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Abstract

A primary criticism towards language mod-
els (LMs) is their inscrutability. This paper
presents evidence that, despite their size and
complexity, LMs sometimes exploit a simple
vector arithmetic style mechanism to solve
some relational tasks using regularities en-
coded in the hidden space of the model (e.g.,
Poland:Warsaw::China:Beijing). We investi-
gate a range of language model sizes (from
124M parameters to 176B parameters) in an
in-context learning setting, and find that for a
variety of tasks (involving capital cities, upper-
casing, and past-tensing) a key part of the mech-
anism reduces to a simple additive update typ-
ically applied by the feedforward (FFN) net-
works. We further show that this mechanism
is specific to tasks that require retrieval from
pretraining memory, rather than retrieval from
local context. Our results contribute to a grow-
ing body of work on the interpretability of LMs,
and offer reason to be optimistic that, despite
the massive and non-linear nature of the mod-
els, the strategies they ultimately use to solve
tasks can sometimes reduce to familiar and
even intuitive algorithms.'

1 Introduction

The growing capabilities of large language mod-
els (LLMs) have led to an equally growing inter-
est in understanding how such models work un-
der the hood. Such understanding is critical for
ensuring that LLMs are reliable and trustworthy
once deployed. Recent work in interpretability
has contributed to this understanding by reverse-
engineering the data structures and algorithms that
are implicitly encoded in the model’s weights, e.g.,
by identifying detailed circuits (Wang et al., 2022;
Elhage et al., 2021; Olsson et al., 2022) or by iden-
tifying mechanisms for factual storage and retrieval
which support intervention and editing (Geva et al.,

'Code available at:
Im_vector_arithmetic

https://github.com/jmerullo/

2021a; Li et al., 2022; Meng et al., 2022a,c; Dai
et al., 2022).

Here, we contribute to this growing body of work
by analyzing how LLMSs recall information during
in-context learning. Modern LL.Ms are based on a
complex transformer architecture (Vaswani et al.,
2017) which produces contextualized word embed-
dings (Peters et al., 2018; Devlin et al., 2019) con-
nected via multiple non-linearities. Despite this, we
find that LL.Ms implement a basic vector-addition
mechanism qualitatively similar to relational infor-
mation encoded in their static word embeddings
predecessors Mikolov et al. (2013). We also find
that for non-injective relations that static embed-
dings typically fail to encode (Gladkova et al.,
2016), LMs do not use the identified mechanism
(Appendix G).

We study this phenomenon across nine tasks, but
focus on three in the main paper: recalling capital
cities, uppercasing tokens, and past-tensing verbs.
Our key findings are:

* We find evidence of a distinct process-
ing signature in the forward pass which
characterizes argument-function processing
(§3). That is, if models need to perform the
get_capital (x) function, which takes an ar-
gument x and yields an answer y, they first
surface the argument « in earlier layers which
enables them to apply the function and yield
y as the final output (Figure 2). This signature
generalizes across models and tasks, but ap-
pears to become sharper as models increase
in size.

* We take a closer look at GPT2-Medium, and
find that the vector arithmetic mechanism is
often implemented by mid-to-late layer feed-
forward networks (FFNs) in a way that is mod-
ular and supports intervention (§4). E.g.,
an FFN outputs a content-independent update
which produces Warsaw given Poland and can

5030

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 5030-5047
June 16-21, 2024 ©2024 Association for Computational Linguistics



be patched into an unrelated context to pro-
duce Beijing given China. We don’t find this
evidence of this mechanism being used for
tasks in which word embedding vector arith-
metic classically fails (Appendix G).

* We demonstrate that this mechanism is spe-
cific to recalling information from pretrain-
ing memory (§5). For settings in which
the correct answer can be retrieved from the
prompt, this mechanism does not appear to
play any role, and FFNs can be ablated en-
tirely with relatively minimal performance
degradation. Thus, we present new evidence
supporting the claim that FFNs and attention
specialize for different roles, with FFNs sup-
porting factual recall and attention copying
and pasting from local context.

Taken together, our results offer new insights about
one component of the complex algorithms that un-
derlie in-context learning. The mechanism’s sim-
plicity raises the possibility that other apparently
complicated behaviors may be supported by a se-
quence of simple operations under the hood. More-
over, our results suggest a distinct processing sig-
nature and hint at a method for intervention. These
ideas could support future work on detecting and
preventing unwanted behavior by LLMs at runtime.

2 Methods

In decoder-only transformer language models
(Vaswani et al., 2017), a sentence is processed one
word at a time, from left to right. In this paper, we
focus on the transformations that the next-token
prediction undergoes in order to predict the an-
swer to some task. At each layer, an attention
module and feed-forward network (FFN) module
apply subsequent additive updates to this represen-
tation. Consider the FFN update at layer 7, where
x; is the current next-token representation. The
update applied by the FFN here is calculated as
FEN(z;) = 0;, xi11 = &; + 0; where ;1 is the
updated token for the next layer. Due to the resid-
ual connection, the output vector o; is added to the
input. Z is updated this way by the attention and
FFNs until the end of the model, where the token
is decoded into the vocab space with the language
modeling head E: softmax(FEZ). From start to end,
x is only updated by additive updates, forming a
residual stream (Elhage et al., 2021). Thus, the to-
ken representation x; represents all of the additions
made into the residual stream up to layer .

2.1 Early Decoding

A key insight from the residual stream perspective
is that we can decode the next token prediction with
the LM head before it reaches the final layer. This
effectively allows for “print statements” through-
out the model’s processing. The intuition behind
this technique is that LMs incrementally update the
token representation & to build and refine an encod-
ing of the vocabulary distribution. This technique
was initially introduced in nostalgebraist (2020) as
the logit lens, and Geva et al. (2022b) show that
LMs do in fact refine the output distribution over
the course of the model. Figure 1 illustrates the
process we use to decode hidden states into the
vocabulary space using the pre-trained language
modeling head E. After decoding, we apply a soft-
max to get a probability distribution over all tokens.
When we decode at some layer, we say that the
most likely token in the resulting vocab distribu-
tion is currently being represented in the residual
stream. We examine the evolution of these predic-
tions over the course of the forward pass for several
tasks.

2.2 Tasks

We apply early decoding to suite of in-context learn-
ing tasks to explore the transformations the next
token prediction undergoes in order to predict the
answer.

World Capitals The World Capitals task
requires the model to retrieve the capital city for
various states and countries in a few-shot setting.
The dataset we use contains 248 countries and
territories. A one-shot example is shown below:
“Q: What is the capital of France? A: Paris Q:
What is the capital of Poland? A:___ " Expected
Answer: “ Warsaw"

Reasoning about Colored Objects We focus on
a subset of 200 of the reasoning about colored
objects dataset prompts (i.e., the colored objects
dataset) from BIG-Bench (Srivastava et al., 2022).
A list of colored common objects is given to the
model before being asked about one object’s color.
For the purposes of this paper, we focus only
on one aspect of this task—the model’s ability to
output the final answer in the correct format.”

“The reason for this is that most of the results in this paper
were originally observed as incidental findings while studying
the Colored Objects task more generally. We thus zoom in on
this one component for the purposes of the mechanism studied
here, acknowledging that the full task involves many other
steps that will no doubt involve other types of mechanisms.
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Figure 1: When decoding the next word, additive updates are made through the residual connections of each
attention/FFN sub-layer. To decode the running prediction at every layer, the pre-trained language modeling head is
applied at various points in each layer as in Geva et al. (2022a); nostalgebraist (2020). The o vector interventions
we make (§4.1) are illustrated by patching one or more FFN outputs with one from another example

“Q: On the floor, I see a silver keychain, [...] and a
blue cat toy. What color is the keychain?

A: Silver

Q: On the table, you see a brown sheet of paper, a
red fidget spinner, a blue pair of sunglasses, a teal
dog leash, and a gold cup. What color is the sheet
of paper?

A:___ " Expected answer: “ Brown"

Past Tense Verb Mapping Lastly, we examine
whether an LM can accurately predict the past
tense form of a verb given a pattern of its present
tense. The dataset used is the combination of
the regular and irregular partitions of the past
tense linguistic mapping task in BIG-Bench
(Srivastava et al., 2022). After filtering verbs in
which the present and past tense forms start with
the same token, we have a total of 1,567 verbs.
An example one-shot example is given below:

“Today I abandon. Yesterday I abandoned. Today
I abolish. Yesterday I___ " Expected answer:

abolished"

The above tasks could all be described as one-
to-one (e.g., each country has one capital, each
word only has one uppercase/past tense form). In
Appendix G we explore six additional tasks, three
of which are either many-to-many or many-to-one.
We find that the observed mechanism only applies
to one-to-one relations, indicating that the model
learns some sensitivity to this type of relation in
order for it to represent the structure required for
the mechanism described here, similar to static
embeddings (Gladkova et al., 2016)/

2.3 Models

We experiment on decoder-only transformer LMs
across various sizes and pre-training corpora.
When not specified, results in figures are from
GPT2-medium. We also include results portraying

Layer | Top Token
Q: What is the capital of France? 0 (
A: Paris ! A
Q: What is the capital of Poland? 2 A
A 3 A
4 A
107 —e— Warsaw La soa
o
—e— Poland 7 c
v 08 ols A
c 2 Ofo A
& Gl |a
— 06 SR A
S N A =R Unknown
o P A | |c
go04 f S ol s
o -2 215 [Poland
-4 |16 | Poland
0.2 17| Poland
-4 18 | Poland
19 | Warsaw
O e 20 Warsaw
012345678 91011121314151617181920212223 21 Warsaw
Layer 22 Warsaw
23 | Warsaw

Figure 2: Decoding the next token prediction at each
layer reveals distinct stages of processing. The red box
(A) shows where the model prepares an argument for
transformation, the blue box (B) shows the function
application phase during which the argument is trans-
formed (here with the capital_of function, and the
yellow box (C) shows a saturation event, in which the
model has found the answer, and stops updating the top
prediction. The dashed line shows the logit difference
between argument and answer at each layer.

the stages of processing signatures in the resid-
ual streams of the small, large, and extra large
variants (Radford et al.), the 6B parameter GPT-
J model (Wang and Komatsuzaki, 2021), and the
176B BLOOM model (Scao et al., 2022), either in
the main paper or in the Appendix.

3 Stages of Processing in Predicting the
Next Token

First, we use the early decoding method in order to
investigate how the processing proceeds over the
course of a forward pass to the model. Each task
requires the model to infer some relation to recall
some fact, e.g., retrieving the capital of Poland. In
these experiments, we see several discrete stages
of processing that the next token undergoes before
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reaching the final answer. These states together pro-
vide evidence that the models "apply" the relevant
functions (e.g., get_capital) abruptly at some
mid-late layer to retrieve the answer. Moreover, in
these cases, the model prepares the argument to
this function in the layers prior to that in which the
function is applied.

In Figure 2 we illustrate an example of the stages
we observe across models. For the first several lay-
ers, we see no movement on the words of interest.
Then, during Argument Formation, the model
first represents the argument to the desired rela-
tion in the residual stream. This means that the
top token in the vocabulary distribution at some
intermediate layer(s) is the subject the question
inquires about (e.g., the x, in get_capital(x)).
During Function Application we find that the
model abruptly switches from the argument to the
output of the function (the y, in get_capital(x)
= y). We find that function application is typically
applied by the FFN update at that layer to the resid-
ual stream. This is done by adding the output vector
o of the FEN to the residual stream representation,
thus transforming it with an additive update. We
study these o vectors in detail in Section 4. Finally,
the model enters Saturation®, where the model
recognizes it has solved the next token, and ceases
updating the token representation for the remaining
layers.

The trend can be characterized by an X-shaped
pattern of the argument and final output tokens
when plotting the ranks of the argument(x) and
output (y) tokens. We refer to this behavior as
argument-function processing. Figure 3 shows that
this same processing signature can be observed
consistently across tasks and models. Moreover, it
appears to become more prominent as the models
increase in size. Interestingly, despite large differ-
ences in number of layers and overall size, models
tend to undergo this process at similar points pro-
portionally in the model.

4 Implementation of
Context-Independent Functions in FFN
Updates

The above results on processing signature suggest
that the models “apply” a function about 2/3rds of
the way through the network with the addition of an

3Saturation events are described in Geva et al. (2022a)
where detection of such events is used to “early-exit” out of
the forward pass

FFN update. Here, we investigate the mechanism
via which that function is applied more closely.
Specifically, focusing on GPT2-Medium®, we show
that we can force the encoded function to be applied
to new arguments in new contexts by isolating the
responsible FFN output vector and then dropping
into a forward pass on a new input.

4.1 0 Vector Interventions

Consider the example in Figure 2. At layer 18, the
residual stream (z7g) is in argument formation, and
represents the “ Poland" token. At the end of layer
19, a function is applied, transforming 79 into the
answer token “ Warsaw.

As discussed in the previous section, we can iso-
late the function application in this case to FFN 19;
let 79 represent the residual stream after the atten-
tion update, but before the FFN update at layer 19
(which still represents Poland). Recall that the up-
date made by FFN 19 is written FFN19(279) = o719y
and 279 = 19 + 079. We find that o7y will apply
the get_capital function regardless of the content
of x79. For example, if we add 079 to some & which
represents the “ China" token, it will transform into
“ Beijing". Thus we refer to o7y as 0., since it
retrieves the capital cities of locations stored in the
residual stream. We locate such o' vectors in the
uppercasing and past tense mapping tasks in the
examples given in Section 2.2, which we refer to
as Oypper and opgst, respectively.5

We test whether these updates have the same ef-
fect, and thus implement the same function, as they
do in the original contexts from which they were
extracted. To do so, we replace entire FFN layers
with these vectors and run new inputs through the
intervened model.®

Data: We are interested in whether the captured
o vectors can be applied in a novel context, in par-
ticular, to a context that is otherwise devoid of cues
as to the function of interest. Thus, we synthesize
a new dataset where each entry is a string of three

*We focus on one model because manual analysis was
required in order to determine how to perform the interven-
tion. See Appendix for results on GPT-J and Section 7 for
discussion.

5In Appendix A, we extend these results to GPT-J, for
which the same procedure leads to strong effects on uppercas-
ing, but smaller overall positive effects on capital cities and
past tensing (see Section 7).

®Which FFNs to replace is a hyperparameter; we find that
replacing layers 18-23 in GPT2-Medium leads to good results.
It also appears necessary to replace multiple FFNs at a time.
See additional experiments in Appendix E. It is likely that the
o vectors are added over the course of several layers, consistent
with the idea gradual updates from Jastrzebski et al. (2017).
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Argument-Function Processing in the Last Token across Task/Models
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Figure 3: Argument formation and function application is characterized by a promotion of the argument (red)
followed by it being replaced with the answer token (blue), forming an X when plotting reciprocal ranks. Across the
three tasks we evaluate, we see that most of the models exhibit these traces, and despite the major differences in
model depths, the stages occur at similar points in the models. Data shown is filtered by examples in which the

models got the correct answer.

random tokens (with leading spaces) followed by
a token = which represents a potential argument
to the function of interest. For example, in experi-
ments involving o.;¢,, we might include a sequence
such as table mug free China table mug free
China table mug free. This input primes the
model to produce “China” at the top of the resid-
ual stream, but provides no cues that the capital
city is relevant, and thus allows us to isolate the ef-
fect of oty in promoting “Beijing” in the residual
stream. In addition to the original categories, we
also include an “out-of-domain” dataset for each
task: US states and capitals, 100 non-color words,
and 128 irregular verbs. These additional data test
the sensitivity of the o vectors to different types of
arguments.

Results: Figure 4 shows results for a single ex-
ample. Here, we see that “Beijing” is promoted all
the way to the top of the distribution solely due to
the injection of o, into the forward pass. Figure
5 shows that this pattern holds in aggregate. In all
settings, we see that the outputs of the intended
functions are strongly promoted by adding the cor-
responding ¢ vectors. By the last layer, for world
and state capitals, the mean reciprocal rank of the
target city name across all examples improves from
roughly the 10th to the 3rd-highest ranked word
and 17th and 4th-ranked words respectively. The
target output token becomes the top token in 21.3%,
53.5%, and 7.8% of the time in the last layer in the
world capitals, uppercasing, and past tensing tasks,

table mug free China table mug free China table mug free

101 —e— Beijing: Original FFN

—e— Beijing: FFN = + 0city
0.8

0.6 4

0.4 4

Reciprocal Rank

0.2 1

0.0 1

Figure 4: The gray area indicates layers with the FFN
intervention. Even if the input context is nonsense (re-
peating pattern), when “China" is represented in the
residual stream, the o, vector promotes the correct
capital city.

respectively.

We also see the promotion of the proper past
tense verbs by 0p4s:. The reciprocal ranks improve
similarly for both regular (approx. 7th to 3rd rank)
and irregular verbs (approx. 6th to 3rd), indicat-
ing that the relationship between tenses is encoded
similarly by the model for these two types. oypper
promotes the capitalized version of the test token
almost every time, although the target word starts
at a higher rank (on average, rank 5). These results
together show that regardless of the surrounding
context and the argument to which it is applied, o
vectors consistently apply the expected functions.
Since each vector was originally extracted from
the model’s processing of a single naturalistic in-
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Random Tokens Pattern Task

Mapping Locations to their Capital Cities
Intervention from Poland -> Warsaw

Uppercasing
Intervention from brown -> Brown

Mapping Verbs to Past Tense
Intervention from abolish -> abolished

0.9 0.9 0.9
—e— Control World Capitals —e— Control Color Words —e— Control Regular Verbs
é 081 — Ocity Interv. World Capitals 081 o Oupper Interv. Color Words 087 Oupper Interv. Regular Verbs
gOJ | —&— Control US State Capitals 0.7 { —*— Control Non-Color Words 0.74 —*— Control Irregular Verbs

—A— 0.ty Interv. US State Capitals
©0.6 4 0.6

2051 0.5
2
v 4 0.41
<])0.4
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] 031
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©
% 0.2 0.24
01 0.14
] 0.0

—#&— Oypper Interv. Non-Color Words

—k— Opast Interv. Irregular Verbs
0.6

0.5
0.44
0.34
0.21

0.11

0.0

Figure 5: We intervene on GPT2-Medium’s forward pass while it is predicting the completion of a pattern. The
control indicates normal model execution, while the gray boxes indicate which FFNs are replaced with our selected
o vectors. We can see a significant increase in the reciprocal rank of the output of the function implemented by the o'
vector used even though the context is completely absent of any indication of the original task.

put, this generalizability suggests cross-context
abstraction within the learned embedding space.

Common Errors: While the above trend clearly
holds on the aggregate, the intervention is not per-
fect for individual cases. The most common error
is that the intervention has no real effect. In the
in-domain (out-domain) settings, this occurred in
about 37% (20%) of capital cities, 4% (5%) on
uppercasing, and 19% (22%) for past tensing. We
believe the rate is so much higher for world capitals
because the model did not have a strong association
between certain country-capital pairs from pretrain-
ing, e.g, for less frequently mentioned countries.
Typically, in these cases, the top token remains
the argument, but sometimes becomes some ran-
dom other city, for example, predicting the capital
of Armenia is Vienna. We also find that the way
tokenization splits the argument and target words
affects the ability of the ¢ vector to work and is
another source of errors. This is discussed further
in Appendix F.

5 The Role of FFNs in Out-of-Context
Retrieval

So far, we have shown that FFN output vectors
can encode functions that transfer across contexts.
Here, we investigate the role of this mechanism
when we control whether the answer occurs in
context. The tasks we study previously require
recalling a token that does not appear in the given
context (abstractive tasks). In this section we show
that mid-higher layer FFNs are crucial for this pro-
cess. When the answer to the question does appear
in context (extractive tasks), we find that ablating

a subset of FFNs has a comparatively minor effect
on performance, indicating that they are relatively
modular and there is a learned division of labor
within the model. This observation holds across
the decoder-only LMs tested in this paper. This
breakdown is consistent with previous work find-
ing that FFNs store facts learned from pre-training
(Gevaetal., 2021b; Meng et al., 2022b,c) and atten-
tion heads copy from the previous context (Wang
et al.; Olsson et al., 2022).

5.1 Abstractive vs. Extractive Tasks

Extractive Tasks: Extractive tasks are those in
which the exact tokens required to answer a prompt
can be found in the input context. These tasks can
thus be solved by parsing the local context alone,
and thus do not necessarily require the model to
apply a function of the type we have focused on in
this paper (e.g., a function like get_capital).

Abstractive Tasks: Are those in which the
answer to a prompt is not given in the input context
and must be retrieved from pretraining memory.
Our results suggest this is done primarily through
argument-function processing, requiring function
application through (typically) FFN updates as
described in Section 3.

We provide examples with their associated
GPT2-Medium layerwise decodings in Figure 7.
We expect that the argument formation and func-
tion application stages of processing occur primar-
ily in abstractive tasks. Indeed, in Appendix A,
we show that the characteristic argument-answer X
pattern disappears on extractive inputs. We hypoth-
esize that applying out-of-context transformations
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60 - —¥— Abstractive
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9
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Figure 6: Removing FFNs negatively affects performance when the task is abstractive: the in-context label is an
out-of-context transformation of the in-context prompt (e.g., “ silver” in context, answer given as “ Silver”). In
comparison, on the extractive dataset, performance is robust to a large proportion of FFNs being removed. Other

models tested are shown in Appendix B

to the predicted token representation is one of the
primary functions of FFNs in the mid-to-late layers,
and that removing them should only have a major
effect on tasks that require out-of-context retrieval.

5.2 Effect of Ablating FFNs

Data: Consider the example shown in Section 2.2
demonstrating the 0y, function. By providing
the answer to the in-context example as “ Silver",
the task is abstractive by requiring the in-context
token *“ brown" to be transformed to “ Brown" in the
test example. However, if we provide the in-context
label as “ silver", the task becomes extractive, as
the expected answer becomes ““ brown". We create
an extractive version of this dataset by lowercasing
the example answer. All data is presented to the
model with a single example (one-shot). We repeat
this experiment on the world capitals (see Figure
7), thought note that since the answer is provided
explicitly, this task is much easier for the models
in the extractive case.

Results: We run the one-shot extractive and ab-
stractive datasets on the full models, and then re-
peatedly remove an additional set of FFNs from
the top down (e.g., in 24 layer GPT2-Medium: re-
moving the 20-24th FFNs, then the 15-24th, etc.).
Our results are shown in Figure 6. Despite the
fact that the inputs in the abstractive and extractive
datasets only slightly differ (by a single character in

Top Tokens per Layer
Abstractive Task Extractive Task
The capital of
Somalia is Mogadishu.
Q: What is the capital | The capital of Poland
of Somalia? is Warsaw.
Laver A: Mogadishu Q: What is the capital
y Q: What is the capital | of Somalia?
of Poland? A: Mogadishu
A: Q: What is the capital
of Poland?
A:
14 St St
15 Poland St
16 Poland Warsaw
17 Poland Warsaw
18 Poland Warsaw
19 Warsaw Warsaw
20 ‘Warsaw Warsaw
21 Warsaw Warsaw
22 Warsaw Warsaw
23 Warsaw ‘Warsaw

Figure 7: The abstractive task undergoes argument for-
mation and function application, while the extractive
task immediately saturates (yellow). Layers 0-11 de-
code as nonsense and are omitted for brevity.

the colored objects case) we find that performance
plummets on the abstractive task as FFNs are ab-
lated, while accuracy on the extractive task drops
much more slowly. For example, even after 24 FFN
sublayers are removed from Bloom (totaling 39B
parameters) extractive task accuracy for the colored
objects dataset drops 17% from the full model’s
performance, while abstractive accuracy drops 73%
(down to 1% accuracy). The case is similar across

5036



model sizes and pretraining corpora; we include
results on additional models in Appendix B. This
indicates that we can isolate the effect of locating
and retrieving out of context tokens in this setting
to the FFNs. Additionally, because the model re-
tains reasonably strong performance compared to
using the full model, we do not find convincing
evidence that the later layer FFNs are contributing
to the extractive task performance, supporting the
idea of modularity within the network.

6 Related Work

Attributing roles to components in pretrained LMs
is a widely studied topic. In particular, the atten-
tion layers (Olsson et al., 2022; Kobayashi et al.,
2020; Wang et al.) and in the FFN modules, which
are frequently associated with factual recall and
knowledge storage (Geva et al., 2021b; Meng et al.,
2022a,c). How language models store and use
knowledge has been studied more generally as well
(Petroni et al., 2019; Cao et al., 2021; Dai et al.,
2022; Bouraoui et al., 2019; Burns et al., 2022;
Dalvi et al., 2022; Da et al., 2021) as well as in
static embeddings (Dufter et al., 2021). Recent
work in mechanistic interpretability aims to fully
reverse engineer how LMs perform some behav-
iors (Elhage et al., 2021). Our work builds on the
finding that FFN layers promote concepts in the
vocabulary space (Geva et al., 2022a) by breaking
down the process the model uses to do this in con-
text; Bansal et al. (2022) perform ablation studies
to test the importance of attention and FFN layers
on in-context learning tasks. Other work analyze
information flow within an LM to study how rep-
resentations are built through the layers, finding
discrete processing stages (Voita et al., 2019; Ten-
ney et al., 2019). We also follow this approach,
but our analysis focuses on interpreting how mod-
els use individual updates within the forward pass,
rather than probing for information encoded within
some representation. Ilharco et al. (2023) show
that vector arithmetic can be performed with the
weights of finetuned models to compose tasks, sim-
ilar to how ¢ vectors can induce functions in the
activation space of the model.

7 Discussion & Conclusion

A core challenge in interpreting neural networks
is determining whether the information attributed
to certain model components is actually used for
that purpose during inference (Hase and Bansal,

2022; Leavitt and Morcos, 2020). While previous
work has implicated FFNs in recalling factual as-
sociations (Geva et al., 2022a; Meng et al., 2022a),
we show through intervention experiments that we
can manipulate the information flowing through
the model according to these stages. This process
provides a simple explanation for the internal sub-
processes used by LMs and our findings invite fu-
ture work aimed at understanding why, and under
what conditions, LMs learn to use this mechanism
when they are capable of solving such tasks using,
e.g., adhoc memorization.

The mechanism we identify bears similarities
to linguistic regularities that allow for vector
arithmetic analogies in static word embeddings
(Mikolov et al., 2013) suggesting at least a quali-
tative similarity between large complex contextual
models and these simpler static models. Gladkova
et al. (2016) show that not all relations can be en-
coded with vector arithmetic analogies, specifically,
relations that are not one-to-one (e.g., mapping a
country to its official language). In Appendix G we
find evidence that LMs exhibit similar success and
failure cases by analyzing six additional tasks. We
provide our most detailed investigation on GPT2-
Medium, which clearly illustrates the phenomenon.
Our experiments on stages of processing with GPT-
J suggest that the same phenomena is in play, al-
though (as discussed in Section 4 and Appendix
A), the procedures we derive for interventions on
GPT2-Medium do not transfer perfectly. Specifi-
cally, we can strongly reproduce the intervention
results on uppercasing for GPT-J; results on the
other two tasks are positive but with overall weaker
effects. As we understand these processes more
deeply, a priority in future work must be to general-
ize specific findings to model-agnostic phenomena.
That said, in this work and other similar efforts,
a single positive example as a proof of concept
is often sufficient to advance understanding and
spur future work that improves robustness across
models.

Contemporaneous work (Geva et al., 2023) has
studied a different mechanism for factual recall in
LMs, but it is unclear how and when these mech-
anisms interact. Eventually, if we can understand
how models break down complex problems into
simple and predictable subprocesses, we can help
more readily audit their behavior. Interpreting the
processing signatures of model behaviors might
offer an avenue via which to evaluate and intervene
at runtime in order to prevent unwanted behavior.
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A Argument-Function Processing in
Other Models

In Section 3 we show that GPT2-Medium and
Bloom promote the in-context ‘argument’ token
to some function before promoting the answer to
that function. In figure 8we show that this effect
is present across other models as well in the three
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tasks we test. Qualitatively, we find that the pattern
is more prominent in models that have more layers,
likely because we are able to get more measure-
ments after the FEN updates, so it is less likely that
entire argument formation stage happens within
a single layer (i.e., after the attention module up-
date — we only take measurements after the FFN
update for simplicity). In the extractive task set-
ting, we would not expect the model to go through
argument-function processing in order to reach the
prediction, since it already appears in context (al-
though this does not preclude it from doing so — it
is still a valid way to retrieve the required informa-
tion). We see that this X shaped pattern disappears
when we plot the argument-answer curves for the
extractive world capitals data, as shown next to the
abstractive setting in Figure 9.

We repeat the random tokens task on GPT-J us-
ing the same stimuli as in the main paper to select
o vectors. We find that we can locate ¢ vectors
occurring in other models, however the success
rate varies for the tasks that we evaluate in this
work. Results are shown in Figure 10. Although
the uppercasing function works very well, we get
weaker responses for the past tense and world capi-
tals mappings. One explanation could be that these
tasks are not solved with an as-general solution
as in GPT2, but the process for carrying out this
intervention depends on hyperparameters which
are often model-specific (i.e., the exact layer at
which to perform the intervention), so future work
is needed to understand where differences between
these models lie.

B Additional Results on Ablating FFNs

We include the results for all six models we test
for the FFN ablation study for both the colored
objects task (Figure 11) and the world capitals task
(Figure 12). We find that the trend of abstractive
performance dropping off far before extractive per-
formance is reflected across all models.

B.1 +/-0.4s. Intervention on Colors

As described in the main paper, adding o.gse tO
the residual stream (x19 + 0cqs¢) has the effect
of capitalizing the first letter in the word ‘brown’.
Similar to the results in Sections 2.2 and 2.2, we
find that adding o.4se to the residual stream has
the effect of uppercasing the token prediction on
arbitrary contextualized representations in the mid
layers of GPT2-Medium. However, we also find

that lowercasing the first letter can be accomplished
by subtracting it. Qualitatively, this works much
the same way as adding the o vectors previously
discussed. We show this effect empirically, by
showing the difference between replacing the FFN
updates in GPT2-Medium with either positive or
negative o.ase (having the effect of adding or sub-
tracting from the residual stream).

We progressively remove FFNs from the top
of the model, and show the effect of adding or
subtracting o.qse in Figure 13. In the abstractive
case, we find that accuracy is greatly boosted when
adding o.4se Which we identify as implementing
an uppercasing function, and reflects the results in
Sections 2.2 and 2.2. We find that we can replace
the top third of GPT2-Medium FFN layers (FFNs
in layers 16-24, around 20% of all parameters) with
+0case t0 gain 25% in total accuracy (from 4.5% to
29.5%) and recovering to 72% of the performance
of the un-ablated model (41%). Conversely, if we
subtract o.4se in the abstractive setting to encourage
lowercasing (i.e., encouraging the model to output
a lowercased answer when the answer it should
have a capital first letter), the model immediately
hits 0% performance. We see the opposite effect
in the extractive setting, where adding ocase hurts
performance to a greater degree than subtracting
it. According to our results presented so far, we
would expect FFNs to be unnecessary for solving
the extractive dataset examples, which is possibly
why performance is degraded in both cases we
intervene, but we don’t test this idea in this work.

C What are the Attention Heads Doing?

We focus on the outputs of the FFN layers in this
work, but that is not to say that the attention heads
are not contributing to the final answer. As shown
in Section 5, the attention layers are able to get
the final answer when it already appears explicitly
in context (when it’s extractive). This leads to a
possible explanation for why LMs learn to imple-
ment argument-function processing. We speculate
that this process may be the result of a natural pro-
gression in training. When the argument token
needs to be transformed ("brown" to "Brown"), the
model notices that it is the subject of the next token,
and uses attention heads to copy the value of that
token into the next token prediction. This opera-
tion could be done using mover heads (Wang et al.,
2022; Merullo et al., 2023) or induction heads (Ols-
son et al., 2022). In the following layers, the model
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Argument-Function Processing in the Last Token
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Figure 8: Across several model architectures and tasks, we find evidence that on average, the argument (which
appears in context) rises to the top of the vocab distribution before crossing with the answer to the task. We describe
this as argument-function processing where the argument to some function is represented in the residual stream
before some update from the model is added to it to produce the output of that function. Qualitatively, we observe
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that models with more layers display this pattern more prominently.
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Comparison of Abstractive and Extractive Versions of the World Capitals Task

GPT2-Small GPT2-Medium GPT2-Large GPT2-XL GPT-J Bloom
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Figure 9: The ‘X’ pattern of argument and answer tokens crossing in the course of the forward pass is the
characteristic pattern in argument-function processing. In the main text, we show how the models we test use this
type of processing to recall the capital cities of locations. When we make the task extractive (by including the
correct capital in the given context), the model does not have to setup an argument and function in order to get
the answer, and the pattern disappears. This highlights the differences we describe in processing extractive and
abstractive tasks. Both datasets are filtered for examples where the models were correct.

Mapping Locations to their Capital Cities
Intervention from Poland -> Warsaw
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Intervention from brown -> Brown
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Intervention from abolish -> abolished
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Figure 10: We use the same stimuli to extract ¢ vectors on GPT-J. Results are similar for the uppercasing function,
but only very weakly positive on the world capitals task.
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Figure 11: Results of removing FFN sublayers for the colored objects task for all models.
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Figure 12: Results of removing FFN sublayers for the world capitals task for all models.

Effect of Ablating FFNs, or Replacing them with +/- 0ypper

transforms this representation into the final output.
When subject enrichment (Geva et al., 2023) is not
possible, these same pseudo mover heads would
then copy the unenriched subjects (i.e., the regular
argument tokens). In these cases, the model would

a0 e —_» | have to apply the function after already copying it
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zero-shot learn-
ing. When
we  provide
in-context
examples,
we are also
providing the
output format
of the prompt.
Consider the
example “Q:
What is the
capital of Poland? A:". wunlike the one shot
example given in Figure 2, there is no indication
that the next word should be “ Warsaw" over
continuing the generation as a complete sentence
“The capital of Poland is Warsaw", which is what
GPT2-Medium actually generates. If we decode
at every layer, as is shown in Table ?? we can
see that the model still goes through argument
formation despite preferring to generate the full
sentence. We can take advantage of this behavior
by replacing the FFN layers in the later layers
with 0.1, in order to guide the generation to the
expected response of immediately generating the
capital. We can perform this experiment on the
past tensing task as well. Results on the zero-shot
tasks are shown in Figure 14. We find that on the
world capitals task, we can greatly improve the
propensity of the model to output the expected
answer by performing an o vector intervention,
improving zero-shot performance from 5.6% to
33.0%. On the past tense mapping task, where
perhaps the output format is more obvious from
the prompt, the zero and one shot performances are
about equal, but we still see a modest improvement
over the one shot results of about 4.2%. Although
the tasks are very simple, we achieve this by
effectively ablating FFN layers (layers 19-23) and
precomputing their activations, suggesting it might
be possible to edit models extensively to limit their
expressiveness to one type of output while also
making them more efficient. We are optimistic
about future work in this area.

E Effect of Layer Choice on Intervention
Results

In the main text, we replace FFNs starting at either
layer 18 or 19 GPT2-Medium to the end (indexed
at 0). We find that intervening on only one layer
promotes the output token, but not to the top of

the distribution. One possibility is that the model
makes gradual updates that are pushing the token
representation in generally the same direction (Jas-
trzebski et al., 2017). In Figure 15, we show that
adding any of the o vector interventions at any sin-
gle layer at 18 or afterwards, there is a roughly
equivalent increase to the average reciprocal rank
of the target word. The logit difference between
the argument and answer token (in the logits of
each early-decoded layer) shows this as well as a
gradual increase. This is exemplified in Figure 2 in
the main paper.

F Effect of Tokenization on the
Effectiveness of 0 Vectors

The tokenizer can split one word into multiple
subtokens, such as “Purple"” into the tokens “Pur"
and “ple". This occurs with words that were less
frequent in the training data. We find that this pro-
cess has a generally negative effect on the perfor-
mance of the intervention we perform. Intuitively,
if we are trying to use oyper to capitalize the “pur-
ple" token into “Purple", it must map from “purple”
(one token) to “Pur". It seems less obvious, then,
that the embeddings would encode a linear relation-
ship between these two, since “Pur" is a subtoken
in many other words. We explore this specific phe-
nomenon on the random tokens task from Section
4 with the o0y, intervention. We take 100 single
token words that capitalize to a single token, and
100 others that capitalize to words that break down
into multiple tokens. Our results can be seen in Fig-
ure 16. We find that tokens that get broken up into
multiple tokens are less probable than for tokens
that capitalize to single token forms.

G Additional Tasks: One-to-One,
Many-to-One, and Many-to-Many
Relations

In the main paper, we show study three one-to-one
relations that exhibit the argument/output pattern,
but it remains unclear how well this generalizes to
other relations. Using six additional tasks, three
many-to-X and three new one-to-one, we provide
evidence that suggests that the observed mecha-
nism is specific to one-to-one relations, and does
not work when mulitple inputs map to one output.
This suggests that the model is sensitive to this
distinction of relations during pretraining, and the
vector arithmetic mechanism structure we observe
only presents for the most explicit relations. In
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World Capitals Task Past Tense Mapping Task
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Figure 14: By replacing FFN networks with the corresponding & vectors, we show that we can improve zero-shot
performance by taking advantage of the model going through argument formation in the zero-shot setting.
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Figure 15: Replacing any individual FFN update is worse than replacing all of them. This supports the idea that
networks made gradual updates to their representations, and that the o' vectors we extract behave this way as well:
multiple similar updates are made £ layers in a row. Interestingly, the average boost to the reciprocal rank is about
the same regardless of which single layer we apply the update at, suggesting that this range of FFNs are operating in
same space.
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Probability and MRR Differences when Uppercasing words which are Broken into One vs Multiple Tokens

—&— Control - >1 Token —— Control - >1 Token
0.51 —— Intervention - >1 Token 081 _a— Intervention - >1 Token
—e— Control - 1 Token ~ 0.7{ —— Control - 1 Token
044 Intervention - 1 Token % —e— Intervention - 1 Token
: o 0.6
> ©
Z 031 305
a 4
= S04/
<] @
a 0.2 <93
c
3 0.2
0.1 =7
0.1
0.0 0.0 Ar—d—d—d—d—d—h—A—A—h—h—i=i—k
—T T T T T T T T T T T T T T T T T T T T T T T —T T T T T T T T T T T T T T T T T T T T T T T
0123456 7 8 91011121314151617181920212223 0123456 7 8 91011121314151617181920212223
Layer Layer

Figure 16: When the uppercase version of a word gets broken down into multiple subtokens, mapping to that token
becomes much less probable and is generally harder of an association for the model to make.

Table ??, we give examples of the six new tasks,
following the same prompt format as the one used
in the main paper. In Table ??, we break down the
relation type of each task and provide the GPT2-
Medium accuracy for each one. Figure 17 shows
the early decoding patterns for the argument and
answer tokens. While the three one-to-one tasks
exhibit the initial promotion of the argument token,
followed by the answer token on average, the argu-
ment token does not become highly promoted on
any of the non one-to-one relations.

H Compute

All models were run on NVidia RTX 3090s; Bloom
was run locally on 3090s in float16 with CPU of-
floading.
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Task Example
Animal Hypernyms | ...Q: The anaconda is a kind of what?\nA: (snake/reptile/boa/...)
Name to Nationality ...Q: What is the nationality of Balzac?\nA: (French)
Country to Language | ...Q: What is the official language of Argentina?\nA: (Spanish)
Adj. to un-Adj. ...Q: What is the opposite of able\nA: (unable)
3rd Person Verbs ...Q: What is the third person singular of become?\nA: (becomes)
Noun Plurals ...Q: What is the plural of album?\nA: albums

Table 2: Examples from three non-injective and one injective relation. A given animal (anaconda) is a type of snake
and reptile, and other snakes/reptiles also exist (many-to-many). Balzac is only French and other people map to
French (many-to-one), etc.

Mean Reciprocal Rank
o o o o =
N =~ > ® >

o
o

Task Accuracy (%) Task Type
Animal Hypernyms 30.4+1.7 Many-to-Many
Name to Nationality 73.242.0 Many-to-One
Country to Language 71.2+2.4 Many-to-Many

Adj. to un-Adj. 12.0+1.1 One-to-One
3rd Person Verbs 22.4+0.7 One-to-One
Noun Plurals 51.6+1.7 One-to-One

Table 3: One-shot accuracies for each task across 5 random seeds for GPT2-Medium.

Animal Hypernyms

Name to Nationality

Country to Language
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Figure 17: Non-injective tasks show no evidence of argument-function processing on average. In sharp contrast to
the past tense, colored objects, capital cities, and un-adj. tasks where this is observed, here, the argument token
experiences virtually no spike in reciprocal rank in the intermediate layers.
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Figure 18: For the first two tasks, the average argument-answer spike pattern is similar to the other one-to-one tasks
in which the vector arithmetic analogy held. The results for noun plurals are mostly negative as it appears the model
uses argument-function processing only some of the time. We will expand on this in the camera ready paper.
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