
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (Volume 1: Long Papers), pages 5030–5047

June 16-21, 2024 ©2024 Association for Computational Linguistics

Language Models Implement Simple Word2Vec-style Vector Arithmetic

Jack Merullo

Department of Computer Science

Brown University

jack_merullo@brown.edu

Carsten Eickhoff

School of Medicine

University of Tübingen

carsten.eickhoff@uni-tuebingen.de

Ellie Pavlick

Department of Computer Science

Brown University

ellie_pavlick@brown.edu

Abstract

A primary criticism towards language mod-

els (LMs) is their inscrutability. This paper

presents evidence that, despite their size and

complexity, LMs sometimes exploit a simple

vector arithmetic style mechanism to solve

some relational tasks using regularities en-

coded in the hidden space of the model (e.g.,

Poland:Warsaw::China:Beijing). We investi-

gate a range of language model sizes (from

124M parameters to 176B parameters) in an

in-context learning setting, and find that for a

variety of tasks (involving capital cities, upper-

casing, and past-tensing) a key part of the mech-

anism reduces to a simple additive update typ-

ically applied by the feedforward (FFN) net-

works. We further show that this mechanism

is specific to tasks that require retrieval from

pretraining memory, rather than retrieval from

local context. Our results contribute to a grow-

ing body of work on the interpretability of LMs,

and offer reason to be optimistic that, despite

the massive and non-linear nature of the mod-

els, the strategies they ultimately use to solve

tasks can sometimes reduce to familiar and

even intuitive algorithms.1

1 Introduction

The growing capabilities of large language mod-

els (LLMs) have led to an equally growing inter-

est in understanding how such models work un-

der the hood. Such understanding is critical for

ensuring that LLMs are reliable and trustworthy

once deployed. Recent work in interpretability

has contributed to this understanding by reverse-

engineering the data structures and algorithms that

are implicitly encoded in the model’s weights, e.g.,

by identifying detailed circuits (Wang et al., 2022;

Elhage et al., 2021; Olsson et al., 2022) or by iden-

tifying mechanisms for factual storage and retrieval

which support intervention and editing (Geva et al.,

1Code available at: https://github.com/jmerullo/

lm_vector_arithmetic

2021a; Li et al., 2022; Meng et al., 2022a,c; Dai

et al., 2022).

Here, we contribute to this growing body of work

by analyzing how LLMs recall information during

in-context learning. Modern LLMs are based on a

complex transformer architecture (Vaswani et al.,

2017) which produces contextualized word embed-

dings (Peters et al., 2018; Devlin et al., 2019) con-

nected via multiple non-linearities. Despite this, we

find that LLMs implement a basic vector-addition

mechanism qualitatively similar to relational infor-

mation encoded in their static word embeddings

predecessors Mikolov et al. (2013). We also find

that for non-injective relations that static embed-

dings typically fail to encode (Gladkova et al.,

2016), LMs do not use the identified mechanism

(Appendix G).

We study this phenomenon across nine tasks, but

focus on three in the main paper: recalling capital

cities, uppercasing tokens, and past-tensing verbs.

Our key findings are:

• We find evidence of a distinct process-

ing signature in the forward pass which

characterizes argument-function processing

(§3). That is, if models need to perform the

get_capital(x) function, which takes an ar-

gument x and yields an answer y, they first

surface the argument x in earlier layers which

enables them to apply the function and yield

y as the final output (Figure 2). This signature

generalizes across models and tasks, but ap-

pears to become sharper as models increase

in size.

• We take a closer look at GPT2-Medium, and

find that the vector arithmetic mechanism is

often implemented by mid-to-late layer feed-

forward networks (FFNs) in a way that is mod-

ular and supports intervention (§4). E.g.,

an FFN outputs a content-independent update

which produces Warsaw given Poland and can

5030

be patched into an unrelated context to pro-

duce Beijing given China. We don’t find this

evidence of this mechanism being used for

tasks in which word embedding vector arith-

metic classically fails (Appendix G).

• We demonstrate that this mechanism is spe-

cific to recalling information from pretrain-

ing memory (§5). For settings in which

the correct answer can be retrieved from the

prompt, this mechanism does not appear to

play any role, and FFNs can be ablated en-

tirely with relatively minimal performance

degradation. Thus, we present new evidence

supporting the claim that FFNs and attention

specialize for different roles, with FFNs sup-

porting factual recall and attention copying

and pasting from local context.

Taken together, our results offer new insights about

one component of the complex algorithms that un-

derlie in-context learning. The mechanism’s sim-

plicity raises the possibility that other apparently

complicated behaviors may be supported by a se-

quence of simple operations under the hood. More-

over, our results suggest a distinct processing sig-

nature and hint at a method for intervention. These

ideas could support future work on detecting and

preventing unwanted behavior by LLMs at runtime.

2 Methods

In decoder-only transformer language models

(Vaswani et al., 2017), a sentence is processed one

word at a time, from left to right. In this paper, we

focus on the transformations that the next-token

prediction undergoes in order to predict the an-

swer to some task. At each layer, an attention

module and feed-forward network (FFN) module

apply subsequent additive updates to this represen-

tation. Consider the FFN update at layer i, where

xi is the current next-token representation. The

update applied by the FFN here is calculated as

FFN(x⃗i) = o⃗i, ⃗xi+1 = x⃗i + o⃗i where ⃗xi+1 is the

updated token for the next layer. Due to the resid-

ual connection, the output vector o⃗i is added to the

input. x⃗ is updated this way by the attention and

FFNs until the end of the model, where the token

is decoded into the vocab space with the language

modeling head E: softmax(Ex⃗). From start to end,

x is only updated by additive updates, forming a

residual stream (Elhage et al., 2021). Thus, the to-

ken representation xi represents all of the additions

made into the residual stream up to layer i.

2.1 Early Decoding

A key insight from the residual stream perspective

is that we can decode the next token prediction with

the LM head before it reaches the final layer. This

effectively allows for “print statements” through-

out the model’s processing. The intuition behind

this technique is that LMs incrementally update the

token representation x⃗ to build and refine an encod-

ing of the vocabulary distribution. This technique

was initially introduced in nostalgebraist (2020) as

the logit lens, and Geva et al. (2022b) show that

LMs do in fact refine the output distribution over

the course of the model. Figure 1 illustrates the

process we use to decode hidden states into the

vocabulary space using the pre-trained language

modeling head E. After decoding, we apply a soft-

max to get a probability distribution over all tokens.

When we decode at some layer, we say that the

most likely token in the resulting vocab distribu-

tion is currently being represented in the residual

stream. We examine the evolution of these predic-

tions over the course of the forward pass for several

tasks.

2.2 Tasks

We apply early decoding to suite of in-context learn-

ing tasks to explore the transformations the next

token prediction undergoes in order to predict the

answer.

World Capitals The World Capitals task

requires the model to retrieve the capital city for

various states and countries in a few-shot setting.

The dataset we use contains 248 countries and

territories. A one-shot example is shown below:

“Q: What is the capital of France? A: Paris Q:

What is the capital of Poland? A:___" Expected

Answer: “ Warsaw"
Reasoning about Colored Objects We focus on

a subset of 200 of the reasoning about colored

objects dataset prompts (i.e., the colored objects

dataset) from BIG-Bench (Srivastava et al., 2022).

A list of colored common objects is given to the

model before being asked about one object’s color.

For the purposes of this paper, we focus only

on one aspect of this task–the model’s ability to

output the final answer in the correct format.2

2The reason for this is that most of the results in this paper
were originally observed as incidental findings while studying
the Colored Objects task more generally. We thus zoom in on
this one component for the purposes of the mechanism studied
here, acknowledging that the full task involves many other
steps that will no doubt involve other types of mechanisms.

5031

(

Figure 1: When decoding the next word, additive updates are made through the residual connections of each

attention/FFN sub-layer. To decode the running prediction at every layer, the pre-trained language modeling head is

applied at various points in each layer as in Geva et al. (2022a); nostalgebraist (2020). The o⃗ vector interventions

we make (§4.1) are illustrated by patching one or more FFN outputs with one from another example

“Q: On the floor, I see a silver keychain, [...] and a

blue cat toy. What color is the keychain?

A: Silver

Q: On the table, you see a brown sheet of paper, a

red fidget spinner, a blue pair of sunglasses, a teal

dog leash, and a gold cup. What color is the sheet

of paper?

A:___" Expected answer: “ Brown"

Past Tense Verb Mapping Lastly, we examine

whether an LM can accurately predict the past

tense form of a verb given a pattern of its present

tense. The dataset used is the combination of

the regular and irregular partitions of the past

tense linguistic mapping task in BIG-Bench

(Srivastava et al., 2022). After filtering verbs in

which the present and past tense forms start with

the same token, we have a total of 1,567 verbs.

An example one-shot example is given below:

“Today I abandon. Yesterday I abandoned. Today

I abolish. Yesterday I___" Expected answer: “

abolished"
The above tasks could all be described as one-

to-one (e.g., each country has one capital, each

word only has one uppercase/past tense form). In

Appendix G we explore six additional tasks, three

of which are either many-to-many or many-to-one.

We find that the observed mechanism only applies

to one-to-one relations, indicating that the model

learns some sensitivity to this type of relation in

order for it to represent the structure required for

the mechanism described here, similar to static

embeddings (Gladkova et al., 2016)/

2.3 Models

We experiment on decoder-only transformer LMs

across various sizes and pre-training corpora.

When not specified, results in figures are from

GPT2-medium. We also include results portraying

Layer Top Token

0 (

1 A

2 A

3 A

4 A

5 A

6 No

7 C

8 A

9 A

10 A

11 A

12 Unknown

13 C

14 St

15 Poland

16 Poland

17 Poland

18 Poland

19 Warsaw

20 Warsaw

21 Warsaw

22 Warsaw

23 Warsaw

Figure 2: Decoding the next token prediction at each

layer reveals distinct stages of processing. The red box

(A) shows where the model prepares an argument for

transformation, the blue box (B) shows the function

application phase during which the argument is trans-

formed (here with the capital_of function, and the

yellow box (C) shows a saturation event, in which the

model has found the answer, and stops updating the top

prediction. The dashed line shows the logit difference

between argument and answer at each layer.

the stages of processing signatures in the resid-

ual streams of the small, large, and extra large

variants (Radford et al.), the 6B parameter GPT-

J model (Wang and Komatsuzaki, 2021), and the

176B BLOOM model (Scao et al., 2022), either in

the main paper or in the Appendix.

3 Stages of Processing in Predicting the

Next Token

First, we use the early decoding method in order to

investigate how the processing proceeds over the

course of a forward pass to the model. Each task

requires the model to infer some relation to recall

some fact, e.g., retrieving the capital of Poland. In

these experiments, we see several discrete stages

of processing that the next token undergoes before

5032

reaching the final answer. These states together pro-

vide evidence that the models "apply" the relevant

functions (e.g., get_capital) abruptly at some

mid-late layer to retrieve the answer. Moreover, in

these cases, the model prepares the argument to

this function in the layers prior to that in which the

function is applied.

In Figure 2 we illustrate an example of the stages

we observe across models. For the first several lay-

ers, we see no movement on the words of interest.

Then, during Argument Formation, the model

first represents the argument to the desired rela-

tion in the residual stream. This means that the

top token in the vocabulary distribution at some

intermediate layer(s) is the subject the question

inquires about (e.g., the x, in get_capital(x)).

During Function Application we find that the

model abruptly switches from the argument to the

output of the function (the y, in get_capital(x)

= y). We find that function application is typically

applied by the FFN update at that layer to the resid-

ual stream. This is done by adding the output vector

o⃗ of the FFN to the residual stream representation,

thus transforming it with an additive update. We

study these o⃗ vectors in detail in Section 4. Finally,

the model enters Saturation3, where the model

recognizes it has solved the next token, and ceases

updating the token representation for the remaining

layers.

The trend can be characterized by an X-shaped

pattern of the argument and final output tokens

when plotting the ranks of the argument(x) and

output (y) tokens. We refer to this behavior as

argument-function processing. Figure 3 shows that

this same processing signature can be observed

consistently across tasks and models. Moreover, it

appears to become more prominent as the models

increase in size. Interestingly, despite large differ-

ences in number of layers and overall size, models

tend to undergo this process at similar points pro-

portionally in the model.

4 Implementation of

Context-Independent Functions in FFN

Updates

The above results on processing signature suggest

that the models “apply” a function about 2/3rds of

the way through the network with the addition of an

3Saturation events are described in Geva et al. (2022a)
where detection of such events is used to “early-exit” out of
the forward pass

FFN update. Here, we investigate the mechanism

via which that function is applied more closely.

Specifically, focusing on GPT2-Medium4, we show

that we can force the encoded function to be applied

to new arguments in new contexts by isolating the

responsible FFN output vector and then dropping

into a forward pass on a new input.

4.1 o⃗ Vector Interventions

Consider the example in Figure 2. At layer 18, the

residual stream (x⃗18) is in argument formation, and

represents the “ Poland" token. At the end of layer

19, a function is applied, transforming x⃗19 into the

answer token “ Warsaw.

As discussed in the previous section, we can iso-

late the function application in this case to FFN 19;

let x̃19 represent the residual stream after the atten-

tion update, but before the FFN update at layer 19

(which still represents Poland). Recall that the up-

date made by FFN 19 is written FFN19(x̃19) = o⃗19
and x⃗19 = x̃19 + o⃗19. We find that o⃗19 will apply

the get_capital function regardless of the content

of x̃19. For example, if we add o⃗19 to some x̃ which

represents the “ China" token, it will transform into

“ Beijing". Thus we refer to o⃗19 as ⃗ocity since it

retrieves the capital cities of locations stored in the

residual stream. We locate such o⃗ vectors in the

uppercasing and past tense mapping tasks in the

examples given in Section 2.2, which we refer to

as ⃗oupper and ⃗opast, respectively.5

We test whether these updates have the same ef-

fect, and thus implement the same function, as they

do in the original contexts from which they were

extracted. To do so, we replace entire FFN layers

with these vectors and run new inputs through the

intervened model.6

Data: We are interested in whether the captured

o vectors can be applied in a novel context, in par-

ticular, to a context that is otherwise devoid of cues

as to the function of interest. Thus, we synthesize

a new dataset where each entry is a string of three

4We focus on one model because manual analysis was
required in order to determine how to perform the interven-
tion. See Appendix for results on GPT-J and Section 7 for
discussion.

5In Appendix A, we extend these results to GPT-J, for
which the same procedure leads to strong effects on uppercas-
ing, but smaller overall positive effects on capital cities and
past tensing (see Section 7).

6Which FFNs to replace is a hyperparameter; we find that
replacing layers 18-23 in GPT2-Medium leads to good results.
It also appears necessary to replace multiple FFNs at a time.
See additional experiments in Appendix E. It is likely that the
o⃗ vectors are added over the course of several layers, consistent
with the idea gradual updates from Jastrzebski et al. (2017).

5033

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

World
Capitals

GPT2-Small

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Medium

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Large

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-XL

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0
GPT-J

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0
Bloom

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Upper-
casing

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Past
Tensing

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0

Argument
Answer Argument-Function Processing in the Last Token across Task/Models

M
ea

n
Re

cip
ro

ca
l R

an
k

Layer

Figure 3: Argument formation and function application is characterized by a promotion of the argument (red)

followed by it being replaced with the answer token (blue), forming an X when plotting reciprocal ranks. Across the

three tasks we evaluate, we see that most of the models exhibit these traces, and despite the major differences in

model depths, the stages occur at similar points in the models. Data shown is filtered by examples in which the

models got the correct answer.

random tokens (with leading spaces) followed by

a token x which represents a potential argument

to the function of interest. For example, in experi-

ments involving ocity, we might include a sequence

such as table mug free China table mug free

China table mug free. This input primes the

model to produce “China” at the top of the resid-

ual stream, but provides no cues that the capital

city is relevant, and thus allows us to isolate the ef-

fect of ocity in promoting “Beijing” in the residual

stream. In addition to the original categories, we

also include an “out-of-domain” dataset for each

task: US states and capitals, 100 non-color words,

and 128 irregular verbs. These additional data test

the sensitivity of the o⃗ vectors to different types of

arguments.

Results: Figure 4 shows results for a single ex-

ample. Here, we see that “Beijing” is promoted all

the way to the top of the distribution solely due to

the injection of ⃗ocity into the forward pass. Figure

5 shows that this pattern holds in aggregate. In all

settings, we see that the outputs of the intended

functions are strongly promoted by adding the cor-

responding o⃗ vectors. By the last layer, for world

and state capitals, the mean reciprocal rank of the

target city name across all examples improves from

roughly the 10th to the 3rd-highest ranked word

and 17th and 4th-ranked words respectively. The

target output token becomes the top token in 21.3%,

53.5%, and 7.8% of the time in the last layer in the

world capitals, uppercasing, and past tensing tasks,

Figure 4: The gray area indicates layers with the FFN

intervention. Even if the input context is nonsense (re-

peating pattern), when “China" is represented in the

residual stream, the ⃗ocity vector promotes the correct

capital city.

respectively.

We also see the promotion of the proper past

tense verbs by ⃗opast. The reciprocal ranks improve

similarly for both regular (approx. 7th to 3rd rank)

and irregular verbs (approx. 6th to 3rd), indicat-

ing that the relationship between tenses is encoded

similarly by the model for these two types. ⃗oupper
promotes the capitalized version of the test token

almost every time, although the target word starts

at a higher rank (on average, rank 5). These results

together show that regardless of the surrounding

context and the argument to which it is applied, o⃗

vectors consistently apply the expected functions.

Since each vector was originally extracted from

the model’s processing of a single naturalistic in-

5034

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mapping Locations to their Capital Cities
Intervention from Poland -> Warsaw

Control World Capitals
ocity Interv. World Capitals
Control US State Capitals
ocity Interv. US State Capitals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Uppercasing
Intervention from brown -> Brown

Control Color Words
oupper Interv. Color Words
Control Non-Color Words
oupper Interv. Non-Color Words

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mapping Verbs to Past Tense
Intervention from abolish -> abolished

Control Regular Verbs
oupper Interv. Regular Verbs
Control Irregular Verbs
opast Interv. Irregular Verbs

Layer

M
ea

n
Re

cip
ro

ca
l R

an
k

Random Tokens Pattern Task

Figure 5: We intervene on GPT2-Medium’s forward pass while it is predicting the completion of a pattern. The

control indicates normal model execution, while the gray boxes indicate which FFNs are replaced with our selected

o⃗ vectors. We can see a significant increase in the reciprocal rank of the output of the function implemented by the o⃗

vector used even though the context is completely absent of any indication of the original task.

put, this generalizability suggests cross-context

abstraction within the learned embedding space.

Common Errors: While the above trend clearly

holds on the aggregate, the intervention is not per-

fect for individual cases. The most common error

is that the intervention has no real effect. In the

in-domain (out-domain) settings, this occurred in

about 37% (20%) of capital cities, 4% (5%) on

uppercasing, and 19% (22%) for past tensing. We

believe the rate is so much higher for world capitals

because the model did not have a strong association

between certain country-capital pairs from pretrain-

ing, e.g, for less frequently mentioned countries.

Typically, in these cases, the top token remains

the argument, but sometimes becomes some ran-

dom other city, for example, predicting the capital

of Armenia is Vienna. We also find that the way

tokenization splits the argument and target words

affects the ability of the o⃗ vector to work and is

another source of errors. This is discussed further

in Appendix F.

5 The Role of FFNs in Out-of-Context

Retrieval

So far, we have shown that FFN output vectors

can encode functions that transfer across contexts.

Here, we investigate the role of this mechanism

when we control whether the answer occurs in

context. The tasks we study previously require

recalling a token that does not appear in the given

context (abstractive tasks). In this section we show

that mid-higher layer FFNs are crucial for this pro-

cess. When the answer to the question does appear

in context (extractive tasks), we find that ablating

a subset of FFNs has a comparatively minor effect

on performance, indicating that they are relatively

modular and there is a learned division of labor

within the model. This observation holds across

the decoder-only LMs tested in this paper. This

breakdown is consistent with previous work find-

ing that FFNs store facts learned from pre-training

(Geva et al., 2021b; Meng et al., 2022b,c) and atten-

tion heads copy from the previous context (Wang

et al.; Olsson et al., 2022).

5.1 Abstractive vs. Extractive Tasks

Extractive Tasks: Extractive tasks are those in

which the exact tokens required to answer a prompt

can be found in the input context. These tasks can

thus be solved by parsing the local context alone,

and thus do not necessarily require the model to

apply a function of the type we have focused on in

this paper (e.g., a function like get_capital).

Abstractive Tasks: Are those in which the

answer to a prompt is not given in the input context

and must be retrieved from pretraining memory.

Our results suggest this is done primarily through

argument-function processing, requiring function

application through (typically) FFN updates as

described in Section 3.

We provide examples with their associated

GPT2-Medium layerwise decodings in Figure 7.

We expect that the argument formation and func-

tion application stages of processing occur primar-

ily in abstractive tasks. Indeed, in Appendix A,

we show that the characteristic argument-answer X

pattern disappears on extractive inputs. We hypoth-

esize that applying out-of-context transformations

5035

0 0.5 1
0

10

20

30

40

Colored
Objects

GPT2-Medium

0 0.5 1
0

20

40

GPT-J

0 0.5 1
0

20

40

60

80
Bloom

Extractive
Abstractive

0 0.5 1
0

25

50

75

100

World
Capitals

0 0.5 1
0

25

50

75

100

0 0.5 1
0

25

50

75

100 Extractive
Abstractive

Proportion of FFNs Intact

Ac
cu

ra
cy

Figure 6: Removing FFNs negatively affects performance when the task is abstractive: the in-context label is an

out-of-context transformation of the in-context prompt (e.g., “ silver” in context, answer given as “ Silver”). In

comparison, on the extractive dataset, performance is robust to a large proportion of FFNs being removed. Other

models tested are shown in Appendix B

to the predicted token representation is one of the

primary functions of FFNs in the mid-to-late layers,

and that removing them should only have a major

effect on tasks that require out-of-context retrieval.

5.2 Effect of Ablating FFNs

Data: Consider the example shown in Section 2.2

demonstrating the ⃗oupper function. By providing

the answer to the in-context example as “ Silver",

the task is abstractive by requiring the in-context

token “ brown" to be transformed to “ Brown" in the

test example. However, if we provide the in-context

label as “ silver", the task becomes extractive, as

the expected answer becomes “ brown". We create

an extractive version of this dataset by lowercasing

the example answer. All data is presented to the

model with a single example (one-shot). We repeat

this experiment on the world capitals (see Figure

7), thought note that since the answer is provided

explicitly, this task is much easier for the models

in the extractive case.

Results: We run the one-shot extractive and ab-

stractive datasets on the full models, and then re-

peatedly remove an additional set of FFNs from

the top down (e.g., in 24 layer GPT2-Medium: re-

moving the 20-24th FFNs, then the 15-24th, etc.).

Our results are shown in Figure 6. Despite the

fact that the inputs in the abstractive and extractive

datasets only slightly differ (by a single character in

Top Tokens per Layer
Abstractive Task Extractive Task

Layer

Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

The capital of
Somalia is Mogadishu.
The capital of Poland
is Warsaw.
Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

...
14 St St
15 Poland St
16 Poland Warsaw
17 Poland Warsaw
18 Poland Warsaw
19 Warsaw Warsaw
20 Warsaw Warsaw
21 Warsaw Warsaw
22 Warsaw Warsaw
23 Warsaw Warsaw

Figure 7: The abstractive task undergoes argument for-

mation and function application, while the extractive

task immediately saturates (yellow). Layers 0-11 de-

code as nonsense and are omitted for brevity.

the colored objects case) we find that performance

plummets on the abstractive task as FFNs are ab-

lated, while accuracy on the extractive task drops

much more slowly. For example, even after 24 FFN

sublayers are removed from Bloom (totaling 39B

parameters) extractive task accuracy for the colored

objects dataset drops 17% from the full model’s

performance, while abstractive accuracy drops 73%

(down to 1% accuracy). The case is similar across

5036

model sizes and pretraining corpora; we include

results on additional models in Appendix B. This

indicates that we can isolate the effect of locating

and retrieving out of context tokens in this setting

to the FFNs. Additionally, because the model re-

tains reasonably strong performance compared to

using the full model, we do not find convincing

evidence that the later layer FFNs are contributing

to the extractive task performance, supporting the

idea of modularity within the network.

6 Related Work

Attributing roles to components in pretrained LMs

is a widely studied topic. In particular, the atten-

tion layers (Olsson et al., 2022; Kobayashi et al.,

2020; Wang et al.) and in the FFN modules, which

are frequently associated with factual recall and

knowledge storage (Geva et al., 2021b; Meng et al.,

2022a,c). How language models store and use

knowledge has been studied more generally as well

(Petroni et al., 2019; Cao et al., 2021; Dai et al.,

2022; Bouraoui et al., 2019; Burns et al., 2022;

Dalvi et al., 2022; Da et al., 2021) as well as in

static embeddings (Dufter et al., 2021). Recent

work in mechanistic interpretability aims to fully

reverse engineer how LMs perform some behav-

iors (Elhage et al., 2021). Our work builds on the

finding that FFN layers promote concepts in the

vocabulary space (Geva et al., 2022a) by breaking

down the process the model uses to do this in con-

text; Bansal et al. (2022) perform ablation studies

to test the importance of attention and FFN layers

on in-context learning tasks. Other work analyze

information flow within an LM to study how rep-

resentations are built through the layers, finding

discrete processing stages (Voita et al., 2019; Ten-

ney et al., 2019). We also follow this approach,

but our analysis focuses on interpreting how mod-

els use individual updates within the forward pass,

rather than probing for information encoded within

some representation. Ilharco et al. (2023) show

that vector arithmetic can be performed with the

weights of finetuned models to compose tasks, sim-

ilar to how o⃗ vectors can induce functions in the

activation space of the model.

7 Discussion & Conclusion

A core challenge in interpreting neural networks

is determining whether the information attributed

to certain model components is actually used for

that purpose during inference (Hase and Bansal,

2022; Leavitt and Morcos, 2020). While previous

work has implicated FFNs in recalling factual as-

sociations (Geva et al., 2022a; Meng et al., 2022a),

we show through intervention experiments that we

can manipulate the information flowing through

the model according to these stages. This process

provides a simple explanation for the internal sub-

processes used by LMs and our findings invite fu-

ture work aimed at understanding why, and under

what conditions, LMs learn to use this mechanism

when they are capable of solving such tasks using,

e.g., adhoc memorization.

The mechanism we identify bears similarities

to linguistic regularities that allow for vector

arithmetic analogies in static word embeddings

(Mikolov et al., 2013) suggesting at least a quali-

tative similarity between large complex contextual

models and these simpler static models. Gladkova

et al. (2016) show that not all relations can be en-

coded with vector arithmetic analogies, specifically,

relations that are not one-to-one (e.g., mapping a

country to its official language). In Appendix G we

find evidence that LMs exhibit similar success and

failure cases by analyzing six additional tasks. We

provide our most detailed investigation on GPT2-

Medium, which clearly illustrates the phenomenon.

Our experiments on stages of processing with GPT-

J suggest that the same phenomena is in play, al-

though (as discussed in Section 4 and Appendix

A), the procedures we derive for interventions on

GPT2-Medium do not transfer perfectly. Specifi-

cally, we can strongly reproduce the intervention

results on uppercasing for GPT-J; results on the

other two tasks are positive but with overall weaker

effects. As we understand these processes more

deeply, a priority in future work must be to general-

ize specific findings to model-agnostic phenomena.

That said, in this work and other similar efforts,

a single positive example as a proof of concept

is often sufficient to advance understanding and

spur future work that improves robustness across

models.

Contemporaneous work (Geva et al., 2023) has

studied a different mechanism for factual recall in

LMs, but it is unclear how and when these mech-

anisms interact. Eventually, if we can understand

how models break down complex problems into

simple and predictable subprocesses, we can help

more readily audit their behavior. Interpreting the

processing signatures of model behaviors might

offer an avenue via which to evaluate and intervene

at runtime in order to prevent unwanted behavior.

5037

References

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal,
Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.
2022. Rethinking the Role of Scale for In-Context
Learning: An Interpretability-based Case Study at 66
Billion Scale. ArXiv:2212.09095 [cs].

Zied Bouraoui, Jose Camacho-Collados, and Steven
Schockaert. 2019. Inducing Relational Knowledge
from BERT.

Collin Burns, Haotian Ye, Dan Klein, and Jacob
Steinhardt. 2022. Discovering Latent Knowl-
edge in Language Models Without Supervision.
ArXiv:2212.03827 [cs].

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.
Knowledgeable or Educated Guess? Revisiting Lan-
guage Models as Knowledge Bases. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1860–1874, Online.
Association for Computational Linguistics.

Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, and
Antoine Bosselut. 2021. Analyzing Commonsense
Emergence in Few-shot Knowledge Models.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502.

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam,
Nadir Durrani, Jia Xu, and Hassan Sajjad. 2022.
Discovering Latent Concepts Learned in BERT.
ArXiv:2205.07237 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Philipp Dufter, Nora Kassner, and Hinrich Schütze.
2021. Static Embeddings as Efficient Knowledge
Bases? In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2353–2363, Online. Association for
Computational Linguistics.

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph,
B Mann, A Askell, Y Bai, A Chen, T Conerly, et al.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associ-
ations in auto-regressive language models.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022a. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022b. Transformer Feed-Forward Lay-
ers Build Predictions by Promoting Concepts in the
Vocabulary Space. ArXiv:2203.14680 [cs].

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021a. Transformer Feed-Forward Layers Are
Key-Value Memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484–5495, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021b. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484–5495.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpholog-
ical and semantic relations with word embeddings:
what works and what doesn’t. In Proceedings of the
NAACL Student Research Workshop, pages 8–15, San
Diego, California. Association for Computational
Linguistics.

Peter Hase and Mohit Bansal. 2022. When can mod-
els learn from explanations? a formal framework
for understanding the roles of explanation data. In
Proceedings of the First Workshop on Learning with
Natural Language Supervision, pages 29–39, Dublin,
Ireland. Association for Computational Linguistics.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2023. Editing
models with task arithmetic. ICLR.

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas,
Vikas Verma, Tong Che, and Yoshua Bengio. 2017.
Residual connections encourage iterative inference.
In International Conference on Learning Representa-
tions.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7057–7075, Online. Association for Computa-
tional Linguistics.

Matthew L Leavitt and Ari Morcos. 2020. Towards
falsifiable interpretability research. arXiv preprint
arXiv:2010.12016.

5038

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg.
2022. Emergent world representations: Exploring a
sequence model trained on a synthetic task. arXiv
preprint arXiv:2210.13382.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and Editing Factual As-
sociations in GPT. ArXiv:2202.05262 [cs] version:
4.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan
Belinkov. 2022b. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022c. Mass
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2023.
Circuit component reuse across tasks in transformer
language models.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
conference of the north american chapter of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 746–751.

nostalgebraist. 2020. interpreting GPT: the logit lens.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. 2022. In-context
learning and induction heads. Transformer Circuits
Thread. Https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language Models as Knowl-
edge Bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593–4601.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
Bottom-up Evolution of Representations in the Trans-
former: A Study with Machine Translation and Lan-
guage Modeling Objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4396–4406, Hong Kong,
China. Association for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. Inter-
pretability in the Wild: a Circuit for Indirect Object
Identification in GPT-2 small. ArXiv:2211.00593
[cs].

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. Interpretabil-
ity in the wild: a circuit for indirect object identifica-
tion in gpt-2 small. In NeurIPS ML Safety Workshop.

A Argument-Function Processing in

Other Models

In Section 3 we show that GPT2-Medium and

Bloom promote the in-context ‘argument’ token

to some function before promoting the answer to

that function. In figure 8we show that this effect

is present across other models as well in the three

5039

tasks we test. Qualitatively, we find that the pattern

is more prominent in models that have more layers,

likely because we are able to get more measure-

ments after the FFN updates, so it is less likely that

entire argument formation stage happens within

a single layer (i.e., after the attention module up-

date – we only take measurements after the FFN

update for simplicity). In the extractive task set-

ting, we would not expect the model to go through

argument-function processing in order to reach the

prediction, since it already appears in context (al-

though this does not preclude it from doing so – it

is still a valid way to retrieve the required informa-

tion). We see that this X shaped pattern disappears

when we plot the argument-answer curves for the

extractive world capitals data, as shown next to the

abstractive setting in Figure 9.

We repeat the random tokens task on GPT-J us-

ing the same stimuli as in the main paper to select

o⃗ vectors. We find that we can locate o⃗ vectors

occurring in other models, however the success

rate varies for the tasks that we evaluate in this

work. Results are shown in Figure 10. Although

the uppercasing function works very well, we get

weaker responses for the past tense and world capi-

tals mappings. One explanation could be that these

tasks are not solved with an as-general solution

as in GPT2, but the process for carrying out this

intervention depends on hyperparameters which

are often model-specific (i.e., the exact layer at

which to perform the intervention), so future work

is needed to understand where differences between

these models lie.

B Additional Results on Ablating FFNs

We include the results for all six models we test

for the FFN ablation study for both the colored

objects task (Figure 11) and the world capitals task

(Figure 12). We find that the trend of abstractive

performance dropping off far before extractive per-

formance is reflected across all models.

B.1 +/-ocase Intervention on Colors

As described in the main paper, adding ocase to

the residual stream (x19 + ocase) has the effect

of capitalizing the first letter in the word ‘brown’.

Similar to the results in Sections 2.2 and 2.2, we

find that adding ocase to the residual stream has

the effect of uppercasing the token prediction on

arbitrary contextualized representations in the mid

layers of GPT2-Medium. However, we also find

that lowercasing the first letter can be accomplished

by subtracting it. Qualitatively, this works much

the same way as adding the o⃗ vectors previously

discussed. We show this effect empirically, by

showing the difference between replacing the FFN

updates in GPT2-Medium with either positive or

negative ocase (having the effect of adding or sub-

tracting from the residual stream).

We progressively remove FFNs from the top

of the model, and show the effect of adding or

subtracting ocase in Figure 13. In the abstractive

case, we find that accuracy is greatly boosted when

adding ocase which we identify as implementing

an uppercasing function, and reflects the results in

Sections 2.2 and 2.2. We find that we can replace

the top third of GPT2-Medium FFN layers (FFNs

in layers 16-24, around 20% of all parameters) with

+ocase to gain 25% in total accuracy (from 4.5% to

29.5%) and recovering to 72% of the performance

of the un-ablated model (41%). Conversely, if we

subtract ocase in the abstractive setting to encourage

lowercasing (i.e., encouraging the model to output

a lowercased answer when the answer it should

have a capital first letter), the model immediately

hits 0% performance. We see the opposite effect

in the extractive setting, where adding ocase hurts

performance to a greater degree than subtracting

it. According to our results presented so far, we

would expect FFNs to be unnecessary for solving

the extractive dataset examples, which is possibly

why performance is degraded in both cases we

intervene, but we don’t test this idea in this work.

C What are the Attention Heads Doing?

We focus on the outputs of the FFN layers in this

work, but that is not to say that the attention heads

are not contributing to the final answer. As shown

in Section 5, the attention layers are able to get

the final answer when it already appears explicitly

in context (when it’s extractive). This leads to a

possible explanation for why LMs learn to imple-

ment argument-function processing. We speculate

that this process may be the result of a natural pro-

gression in training. When the argument token

needs to be transformed ("brown" to "Brown"), the

model notices that it is the subject of the next token,

and uses attention heads to copy the value of that

token into the next token prediction. This opera-

tion could be done using mover heads (Wang et al.,

2022; Merullo et al., 2023) or induction heads (Ols-

son et al., 2022). In the following layers, the model

5040

Figure 8: Across several model architectures and tasks, we find evidence that on average, the argument (which

appears in context) rises to the top of the vocab distribution before crossing with the answer to the task. We describe

this as argument-function processing where the argument to some function is represented in the residual stream

before some update from the model is added to it to produce the output of that function. Qualitatively, we observe

that models with more layers display this pattern more prominently.

5041

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Extractive

GPT2-Small

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Medium

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Large

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-XL

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0
GPT-J

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0
Bloom

Argument
Answer

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Abstractive

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0 Argument
Answer

Comparison of Abstractive and Extractive Versions of the World Capitals Task
M

ea
n

Re
cip

ro
ca

l R
an

k

Layer

Figure 9: The ‘X’ pattern of argument and answer tokens crossing in the course of the forward pass is the

characteristic pattern in argument-function processing. In the main text, we show how the models we test use this

type of processing to recall the capital cities of locations. When we make the task extractive (by including the

correct capital in the given context), the model does not have to setup an argument and function in order to get

the answer, and the pattern disappears. This highlights the differences we describe in processing extractive and

abstractive tasks. Both datasets are filtered for examples where the models were correct.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Layer

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
cip

ro
ca

l R
an

k

Mapping Locations to their Capital Cities
Intervention from Poland -> Warsaw
Control World Capitals
ocity Intervention

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Re

cip
ro

ca
l R

an
k

Uppercasing
Intervention from brown -> Brown

Control Color Words
oupper Intervention

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Layer

0.00

0.05

0.10

0.15

0.20

Mapping Verbs to Past Tense
Intervention from abolish -> abolished
Control Regular+Irregular Verbs
opast Intervention

Figure 10: We use the same stimuli to extract o⃗ vectors on GPT-J. Results are similar for the uppercasing function,

but only very weakly positive on the world capitals task.

0 0.5 1
0

10

20

GPT2-Small

0 0.5 1
0

20

40
GPT2-Medium

0 0.5 1
0

20

40
GPT2-Large

0 0.5 1
0

20

40
GPT2-XL

0 0.5 1
0

20

40

GPT-J

0 0.5 1
0

25

50

75
Bloom (176B)

Extractive
Abstractive

Proportion of FFNs Intact

Ac
cu

ra
cy

Figure 11: Results of removing FFN sublayers for the colored objects task for all models.

5042

0 0.5
0

20

GPT2-Small

0 0.5
0

50

100
GPT2-Medium

0 0.5
0

50

100
GPT2-Large

0 0.5
0

50

100
GPT2-XL

0 0.5
0

50

100
GPT-J

0 0.5
0

50

100
Bloom

Extractive
Abstractive

Proportion of FFNs Intact

Ac
cu

ra
cy

Figure 12: Results of removing FFN sublayers for the world capitals task for all models.

Figure 13: Replacing FFN updates with +ocase helps

recover accuracy in abstractive tasks where the answer

is expected to be uppercase compared to subtracting it

or ablating the FFNs. In extractive tasks, the task is

primarily solved by attention modules and adding or

subtracting ocase only hurts performance.

transforms this representation into the final output.

When subject enrichment (Geva et al., 2023) is not

possible, these same pseudo mover heads would

then copy the unenriched subjects (i.e., the regular

argument tokens). In these cases, the model would

have to apply the function after already copying it

over, creating the argument-processing signature.

Future work is needed to see if it is possible to unify

these different interpretations and perspectives.

D Effect on Zero-shot Performance

Layer Top Token

0 (

1 A

2 A

3 A

4 A

5 A

6 A

7 A

8 A

9 The

10 The

11 The

12 The

13 The

14 The

15 The

16 The

17 The

18 Poland

19 Poland

20 Poland

21 Poland

We find that

intervening on

the model with

o⃗ vectors has

applications

in controllable

generation,

that is, guiding

the genera-

tion process

towards some

relevant text.

We showed

this was the

case in Section

4, but we can

also apply

this idea to

the context of

5043

zero-shot learn-

ing. When

we provide

in-context

examples,

we are also

providing the

output format

of the prompt.

Consider the

example “Q:

What is the

capital of Poland? A:". unlike the one shot

example given in Figure 2, there is no indication

that the next word should be “ Warsaw" over

continuing the generation as a complete sentence

“The capital of Poland is Warsaw", which is what

GPT2-Medium actually generates. If we decode

at every layer, as is shown in Table ?? we can

see that the model still goes through argument

formation despite preferring to generate the full

sentence. We can take advantage of this behavior

by replacing the FFN layers in the later layers

with ⃗ocity in order to guide the generation to the

expected response of immediately generating the

capital. We can perform this experiment on the

past tensing task as well. Results on the zero-shot

tasks are shown in Figure 14. We find that on the

world capitals task, we can greatly improve the

propensity of the model to output the expected

answer by performing an o⃗ vector intervention,

improving zero-shot performance from 5.6% to

33.0%. On the past tense mapping task, where

perhaps the output format is more obvious from

the prompt, the zero and one shot performances are

about equal, but we still see a modest improvement

over the one shot results of about 4.2%. Although

the tasks are very simple, we achieve this by

effectively ablating FFN layers (layers 19-23) and

precomputing their activations, suggesting it might

be possible to edit models extensively to limit their

expressiveness to one type of output while also

making them more efficient. We are optimistic

about future work in this area.

E Effect of Layer Choice on Intervention

Results

In the main text, we replace FFNs starting at either

layer 18 or 19 GPT2-Medium to the end (indexed

at 0). We find that intervening on only one layer

promotes the output token, but not to the top of

the distribution. One possibility is that the model

makes gradual updates that are pushing the token

representation in generally the same direction (Jas-

trzebski et al., 2017). In Figure 15, we show that

adding any of the o⃗ vector interventions at any sin-

gle layer at 18 or afterwards, there is a roughly

equivalent increase to the average reciprocal rank

of the target word. The logit difference between

the argument and answer token (in the logits of

each early-decoded layer) shows this as well as a

gradual increase. This is exemplified in Figure 2 in

the main paper.

F Effect of Tokenization on the

Effectiveness of o⃗ Vectors

The tokenizer can split one word into multiple

subtokens, such as “Purple" into the tokens “Pur"

and “ple". This occurs with words that were less

frequent in the training data. We find that this pro-

cess has a generally negative effect on the perfor-

mance of the intervention we perform. Intuitively,

if we are trying to use ⃗oupper to capitalize the “pur-

ple" token into “Purple", it must map from “purple"

(one token) to “Pur". It seems less obvious, then,

that the embeddings would encode a linear relation-

ship between these two, since “Pur" is a subtoken

in many other words. We explore this specific phe-

nomenon on the random tokens task from Section

4 with the ⃗oupper intervention. We take 100 single

token words that capitalize to a single token, and

100 others that capitalize to words that break down

into multiple tokens. Our results can be seen in Fig-

ure 16. We find that tokens that get broken up into

multiple tokens are less probable than for tokens

that capitalize to single token forms.

G Additional Tasks: One-to-One,

Many-to-One, and Many-to-Many

Relations

In the main paper, we show study three one-to-one

relations that exhibit the argument/output pattern,

but it remains unclear how well this generalizes to

other relations. Using six additional tasks, three

many-to-X and three new one-to-one, we provide

evidence that suggests that the observed mecha-

nism is specific to one-to-one relations, and does

not work when mulitple inputs map to one output.

This suggests that the model is sensitive to this

distinction of relations during pretraining, and the

vector arithmetic mechanism structure we observe

only presents for the most explicit relations. In

5044

Figure 14: By replacing FFN networks with the corresponding o⃗ vectors, we show that we can improve zero-shot

performance by taking advantage of the model going through argument formation in the zero-shot setting.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

World Capitals
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Past Tense
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Uppercasing Color Words
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Uppercasing Words Tokenized as One Token
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

Layer

Re
cip

ro
ca

l R
an

k

Figure 15: Replacing any individual FFN update is worse than replacing all of them. This supports the idea that

networks made gradual updates to their representations, and that the o⃗ vectors we extract behave this way as well:

multiple similar updates are made k layers in a row. Interestingly, the average boost to the reciprocal rank is about

the same regardless of which single layer we apply the update at, suggesting that this range of FFNs are operating in

same space.

5045

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Control - >1 Token
Intervention - >1 Token
Control - 1 Token
Intervention - 1 Token

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Re

cip
ro

ca
l R

an
k

Control - >1 Token
Intervention - >1 Token
Control - 1 Token
Intervention - 1 Token

Probability and MRR Differences when Uppercasing words which are Broken into One vs Multiple Tokens

Figure 16: When the uppercase version of a word gets broken down into multiple subtokens, mapping to that token

becomes much less probable and is generally harder of an association for the model to make.

Table ??, we give examples of the six new tasks,

following the same prompt format as the one used

in the main paper. In Table ??, we break down the

relation type of each task and provide the GPT2-

Medium accuracy for each one. Figure 17 shows

the early decoding patterns for the argument and

answer tokens. While the three one-to-one tasks

exhibit the initial promotion of the argument token,

followed by the answer token on average, the argu-

ment token does not become highly promoted on

any of the non one-to-one relations.

H Compute

All models were run on NVidia RTX 3090s; Bloom

was run locally on 3090s in float16 with CPU of-

floading.

5046

Task Example

Animal Hypernyms ...Q: The anaconda is a kind of what?\nA: (snake/reptile/boa/...)

Name to Nationality ...Q: What is the nationality of Balzac?\nA: (French)

Country to Language ...Q: What is the official language of Argentina?\nA: (Spanish)

Adj. to un-Adj. ...Q: What is the opposite of able?\nA: (unable)

3rd Person Verbs ...Q: What is the third person singular of become?\nA: (becomes)

Noun Plurals ...Q: What is the plural of album?\nA: albums

Table 2: Examples from three non-injective and one injective relation. A given animal (anaconda) is a type of snake

and reptile, and other snakes/reptiles also exist (many-to-many). Balzac is only French and other people map to

French (many-to-one), etc.

Task Accuracy (%) Task Type

Animal Hypernyms 30.4±1.7 Many-to-Many

Name to Nationality 73.2±2.0 Many-to-One

Country to Language 71.2±2.4 Many-to-Many

Adj. to un-Adj. 12.0±1.1 One-to-One

3rd Person Verbs 22.4±0.7 One-to-One

Noun Plurals 51.6±1.7 One-to-One

Table 3: One-shot accuracies for each task across 5 random seeds for GPT2-Medium.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

cip
ro

ca
l R

an
k

Animal Hypernyms
Argument
Answer

0 5 10 15 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0
Name to Nationality

Argument
Answer

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Country to Language

Argument
Answer

Figure 17: Non-injective tasks show no evidence of argument-function processing on average. In sharp contrast to

the past tense, colored objects, capital cities, and un-adj. tasks where this is observed, here, the argument token

experiences virtually no spike in reciprocal rank in the intermediate layers.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

cip
ro

ca
l R

an
k

Adjective to un-Adjective
Argument
Answer

0 5 10 15 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0
3rd Person Verbs

Argument
Answer

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Noun Plurals

Argument
Answer

Figure 18: For the first two tasks, the average argument-answer spike pattern is similar to the other one-to-one tasks

in which the vector arithmetic analogy held. The results for noun plurals are mostly negative as it appears the model

uses argument-function processing only some of the time. We will expand on this in the camera ready paper.

5047

