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Abstract

Prompts have been the center of progress in

advancing language models’ zero-shot and few-

shot performance. However, recent work finds

that models can perform surprisingly well when

given intentionally irrelevant or misleading

prompts. Such results may be interpreted as ev-

idence that model behavior is not “human like”.

In this study, we challenge a central assumption

in such work: that humans would perform badly

when given pathological instructions. We find

that humans are able to reliably ignore irrele-

vant instructions and thus, like models, perform

well on the underlying task despite an apparent

lack of signal regarding the task they are being

asked to do. However, when given deliberately

misleading instructions, humans follow the in-

structions faithfully, whereas models do not.

Our findings caution that future research should

not idealize human behaviors as a monolith and

should not train or evaluate models to mimic

assumptions about these behaviors without first

validating humans’ behaviors empirically.

1 Introduction

Prompting has emerged as the default way of using

large language models (Brown et al., 2020; Sanh

et al., 2022; Wei et al., 2021; Ouyang et al., 2022;

Chung et al., 2022). However, a collection of re-

cent papers show that models perform surprisingly

well when given misleading or irrelevant prompts

(Webson and Pavlick, 2022; Prasad et al., 2022;

Khashabi et al., 2021), corrupted in-context exam-

ples (Min et al., 2022), or corrupted explanations

or chain-of-thought (Madaan and Yazdanbakhsh,

2022; Ye and Durrett, 2022). Such results raise

questions about whether language models’ ability

to follow instructions is analogous to humans’ abil-

ity to do so.

In this paper, we investigate what humans do in

such settings. We follow the experimental setup

∗Equal contribution. Correspondence to papers@aw.nyc.

used by Webson and Pavlick (2022) (W&P here-

after) to study how instructions in prompts affect

LMs’ performance. W&P manually write a set of

prompts for various natural language inference

(NLI) and coreference resolution datasets. These

prompts cover three main categories: instructive,

irrelevant, and misleading. For example, Given

{sentence1} , can we assume it is

true that {sentence2} is an instruc-

tive prompt for NLI, whereas {sentence1}

Does the above passage express a

positive sentiment? {sentence2} is

a misleading instruction for NLI. (See Table 1 for

full definitions and examples.)

W&P assume that, if models perform held-out

tasks by reading prompts as instructions in the way

that humans (are assumed to) do, their performance

with instructive prompts should be much higher

than their performance with other pathological cat-

egories of prompts, namely:

instructive > misleading (A1)

instructive > irrelevant (A2)

instructive > null (no instruction) (A3)

Instead, W&P find that T5 (LM-Adapted, 11B,

Lester et al., 2021), T0 (11B, Sanh et al., 2022), and

GPT-3 (175B, Brown et al., 2020) do not exhibit the

above patterns. Rather, in both zero-shot and few-

shot settings, models perform roughly the same

on instructive, misleading, and irrelevant prompts,

violating A1 and A2 above. Models do, however,

perform better given any type of instructions than

they do with no instructions (i.e., A3 holds). There-

fore, W&P conclude that while prompts do confer

substantial empirical benefits, the fact that models

are so good at inferring the gold labels under vari-

ous pathological prompts casts doubts on whether

models understand or use instructions in ways sim-

ilar to how humans do.

In this paper, we revisit W&P’s assumptions on

how humans behave with pathological prompts.
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Category Description Examples

instructive
How we would describe the NLI task

to a human who has never seen the task before.

{sentence1} Are we justified in saying that “{sentence2}”?

Given {sentence1} Should we assume that “{sentence2}” is true?

misleading
Instruct the models to perform a task unrelated

to NLI.

{sentence1} is the sentiment positive? {sentence2}

{sentence1} is this a sports news? {sentence2}

irrelevant
Concatenate the premise, a sentence unrelated

to any NLP task, and the hypothesis.

{sentence1} If bonito flakes boil more than a few seconds

the stock becomes too strong. "{sentence2}"?

null
Concatenate the premise and the hypothesis

without any additional text.

{premise} {hypothesis}

{sentence2}{sentence1}

Table 1: Prompt categories adapted from W&P, with W&P’s two misleading categories collapsed into one ‘mislead-

ing’ category for clarity. See Table 3 for the full list.

We use the same experimental design but adapt it

for measuring human behaviors. In the zero-shot

setting, we find that while assumptions A1 and A3

are consistent with human behaviors, A2 is not.

Our experiments underscore the importance

of validating assumptions about human behavior

on natural language tasks since, frequently, re-

searchers’ intuitions about human behavior do not

bear out in practice, and that extra care should be

taken in designing a fair comparison between mod-

els and humans (Pavlick and Kwiatkowski, 2019;

Dasgupta et al., 2022; Lampinen, 2022).

2 Experiment

Overview Following W&P, we use natural lan-

guage inference (NLI) as the primary task for our

experiments. (That is, in our results, we always re-

port human and model performance with respect to

the NLI task.) When necessary, in designing stimuli

for the misleading prompt condition (discussed in

detail below), we additionally draw examples from

7 other tasks: lexical overlap, lexical identity, para-

phrasing identification, grammatical acceptability,

summarization acceptability, topic classification,

and language identification (see Appendices H.2

and H.3 for details); we refer to these collectively

as surface tasks in this paper.

We define an example to be a pair of

<sentence1, sentence2>. For NLI, sen-

tences 1 and 2 are the premise and hypoth-

esis, respectively.1 We define an item as a

unique 3-tuple <sentence1, instruction,

sentence2>, i.e., an example fitted within a

prompt template, which can be instructive (w.r.t.

NLI), misleading, irrelevant, or empty (null).2

1For other tasks, if they do not need a sentence pair (e.g.,
sentiment analysis), our instructions always unambiguously
ask for judgment of sentence1.

2W&P further differentiate moderately misleading from
extremely misleading instructions. However, for our purposes,
we collapse this distinction, except where discussed in §A.2.

Crucially, when the instruction is misleading,

we manually select examples such that <sent1,

misleading instruction, sent2> and

<sent1, NLI instruction, sent2> al-

ways have opposite gold labels—see Figure 1. As-

suming participants are competent at NLI as well

as at each of the relevant surface tasks3 used in our

experiments, this design enables us to distinguish

whether the participant is performing the NLI task

or surface task when given misleading instructions.

Procedure To ensure this experiment is as zero-

shot as possible, each participant receives only one

test item, followed by four additional items which

we use as controls to ensure that all tasks and exam-

ples are fair (Appendix E). For each item, subjects

choose between“Yes" or “No". They do not receive

any feedback throughout the experiment.

Example Selection Because our main goal is to

measure the effect of instructions and not humans’

performance on the tasks themselves per se, we

manually select examples that are as easy and un-

ambiguous as possible. For the instructive, irrele-

vant, and null conditions, we choose examples from

RTE (Dagan et al., 2006) and MNLI (Williams

et al., 2018). For the misleading condition, we man-

ually select all examples to ensure that the NLI

labels differ from the misleading task labels. A full

description of how we curate examples is detailed

in Appendix H.

Instruction Templates We select and lightly

edit4 22 of the 27 prompts used in W&P for testing.

The complete prompts are listed in Appendix H.

Combined with examples, there are a total of 194

unique items in our test condition (Table 2). Each

item is assigned to a minimum of three annotators.

Participants We conducted our study on Ama-

zon Mechanical Turk, receiving a total of 597 re-

3See Appendix E for a detailed discussion and analysis of
control conditions which we take to be convincing evidence
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(a) Instructive Condition: Baseline
where the surface instruction is the
same as NLI.

(b) Misleading Condition: Surface
task label always differs from the
NLI label.

(c) Irrelevant/Null Cond.: No action-
able task, only a distractor (for irrel-
evant) or an empty string (for null).
Above shows the irrelevant condition.

Figure 1: Main experimental design. Note that under the misleading condition, if a participant interprets the

surface instruction as lexical overlap, then the gold answer would be “yes”. If a participant somehow interprets this

instruction as NLI, then the gold answer will be “no”. Text within the curly bracket are not shown to the participants.

Category Prompts Examples Total Items

Instructive 5 12 60

Misleading 10 5 50

Irrelevant 5 12 60

Null 2 12 24

Total 22 46 194

Table 2: We define an item as a unique 3-tuple

<sentence1, instruction, sentence2>

where each sentence pair is an example manually

selected from a dataset.

sponses over a three-day span. Participants were

paid a base rate of $0.50 with an additional $0.10

per correct answer as an incentive. See Appendix E

for details on how we qualify participants.

Models To compare human performance with

that of models, we use instruction-tuned mod-

els T0++ (11B, Sanh et al., 2022) and Flan-T5

(11B, Chung et al., 2022), as well as GPT-3.5

(gpt-3.5-turbo) and GPT-4 (June 2023 ver-

sion, OpenAI 2023). T0++ and Flan-T5 models are

extensively fine-tuned to follow NLP instructions,

with the key difference that T0 has NLI as a held-

out task while Flan-T5 does not. All models are

given test items identical to those from the human

experiments. (See §E.4 for additional details).

3 Results

Figure 2 show the zero-shot performance of

humans compared to that of instruction-tuned

that our participants are sufficiently competent.
4We add a line break after the premise text for better human

readability, and we edit all prompts to be clearer by making
use of the line break (e.g. “the above passage").

models. The overall performance of T0++, Flan-T5

and GPTs by themselves is consistent with

the model performance reported by W&P. But,

with the exception of GPT-4, models show very

different patterns from that of humans when

given misleading prompts. As expected, when

humans are explicitly asked to do a task other than

NLI (e.g., sentiment analysis, grammaticality),

they tend to do the specified task (leading to low

accuracy when measured against the NLI task).

In contrast, models often appear to behave as

though they have been instructed to do NLI even

though they are instructed to do some other surface

tasks (leading to high accuracy when measured

against the NLI task). For example, when given

a misleading instruction (e.g., paraphrasing

identification as opposed to NLI) {sentence1}

Does that have the same meaning

as "{sentence2}"?, humans do indeed

perform the paraphrasing task and thus receive a

score of 0 on NLI, whereas models tend towards

performing NLI, with T0++ / GPT-4 receiving an

NLI score of 1 and Flan-T5 / GPT-3.5 a score of

0.6. (Full results on all prompts in §G.1.) This

pattern confirms W&P’s assumption A1 that

models perform ‘too well’ on misleading prompts,

i.e., better than humans would under similar

conditions.

However, when we consider assumption A2

(instructive > irrelevant), we see a different

story. When given irrelevant instructions, we

see that all models and humans exhibit similar

patterns. In fact, humans show far less variance

than models in performing the NLI task when
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Figure 2: Zero-shot accuracy of human annotators vs. instruction-tuned models. In the misleading condition, lower

NLI accuracy is preferred as it means higher accuracy in following the instructions to perform the surface tasks.

Medians are displayed in the bars. Each scatter point represents the accuracy on a instruction within the semantic

category. For models, this is calculated as the mean accuracy over all the test items constructed from the examples

for the instruction (i.e., 5 for each misleading instruction, 12 for each null, irrelevant and instructive instruction); for

humans this is the mean accuracy over all participants who received items with that instruction.

the instructions are irrelevant, suggesting that

humans are more likely to perform NLI as

some kind of “default” task absent of useful

instructions. For example, given the irrelevant

instruction {sentence1} Inflections

are annoying and thank god that

Middle English got rid of most

of them. {sentence2} Humans, T0++,

Flan-T5, GPT-3.5 and GPT-4 all score similarly at

0.79, 0.83, 0.83, 0.67 and 0.75 respectively (§G.1).

4 Discussion

Our findings show that, in a zero-shot setting, hu-

mans appear largely faithful to prompt instructions.

They perform well given instructive prompts and

poorly given misleading prompts (as expected).

However, we observe that T0++, FLAN-T5, and

(to a lesser extent) GPT-3.5 are inclined to perform

NLI in a zero-shot setting regardless of what is in

fact being instructed. GPT-4, however, does seem to

exhibit a more human-like pattern in following the

misleading instructions (albeit with high variance).

It is possible that a combination of pretraining

FLOPs, fine-tuning data quality, and RLHF may

have bridged some discrepancies between GPT and

human behaviors, whereas smaller and supervised

fine-tuning-only models fail to do so, but it is im-

possible to conclude given that little is known about

GPT-3.5/4’s technical details.

When no useful instructions are provided in the

irrelevant prompt setting, our results show that hu-

mans still tend to perform the NLI task surprisingly

well. Contrary to W&P’s criticism, models’ ten-

dency to do the same with irrelevant prompts is

likely more a feature than a bug (cf. Merrill et al.,

2022).

Such idiosyncrasies in human behavior are of-

ten difficult to anticipate and even more difficult

to codify in a way that lends itself well to bench-

marks. Thus, we echo recent work (Pavlick and

Callison-Burch, 2016; Ross and Pavlick, 2019;

Pavlick and Kwiatkowski, 2019; Dasgupta et al.,

2022; Lampinen, 2022) in emphasizing the diffi-

culty of evaluating models when “human-likeness”

is the intended gold standard. As NLP models be-

come increasingly advanced, and evaluation tasks

increasingly complex, we are likely to face increas-

ing challenges in determining whether models’ be-

havior is “aligned” with that of humans. This study

contributes to the line of work which underscores

the importance of empirically measuring, rather

than presupposing, human behavior in such set-

tings, as humans in practice routinely evade basic

intuitions. Appendix B further discusses how to

design a fairer comparison between humans and

models.

5 Conclusion

In this work, we measure human behaviors when

given misleading and irrelevant instructions for var-

ious NLP tasks. We show that our prior work used

oversimplified assumptions of human behavior to

evaluate NLP models. Our results underscore the

need to empirically validate assumptions about hu-

man behavior, which is often more complex in re-

ality than our intuitions would lead us to believe.
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6 Limitations and Future Work

Our main experiment investigates only the zero-

shot setting in humans. We do run a pilot exper-

iment with the intention to compare model and

human behavior in a few-shot setting, reported in

Appendix A. While the pilot already yielded inter-

esting results, we leave a full experiment on the

few-shot setting to future work.

Our experimental design also only uses the Natu-

ral Language Inference (NLI) task as the reference

task, which we acknowledge may be a task that

is perhaps more intuitive as a “default” task than

other common NLP tasks (e.g., sentiment analy-

sis, paraphrase). While future work should con-

sider repeating this analysis for other tasks, NLI

has several advantages for our purposes. First, NLI

is one of the only tasks explicitly held out entirely

from the instruction-tuned T0 models, allowing for

the best evaluation of their few-shot performance.

Moreover, the intuitiveness of NLI works in our

favor for the claims we make—it would be ostensi-

bly most challenging for humans to override a bias

towards this task to instead follow task instructions.

Then, the fact humans do this even under the NLI

task setting is the strongest evidence of instruction-

following behavior compared to any other task. We

acknowledge that there is future work to verify

that the human behavior observed for instruction-

following extends to other tasks.

7 Ethics Statement

We acknowledge that calling for more rigorous hu-

man benchmarking only exacerbates NLP field’s

needs for human annotators, where it has been

demonstrated that NLP crowdsourcing may po-

tentially expose workers to harm, as described in

Shmueli et al. (2021). For our study, our Institu-

tional Review Board (IRB) reviewed our experi-

mental design and determined that its primary aim

is to study computational language models and thus

does not meet the federal definition of human sub-

jects research. Future studies should similarly sub-

mit their studies, if involving human benchmarking,

for review by their institutions’ IRBs.

8 Acknowledgments

We thank Tal Lizen, Andrew Lampinen, Swaroop

Mishra, Apoorv Agarwal, Michael Lepori, Louis

Castricato, Samuel Musker, Aaron Traylor, and

Philip LaDuca for discussions and comments on

this work. We thank Brendan Ho who wrote a lot

of feedback for the free-form response questions.

Special thanks to Roman Feiman for discussions

on the design of the human experiments.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
ArXiv preprint, abs/2210.11416.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177–190. Springer.

Ishita Dasgupta, Andrew K. Lampinen, Stephanie
C. Y. Chan, Antonia Creswell, Dharshan Kumaran,
James L. McClelland, and Felix Hill. 2022. Lan-
guage models show human-like content effects on
reasoning. ArXiv preprint, abs/2207.07051.

Philippe Goldammer, Hubert Annen, Peter Lucas
Stöckli, and Klaus Jonas. 2020. Careless responding
in questionnaire measures: Detection, impact, and
remedies. The Leadership Quarterly, 31(4):101384.

Robert Greszki, Marco Meyer, and Harald Schoen. 2015.
Exploring the Effects of Removing "Too Fast" Re-
sponses and Respondents from Web Surveys. Public
Opinion Quarterly, 79.

7666



Joel Jang, Seonghyeon Ye, and Minjoon Seo. 2022. Can
large language models truly understand prompts? a
case study with negated prompts. ArXiv preprint,
abs/2209.12711.

Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui Qin,
Kyle Richardson, Sameer Singh, Sean Welleck, Han-
naneh Hajishirzi, Tushar Khot, Ashish Sabharwal,
et al. 2021. Prompt waywardness: The curious case
of discretized interpretation of continuous prompts.
ArXiv preprint, abs/2112.08348.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. ArXiv
preprint, abs/2205.11916.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X
Wang, and Felix Hill. 2022. Can language models
learn from explanations in context? ArXiv preprint,
abs/2204.02329.

Andrew Kyle Lampinen. 2022. Can language models
handle recursively nested grammatical structures? a
case study on comparing models and humans. ArXiv
preprint, abs/2210.15303.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP.

Aman Madaan and Amir Yazdanbakhsh. 2022. Text
and patterns: For effective chain of thought, it takes
two to tango. ArXiv preprint, abs/2209.07686.

William Merrill, Alex Warstadt, and Tal Linzen. 2022.
Entailment semantics can be extracted from an ideal
language model. ArXiv preprint, abs/2209.12407.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? ArXiv
preprint, abs/2202.12837.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Natural instructions:
Benchmarking generalization to new tasks from
natural language instructions. ArXiv preprint,
abs/2104.08773.

Rishabh Misra. 2022. News category dataset. arXiv
preprint arXiv:2209.11429.

Rishabh Misra and Jigyasa Grover. 2021. Sculpting
Data for ML: The first act of Machine Learning.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. ArXiv preprint, abs/2112.00114.

OpenAI. 2023. GPT-4 Technical Report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. ArXiv preprint, abs/2203.02155.

Ellie Pavlick and Chris Callison-Burch. 2016. So-called
non-subsective adjectives. In Proceedings of the Fifth
Joint Conference on Lexical and Computational Se-
mantics, pages 114–119, Berlin, Germany. Associa-
tion for Computational Linguistics.

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
disagreements in human textual inferences. Transac-
tions of the Association for Computational Linguis-
tics, 7:677–694.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
ArXiv preprint, abs/2203.07281.

Alexis Ross and Ellie Pavlick. 2019. How well do NLI
models capture verb veridicality? In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2230–2240, Hong Kong,
China. Association for Computational Linguistics.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Boaz Shmueli, Jan Fell, Soumya Ray, and Lun-Wei Ku.
2021. Beyond Fair Pay: Ethical Implications of NLP
Crowdsourcing.

Aarohi Srivastava, Abhinav Rastogi, Abhishek B Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,

7667



Adrià Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex
Ray, Alex Warstadt, Alexander W. Kocurek, Ali
Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish,
Allen Nie, Aman Hussain, Amanda Askell, Amanda
Dsouza, Ameet Annasaheb Rahane, Anantharaman S.
Iyer, Anders Andreassen, Andrea Santilli, Andreas
Stuhlmuller, Andrew M. Dai, Andrew D. La, An-
drew Kyle Lampinen, Andy Zou, Angela Jiang, An-
gelica Chen, Anh Vuong, Animesh Gupta, Anna
Gottardi, Antonio Norelli, Anu Venkatesh, Arash
Gholamidavoodi, Arfa Tabassum, Arul Menezes,
Arun Kirubarajan, Asher Mullokandov, Ashish Sab-
harwal, Austin Herrick, Avia Efrat, Aykut Erdem,
Ayla Karakacs, Bridget R. Roberts, Bao Sheng
Loe, Barret Zoph, Bartlomiej Bojanowski, Batuhan
Ozyurt, Behnam Hedayatnia, Behnam Neyshabur,
Benjamin Inden, Benno Stein, Berk Ekmekci,
Bill Yuchen Lin, Blake Stephen Howald, Cameron
Diao, Cameron Dour, Catherine Stinson, Cedrick
Argueta, C’esar Ferri Ram’irez, Chandan Singh,
Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu
Wu, Chris Callison-Burch, Chris Waites, Chris-
tian Voigt, Christopher D. Manning, Christopher
Potts, Cindy Tatiana Ramirez, Clara Rivera, Clemen-
cia Siro, Colin Raffel, Courtney Ashcraft, Cristina
Garbacea, Damien Sileo, Daniel H Garrette, Dan
Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman,
Daniel Khashabi, Daniel Levy, Daniel Gonz’alez,
Danny Hernandez, Danqi Chen, Daphne Ippolito,
Dar Gilboa, David Dohan, D. Drakard, David Jur-
gens, Debajyoti Datta, Deep Ganguli, Denis Emelin,
Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam,
Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dim-
itri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekate-
rina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor
Hagerman, Elizabeth Barnes, Elizabeth P. Donoway,
Ellie Pavlick, Emanuele Rodolà, Emma FC Lam,
Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang,
Ethan A. Chi, Ethan Dyer, Ethan J. Jerzak, Ethan
Kim, Eunice Engefu Manyasi, Evgenii Zheltonozh-
skii, Fan Xia, Fatemeh Siar, Fernando Mart’inez-
Plumed, Francesca Happ’e, François Chollet, Frieda
Rong, Gaurav Mishra, Genta Indra Winata, Gerard
de Melo, Germán Kruszewski, Giambattista Paras-
candolo, Giorgio Mariani, Gloria Wang, Gonzalo
Jaimovitch-L’opez, Gregor Betz, Guy Gur-Ari, Hana
Galijasevic, Han Sol Kim, Hannah Rashkin, Hanna
Hajishirzi, Harsh Mehta, Hayden Bogar, Henry
Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming
Zhang, Hubert Wong, Ian Aik-Soon Ng, Isaac No-
ble, Jaap Jumelet, Jack Geissinger, John Kernion,
Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac,
J. Brooker Simon, James Koppel, James Zheng,
James Zou, Jan Koco’n, Jana Thompson, Jared Ka-
plan, Jarema Radom, Jascha Narain Sohl-Dickstein,
Jason Phang, Jason Wei, Jason Yosinski, Jekaterina
Novikova, Jelle Bosscher, Jenni Marsh, Jeremy Kim,
Jeroen Taal, Jesse Engel, Jesujoba Oluwadara Alabi,
Jiacheng Xu, Jiaming Song, Jillian Tang, Jane W
Waweru, John Burden, John Miller, John U. Balis,
Jonathan Berant, Jorg Frohberg, Jos Rozen, José
Hernández-Orallo, Joseph Boudeman, Joseph Jones,

Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua,
Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik
Gopalakrishnan, Katerina Ignatyeva, Katja Markert,
Kaustubh D. Dhole, Kevin Gimpel, Kevin Ochieng’
Omondi, Kory Wallace Mathewson, Kristen Chia-
fullo, Ksenia Shkaruta, Kumar Shridhar, Kyle Mc-
Donell, Kyle Richardson, Laria Reynolds, Leo Gao,
Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
Ochando, Louis-Philippe Morency, Luca Moschella,
Luca Lam, Lucy Noble, Ludwig Schmidt, Luheng
He, Luis Oliveros Col’on, Luke Metz, Lutfi Kerem
cSenel, Maarten Bosma, Maarten Sap, Maartje ter
Hoeve, Madotto Andrea, Maheen Saleem Farooqi,
Manaal Faruqui, Mantas Mazeika, Marco Baturan,
Marco Marelli, Marco Maru, M Quintana, Marie
Tolkiehn, Mario Giulianelli, Martha Lewis, Martin
Potthast, Matthew Leavitt, Matthias Hagen, M’aty’as
Schubert, Medina Baitemirova, Melissa Arnaud,
Melvin Andrew McElrath, Michael A. Yee, Michael
Cohen, Mi Gu, Michael I. Ivanitskiy, Michael Star-
ritt, Michael Strube, Michal Swkedrowski, Michele
Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike
Cain, Mimee Xu, Mirac Suzgun, Monica Tiwari, Mo-
hit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh
Gheini, T MukundVarma, Nanyun Peng, Nathan
Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas
Cameron, Nicholas S. Roberts, Nicholas Doiron,
Nikita Nangia, Niklas Deckers, Niklas Muennighoff,
Nitish Shirish Keskar, Niveditha Iyer, Noah Con-
stant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar
Agha, Omar Elbaghdadi, Omer Levy, Owain Evans,
Pablo Antonio Moreno Casares, Parth Doshi, Pascale
Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormo-
labashi, Peiyuan Liao, Percy Liang, Peter W. Chang,
Peter Eckersley, Phu Mon Htut, Pi-Bei Hwang,
P. Milkowski, Piyush S. Patil, Pouya Pezeshkpour,
Priti Oli, Qiaozhu Mei, QING LYU, Qinlang Chen,
Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel,
Rahel Habacker, Ram’on Risco Delgado, Raphaël
Millière, Rhythm Garg, Richard Barnes, Rif A.
Saurous, Riku Arakawa, Robbe Raymaekers, Robert
Frank, Rohan Sikand, Roman Novak, Roman Sitelew,
Ronan Le Bras, Rosanne Liu, Rowan Jacobs, Rui
Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee,
Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib J.
Singh, Saif M. Mohammad, Sajant Anand, Sam
Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruet-
ter, Sam Bowman, Samuel S. Schoenholz, Sanghyun
Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazar-
ian, Sayan Ghosh, Sean Casey, Sebastian Bischoff,
Sebastian Gehrmann, Sebastian Schuster, Sepideh
Sadeghi, Shadi S. Hamdan, Sharon Zhou, Shashank
Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi,
Shixiang Shane Gu, Shubh Pachchigar, Shubham
Toshniwal, Shyam Upadhyay, Shyamolima Deb-
nath, Siamak Shakeri, Simon Thormeyer, Simone
Melzi, Siva Reddy, Sneha Priscilla Makini, Soo
hwan Lee, Spencer Bradley Torene, Sriharsha Hat-
war, Stanislas Dehaene, Stefan Divic, Stefano Ermon,
Stella Rose Biderman, Stephanie C. Lin, S. Prasad,
Steven T. Piantadosi, Stuart M. Shieber, Summer
Misherghi, Svetlana Kiritchenko, Swaroop Mishra,
Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq A.

7668



Ali, Tatsuo Hashimoto, Te-Lin Wu, Theo Desbordes,
Theodore Rothschild, Thomas Phan, Tianle Wang,
Tiberius Nkinyili, Timo Schick, T. N. Kornev, Tim-
othy Telleen-Lawton, Titus Tunduny, Tobias Ger-
stenberg, Trenton Chang, Trishala Neeraj, Tushar
Khot, Tyler O’Brien Shultz, Uri Shaham, Vedant
Misra, Vera Demberg, Victoria Nyamai, Vikas Rau-
nak, Vinay Venkatesh Ramasesh, Vinay Uday Prabhu,
Vishakh Padmakumar, Vivek Srikumar, William Fe-
dus, William Saunders, William Zhang, W Vossen,
Xiang Ren, Xiaoyu F Tong, Xinyi Wu, Xudong Shen,
Yadollah Yaghoobzadeh, Yair Lakretz, Yang Song,
Yasaman Bahri, Ye Ji Choi, Yichi Yang, Yiding Hao,
Yifu Chen, Yonatan Belinkov, Yu Hou, Yu Hou, Yushi
Bai, Zachary Seid, Zhao Xinran, Zhuoye Zhao, Zi Fu
Wang, Zijie J. Wang, Zirui Wang, Ziyi Wu, Sahib
Singh, and Uri Shaham. 2022. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models. ArXiv preprint, abs/2206.04615.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2300–2344, Seattle, United States.
Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. ArXiv preprint,
abs/2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. ArXiv preprint, abs/2201.11903.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Xi Ye and Greg Durrett. 2022. The unreliability of ex-
planations in few-shot prompting for textual reason-
ing. In Advances in Neural Information Processing
Systems.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-

formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649–657.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. ArXiv preprint,
abs/2205.10625.

7669



Appendix

Table of Contents

A Pilot Few-Shot Experiment 9

A.1 Method . . . . . . . . . . . . 9

A.2 Results . . . . . . . . . . . . . 10

B Reconciling Few-Shot and Zero-Shot
Evidence 11

C Related Work 12

D Author Contributions 13

E Additional Details of the Main Zero-
Shot Experiment 13

E.1 Controls . . . . . . . . . . . . 13

E.2 Qualifications . . . . . . . . . 13

E.3 Instructions to Workers . . . . 13

E.4 Evaluation Protocol Details . . 14

F Additional Results for Zero-Shot Ex-
periment 15

F.1 Using Control Scores as Qualifi-
cation . . . . . . . . . . . . . 15

F.2 Without Response Time Qualifi-
cation . . . . . . . . . . . . . 15

G Additional Figures and Data for Zero-
Shot Experiment 17

G.1 Accuracies Per Instruction . . . 17

H Instructions and Examples 18

H.1 All Instructions . . . . . . . . 18

H.2 Example Sources for Test Con-
dition . . . . . . . . . . . . . 19

H.3 Example Sources for General
Controls . . . . . . . . . . . . 20

I Results on Zero-Shot Experiment Con-
trol Conditions 21

I.1 NLI Controls . . . . . . . . . . 21

I.2 General (Surface Task) Controls 22

J Effect of Experience with Prior NLP
Studies 23

K Few-Shot Experiment Post-
Experiment Survey 25

A Pilot Few-Shot Experiment

Our main experiment above focuses only on the

zero-shot setting. However, model behavior (and

likely human behavior as well) can look very dif-

ferent when given even a single labeled example.

Thus, we additionally conduct a pilot experiment

to investigate human behaviors under a few-shot

learning setup. We consider two conditions. The

first, few-shot with labels, simulates the usual few-

shot learning setting: the participant is given the

gold label as feedback after answering each ques-

tion. The second condition, few-shot without labels,

is inspired by Min et al. (2022)’s study in few-shot

learning with corrupted labels. In this condition, we

do not give participants any label feedback. How-

ever, they still have the opportunity to refine their

understanding of the instruction via sequential en-

counters with different unlabeled examples.

A.1 Method

We show each subject 32 items sequentially, one

item per page, for which subjects must respond

“Yes” or “No” to each item. Each subject is assigned

an instruction as condition and the instruction is

the same across all examples they receive.

In the few-shot with labels condition, subjects

are shown whether their answer was correct for that

item. Here, correctness is always based on NLI (i.e.,

whether sentence 1 entails sentence 2) regardless of

the surface instructions. Unlike the zero-shot study,

there is no special design in the example sentence

pairs in relation to the instruction, only that the

sample is balanced in the number of entailments

and non-entailments. That is, a 50% score indicates

random performance on the implicit NLI task.

In the few-shot without labels condition, sub-

jects do not receive any feedback throughout the 32

items. This setup is inspired by Min et al. (2022),

who show that models can surprisingly well learn

from corrupted labels. We conjecture that unsu-

pervised exposure to examples may help humans

pragmatically infer what researchers want out of

them and what the underlying task is.

Post-Experiment Survey After participants

complete the 32 items, we ask for paragraph-length

responses to two questions: (1) How did you decide

to choose between “Yes" or “No"? (2) What did

you think about the instructions we gave?

Instruction Templates We manually choose one

instruction from each of W&P’s five categories for

7670



this pilot study:

1. {sentence1} Using only the above description

and what you know about the world, "{sen-

tence2}" is definitely correct. Yes or no? (In-

structive; adapted from MultiNLI’s instruction

to crowdworkers).

2. {sentence1} Can the above be paraphrased as:

“{sentence2}" (Moderately misleading.)

3. {sentence1} Is the next sentence grammati-

cally correct? {sentence2} (Extremely mis-

leading.)

4. {sentence1} Single-family zoning is bad for

American cities {sentence2} (Irrelevant.)

5. {sentence1} {sentence2} (Null; empty instruc-

tion baseline.)

Participants Subjects were undergraduate stu-

dents (n = 8 for the with labels condition, n = 5

for the without labels condition). Subjects were

asked to finish all 32 items in a single session

within an hour. Subjects were paid a base com-

pensation of $15, with a $0.25 bonus for every

correct answer as an incentive. As it is expensive

to have a participant complete 32 items continu-

ously in a single session (in order to mimic models’

few-shot training), and because the trend was suffi-

ciently clear from our pilot experiment, we did not

proceed with a larger pool of participants.

A.2 Results

Figure 3 shows the cumulative scores of subjects

across 32 items are shown for both few-shot with

labels and without labels conditions, where each

line is one subject. Solid lines represent the perfor-

mance of subjects with labels, and dotted lines rep-

resent the performance of subjects without labels.

The subject who received the instructive prompt

achieved a perfect score, and their performance is

presented as a green reference y = x line against

all participants who received other prompts.

Irrelevant Instructions Participants who re-

ceived the irrelevant instruction perform practically

identically with or without label feedback. In both

conditions subjects with the irrelevant prompt also

performed almost just as well as the subject who

received the instructive prompt. Like in the zero-

shot study, this pattern provides evidence against

W&P’s assumption A2 (instructive > irrelevant).

The post-experiment survey also confirms that par-

ticipants were able to figure out that the prompt

was simply irrelevant (Appendix K).

Paraphrasing Inst. (Misleading) When a partic-

ipant is given a paraphrasing instruction without

label feedback, they were successfully misled to

perform paraphrasing identification, thus scoring

much lower on NLI (dashed yellow line in Fig-

ure 3). But when a participant is given a paraphras-

ing instruction with NLI labels as feedback, they

quickly adapted their interpretation of the instruc-

tion in order to fit the labels (solid yellow line in

Figure 3). As one participant wrote in the post-

experiment survey:

In the first few questions, my strategy

is to read through the entire paragraph

or sentence and then decide whether the

paraphrased sentence makes sense or not.

However, then I started to look at the

paraphrased sentence first and decide

whether it is correct or wrong based on

the given piece of text.

That is, this participant completely recovered

the NLI instruction even though they were

given a paraphrasing instruction. They even ob-

served the unidirectional entailment nature of

NLI (i.e., sentence2 does not need to entail

sentence1) vs. the bidirectional entailment na-

ture of paraphrasing (i.e., the two sentences must

express approximately the same meaning):

Initially, I also considered whether the

paraphrased sentence captured all the ma-

jor details or not, but the quiz later shows

that comprehensiveness is not a factor.

Grammaticality Inst. (Misleading) While para-

phrasing is a task related to NLI, grammatical ac-

ceptability is a much more misleading instruction

since it has nothing to do with NLI. Here, we see

the with and without label results nearly reversed:

when given NLI label feedback, the grammatical

acceptability instruction appears to be so incompat-

ible with the labels that one participant was con-

fused and unable to adapt their interpretation to

just one task, and ultimately scored much lower

on NLI (lower solid red line in Figure 3). In the

post-experiment survey, they wrote

I basically went on a gut reaction on what

was correct. On some weird instances, I
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Figure 3: Cumulative total scores between the few-shot with labels and few-shot without labels experiments, within

categories. The y-axis plots the sum of correct answers out of x items answered so far. The sequence of 32 prompts

were the same across both experiments for all prompt categories. Each line is one subject.

thought hard about good grammar. Of-

tentimes, I looked at the content of the

sentence. If it was factually correct, I

guessed yes.

However, another participant did eventually figure

out the underlying NLI task:

I feel like the question should be changed

because it seems like the question is actu-

ally, “Is this statement true based on the

context given in the paragraph.”

When no label feedback is giventhe results

are more surprising and nuanced. Because all of

our examples are handpicked and grammatical,

participants found themselves answering “yes”

to many examples and starting to question the

instruction itself:

I looked at whether the sentence was ac-

curate to the information given in the text,

and also if the sentence itself had cor-

rect grammatical structure. It was a little

difficult because some of the sentences

made inferences that weren’t explicit in

the given text, so I wasn’t sure if that was

a grammatical error or not.

They then started to incorporated the semantic

well-formedness into their interpretation of

grammatical acceptability:

Usually, I think of something as being

grammatically correct when the sentence

has correct grammatical structure, includ-

ing punctuation and capitalization. Since

most of the sentences seemed to fit this,

I thought that maybe grammar also en-

compasses the validity of the statement

based on the text, so I chose my answers

based on that.

Additional survey responses are included in

Appendix K. Overall, human behavior in the

few-shot cannot be readily summarized as a single

inequality as attempted in A1 - 3. Rather, different

participants can respond to the same instructions

in different ways; some interpret the instructions

strictly and literally, while others adopt a more

relaxed pragmatic interpretation, and still others

refine their interpretations over time.

B Reconciling Few-Shot and Zero-Shot

Evidence

As we find instruction-tuned models seem to

largely match human behaviors in the few-shot set-

ting, while falling short of human in the zero-shot

setting, which setting should we weigh more for

evaluating models’ understanding of prompts as in-

structions? Concurrent work by Lampinen (2022)

notes that zero-shot could be an inherently prob-

lematic way to study the full competence of LMs:

From a model’s perspective, it has just finished

imitating (for example, in T5’s case) a trillion to-

kens of highly heterogeneous content and linguistic

styles with communicative intents far from answer-

ing academic evaluations. In a zero-shot setting, it

could be unclear to the model “what is the intended

continuation; the model might be likely to produce

a blank line for someone to fill in the answer, or

jokes mocking the question, or just arbitrary ram-

bling” (Lampinen, 2022, p. 7); all of the above may

be valid continuations for its language modeling
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pretraining objective. We partially address this is-

sue by only using instruction-tuned models, which

are trained on a large mixture of traditional NLP

datasets and thus primed to directly answer the

question.

On the human side, in order to make a fair com-

parison, we carefully design our experiments to

make sure the human responses are “as zero-shot

as possible” by (1) having one participant answer

only one test question and (2) having all qualifica-

tion questions come after the test question so as to

not bias the participants. This is a highly controlled,

perhaps even contrived, condition that does not re-

flect well on how humans learn from instructions

in the real world, or even in most other cognitive

science experiments where participants are often

given familiarization trials prior to the test trials.

Therefore, we agree with Lampinen (2022) that,

for future studies, the few-shot setting is likely a

more productive way to probe a model’s true com-

petence, even though it may be scientifically less

controlled in other respects, since now effects of

the few-shot examples must be considered, which

could also be counter-intuitive as shown in Ap-

pendix A and Min et al. (2022).

However, zero-shot evidence should not be ig-

nored either, especially considering that there is

a consistent collection of work showing language

models being insensitive to instructions on tasks in

addition to NLI and on models of various sizes and

fine-tuning strategies.

C Related Work

Zero-Shot Instructions In addition to W&P,

many papers find similar results that models per-

form well with semantically incoherent instructions

on a variety of tasks. Prasad et al. (2022) find that

semantically incoherent prompts work well for In-

structGPT over 12 QA and coreference datasets in

Natural Instructions Mishra et al. (2021), Khashabi

et al. (2021) find this to be true for GPT-2 on 5

sentiment analysis and topic classification datasets

in Natural Instructions. Jang et al. (2022) show

OPT and InstructGPT are unable to follow negated

instructions over 9 QA and sentence completion

datasets, performing well below human baseline of

13-year-olds.

Note that none of the above papers, including

W&P, claim that pathological prompts would per-

form just as well for all tasks. Indeed, Kojima et al.

(2022) show various irrelevant and misleading base-

lines perform poorly on an arithmetic dataset (Roy

and Roth, 2015). Instead, W&P claim that the exis-

tence of high-performing pathological prompts for

a large number tasks show that they use prompts

in an un-human-like way, while the existence of

bad-performing pathological prompts is orthogonal

to this line of argument.

Few-Shot Exemplars and Explanations Unlike

zero-shot, the few-shot setting has more conflicting

evidence in the literature on whether models per-

form just as well with pathological prompts. Min

et al. (2022) first showed that the correctness of the

few-shot labels are not required, concluding that

prompts are largely helping models to adapt to the

domain and format of the input text as well as the

space of possible labels.

As few-shot exemplars are now commonly

accompanied with intermediate computation,

explanations, or chain-of-thoughts (Wei et al.,

2022; Nye et al., 2021; Zhou et al., 2022;

Lampinen et al., 2022), Madaan and Yazdanbakhsh

(2022) agree with Min et al. (2022) and find that

various few-shot chain-of-thought prompts—with

corrupted symbols but retaining the overall

task format—have performance comparable to

non-corrupted baseline, thus arguing that “CoT

helps a language model in imitating the prompt

and generating the right tokens for the task—and

is conceivably less related to their reasoning

abilities.” Similarly, Ye and Durrett (2022) find

that explanations improve performance modestly

for OPT and GPT-3 but improve substantially for

text-davinci-002 on 3 QA and NLI datasets. How-

ever, the model-generated explanations themselves

are often inconsistent or factually incorrect, con-

cluding that “model internal ‘reasoning’ does not

always align with explanations that it generates.”

With extensive statistical controls on a diverse

range of BIG-Bench tasks (Srivastava et al., 2022),

Lampinen et al. (2022) find that LMs’ success with

post-answer explanations do outperform baselines

such as same-length word-scrambled explanations,

domain-relevant but non-explanatory statements,

and correct explanations misaligned with wrong

few-shot examples. Notably, although they find a

positive result with the effect of explanations, they

also find that models are much more insensitive to

the effect of instructions.
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E Additional Details of the Main

Zero-Shot Experiment

E.1 Controls

We collect additional data to test the robustness of

our result on different subgroups of participants se-

lected under multiple conditions. After the test con-

dition, participants are asked to complete two addi-

tional control conditions, General (Surface Tasks)

Control and NLI Control, that provide us such se-

lection criteria for post-hoc analysis in Appendix F.

These controls test whether the same trend still

holds under more restrictions such as receiving per-

fect scores on both controls as additional analysis.

However, note that our main results do not exclude

any participants using these controls as it may bias

the results to only consider participants with spe-

cific behavior patterns.

The two controls are four items presented after

the first item from the test condition, adding up to

the five items that each subject is presented in the

study. The control items are shown one by one in

the following sequence: two items in the General

Control, and then two items in the NLI Control. As

with the test condition item, subjects are asked to

answer “Yes” or “No” in response to each control

item. The performance of our subject population

on the controls is shown in Appendix I.

General Control The General Control verifies

if participants can perform the misleading tasks.

In this control, subjects are scored on whether

they perform the surface task correctly. If subjects

were already given a misleading prompt in their

test condition, in this control they are shown the

same prompt with two new examples. Otherwise,

subjects are randomly assigned two items with a

misleading prompt.

We curate examples from a range of datasets

such that the misleading task and NLI task have op-

posing answers, and also to be converse to the test

condition. That is, if the misleading task answers

for a prompt is “Yes" in the test condition, it would

be “No" in the General Control. See Appendix H

for how examples were selected.

NLI Control The NLI Control verifies if partic-

ipants can perform the NLI task. In this control,

subjects are given two items with an instructive

prompt and are scored on performing the NLI task

correctly.

E.2 Qualifications

From the 597 responses, for our main results we

exclude data from 93 subjects5 whose total com-

pletion time t for the five-question study is less

than one standard deviation from the mean of the

sample (t < 33.01). Extremely low response times

have been shown to be an accurate indicator of care-

less responding, where data from such “speeders”

have been shown to lower data quality (Greszki

et al., 2015; Goldammer et al., 2020). Past studies

have typically defined floor cutoffs based on the

distribution of their data, with no singular conven-

tion. From our data’s response time distribution

(Figure 4), there is a clear bimodal distribution

between “speeder" response times and typical re-

sponse times; a floor of t = 33.01 sufficiently ex-

cludes the “speeder" distribution to leave a sizeable

sample of n = 504.

We also ran a separate pilot study in order to

determine whether previous exposure to other NLP

studies on Mechanical Turk would bias subjects to

perform the underlying NLI task. The results were

inconclusive and thus we decided not to exclude

participants who had participated in NLP studies

previously. See Appendix J.

E.3 Instructions to Workers

Workers will see the following instructions before

they begin the study.

You will be given 5 short paragraphs on sepa-

rate pages, each containing a yes-no question.

You will be paid at least $0.5 in addition to an

extra $0.1 for each correct answer.

If you have a high number of correct an-

swers, you will be qualified to participate in

5Even if a subject’s data was excluded, they were still
compensated.

7674



0 100 200 300 400 500 600 700 800 900

0

0.002

0.004

0.006

0.008

0.01

Total response times (s)

Pr
op

or
tio

n 
of

 p
ar

tic
ip

an
ts

μ-σ=33.01 μ=126.62

Figure 4: Histogram of subjects’ total time taken (in seconds) to complete the zero-shot study (n = 597, µ =

126.62, σ = 93.62). The left dotted line is the floor cutoff (t = 33.01): the 93 participants that had a total response

time lower than this cutoff were excluded from the main paper’s analysis.

our full, $15 per hour study. You will not be

graded based on how fast you finish.

You have 10 minutes to answer all 5 ques-

tions, which should be plenty of time, but

please complete our study in one continuous

session and do NOT navigate to other tabs or

tasks, as we are measuring the time it takes

you to respond to each question.

You can only work on this HIT once. Multi-

ple submissions will be prevented.

E.4 Evaluation Protocol Details

Following Sanh et al. (2022) and Brown et al.

(2020), we evaluate T0++ and Flan-T5 by rank

classification. We evaluate GPT-3.5 and GPT-4 by

string match, as it is no longer possible to get per-

token token log-probabilities from OpenAI APIs.

Fortunately, GPTs are able to follow instructions

that return "Yes" or "No" as its first token, so we

use greedy decoding (temperature = 0) which is

equivalent to single-token rank classification.

Each item is input into the GPTs as a con-

tent message in the user role, with the system

prompt “You will be given a short paragraph with

a yes-no question. You strictly must answer only

‘Yes’ or ‘No’ to the paragraph.”. No other instruc-

tions or examples are given.

7675



F Additional Results for Zero-Shot

Experiment

We present post-hoc analysis of our zero-shot ex-

periment data using different subgroups of partic-

ipants. For all figures in this section, medians are

indicated in the bars. Each scatterpoint represents

accuracy on a prompt within the semantic category,

calculated as the aggregated accuracy over multi-

ple annotators whose test item was constructed by

the prompt and one of the prompt’s five possible

examples.

F.1 Using Control Scores as Qualification

In Figure 5, Figure 6, Figure 7 and Figure 8 we

present results using the controls as exclusion crite-

ria.

Constraining data to subjects that score perfectly

on the General Control (Figure 6) decreases hu-

man performance with misleading prompts on the

NLI task in the test condition dramatically—that is,

these subjects perform the non-NLI task extremely

well right from the first item, given a prompt that

instructs a misleading task. This sample likely se-

lects for subjects that interpret instructions most

strictly.

In contrast, results from constraining data to sub-

jects that score perfectly on the NLI Control (Fig-

ure 5) remain highly similar to our main results.

This supports that it is not incompetence with the

NLI task that causes humans to score poorly in the

test condition if given a misleading prompt, but that

they are indeed following the given instructions to

perform the misleading task.

F.2 Without Response Time Qualification

In Figure 9, Figure 10, Figure 11, Figure 12 and Fig-

ure 13 we present results without using response

time qualification. Removing the response time

qualification has the effect of introducing noise

into the data: the overall variance between dif-

ferent prompt categories reduces as all categories

tend towards 0.50. However, the top-line trends

we argue in the main paper about human behavior

given these different prompts remain observable

(instructive > misleading-moderate ; instructive >

misleading-extreme ; instructive ≈ irrelevant).
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Figure 5: Zero-shot accuracy data of human annotators

with perfect NLI Control scores and time above floor

cutoff. (n = 384)
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Figure 6: Zero-shot accuracy data of human annotators

with perfect General Control scores and time above floor

cutoff. (n = 238).
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Figure 7: Zero-shot accuracy data of human annotators

with a total score of at least 3 out of 4 Control items and

time above floor cutoff. (n = 340).
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Figure 8: Zero-shot accuracy data of human annotators

with all perfect NLI and General Control scores and

time above floor cutoff. (n = 186).
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Figure 9: Zero-shot accuracy data of human annotators

with any response time (n = 597) (i.e., all data).
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Figure 10: Zero-shot accuracy data of human annotators

with perfect NLI Control scores, with any response time.

(n = 409).
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Figure 11: Zero-shot accuracy data of human annotators

with perfect General Control scores, with any response

time. (n = 273).
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Figure 12: Zero-shot accuracy data of human annotators

with a total score of at least 3 out of 4 Control items,

with any response time. (n = 377).
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Figure 13: Zero-shot accuracy data of human annotators

with all perfect NLI and General Control scores, with

any response time. (n = 192).
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G Additional Figures and Data for Zero-Shot Experiment

G.1 Accuracies Per Instruction
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Figure 14: Zero-shot NLI accuracy of human annotators vs. models, by specific instruction (see §H.1 for instruction

templates). Bars are colored by instruction category.
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H Instructions and Examples

H.1 All Instructions

category name instruction

instructive MNLI-YN {sentence1} Using only the above description and what you know

about the world, "{sentence2}" is definitely correct. Yes, no or

unclear?

instructive justified-in-saying {sentence1} Are we justified in saying that "{sentence2}"?

instructive is-it-true {sentence1} Based on the previous passage, is it true that "{sen-

tence2}"?

instructive guaranteed-true {sentence1} Then, is it guaranteed true that "{sentence2}"?

instructive does-this-imply {sentence1} Question: Does this imply that "{sentence2}"?

misleading words-appear {sentence1} Do most of the words in the following sentence appear

in the above paragraph? {sentence2}

misleading similar-words {sentence1} Are there lots of similar words between the above

passage and the following sentence "{sentence2}"?

misleading same-meaning {sentence1} Does the above have the same meaning as "{sen-

tence2}"?

misleading paraphrase {sentence1} Can the above be paraphrased as: "{sentence2}"?

misleading summarize {sentence1} Can the above be summarized as "{sentence2}"?

misleading start-with-the {sentence1} Does the previous paragraph start with "the"? {sen-

tence2}

misleading grammatical {sentence1} Is the next sentence grammatically correct? {sen-

tence2}

misleading sentimment {sentence1} Is the above paragraph a positive review? {sentence2}

misleading sportsball {sentence1} Is the above paragraph a piece of sports news? {sen-

tence2}

misleading french {sentence1} Is the above text French? {sentence2}

irrelevant zoning {sentence1} Single-family zoning is bad for American cities.

"{sentence2}"?

irrelevant inflection
{sentence1} Inflections are annoying and thank god that

Middle English got rid of most of them. "{sentence2}"?

irrelevant gauss {sentence1} When Bolyai sent Gauss his discovery of non-

Euclidean geometry, Gauss replied that he arrived at the same

results 30 years ago. "{sentence2}"?

irrelevant katsuoboshi
{sentence1} If bonito flakes boil more than a few seconds,

the stock becomes too strong? "{sentence2}"?

irrelevant euthyphro {sentence1} Is the pious loved by the gods because it is pious? Or

is it pious because it is loved by the gods? "{sentence2}"?

null concat-phm {sentence1} {sentence2}

null concat-hpm {sentence2}{sentence1}

Table 3: All prompts used in the main text of the paper. All templates use “Yes”/“No” as target words for the

entailment and non-entailment classes, respectively.
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H.2 Example Sources for Test Condition

category name dataset remarks

instructive MNLI-YN RTE, MNLI 6 entailment labels, 4 contradiction labels, 2 neutral labels were

chosen; the latter two map to “No" answers.instructive justified-in-saying

instructive is-it-true

instructive guaranteed-true

instructive does-this-imply

misleading words-appear RTE Examples were handpicked such that misleading task would have

a “Yes" label while NLI task had “No" label. From RTE labels, 3

contradiction labels and 2 neutral labels were chosen and mapped

to the “No" labels.

misleading similar-words

misleading same-meaning RTE Examples were handpicked such that the misleading task would

have a "No" label while NLI task had "Yes" label—i.e., through

examples where the second sentence was indeed an entailment but

only tangential to the main point of the first sentence.

misleading paraphrase

misleading summarize

misleading start-with-the RTE All examples were such that the premise paragraph did indeed

start with ‘the’ but the hypothesis sentence was not entailed, so

the misleading task answer was “Yes" while the NLI task answer

was “No". 3 contradiction labels and 2 neutral labels were chosen

to map to “No" labels.

misleading grammatical RTE Grammatically correct but non-entailing examples from RTE were

chosen such that the misleading task answer is “Yes" while the

NLI task answer is “No". 3 contradiction labels and 2 neutral

labels were chosen to map to “No" labels.

misleading sentiment Amazon Polarity

(Zhang et al., 2015)

Reviews were taken from the Amazon Polarity dataset as premise

paragraphs. A hypothesis sentence was manually written based on

the review. If the review was positive, the hypothesis sentence was

not entailed; if the review was negative the hypothesis sentence

was entailed. There were 3 non-entailments and 2 entailments.

misleading sportsball RTE RTE examples that had nothing related to sports were chosen, such

that the misleading task answer is “No" while the NLI task answer

was “Yes".

irrelevant zoning RTE, MNLI 6 entailment labels, 4 contradiction labels, 2 neutral labels were

chosen; the latter two map to “No" answers.irrelevant inflection

irrelevant gauss

irrelevant katsuoboshi

irrelevant euthyphro

null concat-phm RTE, MNLI 6 entailment labels, 4 contradiction labels, 2 neutral labels were

chosen; the latter two map to “No" answers.null concat-hpm

Table 4: All source datasets used for each prompt for the main text of the paper. All templates use “Yes”/“No”

as target words for the entailment and non-entailment classes, respectively. For RTE examples, we collapse the

SuperGLUE version’s “neutral” and “contradiction” to “non-entailment” such that all of our tasks are binary

classification. We balance the distribution of “contradiction“ and “neutral” labels within our study’s non-entailed

items.
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H.3 Example Sources for General Controls

category name dataset remarks

misleading start-with-the RTE All examples were such that the premise paragraph did indeed

start with ‘the’ but the hypothesis sentence was not entailed, so the

misleading task answer was “Yes" while the NLI task answer was

“No". 5 contradiction labels were chosen to map to “No" labels.

misleading grammatical BLiMP (Warstadt et al.,

2020)

Grammatically incorrect sentences from BLiMP were used as

hypothesis sentences, while grammatically correct premise para-

graphs were handwritten for the sentence, such that the misleading

task answer was “No" while the NLI task answer was “Yes".

misleading sentiment Yelp Polarity (Zhang et al.,

2015)

Reviews were taken from the Yelp Polarity dataset as premise

paragraphs and a hypothesis sentence was manually based on the

review. If the review was positive, the hypothesis sentence was not

entailed; if the review was negative the hypothesis sentence was

entailed. There were 3 non-entailments and 2 entailments.

misleading sportsball HuffPost (Misra and

Grover, 2021; Misra,

2022)

Excerpts were taken from articles in the ‘Sports’ category of the

dataset and non-entailing hypothesis sentences were manually

written, such that the misleading task answer was “Yes" while the

NLI task answer was "No".

misleading french XNLI (Conneau et al.,

2018)

Non-entailing French XNLI examples were taken such that the

misleading task answer was “Yes" while the NLI task answer was

“No".
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I Results on Zero-Shot Experiment Control Conditions

I.1 NLI Controls
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Figure 15: Subjects’ scores on the NLI control condition (n = 504, only subjects whose completion times were

above floor cutoff) Each bar represents the breakdown of percentage of subjects assigned the prompt who scored 0,

1 and 2 out of two NLI control items presented.
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I.2 General (Surface Task) Controls
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Figure 16: Subjects’ scores on the general suface task controls (n = 504, only subjects whose completion times

were above floor cutoff) Each bar represents the breakdown of percentage of subjects assigned the prompt who

scored 0, 1 and 2 out of two general control items presented; subjects were scored on correctly performing the

misleading task.
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J Effect of Experience with Prior NLP

Studies

We conducted a pilot (n = 29) to assess the effect

of prior exposure to NLP studies on humans’ inter-

pretation of prompt instructions. In this pilot, we

select only subjects with no prior experience with

NLP studies. All participants had to first screen

through a pre-test with the question “How many

mTurk tasks have you completed for language re-

search (e.g. Stanford NLP Group, MIT NLP Group,

NYU NLP Group, etc.)?". Only participants who

selected the option “None" were qualified to con-

tinue to take the study. 66 participants took the

pre-test and 29 qualified as subjects. We compare

these results to an earlier pilot (n = 67) that used

the same prompts and examples, with no filtering

of participants based on previous exposure.

Comparing control condition scores (Figure 17

vs. Figure 18 for NLI Controls’ Figure 19 vs. Fig-

ure 20 for General Controls’), subjects without

prior exposure score higher on both the mislead-

ing task and NLI task (recall that in the controls,

subjects are scored on performing the surface task

as explicitly described by the prompt). Comparing

test condition scores (Figure 21 vs. Figure 22), sub-

jects without prior exposure perform better at the

NLI task when instructions are instructive and dra-

matically worse when instructions are misleading,

compared to the sample that was not controlled for

exposure. These results suggest that subjects with-

out prior exposure appear to follow explicit task

instructions more closely than the sample that was

not controlled for exposure.

The behavior of subjects without prior exposure

to NLP studies is similar to the result when we

select subjects that score perfectly on the General

Controls (Figure 6)—suggesting that specifying

for NLP-study inexperience may select for a sam-

ple of humans who follow task instructions more

strictly. While we leave a full study that controls

for exposure to prior NLP studies to future work,

we predict that it will only strengthen the trend

for misleading prompts seen in our main results

(namely, that humans do poorly on the actual task

if given misleading prompts).
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Figure 17: NLI Control scores of subjects (n = 29) with

no prior NLP experience.
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Figure 18: NLI Control scores of sample of subjects

(n = 67) that were not filtered on prior exposure to

NLP tasks.
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Figure 19: General Control scores of subjects (n = 29)

with no prior NLP experience.
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Figure 20: General Control scores of sample of subjects

(n = 67) that were not filtered on prior exposure to NLP

tasks.
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Figure 21: Per-instruction accuracy on the test condition item of subjects with no prior NLP experience (n = 29).
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Figure 22: Per-instruction accuracy on the test condition item of subjects that were not filtered based on prior

exposure to NLP tasks (n = 67).
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K Few-Shot Experiment Post-Experiment Survey

S/N Prompt

Category

How did you decide to choose “Yes" or

“No"?

What did you think about the instructions

we gave?

Few-Shot With Labels

1 Mis-

Moderate

In the first few questions, my strategy is to

read through the entire paragraph or sentence

and then decide whether the paraphrased sen-

tence makes sense or not. However, then I

started to look at the paraphrased sentence

first and decide whether it is correct or wrong

based on the given piece of text. Initially, I

also considered whether the paraphrased sen-

tence captured all the major details or not, but

the quiz later shows that comprehensiveness

is not a factor.

I’d say the instructions are not quite direct? In

my opinion, it would make more send to ask

if the given sentence is correct or not than to

ask if it paraphrases the text.

2 Mis-

Extreme

I chose my answer based on what I believed

was correct.

I don’t really like the question, "Is this gram-

matically correct". Some were definitely not

grammatically correct (capitalization errors,

past/present tense), but the answer was still

yes. I feel like the question should be changed

because it seems like the question is actually,

"Is this statement true based on the context

given in the paragraph".

Few-Shot Without Labels

3 Irrelevant I tried to see whether what was stated in the

question was consistent with the preceding

sentences. Sometimes it involved a logical de-

duction, and other times it was not implied

at all by the other sentences but just related.

Sometimes I was unsure what to choose be-

cause the premise of the question was wrong.

I was confused because that statement was

included in every question, but it didn’t seem

relevant.

4 Mis-

Moderate

I’m looking for whether the information pro-

vided in the first half can be more or less en-

capsulated by the second half, meaning that if

one were to read the first half and another the

second, they would come away to the same

conclusion.

There is a level of ambiguity at first as I con-

sidered what exactly it entailed: whether or

not its a “correct” statement given the con-

text is a confounding factor, when it shouldn’t

influence whether or not its a good paraphras-

ing.

5 Mis-

Extreme

I looked at whether the sentence was accurate

to the information given in the text, and also

if the sentence itself had correct grammatical

structure. It was a little difficult because some

of the sentences made inferences that weren’t

explicit in the given text, so I wasn’t sure if

that was a grammatical error or not.

Usually, I think of something as being gram-

matically correct when the sentence has cor-

rect grammatical structure, including punc-

tuation and capitalization. Since most of the

sentences seemed to fit this, I thought that

maybe grammar also encompasses the valid-

ity of the statement based on the text, so I

chose my answers based on that.

6 Mis-

Extreme

I chose "Yes" when the shorter sentences

present accurate information from the longer

sentences. I was kind of confused about the

question because most of the sentence (maybe

all) seemed to be grammatically correct.

For the first two questions, I was paying at-

tention to whether the sentences were actually

grammatically correct. Later on, I just tried

to see if the shorter sentences give accurate

information based on the longer parag traphs

above.

Table 5: Sample of free-text responses of subjects to the questions “How did you decide to choose ‘Yes’ or ‘No’?"

and “What did you think about the instructions we gave?". Responses were elicited from subjects after they answered

32 items with their assigned prompt. Each table row indicates responses from one unique subject.
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