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Abstract

Immune responses are crucial in controlling diseases and maintaining host homeostasis, but
they involve inherent tradeoffs due to the competing demands for resource allocation among
physiological processes. While energy allocation tradeoffs shape individual phenotypes, they
are rarely included in disease ecology models. Environmental factors like limited food
availability and adverse climates decrease individual fitness by increasing pathogen virulence
and host susceptibility. Despite that seasonal resource availability affects competition among
physiological processes, research has mostly focused on the pathogen dynamics rather than
on the trajectories of hosts under varying resource availability scenarios. Here, we
implemented dynamic optimization state models to determine which changes in energy
allocation maximize fitness in amphibians with enzootic infections —when the pathogen
consistently infects the population—. We hypothesized that young individuals allocate energy
for growth at lower infection levels but shift to immunity as pathogen-mediated damage
increases. We predicted that shifts in energy allocation result in lower fitness, measured as size,
time to maturity, and survival. We also expected that the season at which individuals are born
exacerbates these tradeoffs, increasing fitness variability within the population. Based on our
models, we identified critical windows that maximize individual growth while limiting
mortality under increased pathogen burden. The models highlighted that seasonality in
pathogen exposure and foraging success exacerbates growth-defense tradeoffs, leading to
delayed maturity and lower survival rates when frogs hatch under sub-optimal environmental
conditions. Our simulations support empirical results, showing that increased frog
reproduction coincides with high resource availability and low pathogen risk. Our findings

demonstrate that shifts in energy allocation affect population size and recruitment, modulate
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prevalence and infection intensity, and constrain fitness traits. We highlight the utility of
dynamic state variable models in examining how host fitness strategies impact early-life
growth rates and population survival under varying seasonal and resource conditions,
providing a framework to understand the outcomes of emerging diseases under predicted
climate change scenarios. The flexibility of using generic units allows ecologists to apply the
findings to different contexts, such as extreme droughts, pathogen outbreaks, or species
reintroduction programs, by adjusting parameter values based on empirical data from

experiments and field observations.
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Introduction

Immune responses are one of the most critical factors in controlling diseases and maintaining
homeostasis in the host. While empirical studies show that energy allocation tradeoffs affect
growth, survival, and reproduction, individual fitness is rarely included in disease ecology
models. Infections can determine the fate of individuals, and the activation of the immune
system in non-lethal cases comes with an energetic cost, resulting in a tradeoff between
immunity and other physiological processes (Brannelly et al. 2021a; Keehnen et al. 2021; Soler
et al. 2003). Infected individuals often reduce their energy investment in development
(Keehnen et al. 2021), growth (Korfel et al. 2015; Soler et al. 2003), and reproduction (Brannelly
et al. 2021a; French et al. 2007), likely mediating the arms race with pathogen virulence.
Despite that the tradeoffs in energy due to competition among these physiological processes
affect the fate of individuals, research has primarily focused on the dynamics of the pathogen
(Dwyer et al. 1997; Fleming-Davies et al. 2015) rather than on the trajectories of individuals

under varying resource availability scenarios.

Life history theory predicts that early-life resource allocation strategies will determine future
fitness by influencing the state —phenotype— of an individual at maturity (McNamara &
Houston 1986; Stearns 2000). Larger body size at maturity results in higher fecundity (Stearns
2000) and size of the offspring (Hall et al. 2020; Townsend & Stewart 1994), thus enhancing
fitness. Pathogen exposure at early life stages can have negative carryover effects on survival by
affecting condition-dependent traits like growth, even after individuals successfully clear
infections (Burrowes et al. 2008; Garner et al. 2009; Rumschlag & Boone 2020; Taborsky 2006).
Although tradeoffs between energy-demanding processes have been widely studied across

taxa (Brannelly et al. 2021b; Grogan et al. 2020; Huot et al. 2014; Keehnen et al. 2021), their
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interactions vary across scales and intensify under sub-optimal conditions for the host, such
as limited food availability and adverse environmental factors (Altizer et al. 2006; Civitello et al.
2018; Cressler et al. 2014). To assess the consequences of infections on individual fitness, it is
essential to quantify how infection constrain energy-demanding processes like growth at early

life history stages.

Pathogen virulence, host exposure, susceptibility, and infection are often mediated by
environmental conditions such as seasonality (Andreasen & Dwyer 2023; Longo et al. 2010),
making seasonal outbreaks a pervasive challenge across animal and plant communities
(Altizer et al. 2006). Changes in abiotic conditions modulate host-pathogen interactions by
altering host behavior, contact rates among individuals, births, and deaths in the population
(Altizer et al. 2006; Civitello et al. 2018). Abiotic conditions also affect the ability of hosts to
mount immune responses (Le Sage et al. 2021) and the recruitment of beneficial symbionts
from the environment (Altizer et al. 2006; Longo et al. 2015; Nelson 2004). Most of these factors
are driven by shifts in resource availability (Rumschlag & Boone 2020; Stewart & Woolbright
1996) and foraging success (Alvarado-Rybak & Azat 2021; Rumschlag & Boone 2020) between
seasons. Understanding the fitness consequences of these tradeoffs is particularly important
given the global rise of emerging and re-emerging diseases due to climate change (El-Sayed &

Kamel 2020).

The patterns and processes that mediate tradeoffs in disease ecology vary by level of
organization. At the population, susceptible and infected models predict pathogen spread
based on individual abundance (Alizon et al. 2009; DiRenzo et al. 2019; Drewry 1970; Dushoff
1999; Miller et al. 2005; Simon et al. 2022; Stephenson et al. 2017), often assuming

homogeneous populations and ignoring sources of variability (but see, Dwyer et al. 1997;
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Fleming-Davies ef al. 2015; Simon et al. 2022). For example, age structure can stabilize a
population after an outbreak (Simon et al. 2022). At the individual, predator-prey models
evaluate competition for limited resources like energy. Tradeoffs in energy allocation between
host metabolism, immune cells, and pathogens lead to different outcomes depending on the
scenario (Civitello et al. 2018; Cressler et al. 2014). For example, in high-resource scenarios,
vertebrate hosts invest in immunity (Cressler et al. 2014), while parasites exploit these
resources to mediate host immune cells by stealing energy (Graham 2008; Ramesh & Hall
2023). Therefore, theoretical models should incorporate heterogeneity in susceptibility among

individuals (Dwyer et al. 1997).

Here, we develop mathematical models to identify strategies that increase host fitness when
infected with endemic pathogens —where pathogens are consistently present in the host
population— and how seasonality mediates host-pathogen dynamics. This modeling
framework will allow us to understand how the interaction between the level of infection (i.e.,
pathogen burden) and local seasonality (i.e., differences in resource availability and infection
probability ) mediates host growth rates at early life stages (Fig. 1a) and how plasticity in
energy allocation affects population survival. Dynamic optimization models can identify the
optimal defense strategy that minimizes the cost of infection at the individual level (Shudo &
Iwasa 2004). These models, built on the underlying process of the observed relationships,
allow us to describe hypotheses quantitatively and generate predictions for testing on

empirical settings (Mangel & Clark 1988; McCauley et al. 2000).

Using the well-studied Eleutherodactylus coqui- Batrachochytrium dendrobatidis (Bd) as the
host-pathogen study system (Box1), we parameterized an agent-based models to evaluate how

the growth-immune tradeoff in energy allocation at early life stages affects fitness. First, we
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identified the set of host strategies across one year that maximize future fitness. We
hypothesized that the optimal strategy for young individuals is to allocate energy for growth at
lower infection levels but shift energy to immune defenses as pathogen-mediated damage
increases. We then tracked simulated individuals using these energy allocation strategies,
hypothesizing that lower growth rates of infected individuals result from energy shifts to
immune defense (i.e., control infection), while higher growth rates allow rapid reproductive
maturation if the level of infection is manageable (Fig. 1b). Next, we evaluated whether
seasonal shifts in resource availability and pathogen exposure exacerbated these tradeoffs (Fig.
1b), expecting smaller individuals, longer times to maturity, and increased mortality in cohorts
born during less conducive growth conditions. Finally, we assessed the fate of the cohort by
analyzing individual trajectories throughout the year. Our findings provide a modeling
framework to quantify mismatches in reproductive activity, food availability, and differing
infection exposure within a seasonal context. This model can be adapted to different taxa and

climatic scenarios by varying season lengths, order, and parameter values.

Methods

Dynamic optimization models are used to study physiological tradeoffs by identifying
strategies that maximize individual fitness (Mangel & Clark 1988). This process involves three
steps: 1. Programing a stochastic dynamic equation to define changes in state variables over
time, 2. Identifying strategies that optimize future fitness using backward interactions 3.
Tracking individual trajectories over time by running forward iterations where virtual
individuals select strategies that increase the expected fitness state based on resource

availability and risk of mortality (Clark & Mangel 2000).
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Within this model approach, we developed two dynamic state variable models to determine
the energy allocation pattern that maximizes the host’s future fitness. Note that we use survival
and body size as a proxy for future fitness under pathogen infection because larger body size
implies higher survival (Cabrera-Guzman et al. 2013; Székely et al. 2020), higher fecundity
(Stearns 2000), and more (Townsend & Stewart 1994) or larger offspring (Hall et al. 2020).
Although we did not directly include reproduction in the model, the energy invested in
reproduction was accounted for by decreasing the growth rate by size unit in adults (see
below). We estimated the expected future fitness at the end of our time horizon: one year. The
discrete state variables of interest in our models were time (%), size (S), and level of infection
(I). Given that not all individuals have the same fate within a population, we incorporated
individual heterogeneity through the following probabilities: available energy obtained by
foraging (E), an uninfected individual becoming infected (P;), and the probability of dying
from natural causes as a function of body size (Ms(S)) and due to the level of infection (M;(I)).
In the basic model, these parameter values were constant across time. In the seasonal model,
the probabilities of obtaining energy (E) and of becoming infected (P;) depended on the
season (Warm/Cool). This set of generic units for variables and parameters can be applied to
multiple scenarios across taxa, but their values must be relative to the specific system that is

been studied (Breckling 2002; Mangel & Clark 1988).

We used available field data on the host Eleutherodactylus coqui and the pathogen
Batrachochytrium dendrobatidis (Bd) to parameterize a two-season model (Box 1, Table 1).
The host is a terrestrial species that reproduces all year round; its life history and the
host-pathogen dynamic with Bd have been well characterized among seasons in nature and

laboratory experiments (Box 1). We modeled frog energy allocation when faced with
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Bd-infection during development as juveniles, starting with hatching from the egg.
Specifically, we identified the state-dependent allocation to growth and immune function that
maximized the expected future reproductive success at the end of the time horizon. Then,
with the predicted frog energy allocations that maximize future fitness, we implemented an
individual-based model to simulate populations of individuals using these optimal strategies
to describe the growth trajectories (Breckling 2002; Graham et al. 2021). We also compared
between seasons by solving the model and simulating cohorts of individuals hatching at
different times of the year. Finally, we tested the sensitivity of the models by changing the

probabilities of dying as function of size and level of infection.

Building the basic model

We used life history data to establish the time horizon and the length of each time step for the
model (see Box 1, Fig. 1, Table 1). We modeled the growth of individual frogs using one-week
time intervals, starting at hatching, such that the maximum time (7)) was 52 weeks (Box 1). The
individual frogs in this model were juveniles and early adults classified as young of the year. We
modeled discrete size states (S) ranging from 1 to 208, corresponding to different continuous
measurable-length unit increases between juveniles and young adults. Size categories were
treated as fixed constants, where Unit 1 represents size upon hatching, Unit 50 represents size
at reproductive maturity, and Unit 208 represents the maximum size reported for this species.
At Unit 50, there is a change in growth rate for a given amount of energy to reflect that juveniles
and adults grow constantly but at different rates; thus, each size state reflected an increase of
0.44 mm for juveniles and 0.22 mm for adults (Fig. 1a, Box 1, Guarino et al. 2019; Joglar 1998;
Stewart & Woolbright 1996). Because we were interested in juveniles’ growth, we used average

mean growth between sexes after maturity. Growth rates tend to decrease in adults because

9
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they reallocate energy for reproduction. The level of infection (I) was modeled logarithmically
with eleven states increasing from 0 to 10, with 0 representing an uninfected individual and 1
to 10 corresponding to 10! to 10'° Bd zoospores. This topmost number of zoospores is greater
than what is previously reported for the species (Longo et al. 2010, 2013), but it can be used as
arelative scale for species that are less susceptible or tolerate Bd. For simplicity, we only had
three values of available energy, the minimum amount needed to include stochasticity while
varying the values among seasons and processes. Considering that foraging success is
stochastic, we assumed frogs obtained 0, 2, or 4 generic units of useable energy (E) per week,
with equal probability, after fulfilling their maintenance energy cost. Individuals must allocate
these energy units to one of the three strategies: grow (i = G), control infection (i = C), or split
energy between these two processes (i = B) (Fig. 1b). In all cases, size states (S) increased in

proportion to the energy allocated to growth depending on the strategy (equation 1),

S;+E, wheni=G
Si+1(1)=<8,+0, wheni=C (1)
S:+3E, wheni=B,

where i represents the energy allocation strategy and E represents the generic energy units
from foraging. Growth rates increase with temperature (Zuo et al. 2012; Alvarez & Nicieza 2002)
and food availability (Gomez-Mestre et al. 2010). In addition, an increase in temperature at
early stages when individuals are still investing energy in development can result in an
increase in the developmental rate (e.g., organogenesis and ossification) but not in the growth
rate (Gomez-Mestre et al. 2010; Orizaola & Laurila 2009). Because both factors can be
cofounded in the classification of our seasons and the complexity of development vs. growth
at early stages, we only include the energy available in our models. Although reproduction in
adults is out of the scope of this model, we can assume that the decrease in growth when

reaching the reproductive maturity (S = 50) is due to the reallocating of energy from growth to

10
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reproduction (Joglar 1998; Rombough 2006; Taborsky 2006).

Likewise, the level of infection (I) will inherently increase one unit reflecting pathogen
exponential growth. It will only decrease in proportion to the amount of energy allocated
towards pathogen control (equation 2), and remain as 0 when the individuals do not get

infected.

I;+1-0, wheni=G
I;i1()=XI1;+1-E, wheni=C (2)
I;+1-1E, wheni=B.

In the model, we did not assume acquired immunity because the host can clear infections and
become re-infected in this system (Box 1). The probability of an uninfected individual
becoming infected (P;) was 0.445, which is the mean Bd-prevalence across the year in our
study system (Box 1, Fig. S3). An individual can clear an early infection with sustained
investment in immunity but only at the expense of growth. We considered that infection levels
increased the probability of host death (Longo et al. 2013). Thus, in addition to the probability
of mortality based on size from causes independent of infection, M(S), we also included the
infection-based probability of mortality, M;(I). We modeled size-dependent mortality as a

decreasing function of body size based on a log-logistic curve (equation 3, Fig. S1a),

Ms(S)=1- (m), 3)

where M describes the probability of dying in the time horizon, which in our model

M =0.80 in one year (but see testing sensitivity of the models below). This means that an
individual with the smallest size state has a 20% chance of survival in one year. The survival
probability in one year is conservative with respect to what has been reported for adults in the
species, approximately 94%, considering that juveniles’ survival is lower than adults (Stewart
1995). The probability of dying on each time step decreases as size increases at a constant rate

according to equation 3 where d = 0.05 is the midpoint, and where St is the size with the

11



22 median probability of dying, S7 = 50 in this case. An infected individual probability of dying
213 due to infection level (M;(I)) starts very low at 9 x 10”9, and logarithmically increases every

2. two levels of infection such as equation 4 (Fig. S1b),

0, for I = {0}
9x107%, forI=1{1,2}
9x1077, forI={3,4}
9x107°, forI=/{5,6}
9x1073, forI=1{7,8}
9x 107!, for I=1{9,10}.

Mi(I) =+ 4)

215 The exponential increase in mortality can be associated to the damage cased by the
216 reproduction of the pathogen. We assumed the expected future fitness is a function of final

217 size (i.e., size at time T) and current infection such that equation 5,

F(S,1,T)=1-M;(I)
1+

— o )
¢—0.5(S-100)

21s The future fitness incorporates the expected benefits of being larger (S; Fig. S2) and the

210 probability of surviving expected due to infection (1 — M;(1)). The optimal state-specific

20 strategy (i € {G, C, B}) is the one that increases expected future fitness (F), thus we calculated
221 the fitness associated to each investment strategy (v;) and selected the maximum value

222 (equation 6),

F(S,1,t,T) =max(v;); where i € {G, C, B}. (6)

23 The optimal strategy reflects how the state variables size and infection, may change from one
224 time step to another based on the amount of energy frogs find and the energy they allocate to
22s  growth and/or control the infection. Calculating v; takes into account the probability of

26 survival as a function of size (1 — M) and infection (1 — Mj), the probability of finding different
227 amounts of allocatable energy units (pE), the future fitness F(S, I, t + 1, T), and the probability

2s of getting infected if uninfected (Pj). Therefore, equation 6 was expanded as detailed in

12
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equations 7 and 8 for infected and uninfected individuals, respectively.

Uninfected individuals are constrained to allocate all available energy to grow, and they can
become infected during that time step. Thus, v;-¢ for these uninfected individuals is as in
equation 7. We solved the equation to demonstrate how size and infection change in a

one-time step, as detailed below,

(P(EIE=0)x F[S=S;+0,I=1,t+1])+
Pipx| (P(EIE=2)xF[S=8;+2,1=1,t+1])+ |+
(P(EIE=4)x F[S=S;+4,I=1,t+1])

p(EIE=0)x F[S=8;+0,1=0,1+1]+
1-Pypyx| p(EIE=2)xF[S=8,+2,1=0,t+1]+
p(EIE=4)x F[S=S;+4,1=0,t+1]

Vi=g(§,1=0,¢,T) =1— Mg x (7

The first term corresponds to the case in which an individual becomes infected and refers to
the individuals that survive (1 — Mg) and get infected during the current time step (Pj); future
fitness (F) depends on the amount of allocatable energy (E). As a result, the future fitness
(F[St+1,1, It+1,1, £+ 1]) sets the value of the state variables (S, I, ) on the next time iteration. The
second term refers to those individuals that do not get infected during the current time step,
indicated by the probability of not getting infected (1 — Pj); as a result, the level of infection

remains zero.

In contrast, infected frogs will choose the strategy that maximizes the future fitness (F) among
the three energy allocation strategies; thus, equation 6 expands, and changes in state variables

are reflected accordingly in equation 8,

p(E|E =0)x
F[Sti1,i Iesn,ir t+ 1]+

p(E|E =2)x
F[S¢i1,iy I+, £+ 1]+

p(E|E =4)x
F(S¢iv,iIrs1,it+1]

vl(S)I>0) t) T) i): (I_MS(t)) X (I_M[([)) X ViE{GyC)B}- (8)

In this equation, the probability of getting infected (P;) is one because individuals are already

13
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infected, thus, it only has one term. However, it considers two mortality probabilities, the
probability of surviving due to external causes (1 — M) and the infection (1 — Mj). Because
infected individuals can choose among the three energy allocation strategies, the future fitness
(F[St+1,1, It+1,1, t+1]) will depend on the energy they forage and the chosen strategy. We solved
these equations to generate a matrix of state-specific optimal decisions for all possible
combinations of the three states: size, infection level, and time (Fig. 2a). Next, using state
variable elements of the decision matrix, we simulated a population of 100 individuals using
Monte Carlo chains to predict realized differences in growth rates, time to maturity, and
survival after the growing season in populations following the optimal strategy set. We chose
this population size because it is akin to the field data generated from population genomic

estimates (Torres-Sdnchez & Longo, 2022, Col6n-Pifieiro et. al. in prep).

Extending the basic model to include seasonal effects

Direct-developing frogs, like many other taxa, reproduce year-round (Bignotte-Gir6 et al. 2021;
Joglar 1998; Townsend & Stewart 1994), which suggests that they can experience suboptimal
conditions at some point during their growing period. To examine the cost of the interaction of
growing at suboptimal times and the level of infection, we generated new parameter sets for
each season (Table 1), solved the models for the optimal behavior, then simulated and

evaluated the effects of starting life at four points during the year.

The four temporal scenarios corresponding to frogs that hatch at different times of the year
differ in how the seasons occur on the time horizon. Seasons differ in terms of the probability
of becoming infected (Pj) and the probability of gaining energy (E) from foraging bouts
corresponding with the seasons; two variables that are affected by the seasonality (Box 1, Table
1). We used the prevalence of infection in each season to parameterize the probability of
getting infected (Pj) based on the proportion of infected individuals found each season (Box 1,

Fig. S3). The pathogenic fungus Bd persists all year-around in many populations(i.e.,
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endemic), including ours, and the infection dynamics respond to environmental conditions
associated with seasonality (Hollanders et al. 2022; Longo et al. 2010; Retallick et al. 2004).
Assuming that infection solely depends on the contact among individuals to infect new hosts
when we know that Bd persists in different substrates (Johnson & Speare 2005; Kolby et al. 2015
is not a good approximation (Briggs et al. 2005). Therefore, we assumed density-independent
pathogen transmission. The number of prey and foraging success vary between seasons (Box
1). Thus, we assigned a higher probability of acquiring more energy during the warm than in
the cool seasons but constant throughout each. Changing the probability of finding zero to
four energy units between seasons is a simplistic way to represent the difference in the amount
of energy individuals can obtain from foraging between seasons, which can be scaled based on
the study system without requiring more data processing capacity. Thus, the probability of
obtaining 0, 2, or 4 units of energy (E) per week from foraging was 0.45, 0.45, and 0.10,

respectively, in the cool season and 0.10, 0.45, and 0.45 in the warm season.

Evaluating fitness and infection dynamics at the population level

To evaluate the role of the interaction between seasonality and infections on individuals’
fitness, we compared the results among four seasonal scenarios that represent frogs hatching
on November-CCWW, February—-CWWC, May-WWCC, and August-WCCW. Specifically, we
compared among the seasonal scenarios: 1) the set of optimal strategies, 2) the relationship
between growth rate (i.e., differences in size states weeks 13 and one for each period divided by
13) and the mean level of infection between cool and warm seasons, and 3) three variables
associated to fitness: time to maturity (S = 50), and the size and survival at the end of the
simulation (¢ = 52). In addition, individuals’ tradeoffs in energy allocation between growth and
immunity can affect infection dynamics. Although our objectives do not include
parameterizing a SIR model, we followed the number of individuals susceptible (S), infected
(I), or removed (R; i.e., died) through time. Individuals who die due to the infection or other

causes are recorded as removed and remain removed for the rest of the time horizon. Note we
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did not distinguished between infection due to contact between hosts or with the
environment, but both transmission routes in our model system are mostly associated with
seasons (Hollanders et al. 2022; Longo et al. 2010; Retallick et al. 2004), which is accounted in

our seasonality models.

Testing sensitivity of the models

To test the robustness of the results, we ran the seasonal scenarios (CCWW, VWWC, WWCC,
and WCCW, where W refers to warm and C to cool seasons) varying the probability of dying as
a function of size (Ms(S)) and as a function of the level of infection (M;([I)). For the probability
of dying as a function of size, we set the probabilities of dying of the smallest size state (S =1)
in one year (Mp) on equation 3 to 0.2, 0.4, 0.6, and the original set at 0.8 (Fig. S1a). For the
probability of dying because of the infection, we used the same step-wise function as in
equation 4, but varying the probability of dying due to the highest infection level as a base, set
to 0.1, 0.5, 0.9 (original), and 1.0 (Fig. S1b). We chose these values because they represent a
range of all potential values including most likely scenarios in nature. We then combine both
probabilities in a total of 16 models. Then, we visually compared the density of the four traits
associated with fitness, the number of individuals that reached maturity, time to maturity, and
the mean body size of individuals and survival at week 52. Models, simulations, and graphs
were built in R (Team 2022), setting the seed number to 854354. Script developed to generate
the model solution, forward iterations, and the sensitivity analysis, as well as figures, is
available during review in a private link from FigShare,
https://figshare.com/s/8be08deca455559725a4, and will be made publicly available after

publication.
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Results

We found that size and level of infection varied with the selected strategy in the optimization
model (Fig. 2). When infection levels were very low, the strategy that maximized fitness for
most sizes was to allocate all the energy to growth (Fig. 2, I = 1), whereas splitting energy
between growing and controlling infections was the best strategy when infection was
moderate (Fig. 2, I =2 or 3). In contrast, larger size classes typically defended against the
pathogen (Fig. 2, I = 1: 3). However, independent of size, hosts allocated energy to suppress
the infection when the pathogen level reached 10* zoospores (I = 4), except when the frogs
were near the end of their growing season (> 48 weeks) (Fig. 2). When seasonality was
incorporated (Fig. 2b-d), the best strategies to increase future fitness were to grow or
grow/control infection during the warm seasons and mainly control infection during the cool
seasons when pathogen levels were between 10%-10% zoospores (I = 2 or 3). In summary,
individuals invested in growth until the level of infection threatened their survival. Then, they
shifted to invest in controlling the infection. Moreover, incorporating seasonality (i.e., energy
availability, and probability of getting infected) in our optimization model made the optimal
strategies more dynamic and demonstrated that individuals must adjust their energy

investment strategies according to seasons.

The sets of strategies maximizing future fitness in different models resulted in shifts in growth
rates on the forward simulations. The growth rate curve from the simulation using the
optimized strategies from the basic model was linear until they reach maturity at state S = 50,
when the asymptote is observed (Fig. 3a top). In contrast, the slope’s steepness differed
between seasons in the seasonally-explicit optimization models (Fig. 3a). In addition, our
forward simulations revealed the resisted infection thresholds as individuals always kept levels
of infection below 10° zoospores (Fig. 3a and S4a). The optimized shifts in energy allocation
based on the decision matrices (Fig. 2) resulted in increased growth rates when individuals

carried low infections (lighter colors) and decreased with higher ones (darker colors) (Fig. 3a).
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As expected, our between-model comparisons of growth rates across the mean level of
infection varied between models and seasons within models (Fig. 3b and S4b). In both
models, the growth rate decreased with the individuals’ mean level of infection. However,
whereas the decrease in the basic model is constant (Fig. 3b top), the slope and the intercept
varied between seasons (Fig. 3b). For example, models showed differences in the intercept
between seasons and more variation in infection intensities during the cool season (blue
points on Fig. 3b). Moreover, growth rates were always higher, and mean infection levels were
always lower in warm than in cool seasons, accurately reflecting the results from the decision

matrices (Fig. 2b-d).

Overall, our results showed that the seasons in which frogs hatched significantly influenced
their growth and infection trajectories. The best time to hatch for E. coqui is at the beginning of
the warm season (W-W-C-C) followed by the end of the cool (C-W-W-C; Fig. 4). Although frogs
can achieve similar sizes in one year (Fig. 4c), more individuals reached maturity (Fig. 4a) and
at a higher rate (Fig. 4b), thus, increasing their likelihood of survival given the seasonal pattern
(Fig. 4d). In contrast, the worst scenarios occurred when frogs hatched at the beginning of the
cool (C-C-W-W) or at the end of the warm seasons (W-C-C-W) because fewer individuals
reached maturity within one year (Fig. 4a), time to maturity was longer to those that arrived
(Fig. 4a), and the likelihood of surviving the 52 weeks was lower (Fig. 4c). When testing the
sensitivity of the model, we found subtle differences associated with the probability of dying
due to the infection level (M) but not as a function of size (M) (Fig. S5 and Fig. S6). When the
probability of dying due to the infection was the highest (M;(I = 10) = 1.0; models with D10 in
their y axis labels in Fig. S5 and Fig. S6), the number of individuals reaching maturity (Fig. S5a)
and survival at week 52 (Fig. S6b) decreased, while the size at week 52 increased (Fig. S6a).

Despite these differences, the best and worst scenarios were the same across models.

The population infection dynamics varied by models and scenarios (5a). In general, the

number of susceptible individuals (i.e., non-infected; green in Fig. 5a) decreased at the
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beginning and remained close to zero, suggesting that most individuals remained infected
with low pathogen burden. When comparing among seasonal scenarios, the number of
susceptible individuals is always zero after weeks 11 or 5 in the worst scenarios (CCWW and
WCCW, Fig. 5a), meaning that individuals who hatched at the beginning of the cool or middle
of the warm seasons can control, but never clear, the infection. Meanwhile, infected
individuals (pink in Fig. 5a) hatching at the beginning of the warm (WWCC) or middle of the
cool (CWWQC) seasons can clear infections and remain uninfected during cool seasons (open
circles in Fig. 5a) because the probability of getting infected is lower. As a result, the number of
susceptible individuals increased in the cool seasons. In contrast, the mean level of infection
in the population is higher during the cool season (open circles in Fig. 5b) than during the
warm seasons (filled circles in Fig. 5b). Smaller and/or highly infected individuals had a higher
probability of dying (i.e., dead; blue in Fig. 5). The numbers of dying individuals are higher
than infected individuals only in the worst scenarios (CCWW and WCCW) (Fig. 5), confirming
that the mortality is higher when individuals hatched at the beginning of the cool or at the end

of the warm seasons.

Discussion

Hosts across different taxa exhibit variations in their physiological and immunological
responses to outbreaks of emerging pathogens (Genersch & Aubert 2010; Kohl et al. 2016;
Longo et al. 2023; Soler et al. 2003; Wilder et al. 2011). Although mathematical models have
been previously used to understand host-pathogen interactions at the population level, our
dynamic state variable approach explicitly showed the optimal strategies to increase fitness
and how these strategies affect host population dynamics. Overall, our models show that: 1)
high levels of infection trigger a reallocation of energy from growth to immune defense; 2)
differences in energy availability between seasons exacerbate the effects of this tradeoff; 3) this

tradeoff leads to delayed maturity and reduced survival for individuals experiencing a cool
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season immediately after hatching; and 4) these tradeoffs influence both population size and

host-pathogen dynamics, even when density-dependent interactions are not considered.

Identifying tradeoffs using dynamic optimization models

Our results suggest that an optimal strategy is for individuals to resist or tolerate infection as
long as possible, investing in growth and turning to strong defenses when infection levels are
high, close to the lethal threshold (Fig. 2). In nature, this pattern is expected because the cost
of the immune response is higher than maintenance costs (Derting & Compton 2003).
Individuals increase the probability of survival by allocating energy to control and/or clear the
infections, but this shift comes at the cost of growth, resulting in delayed maturity (Fig. 3).
Surprisingly, we did not observe significant size differences between simulations. However,
individuals with higher mean infection levels were smaller within each simulation. These
results indicate that energy allocation to control the infection produces smaller individuals
(Burrowes et al. 2008). In other systems, individuals exhibit elevated wound healing capacity at
the cost of lower growth rates (Korfel ef al. 2015) and delayed maturity (Saumier et al. 1986).
Because body size and time to maturity are associated with fitness and recruitment
(Hilderbrand et al. 2019; Scheele et al. 2024; Townsend & Stewart 1994; Wise & Jaeger 2021),
future fitness should be accounted for when evaluating population viability after disease

outbreaks.

Our models emphasized the tradeoff between energy allocated to control the infection versus
growth, and our results align with natural observations (Burrowes et al. 2008). However, we
recognize that a mosaic of interacting mechanisms can result in size differences between
infected and non-infected individuals. For example, frogs might experience a downward spiral
where infection prevents them from acquiring adequate energy due to reduced appetite or
foraging success during disease (Carter et al. 2020; Peterson et al. 2013; Venesky et al. 2009).

Additionally, immune diversity may increase with age, with larger individuals carrying more
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receptors related to acquired resistance (Savage & Zamudio 2011). Thus, we propose
experiments manipulating food intake followed by pathogen exposure to confirm the

mechanisms responsible for these growth-defense tradeoffs.

Seasonality exacerbates the growth-defense tradeoffs

Host-pathogen dynamics and food availability vary by season (Longo et al. 2010; Stewart &
Woolbright 1996). We expected the season in which individuals hatch would exacerbate
differences in the growth-defense tradeoff in energy allocation and growth rate. When
analyzed at the population level (i.e., 100 individuals simulated per scenario), frogs body size
at one year did not vary across models because they mostly chose to invest in growth, which is
critical at early stages to increase survival (Altwegg & Reyer 2003; Taborsky 2006). To
compensate for size, individuals use two mechanisms: increasing growth rate after a period of
poor nutrition and reduced growth, as shown by the spline pattern driven by higher growth
rates during warm seasons in Fig. 3a; or by delaying maturity, as in Fig. 4a (Finkielstain et al.
2013; Metcalfe & Monaghan 2001). In nature, compensation can be even higher because the
growth rates increase with warmer temperatures (Colon-Pifieiro 2017). However,
compensatory growth after poor nutrition provides short-term advantages but comes at a cost,
ranging from reduced locomotion performance to a shorter lifespan (reviewed in Metcalfe &

Monaghan 2001).

The growth-defense tradeoff results in higher pathogen loads, particularly under low food
availability (Guyer 1988; Schiesari et al. 2006). Consistent with previous studies in natural frog
populations (Garnham et al. 2022; Longo et al. 2010), higher levels of infections near and above
10* Bd zoospores (I > 4) were only observed during the cool season when seasonality was
included. Although the prevalence (number of infected individuals) was lower in the cool
seasons, the mean pathogen burden of the population was higher, indicating that infected

individuals carried more Bd zoospores. In the tropics, drier seasons are associated with cooler
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temperatures (Longo et al. 2010), and drought-related stress makes frogs more susceptible to
pathogens (Longo et al. 2010) while Bd operates optimally at lower temperatures (Van Rooij

et al. 2015). Additionally, the density of individuals in nature varies among seasons (Stewart
1995, Colén-Pifieiro et al., in review) and can affect host-pathogen interactions due to higher
shedding rates (Garnham et al. 2022) or physical contact among individuals (Adams et al. 2017;
Kupferberg et al. 2022) in cool-dry seasons. Our simulations showed differences in the density
of individuals, even without considering density dependence in host transmission. Thus,
longer, cooler, and drier seasons will be devastating for amphibians already threatened by
emergent pathogens and climate change in the tropics and worldwide (Guirguis et al. 2023;

Scheele et al. 2019).

Poor parental decisions influenced future fitness traits

Our model also predicts that seasonality affects time to maturity and survival (Fig. 3a, S2, and
4a,c), which can have carryover effects on long-term population viability (Cabrera-Guzmén

et al. 2013). Hatching at the end of the warm season was unfavorable, likely due to increased
disease mortality risks, smaller size, and high infection rates. Because parents determine the
hatching season, our models indicate that reproducing during the cool season results in lower
offspring fitness. We speculate that reproduction at suboptimal times may occur when
high-fitness individuals reproduce a second time in a year or low-fitness individuals that failed
to mate during the warm season (Hobel et al. 2021; Townsend & Stewart 1994). Regardless of
parental fitness, reproduction during the cool (and usually dry) season decreases the survival
probability of the offspring due to additional stressors, including reduced water availability,
weaker immune responses, and exposure to less diverse microbiomes (Le Sage et al. 2021;
Longo et al. 2015). Future empirical research with longitudinal data could validate our model

predictions on recruitment and survival.
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Potential applications of dynamic models in conservation

Understanding these interactions is particularly important for predicting population
recruitment amid extreme climatic events (Planton et al. 2008; Ummenhofer & Meehl 2017).
For example, prolonged droughts can disrupt animal communities, including frogs and their
prey (Lister & Garcia 2018). Climate models anticipate longer and more irregular dry seasons
(Neelin et al. 2006; Nurse & Sem 2001; Team et al. 2015), challenging amphibian adaptability.
Our study focuses on tropical ecosystems with warm-wet and cool-dry seasons (Burrowes

et al. 2004), but by adjusting parameter values, our dynamic model can predict outcomes in
other bioclimatic zones under different climate scenarios, including disease outbreaks and
extreme droughts. While we focused on pathogens, future models could include parasitic
energy drains (Graham 2008; Ramesh & Hall 2023) by adjusting energy losses during
infections. Shifts in season duration and increases in extreme weather events pose extinction

risks (Parmesan et al. 2000), especially for species recovering from initial pathogen outbreaks.

Conservation programs breed threatened species for reintroduction, for example, amphibian
species threatened by Bd (Harding et al. 2016). These initiatives require population viability
analysis and modeling to assess disease impacts on reintroduction success (Ballou 1993).
Extensions of our model may allow researchers to predict the best time to release individuals
into the wild based on reproductive patterns and infection risk. The response to infections and
seasons depends on the intrinsic traits of the host and the pathogen and is context-specific
(Civitello et al. 2018). Because the state variables are relative to the system, our model can be
extended to other scenarios and endangered taxa, providing key conservation insights. We

hope conservation efforts include dynamic modeling to increase reintroduction success.

Conclusions and future directions

Our results demonstrate that flexible energy allocation strategies promote survival and fitness

under different pathogen pressures. Individuals are expected to prioritize growth over
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infection control, tolerating infections rather than sacrificing growth unnecessarily. Frogs only
allocated energy to control infections at sub-lethal levels, leading to delayed maturation and
potential long-term fitness impacts (Hilderbrand et al. 2019; Townsend & Stewart 1994; Wise &
Jaeger 2021) (Scheele et al. 2024). Our models also demonstrated that individuals can slightly
compensate for a “bad start” due to seasonality by growing faster during transitions or
delaying maturity (Finkielstain ef al. 2013; Metcalfe & Monaghan 2001; Székely et al. 2020).
Finally, our models revealed that the energy allocation tradeoffs to increase future fitness affect
population size and infection without density dependence on host-pathogen interactions.
Common-garden experiments can provide empirical evidence for these predictions. For
example, experiments varying food availability according to seasonal patterns could reveal
more about the consequences of infection across life-history stages. In addition, modeling the
reproduction-defense tradeoffs in adults can be coupled with our model to increase our
understanding of how pathogens drive population dynamics under different climatic
scenarios. Our research highlights the utility of dynamic state variable models, which can be
extended to multiple species and conditions (e.g., extreme droughts, pathogen outbreaks, and
species reintroduction for conservation) by adjusting parameter values with empirical data

collected from experiments or field observations.
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Box 1

Natural history: Eleutherodactylus coqui, the coqui, is a tropical direct-developing frog
endemic to Puerto Rico. Direct-developing frogs evolved to bypass the tadpole stage and
emerge from the egg as miniature adults in terrestrial environments. Reproduction occurs
throughout the entire year (Bignotte-Giré et al. 2021; Joglar 1998; Townsend & Stewart 1994),
fertilization is internal (Townsend ef al. 1981), and male parents take care of the clutch during
the entire pre-hatching developmental period and even a few days after hatching (Joglar 1998;
Townsend et al. 1984). Thus, we expect fitness costs to have their greatest effects during early
life-history stages, particularly when newborn frogs hatch at suboptimal times. The likelihood
of survival in juveniles is further diminished by environmental stress because individual
mortality is expected after prolonged dry periods of five days (Stewart 1995). Coqui frogs hatch
at a snout-to-vent length (SVL) of 6 mm on average (Col6n-Pifieiro 2017) and take
approximately nine months to one year to reach maturity (Joglar 1998; Woolbright 1983) at

=~ 28 mm, independent of sex (Stewart & Woolbright 1996; Townsend & Stewart 1994). Like
many amphibians, coquis constantly grow until reaching sexual maturity, when growth rates
decrease and vary between sexes (Guarino et al. 2019; Stewart & Woolbright 1996); the
maximum size reported for an adult female is 63 mm (Joglar 1998J). In addition, parental care
can increase infection risk of the offspring due to close contact of newborns with sloughing

skin from the male.

Despite less drastic temperature changes in the tropics than in temperate zones, the diversity
and abundance of amphibians’ prey change over time (Garrison & Willig 1996). Likewise, field
studies have demonstrated reduced stomach content of tropical frogs during the dry season
(Pough et al. 1983; Stewart & Woolbright 1996; Woolbright & Stewart 1987). Collectively, these
findings suggest seasonal differences in resource availability for coqui frogs.

Host-pathogen dynamics: In our previous studies, we have primarily shown pathogen

infection affecting adult mortality, but identified infected juveniles as a vulnerable life-history
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stage (Langhammer et al. 2014; Longo & Burrowes 2010; Longo et al. 2015). Coqui frogs can
become reinfected after clearing the pathogen, suggesting no acquired immunity
(unpublished data, Longo & Burrowes). The coqui-Bd interactions vary between seasons,
where the prevalence of infection is higher during the warm periods (unpublished data, Longo
& Burrowes). Bd-infected frogs are expected to be more prevalent when water is available
because the fungus has an aquatic zoospore that takes around five days to complete its life
cycle (Berger et al. 2005; Van Rooij et al. 2015). However, identifying the mortality threshold
and associated level of infection is difficult in the field. We have quantified 10'° B4 ITS copies
from individuals in natural populations (unpublished data, Longo & Burrowes), and moribund
individuals have been reported with a level of infection as low as 10* and 10° zoospores (Longo
et al. 2013). Finally, infection with Bd is more common in smaller-sized adults in nature
(Burrowes et al. 2008), suggesting infected direct-developing frogs incur a tradeoff between

growth and immune response.
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Table 1: Description of parameters used in the models and associated values.

Parameter | Description Values
t Current time steps reflecting an increase | {1:52} for weeks 1:52
of one week each for one year. One year
corresponds to species growing season
—hatching to maturity—.
r+1 Indicates the next time step. {2:52} for weeks 2:52
S Size states, each reflecting an increase | {1:208}, where
of 0.44 mm in juveniles and 0.22 mm in | - juveniles {1:50} for 6:28mm
adults SVL (snout-to-vent length) based | - adults {51:208} for 28:63mm
on species pre- and post-maturity sizes.
1 Level of infection reflecting a ten-fold | {0:10}, where
increase in the number of Bd-zoospores | - 0 = non-infected
as a measure of the pathogen burden. -{1:10} = (10 : 1019 Z0OOSpores
i Strategies to allocate their available en- | {G, C, B} where
ergy each week. - G = Grow
- C = Control infection
- B = Grow /control infection
E Weekly energy units obtained from for- | {0, 2, 4} with a probability of:
aging based on probability as a function | - {0.33, 0.33, 033} in No seasons
of the model and season. - {0.45, 0.45, 0.1} in Cool season
-{0.1, 0.45, 0.45} in Warm season
P Probability of an uninfected individual | - No season = 0.45
becoming infected based on the preva- | - Cool =0.51
lence of the pathogen in nature. - Warm = 0.39
M;s(S) Probability of dying due to causes other | Defined in equation 3
than the infection estimated as a func-
tion of size.
d Decreasing constant rate of the proba- | 0.05
bility of dying as a function of size.
St Constant indicating the size at the mid | 50
probability of dying using the maturity
size state S = 50.
M; Probability of dying due to the level of | {0:107!}, where

infection, the value increases one-fold
every two levels of infection.

-MIy=0,MI;., =9%107°,
-MI3=9%107*

- MI5:6 =9 10_3,
-MI;.5=9%1072
-MIgy9=9%10""
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Figure legends

Figure 1. Diagram illustrating: (a) the expected growth rates at different life stages and (b) the
grow-defense tradeoff hypotheses during the time horizon examined using dynamic
optimization models based on the E. coqui and Bd system in Box 1. In a, juveniles grow at a
constant rate independently of sex, growth rate decreases after maturity, and it can vary
between sexes. Because we focused on the development of juveniles, we used the mean
growth rate (dashed line). The growth rate graph was adapted for E. coqui from Joglar (1998).
In b, differences in prey diversity and abundance between seasons determine energy intake,
and the difference in pathogen spreading capacity influences the probability of an uninfected
individual to become infected. Whereas, the infection status affects energy allocation towards
growth or pathogen defense. As a result, growth rate will be higher when individuals allocate
all their energy to grow, thus reaching maturity earlier. The arrows’ width is proportional to the
amount of energy intake allocated to each process. Words in grey indicate no energy allocated

to the process, and the relative size of the frogs illustrates growth rates.

Figure 2. Decision matrices for different infection levels and seasonal scenarios. Our models
include the basic model (a) and different seasonal scenarios (b-d) in which the cool (C) and
warm (W) periods are alternated. The cool season was characterized for individuals less
energy available (E in equation 1) and a lower probability of getting infected (P; in equation 7)
than in the warm season. Colors indicate the best strategies to increase future fitness
generated by the model. Each graph’s size states increase from the bottom to the top (0-208)
and time from left to right (1-52 wks). For the level of infection, 0 indicates uninfected, and 1 to
10 corresponds to 10! to 10'° Bd zoospores. Each panel corresponds to a specific level of
infection for each model-scenario combination. Parameter values of these models were based

on the E. coqui and Bd system in Box 1.

Figure 3. Growth of the individuas (size in snout-to-vent length, SVL) based on the forward

simulations (a) and the relationship between growth rate and mean level of infection (b) based
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on optimized strategies for one simulation with 100 individuals inferred by the basic (top) and
seasonal models. Parameter values change based on the model and seasonal scenarios in
which the cool (C) and warm (W) seasons are alternated. The cool season was characterized
for individuals less energy available (E in equation 1) and a lower probability of getting
infected (P; in equation 7) than in the warm season. Each line in (a) represents one single frog,
the colors indicate the level of infection at each time step, and the (x) shows when the
individual died. Vertical grey lines separate the year into four periods of 13 weeks, which in the
seasonal model correspond to a specific season; dashed-horizontal lines indicate the size state
at which individuals reach maturity (5=50). Solid black lines track the mean growth rate trend
for each simulation. Each point in b represents a period of 13 weeks for each individual.

Parameter values of these models were based on the E. coqui and Bd system in Box 1.

Figure 4. Fitness-related values distributions for the basic (No seasons) and the seasonality
models including: (a) the number of individuals that reached maturity within one year, (b)
mean time to maturity, (c) mean size at week 52, and (c) percentage of individuals surviving in
week 52. Data distributions correspond to 100 forward simulations of the dynamic
optimization models with 100 individuals per simulation for the base and seasonality models,
including seasonal alternations between cool (C) and warm (W) periods. The cool season was
characterized by less energy available (E in equation 1) and a lower probability of getting

infected (P; in equation 7) than in the warm season.

Figure 5. Population dynamics for the basic (No seasons) and the seasonality models
including: (a) Number of individuals that were susceptible (S), infected (I), and removed (R)
and (b) mean Bd zoospores of the population across time. Data corresponds to 100 forward
simulations of the dynamic optimization models with 100 individuals per simulation for the
base and seasonality models, including seasonal alternations between cool (C) and warm (W)
periods. The cool season was characterized by less energy available (E in equation 1) and a

lower probability of getting infected (P; in equation 7) than in the warm season.
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Figure S1. Probability of dying as a function of discrete (a) size-S and (b) infection-I states
based on equations 3 and 4, respectively. Although the equations are the same, parameter
values are indicated by colors. In (a), we varied the probability of dying as a function in one
year at the smallest size state (M), whereas in (b), the probability of dying at the highest

infection level (M;(I = 10)). Note they are in a log( scale.

Figure S2. Forward simulations (a-e) based on optimized strategies for 100 individuals
inferred by the basic (No seasons) (a) and seasonal (b-e) models using the size of the
individuals (snout-to-vent length — SVL) instead of the size states of the model. We calculated
size based on the following formulas: for size states = 50[(S — 1) * 0.44 + 6] and for size states

> 50[6 + (49 % 0.44) + (S—50) = 0.22)]. Parameter values change based on the model and
seasonal scenarios in which the cool (C) and warm (W) seasons are alternated. The cool
season was characterized by less energy available (E in equation 1) and a lower probability of
getting infected (P; in equation 7) than in the warm season. Each line represents one single
frog, the colors indicate the level of infection at each time step, and the (x) shows when the
individual died. Vertical grey lines separate the year into four periods of 13 weeks, which in the
seasonal model correspond to a specific season; dashed-horizontal lines indicate the size state

at which individuals reach maturity (SVL=28).

Figure S3. Prevalence of Bd-infected individuals at Palo Colorado Forest in El Yunque, Puerto
Rico. Prevalence was calculated by monthly sampling for over a year (unpublished data, Longo

& Burrowes).

Figure S4. Growth of the individuals (size states) based on the forward simulations (a) and the
relationship between growth rate and mean level of infection (b) based on optimized strategies
for one simulation with 100 individuals inferred by the basic (top) and seasonal models.
Parameter values change based on the model and seasonal scenarios in which the cool (C) and
warm (W) seasons are alternated. The cool season was characterized for individuals less

energy available (E in equation 1) and a lower probability of getting infected (P; in equation 7)
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than in the warm season. Each line in (a) represents one single frog, the colors indicate the
level of infection at each time step, and the (x) shows when the individual died. Vertical grey
lines separate the year into four periods of 13 weeks, which in the seasonal model correspond
to a specific season; dashed-horizontal lines indicate the size state at which individuals reach
maturity (5=50). Solid black lines track the mean growth rate trend for each simulation. Each
point in b represents a period of 13 weeks for each individual. Parameter values of these

models were based on the E. coqui and Bd system in Box 1.

Figure S5. Fitness-related value distributions associated with maturity variables for the basic
(No seasons) and the seasonality models, in which the cool (C) and warm (W) seasons are
alternated. The cool season was characterized for individuals less energy available (E in
equation 1) and a lower probability of getting infected (P; in equation 7) than in the warm
season. Fitness traits included: (a) the number of individuals that reached maturity within one
year and (b) mean time to maturity. Data distributions correspond to 100 forward simulations
of the dynamic optimization models with 100 individuals per simulation for each one of the
combinations in parameter values. In the models id codes, S indicates the probability of dying
as function of size (M), where in S2 My =0.2,in S4 My =0.4,in S6 My = 0.6, and in S8

My = 0.8 using equation 3 (see Fig. S1a); and D indicates the probability of dying due to the
infection level (M), where in D1 ranged from 1 x 107 to 1 x 10~1, in D5 ranged from 5 x 107 to
5x 107}, in D9 ranged from 9 x 10> t0 9 x 107!, and in D10 ranged from 9 x 10™* to 1 x 10°
following equation 4 (see Fig. S1b). S8D9 corresponds to the original model based on E. coqui -

Bd study system (Box1).

Figure S6. Fitness-related value distributions associated with the end of the time horizon
variables for the basic (No seasons) and the seasonality models, in which the cool (C) and
warm (W) seasons are alternated. The cool season was characterized for individuals less
energy available (E in equation 1) and a lower probability of getting infected (P; in equation 7)

than in the warm season. Fitness traits included: (a mean size at week 52, and (b) percentage
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of individuals surviving in week 52. Data distributions correspond to 100 forward simulations
of the dynamic optimization models with 100 individuals per simulation for each one of the
combinations in parameter values. In the models id codes, S indicates the probability of dying
as function of size (Mg), where in S2 My =0.2,in S4 My =0.4,in S6 My = 0.6, and in S8

Mjp; = 0.8 using equation 3 (see Fig. S1a); and D indicates the probability of dying due to the
infection level (M;), where in D1 ranged from 1 x 107> to 1 x 107!, in D5 ranged from 5 x 107 to
5x 107}, in D9 ranged from 9 x 107> to 9 x 107!, and in D10 ranged from 9 x 107 to 1 x 10°
following equation 4 (see Fig. S1b). S8D9 corresponds to the original model based on E. coqui -

Bd study system (Box1).
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