefall, which is only a self-consistent assumption if the
ambient gas satisfies p(r) ocr > /2. This may be a good
approximation over certain ranges in radii of a massive star
where the gas is convective, ideal, and monatomic gas-pressure
dominated, and the enclosed mass is not strongly growing with
radius, as in this case p ps/ * and—from the equation of
hydrostatic balance—p < 2 In general, however, the
density profile of the progenitor of a CCSN will be more
complicated, not least because of the succession of nuclear
burning shells throughout the interior (see Figure 10 below for
examples). The ambient density at the location of the shock
will also be time dependent, not just because of the variable
ambient density throughout the star but also because a
rarefaction wave is traveling through the overlying envelope,
causing the shells to collapse to the center (i.e., the entire star is
not instantaneously in freefall at all radii). If, however, the
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Figure 1. The effective power-law index of the ambient gas during freefall at
small radii, i.e., if the stellar envelope at large radii has a density profile ocr ",
then poc r ™ with m = (10n — 6)/(2n + 3) at the location of the shock.

ambient medium is at least well approximated by a power-law
density profile of the form p oc ¥~ ", which is generally valid for
the outer envelopes of red supergiants owing to their
convective envelopes and shallow mass profile (see, e.g.,
Figures 7 and 12 of Coughlin et al. 2018), then there is a self-
similar solution for the propagation of the rarefaction wave
traveling into the envelope and the ~freefalling material behind
the shock (Coughlin et al. 2019). In this case, the density
profile at small radii within the star is

p X t1—2n/3r—3/2. (7)

If the shock is strong, then the energy is conserved, and we
have’

E ~ pR3v2 = R ~ t%(1+2”/3). (8)

Inverting Equation (8) and solving for #(R), we see that the
density at the location of the shock satisfies

10n—

p(R) x R™5i% = R™, )

which is just a power-law profile with an effective power-law
index of m=(10n—6)/(2n+ 3). Figure 1 shows m as a
function of n by the blue curve, and n (for reference) by the
black dashed line. We see that the two are equal for n=3/2
and n = 2, but m is slightly larger than n for 3/2 <n <2, and m
is smaller than n for n < 3/2. This difference implies that the
density profile is effectively shallower than the ambient density
ifn<3/2.

If the shock is initially strong, then as the shock propagates
outward into the infalling gas we have

PRV =E = =V 3
piR \ R

S Ttis interesting to note that Equation (8) is nearly identical to the Sedov—
Taylor scaling—being R o #/®~"—for 3/2 < n <2 (note that the two are
equal for n =3/2 and n = 2; the maximum difference between the two and
within these limits is ~0.0037 at n >~ 1.76). However, as n exceeds 2, the
Sedov-Taylor scaling is significantly steeper. As such, the shock would not
reach the accelerating regime, in which the temporal power-law index is greater
than 1, until n > 3.75. This power-law index can be contrasted with the value
of n above which the Sedov-Taylor blastwave accelerates, being n =3,
showing that the ambient medium must fall off exceptionally steeply with
radius for the shock to enter the accelerating regime.
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and equating this to the freefall speed, setting the radius at
which this occurs as the stellar radius, and solving for the
energy gives

3+2n
E> GMpin(&) . (1)
R;

Equation (11) yields Equation (6) when n =3/2, but because in
general m = n in Equation (9), it is not true that Equation (11)
yields the same condition that would result from requiring that
the initial shock energy equal the binding energy of the
envelope with density profile ocr~”. In particular, the binding
energy of the envelope with density profile ocr™ " is
(R, /R)*~". Therefore, if n<3/2, Equation (11) is more
restrictive on the energy of the explosion, meaning that it is
more difficult to create a successful explosion than would be
inferred from simple energy conservation; this is consistent
with the fact that m<n if n<3/2, as can be seen from
Equation (9).

The analysis leading to Equations (6) and (11) is
approximate from the standpoint that we assumed that the
shock will maintain the Sedov scaling up until R;. In actuality,
however, the shock will begin to decelerate more rapidly as the
effects of the gravitational field become more pronounced, and
hence the stall radius could be substantially smaller than these
estimates suggest. In the next section, we use a series-
expansion approach to rigorously derive the shock position as
a function of time, as well as the spatial and temporal evolution
of the post-shock fluid quantities, as it evolves in the
gravitational field of a compact object and propagates through
an infalling, p r~3/2 medium.

3. Series Solution

We assume that the explosion is spherically symmetric and
creates a shockwave that is initially highly energetic,
propagating into a freefalling ambient medium with a ocr/?
density profile, and subject to the gravitational field of a central
compact object. Accounting for the gravitational field of the
neutron star with mass M, the spherically symmetric
continuity, radial momentum, and entropy equations are given
by

ap 1 0
E —Za—[przv] =0, (12)
ov ov 10p GM,
—Ft V=t ——=——, 13
ot v@r p Or r? (13)
95 + vﬁ =0. (14)
ot or

Here r is spherical radius, v is the radial velocity, p is the
density, p is the pressure, s = In(p/p") is the specific entropy,
and 7 is the adiabatic index of the post-shock gas. We define
the time-dependent position of the shock as R(#) and the shock
velocity as V(f) = dR/dt. The relevant time and length scales
are therefore determined by the shock position and velocity.
Equations (12)—(14) describe the evolution of the fluid
behind the shock front, at which point the mass, momentum,
and energy fluxes are continuous. The shock jump conditions
yield a set of boundary conditions for the post-shock velocity,
density, and pressure that guarantee the continuity of these
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fluxes across the shock, and these conditions are

yR = |2 L /2G =y (15)
y+1 Vv R ~v+1
+1 (RY??
PR = %pi(—) , (16)

1"\ R
—3/2
R
1= V2, 17
pl(Ri) a7

where p; is the ambient density at the location of the shock.

When there is no gravitational field (i.e., for M 0), the
solution is given by the Sedov—Taylor blastwave.® We denote
Sedov-Taylor quantities with a subscript 0, which encapsulates
the fact that these are the “unperturbed” variables, such that the
Sedov—Taylor shock position and velocity are, respectively,
Ry(?) and V(f) = dRy/dt. Energy conservation dictates that the
Sedov—Taylor solution satisfies (see Section 2)

~3/4
Volr) = vo,i(’ig(”) :

2GM,, )2 2

1
R =|1+— =
PR ( v\ R v+ 1

(18)
0.i

where Vj; and Ry; are the initial values for the unperturbed
shock velocity and position. A finite gravitational field will
then induce variations in the flow. When the shock velocity is
much greater than the freefall speed, these variations will be
small corrections, which we expect to scale as the ratio of the
freefall speed to the shock speed. We therefore expand the
shock position as

R()=Ro(®)(1 + aje0 + Oé26(2) +...)

= Ro(0) Y aneo(n)", (19

n=0

where the o, are as-yet-undetermined coefficients, and

ZGMI1S 2GMns
eo(t) =
RO V() i RO i

= €i670/4. 20)
In the final equality we defined
= RO o L [2GM @1
Roi Vo Roi

Taking the time derivative of Equation (19) yields the shock
velocity:

V(t) = Vo) ) an(l + n/4)eo(10)". (22)

n=0

To accommodate the fact that Equations (15)—(17) take place
at a radius that is evolving in time, we make the following
change of variables in the fluid equations:

r—¢& &=

R(t) (23)

6 Assuming that the initial conditions are given by the Sedov-Taylor
blastwave. For arbitrary initial conditions there are transients that—for this
combination of ambient power-law index and adiabatic index—decay with
time as R, 1 (Coughlin & Zrake 2022). Thus the predominant perturbations
to the flow are generated by the gravitational field of the compact object, which
grow with time.
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Table 1
The Eigenvalues a,, that Satisfy the Zero-velocity Boundary Condition at the Neutron Star Surface
(65 Qo (0% (e 7] Qs Qg (%]
—0.543 —0.0615 —0.0185 —0.00700 —0.00293 —0.00126 —0.000526
Ry(t S
o 1= In| R0 (24) 1.0
Ry, —fo
. . .. 8o/go(1)
We assume the shock is at sufficiently large radii that the 0.8 .
neutron star surface coincides with the origin, £ =0, and the < 0
shock is located by construction at £ = 1. Analogously to the ~0.6
shock position, we expand the post-shock fluid velocity, Eﬁ,
density, and pressure as ) 4
-‘é
o0
v=V3 i (©eln), (25) 0.2
n=0
372 oo
R 0.0
p= Pi(—) > &©eo(m)", 26) 0.0 02 0.4 0.6 0.8 10
Ri n=0
3
R —3/2 2 i n Figure 2. The unperturbed, self-similar solution (Sedov—Taylor solution) for an
P = pj E 14 Z ha(§) €0(10)". (27) ambient density that falls off as /2 and adiabatic index = 4 /3. The lines
i n=0 correspond to the dimensionless post-shock velocity, density, and pressure as a

Inserting Equations (25)—(27) into Equations (12)-(14), we
equate terms power-by-power in €, to construct a set of
relations among the various f;,, g,, and &,; we perform a similar
expansion in the boundary conditions at the shock,
Equations (15)—(17). While the complete solution has infinitely
many terms in the series expansion, in practice we must
truncate the series at a finite upper limit, N, and hence we have
3N relations after equating term-by-term in the three fluid
equations alongside 3N boundary conditions at the shock. We
also expect the first- and second-order terms to encode different
physical information, for while the first-order terms yield
corrections at the shock front owing to the momentum flux of
the ambient fluid, the second-order (and higher) terms enter the
fluid equations directly through the momentum equation via the
gravitational term. In the Appendix we include the zeroth- (i.e.,
the Sedov—Taylor solution), first-, and second-order equations
and boundary conditions for the interested reader, but in
general we use computer-algebra software to derive the
(Iengthy) equations.

The ., are constrained by a fourth boundary condition that is
not at the location of the shock. In the scenario where a neutron
star is the byproduct of the core collapse, a reasonable
boundary condition is that the fluid velocity go to zero as we
approach the origin. We therefore have

LE=0) =0, (28)

and this fourth boundary condition will only be satisfied for
certain o, Solving for the v, values is done numerically when
solving the fluid equations, and the values can be found in
Table 1.

In the solutions we provide here, we restrict ourselves to the
scenario that an object with a well-defined surface is formed
after core collapse. However, we expect that a black hole will
eventually form, in which case the zero-velocity boundary
condition is no longer valid. We will return to the discussion of
eventual black hole formation in Section 5.1.

function of & which is the spherical radius r normalized by the shock position.
Here we normalize the density by the density at the shock front ({ = 1) for
clarity.

3.1. Solutions

Equations (A1)-(A9), as well as the higher-order equations,
are linear, ordinary differential equations that can be solved
numerically to determine the nth-order dimensionless velocity,
density, and pressure profiles (f;,, g, and &,). We focus on the
case where y7=4/3, as this should be valid during the initial
stages of the supernova when the gas temperatures are high and
the electrons are relativistic and/or radiation contributes
substantially to the pressure support. The unperturbed,
Sedov—Taylor self-similar solutions—f;, go, ig—are shown in
Figure 2, and the solutions for the corrections, including up to
N =1, are shown in Figure 3. Figure 3 therefore illustrates the
impact of the gravitational field on the post-shock fluid. In
comparison to the Sedov—Taylor self-similar velocity, where
the fluid interior to the shock is everywhere positive and
therefore moves outward with the shock, we see from the left
panel of Figure 3 that the dimensionless velocity profiles are
negative everywhere behind the shock, and therefore the
motion is toward the origin. At early times, when the Sedov—
Taylor solution dominates the flow, this will result in a
reduction in the fluid velocity behind the shock. However, at
later times the higher-order terms will eventually dictate the
flow and the fluid velocity interior to the shock will be negative
and the gas will fall to smaller radii. The middle panel of
Figure 3 shows the dimensionless density profiles, from which
we see that at early times, when the lower-order terms
dominate, the majority of the mass is concentrated near the
shock at £ =1. However, as N increases, the self-similar
density, and therefore the bulk mass, begins to peak in a more
central region within the inner flow. These profiles also show
that the higher-order terms have negative values near the shock
front, which shows that, as time increases and the higher-order
terms begin to dominate, the mass is going to be sapped away
in that region and the bulk mass will become more central. We
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Figure 3. The perturbed first- through sixth-order solutions of f, g, and & (left, middle, right) for an ambient density that scales as p o< 732 with v =4/3. The left,
middle, and right columns show the dimensionless velocity, density, and pressure of the post-shock fluid as a function of the dimensionless length scale £&. We can see
that the velocity profiles become roughly homologous for higher-order terms, which therefore motivates the truncation of the series given by Equation (25) at N = 7. It
can also be seen that higher-order terms influence the location of the bulk density. At early times, when the lower-order terms dominate, the majority of the post-shock

mass is concentrated behind the shock front (£ = 1).

see from the right panel of Figure 3, which shows the self-
similar pressure profiles, that in order to counteract the shift in
the location of the bulk mass toward the origin, the pressure
profiles increase with N, which is necessary to decelerate the
flow in the inner region and uphold the zero-velocity boundary
condition at £ =0.

With the solutions for the f,, g,, and A, up to N =7 known,
the time-varying post-shock fluid velocity, density, and
pressure profiles can be solved for using Equations (25)-(27),
where the time variation enters through the time dependence of
the shock position, velocity, and the smallness parameter e,.
We present solutions to the time-varying post-shock fluid
profiles in Section 4, where we compare our analytical
prediction to the results of numerical simulations.

3.2. Stall Radius

Figure 4 shows the ratio of the shock velocity to the
unperturbed shock velocity obtained from Equation (22) as a
function of ¢y and different values of N. From this, we can
solve for the value of ¢, at which the shock stalls (V= 0). We
see that as the upper limit of the series expansion increases, the
zero-velocity crossing converges to a specific value of e,
which we denote ¢, Numerically, we find

€ =~ 1.149. 29)

We can use Equation (20) to solve for the unperturbed radius at
which the shock stalls, Ry, being

cV
Ros = RO,i(_S)
€

4
R =R, 1 4+ a6 + ageg + (ﬁ)
I + a6+ awe; + ...\ g
et
~(0.426 X R; ! . (30)

1+ a6 + ozzciz + ...

Here R, comes from inserting Ry into Equation (19). For a
given ¢;, which is approximately the ratio of the freefall speed
at the shock radius to the initial shock speed (approximately
because it is actually the ratio of the freefall speed at the
unperturbed /Sedov-Taylor shock radius to the unperturbed/
Sedov-Taylor shock speed), Equation (30) yields the position
within the medium at which the shock stalls. In agreement with
our order-of-magnitude estimates in Section 2, we see that this
radius is an extremely sensitive function of ¢;, the reason being

Figure 4. Plot of the shock velocity V normalized by the unperturbed shock
velocity V; as a function of the smallness parameter ¢y. The shock stalls when
V =0 and we see that for N = 7 the shock stalls at ¢y = 1.15. We can also see
that the €y value at which the shock stalls is approximately the same for N = 6
and N = 7. We therefore truncate the series given by Equation (22) at N =7 as
higher-order terms have little impact on the point at which the shock stalls.

that the ratio of the shock speed to the freefall speed is a very
weak function of radius (xR, 1/4). Therefore, in changing the
value of ¢ by a factor of 2, we change the resulting stall radius
by a factor of 16, i.e., by more than an order of magnitude. We
also see that when ¢; < 1, i.e., when the initial shock speed is
much greater than the freefall speed, the polynomial in ¢; in the
denominator can be set to 1, and Equation (30) is identical to
Equation (3) up to the numerical factor of 0.426. Therefore, our
order-of-magnitude estimates of the stall radius were correct to
within a factor of ~2.

We can also consider Equation (30) as an implicit relation
between the necessary ¢; for the shock to stall at a given radius
R,. If € is small, which is consistent with our supposition that
the shock is initially strong, then the polynomial in the
denominator in Equation (30) is approximately 1. Making this
approximation, the value of ¢ in terms of the stall radius is

—1/4
6= 0.808(&) . 31)

Analogously to Equation (30), we see that changing the stall
radius—even by a relatively large factor—does not dramati-
cally modify the corresponding ;.
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3.3. Blastwave Energy and Minimum Successful Explosion
Energy

The total energy behind the blastwave is

R
E=4r f Lop U p GM) oy (2
0 \2 y—1p r

We can now insert our expressions for v, p, and p in terms of
the dimensionless functions f, g, and 4. The result is a sum with
(formally) infinitely many terms, the zeroth-order (in €;) of
which is the time-independent contribution from the Sedov
self-similar solution, with all latter and time-dependent terms
being integrals of the higher-order corrections multiplied by
eo(®" with n>1. However, in our solution the velocity
approaches zero near the origin while the pressure and density
remain finite, meaning that the energy flux approaches zero at
small radii. Additionally, the ambient medium is in pressureless
freefall with v = —/2GM,s/r, implying that the energy flux at
the shock front is also zero. Therefore, the total energy behind
the shock must be a conserved quantity, meaning that the
integral multiplying each time-dependent term in the series
expansion of the energy—with the exception of the contrib-
ution from the Sedov-Taylor self-similar solution—must be
identically zero. By direct substitution and numerical integra-
tion, we have verified that this is the case for the first- and
second-order terms in the series.
It thus follows that the energy of the blastwave is

GMns
2

AN

X(L_%q+é@ﬁ_4%y3+aaﬂ. (33)

E = 87p,R; E.

Here we defined

11 3h
E, = —f2 4 20 g £2d¢ ~ 0.601, 34
L(Jb &J&ﬁé (34)

which is a numerical correction introduced by the Sedov-—
Taylor self-similar solution, and the terms in parentheses arise
from the fact that ¢; is written in terms of the unperturbed initial
shock velocity (Vi) and position (Ry;), and hence there is an
€-dependent correction that arises when writing the result
in terms of only R;. Specifically, the term is (Ri/Roi)'/2,
and the second-order-accurate expression in parentheses in
Equation (33) results from using Equation (19) to write this
ratio in terms of ¢;.

Equation (33) is useful because, in a realistic explosion, the
initial conditions (i.e., when the shock transitions to the strong
regime) will not be given by the perturbed Sedov-Taylor
solution. However, the energy should still be conserved (until a
black hole is formed; see Section 5.1 below for additional
discussion), and the time-dependent terms that account for the
initial conditions (i.e., the homogeneous solution to the
linearized fluid equations given in the Appendix) rapidly decay
(as xR~ '3%; Coughlin & Zrake 2022). Therefore, for a known
initial energy, Equation (33) can be used to determine the
corresponding ¢; to which that energy corresponds, and hence
the time-dependent solution that accounts for the gravitational
corrections.

Paradiso et al.

Additionally, from Equation (31), we know the minimum ¢
necessary to generate a successful explosion by setting the stall
radius R equal to the radius of the progenitor R,. Using this
value of ¢ and ignoring the higher-order terms in parentheses in
Equation (33), which is valid when the shock is initially strong
with ¢ < 1, it follows that the minimum energy necessary to
drive the shock to the surface of the star is

1/2
E>23.1 x GMnspin(%) . (35)

i

This expression scales identically to Equation (6), but includes
an additional numerical factor of ~23.1 that results from our
more exact treatment. We again take our fiducial progenitor
values to be M,;=15Ms, pi= 107> g em™>, R, =10 cm,
and R, = 10 cm, and we find that that E ~ 10%7 erg, which is
comparable to the net binding energy of a red supergiant’s
hydrogen envelope.

4. Hydrodynamic Simulations

To test the accuracy of the analytical solutions presented in
the previous section and to investigate the time and radius at
which the perturbative approach breaks down, we numerically
simulate the blastwave evolution with the finite-volume
magnetohydrodynamics code FLASH (v4.7; Fryxell et al
2000). We maintain a uniform (i.e., no adaptive mesh),
spherical grid throughout each simulation, with a total (fixed)
cell number of 2'® = 65,536 and an adiabatic equation of state
with -y =4/3. The inner boundary is placed at a small but finite
radius, our fiducial value being r;,, = 0.1, but we perform tests
to assess the sensitivity of the solution to this value. We
initialize the fluid variables (density, pressure, velocity) in the
simulation with the analytic solutions for a given ¢ (with the
exception being the test run to analyze the stall location in
terms of the energy; see Figure 8 below), such that the initial
shock position corresponds to R;=1 and the gas is in
pressureless freefall for all radii exterior to this radius. The
density is set to 1 at a radius just exterior to the shock radius,
we set 2GM,,s = 1 (setting the shock radius to 1 and 2GM,,, =1
is equivalent to normalizing the time by Ri3/ 2/ J2GM,), and
the pressure floor we use for the ambient medium is
1.0 x 10™'3; this floor value for the pressure can be compared
to the initial ram pressure at the shock, being ~1/¢? > 10-100
for the cases we analyze here.

Figure 5 shows the velocity (left), density (middle), and
pressure (right), normalized by the shock velocity, ambient
density at the shock, and ambient ram pressure at the shock,
respectively, for the times in the legend and for ¢, =0.1. The
black curves show the results of the numerical simulations,
while the colored curves give the analytical predictions,
including terms up to seventh order in €y(f). Note that the
shock position and velocity (i.e., the values of V and R that are
used to normalize the fluid variables) are determined from the
analytical solution, i.e., these are determined self-consistently
and there are no free parameters here. It is clear that the
numerically obtained velocity and density match the analytical
predictions extremely well. At early times the pressure from the
numerical simulations is also indistinguishable from the
analytical prediction, but at later times the numerical value
near the origin is somewhat larger than the analytical
prediction. This discrepancy arises from the fact that higher-
order terms in the series expansion are needed to accurately
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Figure 5. Comparison plots between the velocity, density, and pressure profiles (left, middle, right) obtained by FLASH (solid) and the analytical (dashed) prediction
normalized by the analytically obtained (through Equations (19) and (22)) shock variables for ¢; = 0.1. The analytically predicted dimensionless velocity profile is
nearly indistinguishable from the numerical results, besides the fluctuations due to numerical noise at small radii. It can be seen that at later times the analytically
predicted dimensionless pressure is lagging behind the numerical results in the inner region, which is due to the neglect of higher-order (N > 7) terms in the series

expansion.
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Figure 6. Left: comparison between the analytical prediction for the shock position given by Equation (19) and the numerically obtained shock position (black dots)
for different values of N as a function of time for ¢ = 0.1. The dashed line shows the unperturbed shock position. Right: the ratio of the numerical shock position to the
analytical shock position for different values of N. The inset plot is a zoomed-in view, which shows that the ratio is very close to unity.

recover the pressure near the origin. The left panel of Figure 6
shows the shock position R(?) as a function of ¢, on the bottom
horizontal axis and time on the top horizontal axis for the
analytical prediction (and different values of N as given by
Equation (19)) and the numerical simulation. The analytical
and numerical results are clearly in extremely good agreement.
The plot on the right shows the ratio of the two values at
different times, which is equal to 1 £ 107> at all times for the
analytic solutions that have N > 3. On the contrary, the Sedov—
Taylor solution quickly deviates from the numerically obtained
(and higher-order analytical) values, and hence the inclusion of
the gravitational terms is necessary for accurately constraining
the position of the shock with time.

This figure shows that the analytical approach very
accurately predicts the position of the shock, even as ¢,
approaches values that are not dissimilar from unity. However,
€o increases as an extremely shallow power law in time—since
€y X R& /4 and the Sedov—Taylor shock position satisfies
Roox /™" o 7 we have eoc'/”. Therefore, while e
increases from 0.1 to 0.5 in ~10* in time, it would require
running the simulation to ~10” in time before the shock is
predicted to stall. At our fiducial resolution and without
adaptive mesh, running the simulation to this late of a time is
infeasible, even in one dimension.

However, Figures 5 and 6 also show that the analytical
prediction is accurate even when ¢, is larger by a factor of a few
than the initial value of 0.1. Therefore, we can numerically
investigate the transition of the shock to its stalled state by
artificially increasing the initial value of ¢, as the shock will
stall substantially sooner and in a time that is numerically
feasible if ¢ is large enough (see Equation (30)). Figure 7
shows the shock position (left) and velocity (right) when
¢ = 0.3. The horizontal and vertical lines show the analytically
predicted values for which the shock stalls, being R, >~ 63.3 and
€0 = €5 == 1.149 (t == 2740). We see that the analytical prediction
very accurately traces the numerical solution to times just after
the shock stalls, but thereafter there are noticeable deviations
that cannot be captured via the series approach. In other words,
the radius of convergence of the series coincides with €y~ €,
and thereafter the numerical simulations are necessary to
determine the fate of the shock.

Figure 8 illustrates the impact of both the boundary and
initial conditions on the numerically obtained shock position
when ¢ = 0.3. The solution with 7j,,., = 0.1 with a reflecting
boundary condition (orange curve) is our fiducial setup, the
green curve uses a larger inner boundary by a factor of 2, and
the yellow curve maintains the same inner radius as the fiducial
case but uses an outflow (i.e., zero-gradient) boundary
condition instead of a reflecting boundary condition. All three
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Figure 7. Left: plot of the numerically obtained shock position as a function of time obtained from the hydrodynamics code FLASH (dotted) compared to the analytical
prediction of the shock position with an initial ratio of the freefall speed to the shock velocity of ¢; = 0.3. The horizontal and vertical black lines show the analytically
predicted radius at which the shock stalls, R, and the corresponding smallness parameter value, ¢;. Right: the same thing but the shock velocity as a function of ¢,
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Figure 8. Comparison of different simulation setups for ¢; = 0.3. This shows
that the simulation results are insensitive to the inner radius, as well as to the
initial conditions. The “Pressure Bomb” simulation comes from setting the
initial pressure interior to the initial shock position to a uniform value, the
velocity to zero, and the density to 0.01. The uniform pressure, ,;, can be
calculated through Equation (33), where the energy of the explosion is given by
the integral of the specific energy, 4m,;. This shows that what dictates the
behavior of these explosions is the total energy.

of these cases—the orange, green, and yellow curves—use the
analytical prediction as the initial condition. The blue curve
uses a “pressure bomb” for the initial conditions, such that the
velocity everywhere interior to R=1 is zero, the density
interior to R =1 is 0.01, and the pressure is set to a constant p;.
The value of ; is set by equating the energy in Equation (33)
with ¢ =0.3 to the integral of the specific energy behind the
shock, which is just 4, for the pressure bomb. This figure
shows that changing the value of the inner radius, but
maintaining a reflecting inner boundary condition, results in
effectively no change in the propagation of the shock. Perhaps
surprisingly (given how different the initial conditions are to
the perturbed Sedov solution), the simulation with the pressure
bomb as the initial condition also yields almost no discernible

difference in the shock propagation as compared to the fiducial
setup. Using an outflow boundary condition in the interior does
have an impact on the solution, and in particular the shock
stalls at a noticeably earlier time and smaller radius. These
results suggest that the energy of the explosion is what
predominantly influences the shock propagation, not the initial
conditions. In the case of the outflow boundary condition,
energy is allowed to leave the domain—and this effect becomes
most significant as the shock decelerates and more mass is
concentrated near the origin—and causes the shock to
decelerate more rapidly.

4.1. Settling Solution

The velocity, density, and pressure of the fluid interior to an
indefinitely stalled shock (i.e., one for which the velocity is
zero and time steady) can be described by the self-similar
solutions of Lidov (1957), Chevalier (1989), and Blondin et al.
(2003; see also Kundu & Coughlin 2022 for the general
relativistic extension). In these solutions, the velocity of the
fluid goes to zero as it approaches the origin and “settles’ onto
the surface of the neutron star, and it is interesting to compare
the analytical settling solution to the numerical results once
the shock stalls. Following the methods outlined by Blondin
et al. (2003), we write the fluid velocity, density, and pressure
as

v= 2% fg),

h (36)
p = R2%(6), 37)
p= %Rsmh(s), (38)

where £ = r/R; is, as above, the dimensionless spherical radius
normalized by the shock position R, but now R is the stalled
shock location and is therefore independent of time. We
normalize our solution by letting M = 4 and 2GM = 1 and,
from the jump conditions (Equations (15)—(17)) with V=0, the
self-similar fluid velocity, density, and pressure just behind the
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Figure 9. Comparison plots between the settling solutions and the numerical profiles given by FLASH for ¢; = 0.3 at = 2750, which is just after the time that the
shock is predicted to stall. Here we see that the numerical velocity profile very nearly matches onto the analytical settling solution, while the density and pressure only
match onto the settling solution for regions near the (stalled) shock front. The inset plots for the density (middle) and pressure (right) show the density and pressure on
a log—log scale, which better shows how quickly the numerical solution diverges from the settling solution.

shock front are

F) = % (39)
s =110 (40)
h(l) = ﬁ 1)

The time-steady, self-similar continuity, radial momentum, and
entropy equations that describe the fluid interior to the stalled
shock are then determined by inserting Equations (36)—(38)
into Equations (12)—(14) with all time derivative terms equal to
zero. Doing so, and performing some algebraic manipulations,
gives

O oo
o€ [£7gf] =0, (42)
of (1on 1
f6€ g 9¢ 262 @)
) h
Zim|E|= 44
o n(g”') @

Equations (42)—(44) can therefore be solved numerically by
integrating inward from the shock front at which point the
dimensionless fluid variables satisfy the boundary conditions
given by Equations (39)—(41).

For the case of y=4/3, the fluid variables satisfy the
following scaling (Chevalier 1989; Blondin et al. 2003):

v(r) o< r, 45)
p(r) o< r=3, (46)
p(r) o< r 4, 47

and in Figure 9, we show the comparison between the
analytical settling solutions and the numerical solution given
by FLASH at t=2750 (i.e., when the shock stalls), where the
analytical solutions are given by Equations (36)—(38) with
Ry =63.3 and 2GM = 1. Although our analytical model cannot
account for the late-time behavior (¢ 2 f) of the shock—as is
evident in Figure 7—we see from the numerical simulation that
the shock attempts to stall indefinitely, but eventually retreats to
smaller radii. In order to maintain the zero-velocity boundary
condition in the interior, the pressure would need to
continuously rise until eventually an infinite pressure gradient

is necessary to decelerate the flow. This can most clearly be
seen in Figure 9, where we can see that the fluid velocity,
density, and pressure attempt to match onto the settling
solution, but the pressure gradient is not sufficient enough to
withstand the accumulation of gas in the interior. Therefore, it
is around the time at which the shock stalls that we predict a
black hole will form and the velocity eventually goes to
~freefall in the interior.

5. Discussion and Observational Implications

Here we discuss some observational implications of our work,
particularly in regard to the newly observed class of FXTs, as well
as caveats (i.e., approximations and assumptions).

5.1. Black Hole Formation

In the event of a CCSN, the formation of a black hole in the
central region is always preceded by the neutron star phase.
However, a black hole forms once the neutron star is pushed
over the Tolman—Oppenheimer—Volkoff (TOV) limit. From
both our analytical and numerical solutions (see Figure 9), we
see that the density is very low near the origin until the shock
stalls. This therefore suggests the neutron star will not reach the
TOV limit (and a black hole will not form) until very near (and
slightly after) the time at which the shock stalls.

Once a black hole forms, a sound wave propagates into the
fluid at a time-dependent position Ry(7) that informs the gas of
the presence of the black hole at the origin. Therefore, one
could model this scenario by using the same series-expansion
approach but enforcing that the fluid velocity equal zero at the
time-dependent sonic radius, i.e., all the fluid inside of this
radius should be in ~freefall onto the black hole.” The
dimensionless sonic radius { = R;/R can be determined from
an analysis of the characteristics of the linearized fluid
equations about the Sedov—Taylor blastwave, and is implicitly
given by (Coughlin & Zrake 2022)

d

f&x(‘fo) f
T = .
T Jo f e+ JAho/Bgy)

Here fy, ho, and g, are the self-similar solutions for the velocity,
pressure, and density of the Sedov-Taylor solution, and

(48)

7" Our solution is unable to account for the transition to supersonic freefall
onto the black hole due to the nonlinear terms that give rise to this behavior.
Said another way, our series solution cannot self-consistently treat the inner
regions of the flow for which the gravitational terms dominate the dynamics.
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To = Ro/Ro,;, with Ry ; the Sedov—Taylor radius when the black
hole forms. Numerically solving this equation for £(1) gives
the location of the sonic point within the flow, and one could
use this time-dependent location as that at which the fluid
velocity equals zero to solve the linearized fluid equations once
the black hole forms. Given the fact that the inflow boundary
condition causes the shock to stall noticeably sooner compared
to the simulations with a reflecting inner boundary condition
(see Figure 8), we expect the shock to stall and fall back to the
origin in a dimensionless timescale that is comparable to the
time taken for the rarefaction wave to reach the shock, i.e.,
Equation (48) evaluated at {,=1. We defer a more detailed
calculation of this scenario to future work.

5.2. Comparison of Model Predictions to Fast X-Ray
Transients

From a sub-energetic explosion there are three distinct
outcomes:

1. The shock has enough energy to just reach the surface of
the star, resulting in a low-energy supernova explosion.

2. The shock stalls before propagating through a substantial
portion of the ambient medium and will be forced back to
smaller radii, resulting in a failed supernova and the
formation of a black hole (e.g., Adams et al. 2017b).

3. The shock stalls in a region that is sufficiently near the
stellar surface such that the edge of the star—where the
density drops precipitously—passes through the stalled
shock before the shock falls back to the origin.

Here we focus on the observational implications of the third of
these three outcomes, as it may manifest as a unique
astrophysical transient.

In the event that the shock stalls after propagating through a
substantial portion of the hydrogen envelope, and as long as the
infalling envelope reaches the stalled shock on a timescale that
is shorter than ~the dynamical time at the location of the shock
(roughly the timescale over which we expect the shock to fall
back to the origin), then the edge of the envelope will pass
through the shock. Once the optical depth to the edge of the star
is ~1, the radiation from the post-shock gas is able to escape to
the observer. Depending on the temperature of the post-shock
gas, which itself depends on the radius in the star where the
shock stalls, this radiation could emerge in the form of X-rays,
with an initial rise time that is the longer of the diffusion time
across the shock and the light-crossing time over the radius of
the star (i.e., the time taken for the ~10'% cm sized emitting
surface to “turn on” according to a distant observer; Ensman &
Burrows 1992; Fernandez et al. 2018).

To estimate the observable properties of such an event, we take
values of the 9.5 M, progenitor at core collapse from Sukhbold
et al. (2016), where the density begins to be well approximated by
an r /2 power law at a radius R; ~ 10" cm and the density at that
point is ~6 x 107* g cm ™. Using our methods from the previous
sections, the density at a given stalled shock R is

-3/2
2R = 6 x 1o4(£) . (49)

10"
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If the shock velocity is small relative to the freefall speed, then
the post-shock pressure is (from Equation (17) with V=0)

2GM
P(Rg) =~ 2 2

S

(50

where M is the mass of the star interior to the shock and, once
the shock propagates to these large radii, is comparable to the
mass of the entire star, and we ignored the factor of
2/(y+ 1)1 for simplicity. If the pressure is a sum of gas
and radiation pressure and the gas is sufficiently optically thick
to thermalize the photons, then the pressure is related to the
temperature via

kT 1

p(RY = L= + ~a
pmy 3

T4, (62))
where k=1.38 x 10716 (cgs) is Boltzmann’s constant, my=
1.67 x 107** g is the proton mass, a = 7.56 x 10> (cgs) is the
radiation constant, and p is the mean molecular weight. For a
given density profile of a massive-star progenitor, we can solve
Equation (51) alongside Equation (50) for the temperature as a
function of the radius in the star where the shock stalls. If this
radius also coincides with where the optical depth to the surface
(corrected for the velocity of the infalling gas; Sapir et al. 2011) is
of the order unity, then we can estimate the brightening timescale
by calculating the light-crossing time at that radius, which tends to
be longer than the diffusion time for supergiants (whereas the
diffusion time can dominate for very compact stars, such as Wolf—
Rayets; Fernandez et al. 2018).

The left panel of Figure 10 shows a set of density profiles
from massive stars evolved to core collapse from the
simulations in Sukhbold et al. (2016), where the mass of
the star is indicated in the legend. The right panel gives the
temperature associated with the emission as a function of
the brightening/duration timescale, 73 = R,/c, being the light-
crossing time over the shock radius. Here the analytical curve is
determined by solving Equations (49)—(51) for a given value of
R, which ranges from 10'' to 10'* cm. As the radius at which
the shock stalls decreases, the temperature increases as a
consequence of both the increasing density and the increasing
freefall speed, as both of these result in a larger post-shock
pressure (Equation (50)). The light-crossing time also declines,
thus showing that there is a strong correlation between these
two quantities. In particular, for an r3/2 power-law density
profile, ignoring the contribution of gas pressure in
Equation (51) yields the relation T o< 1y 5/8 which accurately
reproduces the analytical result (which incorporates the
contribution from gas pressure) and those obtained from the
stellar progenitors in Sukhbold et al. (2016). In the case where
the density profile of the envelope is p o< r ", we would predict
(ignoring gas pressure) T o< ty (n+1)/4,

The observational signatures shown in Figure 10 that would
be associated with such a “phantom shock breakout,” in which
the post-shock emission would be capable of emerging from
the stellar surface but there would not be an associated strong
explosion, are broadly consistent with the newly detected class
of FXTs (Jonker et al. 2013). FXTs are extragalactic and
nonrepeating X-ray outbursts in the ~0.3-10keV range that
last for minutes to hours (Quirola-Vésquez et al. 2023). We see
from the right panel of Figure 10 that the range of the duration
timescales predicted from this model is consistent with those of
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Figure 10. Left: the density profiles of a set of core-collapse progenitors, taken from Sukhbold et al. (2016), alongside power-law scalings. Right: the approximate
temperature associated with the burst of emission that follows the stellar envelope falling through the stalled shock, as a function of the light-crossing time #4, which is

R,/c, with R, the radius of the stalled shock and c¢ the speed of light. The analytical curve is calculated by assuming an r

Equation (51) to solve for the temperature, The oczy™’® (ccry /2

) accurately reproduces the relationship between 7 and 74 when the density profile satisfies p o< r

—3/2 scaling for the density, and using

-3/2

(p o< r~') and radiation pressure dominates the equation of state, and accurately reproduces the numerically obtained (i.e., including gas pressure) result.

FXTs. Furthermore, for a given temperature the radiation
energy corresponding to the peak radiation frequency can be
estimated by treating the progenitor as a perfect blackbody, i.e.,
the energy is ~kT, with T the temperature. From Figure 10, the
corresponding peak energies range from ~0.02 to 0.2keV,
which is roughly consistent with, but somewhat lower than, the
photon energies associated with FXTs. However, our treatment
of the radiation hydrodynamics is very simplistic, and a more
rigorous analysis may yield somewhat higher energies that
arise from repeated scatterings between the infalling and pre-
shock envelope and the shocked fluid, and the eventual
acceleration of the shock as it reaches a sufficiently steep
density gradient.

Thirty FXTs have been detected serendipitously or archiv-
ally (Alp & Larsson 2020; Quirola-Vasquez et al. 2022, 2023),
with the majority being the latter, and there has only been one
event with a confirmed multiwavelength counterpart after the
initial detection, which is XRT 080109/SN 2008D (Soderberg
et al. 2008). However, observations of XRT 141001 from deep
optical imaging by the Very Large Telescope were made
~80 minutes after the initial outburst, and no optical counter-
part was detected (Bauer et al. 2017). Due to the lack of
multiwavelength counterparts, discerning the energetics and
distances to these sources, as well as their physical origin, is
not straightforward.

The progenitor(s) of FXTs is therefore unclear, and there are
currently four scenarios that have been considered: CCSN
shock breakout® (SBO), X-ray binaries, off-axis gamma-ray
bursts, and tidal disruption events involving an intermediate-
mass black hole and a white dwarf. None of these models is
particularly favored over another. However, Quirola-Vasquez
et al. (2023) provided an estimate of ~2 X 10°—4.5 x
10* Gpe > yr~' for the volumetric density rate of FXTs (see
their Section 5.3), and they noted that this rate is in close

8 Note that the generation of an FXT through CCSNe SBO is not the same

mechanism that we propose here, as the former assumes that the SBO, and
subsequent X-ray emission, is generated through a successful supernova and
the ejection of material (Waxman & Katz 2017). When a shock breaks out of
the stellar surface in a successful supernova, it is expected to be followed by
bright UV /optical emission as the envelope expands and cools (Falk 1978;
Klein & Chevalier 1978; Soderberg et al. 2008), whereas we would expect an
accompanying optical/UV signature to be absent if the shock stalls within the
progenitor.

agreement with the rate of blue supergiant (BSG) progenitor
CCSNe (~2 x 10’ Gpc ™ yr™"). BSGs are massive, compact
(R, ~ 10" cm) stars that have a relatively high likelihood of
failing (Fernadndez et al. 2018 and references therein), and thus
we might expect the rate of failed explosions of these stars to
be comparable to (or even exceed) the rate of successful events.
This finding therefore suggests that FXTs could be associated
with failed explosions, and the phantom shock breakout, as
outlined here.

5.3. Caveats and Approximations and Future Directions

In our analytical and series-based approach that led to the
condition on the stall radius (Section 3), which then showed
exceptionally good agreement with numerical hydrodynamics
simulations (Section 4), the ambient medium is assumed to be
in time-steady and pressureless freefall. The time-steady nature
of the ambient solution is only self-consistent (i.e., solves the
fluid equations) if the density profile decays with radius as
ocr~¥/?, and hence this was a necessary assumption in our
model.

As shown by the left panel of Figure 10, realistic supergiant
progenitors have hydrogen envelopes that can, in some cases,
be consistent with a power-law density profile that is close to
ocr~ /2. For these stars, the assumption of time-steady freefall
onto the shock is a good approximation, provided that the
shock is at sufficiently small radii and the rarefaction wave
resulting in the infall of successive shells of material (i.e., the
mechanism responsible for initiating the collapse of the star)
has reached the outer envelope of the star.

In other cases, however, the density profile is substantially
flatter in the hydrogen envelope, or noticeably steeper at
smaller radii. When the density profile is steeper than ocr 2, the
shock velocity appropriate to the Sedov-Taylor solution
declines less rapidly than the freefall speed, implying that
there is no corresponding condition analogous to Equation (30)
that will yield the radius at which the shock stalls. With that
said, it may be that there is a minimum velocity (relative to the
freefall speed) that the shock must have in order to transition to
the strong and energy-conserving regime. An analogous
situation occurs in weak shocks generated by the loss of mass
during the neutron star formation, where there is a critical Mach
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number (which is a function of the power-law index of the
ambient medium, the adiabatic index of the gas, and the mass
lost to neutrinos) which differentiates between shocks that
asymptotically become strong and those that transition to a
weak shock with a constant Mach number near unity (Coughlin
et al. 2018, 2019; Ro et al. 2019; Coughlin 2023). An
interesting question, which we intend to analyze in future work,
is whether there is an analogous condition when the ambient
medium is in freefall.

When the density profile is shallower than o7~ > and the
shock is at sufficiently small radii, the radius at which the shock
stalls can be predicted—at the order-of-magnitude level—by
assuming that the infalling gas is characterized by an analytic
solution following the passage of a rarefaction wave (Coughlin
et al. 2019). It should be possible to use the more general and
self-similar expressions for the rarefaction-wave solutions, or
those that account for the mass lost to neutrinos (either in the
weak- or stronger-shock limit; Coughlin 2023), for the
properties of the ambient gas in the shock jump conditions,
and thereby generalize the approach taken here to understand
the eventual stall of the shock. This approach would also
account for the finite binding energy of the material, which will
have important consequences for the dynamics when the
power-law index of the ambient medium is less than 2 (as in
this case the binding energy diverges at large radii if the power-
law profile extends indefinitely).

We also assumed—for simplicity, concreteness, and because
it is likely accurate when the shock is still at small radii—that
the fluid is characterized by an adiabatic equation of state with
an adiabatic index of y=4/3. Simply adopting a different
adiabatic index, but otherwise performing the same analysis, is
straightforward, and we would expect a stiffer (softer) equation
of state to result in a larger (smaller) stall radius, i.e., if v is
larger it would naively enable the shock to reach larger radii
owing to the greater pressure support of the post-shock gas.
Nonideal effects such as nuclear dissociation are also likely
important, but in general we expect such effects to increase the
minimum successful explosion energy, i.e., the limits provided
in Sections 2 and 3 (specifically Equations (6) and (35)) are still
valid as relatively conservative lower limits.

Radiative effects will also modify the propagation of the
shock and the dynamical evolution of the post-shock fluid in
ways that are not incorporated in our analysis. In the Eddington
approximation (i.e., when the photon mean free path can be
approximated as zero compared to the fluid scale), the radiation
and gas pressure linearly combine and can be treated as
independent contributions to the total pressure, which—even
when the scatterers and the radiation field are considered to be
in local thermodynamic equilibrium, as in Equation (51)—
destroys the self-similarity of the problem and renders the
Sedov—Taylor solution (i.e., the leading-order solution in our
series approach to modeling gravitational effects) inapplicable.
However, at small radii we expect the temperature to be
sufficiently large that the gas can be approximated as ultra-
relativistic, while at large radii the ambient density is
sufficiently low that the gas pressure contributes at the <10%
level (see the discussion around Figure 10 in the preceding
subsection), and in both cases the y=4/3 equation of state is
approximately valid. Finite mean-free-path effects are of
critical importance as the shock nears the surface and the
optical depth (from the shock to the surface) approaches unity,
and investigating these effects—and in particular the phantom
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shock breakout signature discussed in the previous subsection
—is an area we intend to analyze. The finite mean free path
also plays a fundamental role in mediating the deceleration of
the flow through the shock, as the propagation of photons
upstream transfers outward momentum to the infalling gas (i.e.,
it is a photon-mediated shock owing to the fact that the photon
mean free path will generally be much larger than the inter-
particle mean free path; Mihalas & Mihalas 1984 and
references therein). Nonetheless, provided that the mean free
path is small relative to the shock scale, treating the shock as a
discontinuity that is bounded by adiabatic flow on either side is
a good approximation.

Finally, in our model the central mass (responsible for the
gravitational field and the infall of the gas at larger radii) was
assumed to be dominated by the neutron star. While this is
certainly valid at sufficiently large radii, there will come a point
in a realistic star when the enclosed mass is comparable to—
and then exceeds—this mass. It is possible to account for the
self-gravity of the gas in the series-expansion approach here,
but we expect this to be nontrivial, owing to the change not just
in the post-shock fluid but also in the properties of the ambient
gas (i.e., even pressureless freefall is complicated by the
spatially variable self-gravitational field). In general, we only
expect the inclusion of self-gravity to increase the lower limit
on the minimum successful explosion energy.

6. Summary and Conclusions

When the shockwave generated through the core collapse of
a massive star is sub-energetic, such that the energy associated
with the shock is akin to the binding energy of the star, the
shock decelerates and can eventually propagate at a speed
comparable to the escape speed of the progenitor. Therefore,
even if the shock is initially strong, if it decelerates to speeds
comparable to the escape speed before reaching the surface of
the star, the shock can succumb to the influence of gravity and
stall within the progenitor, resulting in a failed supernova. After
providing back-of-the-envelope estimates in Section 2, in
Section 3 we developed an analytical model for a shockwave
propagating into an adiabatic, power-law ambient medium
undergoing gravitational collapse with a density profile
p o< r—/>—which is a reasonable approximation for the outer
envelope of some massive stars—and adiabatic index v=4/3.
In particular, we analyzed perturbations to the Sedov-Taylor
solution, where the perturbative (“smallness”) parameter is the
ratio of the freefall speed to the shock speed. With this
approach, we showed that if the energy associated with the
initial explosion is below a critical value, there exists a point
where the shock stalls within the progenitor (see Figures 4 and
7). This model therefore establishes a minimum-energy
condition for a successful supernova explosion—which is
Equation (35)—and we showed that for representative values
of a supergiant progenitor, this energy is comparable to the
binding energy of the hydrogen envelope in a red supergiant.
Therefore, if the energy of the blastwave is below this critical
value, the shock will stall before reaching the surface of the
progenitor and will be unable to unbind the stellar envelope.

In Section 4, we compared our analytical results to those
obtained with the numerical hydrodynamics code FLASH. We
showed that our analytical solution is able to accurately predict
the position and velocity of the shock, as well as the post-shock
velocity, density, and pressure, until the shock stalls. We
showed the results of two simulations with different values of
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€, which is the initial value of the freefall speed to the shock
speed and is directly related to the energy of the explosion
through Equation (33). The analytically predicted shock
position, post-shock velocity, and post-shock density are nearly
indistinguishable from their numerically simulated values,
while the analytical post-shock pressure very nearly matches
the numerical simulation at early times, but begins to deviate
from the numerical values at small radii over time. Figure 7
shows that our analytical prediction is able to very accurately
predict the temporal evolution of the shock position and
velocity until the shock stalls. We also compared our numerical
results from the ¢ =0.3 simulation to the analytical settling
solution, which describes the velocity, density, and pressure
profiles of the fluid interior to a standing accretion shock where
the fluid “settles” onto the surface of the neutron star. We show
that the numerical simulation attempts to match onto the
settling solution, but the pressure near the point mass does not
increase rapidly enough to allow the fluid to stall indefinitely.
Instead, the shock continues to move inward as more mass is
concentrated near the neutron star, implying that a black hole
will form around the time that the shock stalls. The
implications of black hole formation on the propagation of
the shock were considered in Section 5.1.

If the shock energy is only marginally below the necessary
value to create a successful explosion, the shock will stall at a
location that is close to the stellar surface, and it may be possible
for the surface of the star to pass through the stalled shock. In this
case, one would expect the passage of the stellar surface through
the shock to result in the sudden emergence of radiation from the
shock-heated gas, i.e., a SBO-like signal but without a supernova,
which we denote a phantom SBO. To estimate the observable
properties associated with this scenario, in Section 5.2 we used the
density profiles of six different massive-star progenitors evolved to
core collapse from Sukhbold et al. (2016; see Figure 10) to
determine the temperature of the gas at a given stall radius (see
Equations (50)-(51)). We also estimated the duration of the
breakout signal by computing the light-crossing time over the
radius of the stalled shock. The emission temperature as a function
of the duration is then shown in the right panel of Figure 10, and is

approximately given by T o< z;° 3/8 when the density profile is
n

pocr /2 or T oc 17" D/4 when the density satisfies pocr "
From this model we recover temperatures and durations that are
roughly consistent with FXTs, which are bursts of ~0.3-10keV
emission that do not yet have an accepted origin.

We assumed that the explosion and the ambient medium
were spherically symmetric and nonrotating. When the shock is
strong and well described by the Sedov—Taylor solution, the
asymmetries in the initial explosion geometry and imparted to
the flow from asymmetries in the ambient medium are stable,
meaning that they decay with time” when modeled as
perturbations on top of the Sedov-Taylor solution (Ryu &
Vishniac 1987). However, it has been suggested that standing
and time-steady shocks can be weakly unstable to large-angle
(spherical-harmonic £ = 1, 2) perturbations, potentially leading
to an asymmetric explosion (e.g., Houck & Chevalier 1992;
Foglizzo 2002; Blondin et al. 2003; Ferndndez & Thompson
2009; Marek & Janka 2009; Burrows et al. 2012; Dunham et al.
2023). It may therefore be the case that, as the initially strong
explosion decelerates and nears the stall radius, it becomes

® Unless the ambient medium is sufficiently steep that the Sedov—Taylor

solution ends in a contact discontinuity, in which case the flow can be
convectively unstable; Goodman (1990).
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more susceptible to angular perturbations in the ambient gas
(induced by, for example, convection in the outer envelope of
the massive star) that result in the shock becoming increasingly
asymmetric. It has also been suggested that even when the core
collapse does not drive an energetic explosion and a black hole
is formed, the angular momentum in the convective regions of
the progenitor can lead to the formation of an accretion disk
and possible generation of observable outflows (see Gilkis &
Soker 2016; Quataert et al. 2019; Antoni & Qua-
taert 2022, 2023; Soker 2023). One could quantitatively
investigate the temporal evolution of these asymmetries by
performing a perturbation analysis with the analytic (series)
solution presented here as the background state; we intend to
perform such an analysis in future work.

Finally, our analytical model only considered the case where
the density profile of the ambient medium satisfies p oc 7> /2
(though see Section 2, and particularly Equation (11), for an
estimate of the minimum explosion energy when the ambient
medium is of the form p oc ¥~ " at large radii), as this power-law
profile results in time-steady infall of the overlying envelope.
However, the density profile of a supergiant envelope is more
complicated than a single power law (see Figure 10), and the
infall of material occurs in a time-dependent manner as
successive shells of gas are informed of the loss of pressure
support in the core. Nonetheless, it should be possible to
expand upon the model considered here by using the
rarefaction-wave solutions presented in Coughlin et al. (2019;
or the solutions that account for the neutrino-induced mass loss
given in Coughlin 2023) for the ambient medium, which are
valid for an arbitrary power-law density profile. We plan to
consider such an extension to our model in future work.
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Appendix
Fluid Equations

Here we write the dimensionless continuity, radial momen-
tum, and entropy equations up to the second order in the ratio
of the freefall speed to the shock speed. The zeroth-order
equations yield the well-known Sedov-Taylor solution, and are
given by

3 % 1 0

—_— — — e 2 =
> 5(% + €0 (€80 /o] = 0, (AD)
_3 % 10,
4ﬁ) + U -9 o€ + o (%ho 0, (A2)
33 o
_54‘5(’)’— 1)+(f£) _5)6—55‘0—0. (A3)
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The first-order equations are
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and the second-order equations are
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Each of these systems of differential equations can be solved
numerically by integrating inward from the location of the shock
(£ =1), at which the functions satisfy the boundary conditions

2 :_'y—l _7*}/ 1
1
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()= —2—, m(l)= —2_,
v+ 1 y+1
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v+ 1 2

Paradiso et al.

The «,, values, which arise from the zero-velocity boundary
condition at the origin, are given in Table 1.
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