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Abstract

Sparse annotation poses persistent challenges

to training dense retrieval models, for example

by distorting the training signal when unlabeled

relevant documents are used spuriously as neg-

atives in contrastive learning. To alleviate this

problem, we introduce evidence-based label

smoothing, a novel, computationally efficient

method that prevents penalizing the model for

assigning high relevance to false negatives. To

compute the target relevance distribution over

candidate documents within the ranking con-

text of a given query, those candidates most

similar to the ground truth are assigned a non-

zero relevance probability based on the degree

of their similarity to the ground-truth docu-

ment(s). To estimate relevance we leverage

an improved similarity metric based on recip-

rocal nearest neighbors, which can also be

used independently to rerank candidates in post-

processing. Through extensive experiments on

two large-scale ad hoc text retrieval datasets,

we demonstrate that reciprocal nearest neigh-

bors can improve the ranking effectiveness of

dense retrieval models, both when used for la-

bel smoothing, as well as for reranking. This

indicates that by considering relationships be-

tween documents and queries beyond simple

geometric distance we can effectively enhance

the ranking context.1

1 Introduction

The training of state-of-the-art ad-hoc text retrieval

models (Nogueira and Cho, 2020; Santhanam et al.,

2021; Zhan et al., 2021; Ren et al., 2021b,a; Gao

and Callan, 2021; Zhang et al., 2022; Lu et al.,

2022), which are based on transformer Language

Models, relies on large-scale datasets that are

sparsely annotated, typically comprising only a

small number of relevance judgements for each

query.2 These labels are usually derived from sub-

1Our code and other resources are available at:
https://github.com/gzerveas/CODER

2E.g., on average 1.06 documents per query in
MS MARCO, Bajaj et al., 2018.

mitting the strongest pseudo-relevance signals in

user click logs to human judges for verification.

Despite potential future endeavors to extend anno-

tation, this sparsity and the resulting issue of false

negatives (Qu et al., 2021; Zhou et al., 2022) – i.e.,

only a minuscule fraction of all documents perti-

nent to a query are ever seen by users or judges

and identified as relevant – will inevitably persist.

To eliminate the sparsity, it would be necessary to

acquire either human judgements, or perhaps ex-

pensive evaluations from Large Language Models,

to verify the relevance of the entire document col-

lection (typically tens of millions of documents)

with respect to every query in the dataset, leading

to an intractable Cartesian product. Consequently,

it is crucial to explore optimizing the utilization

of existing information, and extract richer struc-

tural relationships between documents and queries,

without additional annotations.

To this end, in the present work we follow a two-

pronged approach: first, we employ the concept of

reciprocal nearest neighbors (rNN) to improve the

estimation of semantic similarity between embed-

dings of queries and documents. Two documents ci
and cj are said to be k-reciprocal nearest neighbors

if cj is within the k-nearest neighbors of ci, and at

the same time ci is within the k-nearest neighbors

of cj . Second, we attempt to enhance the query-

specific ranking context used to train dense retriev-

ers, going beyond the notion of using mined candi-

dates merely as negatives for contrastive learning.

By ranking context we mean a set of documents

that are in meaningful relationship to the query and

are jointly evaluated with respect to their relevance

to the query (Ai et al., 2018; Zerveas et al., 2022).

Specifically, we use the similarity of ground-truth

documents to candidates in the same ranking con-

text as the query as evidence to guide the model’s

predicted relevance probability distribution over

candidates.

Dense retrieval, the state-of-the-art approach for
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Figure 1: Query (yellow star), positive (red cross) and

negative (full blue circles) document embedding vectors

in a shared 2D representation space. Based on top-4

Nearest Neighbors, the positive would be ranked lower

than the 3 nearest neighbors of the query. When us-

ing top-4 Reciprocal Nearest Neighbors, its ranking is

improved, because of its reciprocal relationship to the

query, which one of 3 nearest neighbors of the query

lacks. Adding an extra negative to the context (circle #1)

does not affect this ranking, but the second extra nega-

tive (#2) disrupts the reciprocal relationship, becoming

the 4th nearest neighbor of the positive.

single-stage ad-hoc retrieval, is premised on mod-

eling relevance between a query and a document

as the geometric proximity (e.g., dot-product or

cosine similarity) between their respective embed-

dings in the common representation vector space.

Top retrieval results are therefore the documents

whose embeddings are the nearest neighbors of

the query embedding. However, this modeling as-

sumption may be sub-optimal: previous work in

the field of image re-identification has shown that,

while geometric similarity can easily differentiate

between candidate embeddings in near proximity

from a query embedding, the differences between

relevance scores of candidate embeddings become

vanishingly small as distance from the query in-

creases (Qin et al., 2011). It was found that the

degree of overlap between sets of reciprocal near-

est neighbors can be used to compute an improved

measure of similarity between query and candidate

embeddings (Zhong et al., 2017).

Moreover, geometric similarity is used in min-

ing “hard” negatives, which have been consistently

found to improve performance compared to random

in-batch negatives (Xiong et al., 2020; Zhan et al.,

2021; Qu et al., 2021; Zerveas et al., 2022). Hard

negatives are typically the top-ranked candidates re-

trieved by a dense retriever (nearest neighbors to a

query embedding) that are not explicitly annotated

as relevant in the dataset.

On the one hand, the effectiveness of mined

negatives is limited by how effectively this dense

retriever can already embed queries and relevant

documents in close proximity within the shared

representation space, although the periodical or dy-

namic retrieval of negatives during training can

partially alleviate this problem (Xiong et al., 2020;

Zhan et al., 2021). On the other hand, when the

retriever used to mine hard negatives indeed suc-

ceeds in retrieving candidates that are semantically

relevant to the query, these are often not marked as

positives due to the sparsity of annotation and are

thus spuriously used as negatives for contrastive

learning (false negatives)3, confounding the train-

ing signal (Qu et al., 2021; Zhou et al., 2022).

For this reason, in this work we investigate to

what degree these issues can be mitigated through

the use of reciprocal nearest neighbors, essentially

extracting additional relationship information be-

tween queries and documents beyond flat geomet-

ric distances, such as the local degree of node con-

nectivity. Furthermore, unlike all existing dense

retrieval methods, instead of using candidates ex-

clusively as negatives, we propose using their esti-

mated similarity to the ground-truth document(s) as

evidence for label smoothing; we thus redistribute

probability weight in the target score distribution

from the ground truth to a larger number of likely

false negatives.

Finally, our work places a strong emphasis on

computational efficiency: label smoothing can be

performed entirely offline on CPUs and can be triv-

ially parallelized, while no latency is introduced

during training and our models can be trained (e.g.,

on MS MARCO) within hours, using a single GPU

with a batch size of 32. Reranking based on recip-

rocal nearest neighbors, when used, introduces a

few milliseconds latency per query on a CPU.

By contrast, the current state-of-the-art dense

retrieval methods (e.g. (Qu et al., 2021; Ren et al.,

2021b)) depend on the existence of better perform-

ing, but computationally demanding re-ranking

models such as cross-encoders, which are typically

run offline on several GPUs with huge batch sizes

and are used either for pseudo-labeling additional

training data, for discarding negatives which are

likely unlabeled positives (i.e., false negatives), or

directly for distillation through a teacher-student

3Qu et al., 2021 estimate that about 70% of the top 5
candidates retrieved by a top-performing dense retrieval model
that are not labeled as positive are actually relevant.
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training scheme. However, besides the very high

computational cost of such pipelines, the existence

of a model that is more powerful than the retrieval

model we wish to train is a very restrictive con-

straint, and cannot be taken for granted in many

practical settings.

Our main contributions are:

(1) We propose evidence-based label smoothing, a

novel method which mitigates the problem of false

negatives by leveraging the similarity of candidate

documents within the ranking context of a query to

the annotated ground truth in order to compute soft

relevance labels. Different from existing methods

like teacher-student distillation or pseudo-labeling,

our approach does not rely on the existence of more

powerful retrieval methods.

(2) We explore the applicability of the concept of

reciprocal nearest neighbors in improving the simi-

larity metric between query and document embed-

dings in the novel setting of ad-hoc text retrieval.

(3) Through extensive experiments on two differ-

ent large-scale ad-hoc retrieval datasets, we demon-

strate that the concept of reciprocal nearest neigh-

bors can indeed enhance the ranking context in a

computationally efficient way, both when reranking

candidates at inference time, as well as when ap-

plied for evidence-based label smoothing intended

for training.

2 Related work

Our proposed label smoothing, which encourages

the model to assign higher relevance scores to

documents intimately related to the ground truth,

conceptually finds support in prior work that pro-

posed local relevance score regularization (Diaz,

2007), adjusting retrieval scores to respect local

inter-document consistency. Despite the entirely

different methodology, both methods are premised

on the intuition that documents lying closely to-

gether in the representation vector space should

have similar scores; this in turn is related to the

cluster hypothesis, which states that closely related

documents (and thus proximal in terms of vector

representations) tend to be relevant to the same

request (Jardine and van Rijsbergen, 1971).

Zerveas et al., 2022 recently argued that jointly

scoring a large number of candidate documents

(positives and negatives) closely related to the same

query within a list-wise loss constitutes a query-

specific ranking context that benefits the assess-

ment of relevance of each individual candidate doc-

ument with respect to the query. Thus, they ex-

tended well-established insights and empirical find-

ings from Learning-to-Rank literature (Cao et al.,

2007; Ai et al., 2019, 2018) to the realm of dense re-

trieval through transformer-based Language Mod-

els. While in-depth annotation of candidate doc-

uments (i.e., hundreds of relevance judgements

per query) explicitly provides a rich context for

each query in Learning-to-Rank datasets (Qin et al.,

2010; Chapelle and Chang, 2010; Dato et al., 2016),

such information is not available in the sparsely an-

notated, large-scale datasets used to train dense

retrieval models. The relationship exploited thus

far to “build a context” (practically, this means

mining hard negatives), is simply that of geometric

proximity between the embeddings of a query and

candidate documents.

Addressing the problem of sparse annotation,

several works have utilized the relevance estimates

from supervised (e.g. Hofstätter et al., 2021; Qu

et al., 2021; Ren et al., 2021b) or unsupervised (e.g.

lexical: Dehghani et al., 2017; Haddad and Ghosh,

2019) retrieval methods or other dataset-specific

heuristics (e.g. bibliography citations: Moro and

Valgimigli, 2021) to derive soft labels for docu-

ments used to train a model, e.g., in a teacher-

student distillation scheme. In this work, we in-

stead shift the perspective from assigning labels

based on similarity with respect to the query, to sim-

ilarity with respect to the ground-truth document(s),

but within a query-specific ranking context. We fur-

thermore leverage the concept of reciprocal nearest

neighbors, introduced as a reranking method for

image re-identification (Qin et al., 2011; Zhong

et al., 2017), to improve the similarity estimate.

False negatives have been identified as a sig-

nificant challenge by prior work, which has em-

ployed powerful but computationally expensive

cross-encoders (Nogueira and Cho, 2020) to dis-

card documents that receive a high similarity score

to the query and are thus likely relevant from the

pool of hard negatives (Qu et al., 2021; Ren et al.,

2021b). However, discarding top-ranking hard neg-

atives also discards potentially useful information

for training.

Recently, Zhou et al. (2022) tackled the problem

of false negatives through selective sampling of

negatives around the rank of the ground-truth doc-

ument, avoiding candidates that are ranked either

much higher than the ground truth (probable false

negatives) or much lower (too easy negatives). This
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approach differs from ours in the perspective of

similarity (query-centric vs ground-truth-centric),

and in the fact that information is again discarded

from the context, as only a small number of nega-

tives is sampled around the positive. Additionally,

a query latency of up to 650 ms is added during

training.

Ren et al. (2021a) leverage the similarity of can-

didate documents to the ground truth document

(positive), but in a different way and to a differ-

ent end compared to our work: all documents in

the batch (“in-batch negatives”) as well as retrieved

candidates are used as negatives in an InfoNCE loss

term, which penalizes the model when it assigns

a low similarity score between a single positive

and the query compared to the similarity score it

assigns to pairs of this positive with all other can-

didates. Thus, it requires that the ground truth lies

closer to the query than other candidates, but the

detrimental effect of false negatives on the training

signal fully persists.

By contrast, our method jointly takes into ac-

count all positives and other candidates in the rank-

ing context, and through a KL-divergence loss term

requires that the predicted relevance of the query

with respect to all documents in the ranking context

has a similar probability distribution to the target

distribution, i.e., the distribution of similarity be-

tween all ground truth positives and all candidate

documents in the context. False negatives are thus

highly likely to receive a non-zero probability in

the target distribution, and the penalty when assign-

ing a non-zero relevance score to false negatives is

lower.

3 Methods

3.1 Similarity metric based on Reciprocal

Nearest Neighbors

Nearest Neighbors are conventionally retrieved

based on the geometric similarity (here, inner prod-

uct) between embedding vectors of a query q and

candidate document ci: s(q, ci) = ïxq, xcið, with

xq = m(q) and xci = m(ci) embeddings obtained

by a trained retrieval model m. We can additionally

define the Jaccard similarity sJ that measures the

overlap between the sets of reciprocal neighbors

of q and ci. We provide a detailed derivation of sJ
in Appendix A.1.

Instead of the pure Jaccard similarity sJ , we use

a linear mixture with the geometric similarity s
controlled by hyperparameter ¼ ∈ [0, 1]:

s∗(q, ci) = ¼ s(q, ci) + (1− ¼) sJ(q, ci), (1)

which we found to perform better both for rerank-

ing (as in Zhong et al., 2017), as well as for label

smoothing.

Importantly, unlike prior work (Qin et al., 2011;

Zhong et al., 2017), which considered the entire

gallery (collection) of images as a reranking con-

text for each probe, we only use as a context a

limited number of candidates previously retrieved

for each query. This is done both for computational

tractability, as well as to constrain the context to

be query-specific when computing the similarity

of documents to the ground truth; documents can

otherwise be similar to each other with respect to

many different topics unrelated to the query. We

empirically validate this choice in Section 5.1.

3.2 Evidence-based label smoothing

Uniform label smoothing is a well-established tech-

nique (Goodfellow et al., 2016) that is used to mit-

igate the effects of label noise and improve score

calibration, and was recently also employed for

contrastive learning (Alayrac et al., 2022). It in-

volves removing a small proportion ϵ ∈ [0, 1] of

the probability mass corresponding to the ground-

truth class and uniformly redistributing it among

the rest of the classes, thus converting, e.g., a 1-hot

vector y = [1, 0, . . . , 0] ∈ R
N to:

y
∗ = [1−ϵ, ϵ/(N−1), . . . , ϵ/(N−1)] ∈ R

N (2)

Nevertheless, naively distributing the probabil-
ity mass ϵ uniformly among all candidates, as in

Eq. (2), would result in true negatives predomi-

nantly receiving a portion of it, apart from the small

number of false negatives4.

For this reason, we instead propose correcting

the sparse annotation vectors by selectively dis-

tributing relevance probability among negatives

that are highly likely to be positive, or at least are

ambiguous with respect to their relevance to the

query. The proportion of probability mass each

candidate shall receive depends on its degree of

similarity to the annotated ground-truth document,

which can be quantified by the Jaccard distance of

Eq. (11), if we wish to exclusively consider recip-

rocal nearest neighbors, or the mixed geometric-

Jaccard distance of Eq. (1), which allows any can-

didate close to the ground-truth to be considered.

4Indeed, Qu et al. (2021) observe that among mined “hard
negative” candidates, the percentage of false negatives falls to
4% by rank 40.
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Algorithm 1 Evidence-based label smoothing

Require: Dense retrieval model m, set of queries Q, docu-
ment collection C, set of all ground-truth label documents
per query

⋃

L(q), ∀q ∈ Q
1: Compute embedding vectors xq = m(q), ∀q ∈ Q and

xci = m(ci), ∀ci ∈ C.
2: for each query q do
3: Retrieve top-N Nearest Neighbors per query based

on geometric similarity: s(q, ci) = ïxq, xcið for all
ci ∈ C.

4: for each candidate ci, i = 1, . . . , N do
5: Compute relevance score r′′ as mixed geometric

and reciprocal-NN Jaccard similarity sJ with respect to
all ground-truth documents l:

r′′(q, ci) =
1

|L(q)|

∑

l∈L(q)

s∗(l, ci),

s∗(l, ci) = λ · s(l, ci) + (1− λ) · sJ(l, ci),

0 < λ < 1

6: Transform scores by applying normalization func-
tion fn, boost factor b and cut-off threshold nmax:

r′(q, ci) =











b · fn (r′′(q, ci)) if ci ∈ L(q),

−∞ if i > nmax,

fn (r′′(q, ci)) otherwise.

7: end for
8: end for
9: Fine-tune model m with target distribution: r(q) =

softmax (r′(q)), and loss function:
L (r(q), ŝ(q)) = DKL (r(q) || ŝ(q)),
where ŝ(q) = softmax (̂s′(q)/T ) is the model-predicted
score distribution, with T a learnable temp. param.

Since the value range of similarity scores that

each model outputs is effectively arbitrary, before

applying a softmax to obtain a distribution over

candidates, we (1) perform transformations (e.g.,

max-min or std-based, see Appendix A.5.1) and

multiply the values of the original ground-truth

documents by a factor b > 1 to normalize the

range and increase the contrast between the top

and trailing candidates, and (2) we limit the num-

ber of candidates that receive a probability above

0 to the top nmax candidates in terms of their simi-

larity to the ground-truth document(s). We found

that these transformations primarily depend on the

dataset rather than the model, and that training

without limiting nmax leads to overly diffuse score

distributions. In case more than one ground-truth

documents exist for the same query, the similarity

of each candidate is the mean similarity over all

ground-truth documents (see Algorithm 1).

3.3 Computational efficiency

Computing rNN similarity involves computing pair-

wise similarities among N + 1 ranking context

elements (including the query), and reranking re-

quires sorting the N candidates by their final simi-

larity. The computational cost is thus O(N2) and

O(N logN), respectively; if we are only interested

in the top-k reranked candidates, the latter can be

reduced to O(N log k). We find (Sections 5.1, A.4)

that a small subset of the full ranking context with

size Nr < N is generally sufficient when com-

puting rNN-based similarities. For MS MARCO,

Nr = 60 and the delay per query when rerank-

ing on a single CPU and core (AMD EPYC 7532,

2400 MHz) is about 5 ms (Fig. 7).

Evidence-based label smoothing imposes no cost

during training or inference; it only requires offline

computation of rNN-similarities for each query

context Nr and sorting/top-k as above, followed

by simple vectorized transformations, e.g. max-

min normalization. Furthermore, all computations

above can be trivially (‘embarrassingly’) paral-

lelized in a multi-CPU/core setup.

4 Experimental setting

Datasets. To evaluate the effectiveness of our

methods, we use two large-scale, publicly avail-

able ad-hoc retrieval collections: the MS MARCO

Passage Retrieval dataset (Bajaj et al., 2018), and

TripClick, a health document retrieval dataset (Rek-

absaz et al., 2021b). Each has distinct character-

istics and represents one of the two realistic data

settings practically available for training dense re-

trieval models (see details in Appendix A.2, A.3).

Baselines. To compute the similarity metric

based on reciprocal nearest neighbors, and thus the

scores used to either rerank candidates at inference

time or calculate the smoothed labels for training,

we only need access to the encoder extracting the

document and query embeddings. The methods we

propose are therefore applicable in principle to any

dual-encoder dense retriever. However, we eschew

training pipelines based on cross-encoders, both to

ensure computational efficiency, as well as to elim-

inate the dependence on more powerful retrieval

methods. Instead, we choose CODER (Zerveas

et al., 2022), a fine-tuning framework that enhances

the performance of dense retrievers used as “base

models” through a large ranking context of query-

specific candidate documents and a list-wise loss: it

serves as a natural framework to evaluate evidence-

based label smoothing, because it allows us to di-

rectly utilize a large number of soft labels per query,

while being very light-weight computationally.

Following Zerveas et al. (2022), we select the
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Model
MS MARCO dev.small MS MARCO dev TREC DL 2019 TREC DL 2020

MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

RocketQAv2 (Ren et al., 2021b) 0.388 - - - - - - - - - - -

ERNIE-Search (Lu et al., 2022) 0.401 - - - - - - - - - - -

AR2 (Zhang et al., 2022) 0.395 - - - - - - - - - - -

AR2 + SimANS (Zhou et al., 2022) 0.409 - - - - - - - - - - -

TAS-B 0.344 0.408 0.619 0.344 0.407 0.618 0.875 0.659 0.222 0.832 0.620 0.302

R. TAS-B 0.347 0.411 0.625 0.346 0.410 0.623 0.886 0.664 0.226 0.828 0.627 0.311

CODER(TAS-B) 0.355 0.419 0.633 0.353 0.416 0.627 0.857 0.668 0.224 0.844 0.623 0.306

R. CODER(TAS-B) 0.357 0.421 0.637 0.354 0.418 0.631 0.853 0.679 0.231 0.860 0.634 0.317

CoCondenser 0.381 0.446 0.665 0.381 0.446 0.664 0.879 0.656 0.226 0.833 0.618 0.301

R. CoCondenser 0.384 0.449 0.670 0.381 0.447 0.666 0.877 0.658 0.226 0.833 0.627 0.306

CODER(CoCond) 0.382 0.447 0.668 0.382 0.447 0.665 0.895 0.655 0.228 0.844 0.639 0.314

R. CODER(CoCond) 0.384 0.450 0.671 0.383 0.448 0.667 0.895 0.664 0.230 0.844 0.641 0.316

Table 1: Recip. NN reranking, MS MARCO collection. Metrics cut-off @10. Bold: best in model class. As a

reference, at the top we include all SOTA dense retrieval models from literature that ourperform the methods we

evaluated, noting that, unlike ours, they all rely heavily on cross-encoders for training (e.g. distillation, ranking,

pseudolabeling etc). Blue: our contributions.

Model
DCTR Head RAW Head

MRR nDCG MRR nDCG Recall

BM251 0.276 0.224 - 0.199 0.128

BERT-Dot (SciBERT)2 0.530 0.243 - - -

BERT-Cat (SciBERT)2 0.595 0.294 - - -

RepBERT [abbrev: RB] 0.526 0.255 0.574 0.344 0.199

R. RepBERT 0.525 0.256 0.575 0.346 0.200

CODER(RB) 0.634 0.316 0.674 0.419 0.234

R. CODER(RB) 0.638 0.317 0.679 0.418 0.234

RB + CODER(RB) 0.637 0.318 0.679 0.421 0.235

RB + R. CODER(RB) 0.641 0.319 0.681 0.422 0.236

Table 2: Recip. NN reranking, TripClick Test (cut-off

@10). Bold: overall best, underline: best in model class.

Row 1: from (Rekabsaz et al., 2021b), 2: (Hofstätter

et al., 2022). Blue: our contributions.

following base models subjected to CODER fine-

tuning :

1. RepBERT (Zhan et al., 2020), a BERT-based

model with a typical dual encoder architecture

which underpins all state-of-the-art dense retrieval

methods, trained using a triplet Max-Margin loss.

2. TAS-B (Hofstätter et al., 2021), one of the top-

performing dense retrieval methods on the MS

MARCO / TREC-DL 2019, 2020 datasets, which

has been optimized with respect to their training

process, involving a sophisticated selection of neg-

ative documents through clustering of topically re-

lated queries.

3. CoCondenser (Gao and Callan, 2021), the state-

of-the-art dense retrieval model, excluding those

which make use of heavyweight cross-encoder

(query-document term interaction) teacher models

or additional pseudo-labeled data samples; it re-

lies on corpus-specific, self-supervised pre-training

through a special architecture and contrastive loss

component.

5 Results and Discussion

5.1 Inference-time reranking with reciprocal

nearest neighbors

We first evaluate the effectiveness of reciprocal

nearest neighbors at improving the similarity met-

ric between queries and documents.

Across all query sets in two important evalua-

tion settings, MS MARCO (Table 1) and TripClick

(Table 2), we observe that using a similarity based

on reciprocal nearest neighbors can consistently

improve ranking effectiveness for all tested models.

The magnitude of improvement is generally small,

but becomes substantial when measured on the

TREC DL datasets (approx. +0.010 nDCG@10),

where a greater annotation depth and multi-level

relevance labels potentially allow to better differen-

tiate between methods.

We furthermore observe that ranking effective-

ness initially improves when increasing the size

of the ranking context (i.e., the number of candi-

dates considered for reranking), which is expected,

because the probability to include a remote ground-

truth document in the context increases. However,

as this size further increases, ranking effectiveness

saturates, often peaking at a context size of a few

tens of candidates (Figures 3, 4, 6, 9). We hypothe-

size that this happens because, as we keep adding

negatives in the context, the chance that they dis-

rupt the reciprocal neighborhood relationship be-

tween query and positive document(s) increases

(see Figure 1).

We therefore conclude that we may use a rela-

tively small number N of context candidates for

computing reciprocal nearest neighbor similarities,

which is convenient because computational com-
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Model
TREC DL 2019 TREC DL 2020

MRR nDCG MAP Recall MRR nDCG MAP Recall

TAS-B 0.875 0.659 0.222 0.259 0.832 0.620 0.302 0.363

CODER(TAS-B) 0.857 0.668 0.224 0.270 0.844 0.623 0.306 0.365

CODER(TAS-B) + uniform sm. 0.857 0.669 0.223 0.273 0.835 0.619 0.304 0.360

CODER(TAS-B) + geom. smooth labels 0.848 0.665 0.220 0.271 0.842 0.626 0.310 0.370

CODER(TAS-B) + rNN smooth labels 0.857 0.671 0.226 0.276 0.862 0.632 0.315 0.369

CODER(TAS-B) + mixed rNN/geom. smooth lab. 0.889 0.675 0.227 0.277 0.842 0.637 0.318 0.376

CoCondenser 0.879 0.656 0.226 0.269 0.833 0.618 0.301 0.366

CODER(CoCondenser) 0.895 0.655 0.228 0.269 0.844 0.639 0.314 0.384

CODER(CoCondenser) + mixed rNN/geom. smooth lab. 0.884 0.661 0.232 0.278 0.856 0.646 0.316 0.383

Table 3: Evaluation of label smoothing applied to training CODER(TAS-B) on MS MARCO. Metrics cut-off @10.

Bold: best performance in each model class. Blue: our contributions.
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Figure 2: Evolution of performance of TAS-B (left-

most point, step 0) on MS MARCO dev validation set,

as the model is being fine-tuned through CODER. The

red curve corresponds to using evidence-based (EB)

label smoothing computed with rNN-based similarity,

whereas for the blue curve the smooth label distribution

is computed using pure geometric similarity. EB label

smoothing significantly reduces validation loss (com-

puted with the original labels, top), indicating that the

ground truth passages are receiving higher probability

in the estimated relevance distribution, but the retrieval

metric (bottom) fails to register an improvement due to

annotation sparsity (compare with Fig. 10, Appendix).

Distillation leads to precipitous degradation of perfor-

mance.

plexity scales with O(N2). In MS MARCO, a

context of 60 candidates corresponds to peak effec-

tiveness for CODER(TAS-B) and introduces a CPU

processing delay of only about 5 milliseconds per

query (Figure 7). We expect the optimal context

size to depend on the average rank that ground-

truth documents tend to receive, and for models of

similar ranking effectiveness, this would primarily

be determined by the characteristics of the dataset.

Indeed, we find that the hyperparameters in com-

puting rNN-based similarity (e.g. k, ¼, Ä , fw),

as well as the context size N , predominantly de-

pend on the dataset, and to a much lesser extent

on the dense retriever: hyperparameters optimized

for CODER(TAS-B) worked very well for TAS-

B, CoCondenser and CODER(CoCondenser) on

MS MARCO, but very poorly when transferred to

TripClick.

A more detailed description and discussion

of reranking experiments is provided in Ap-

pendix A.4.

5.2 Evidence-based label smoothing

In order to achieve the best possible results using

evidence-based label smoothing, one should ideally

optimize the hyperparameters related to rNN-based

similarity for the specific task of training a retrieval

model with recomputed soft labels. However, to

avoid repeatedly computing soft labels for the train-

ing set, we simply chose an rNN configuration that

was optimized for reranking a large pool of candi-

dates (N = 1000) in the MS MARCO collection

– i.e., the same one used in the previous section.

Although this configuration may not be optimal

for our specific task (e.g., small changes in score

values might be sufficient for reranking candidates

but ineffective as soft training labels), we expect

that it can still provide a reliable lower bound of

optimal performance.

Figure 2 shows how the ranking performance of

the TAS-B base model (left-most point, step 0) on

the validation set evolves throughout fine-tuning

through CODER. The red curve corresponds to

additionally using evidence-based label smooth-
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ing computed with reciprocal NN-based similarity

(rNN-related hyperparameters are the same as in

Section 5.1), whereas for the blue curve the smooth

label distribution is computed using pure geomet-

ric similarity. We observe the following seem-

ingly paradoxical phenomenon: compared to plain

CODER training, label smoothing significantly re-

duces the validation loss (computed with the orig-

inal labels, top panel), indicating that the ground

truth passages are now receiving proportionally

higher scores in the estimated relevance distribu-

tion, but the retrieval metric (bottom panel) does

not register an improvement.

In fact, this phenomenon may be fully explained

through the presence of false negatives: through the

smooth target label distribution, the model learns

to assign high relevance scores to a larger num-

ber of documents (diffuse distribution). Therefore,

it likely places a proportionally higher relevance

distribution weight to the ground truth document

compared to plain CODER, essentially improving

the relevance estimate for the ground truth, but at

the same time it distributes relevance weight to a

higher number of candidates, such that the ground

truth ends up being ranked slightly lower (see Fig-

ure 11).

The crucial question therefore is, whether the

candidates now receiving a higher relevance score

are actually relevant. Since the MS MARCO

dev dataset almost always contains only a single

positive-labeled passage per query, it is fundamen-

tally ill-suited to measure ranking effectiveness im-

provements by a training scheme that primarily

promotes a diffuse relevance distribution over sev-

eral candidates.

For this reason, we must rely on datasets con-

taining more judgements per query, such as the

TREC DL 2019, 2020 datasets: Table 3 shows that

evidence-based label smoothing using a similarity

based on reciprocal nearest neighbors can signifi-

cantly improve the performance of each dense re-

triever even beyond the benefit of the plain CODER

fine-tuning framework. Furthermore, using an rNN-

based Jaccard similarity as a metric for computing

the soft labels yields significantly better perfor-

mance than using geometric similarity, and the best

results are achieved when using a linear combina-

tion of the two metrics.

As TripClick also contains several (pseudo-

relevance) labels per query, we additionally eval-

uate the MS MARCO-trained models zero-shot

Model
DCTR Head RAW Head

MRR nDCG Recall MRR nDCG Recall

RepBERT 0.526 0.255 0.242 0.574 0.344 0.199

CODER(RB) 0.610 0.300 0.276 0.656 0.401 0.228

CODER(RB) hparam. 0.608 0.300 0.277 0.649 0.401 0.229

CODER(RB) + EB smooth. 0.611 0.305 0.280 0.661 0.411 0.234

Table 4: Evaluation of evidence-based label smooth-

ing (mixed rNN - geom. similarity) on TripClick HEAD

Test. Models were trained on TripClick HEAD ∪ TORSO

Train and validated on HEAD Val. Metrics cut-off @10.

“hparam”: model trained with same hyperparameters as

the one with label smoothing. Blue: our contributions.

(i.e., without any training) on TripClick Test and

Val (Figures 7, 8, Appendix). We again observe

that evidence-based label smoothing with an rNN-

based metric improves performance compared to

plain CODER; however, we note that in this zero-

shot setting, the best performing models were not

in general the same as the best performing mod-

els on TREC DL. The best ranking performance

was achieved by CODER(TAS-B) using soft labels

from pure rNN-based Jaccard similarity.

We thus find that in sparsely annotated datasets

like MS MARCO, validation loss might be a bet-

ter predictor of model generalization than IR met-

rics such as MRR, and that evaluation on datasets

with higher annotation depth (such as TREC DL

or TripClick), potentially even in a zero-shot set-

ting, might better reflect the ranking effectiveness

of models.

A critical difference of evidence-based label

smoothing from distillation is that soft document

labels are computed based on their similarity to

the ground truth instead of the query. To demon-

strate the importance of this change of perspec-

tive, we show how CODER fine-tuning performs

when using soft labels coming from geometric sim-

ilarity with respect to the query, as in distillation

(Figure 2, purple curves): even when applying the

same transformations to the scores as in the case of

evidence-based label smoothing, the model’s per-

formance rapidly degrades instead of improving.

This is expected, because distillation only works

when a superior model is available; training cannot

be bootstrapped from the scores of the model itself.

We also observe that, unlike evidence-based la-

bel smoothing, uniform label smoothing fails to

noticeably improve performance compared to plain

CODER fine-tuning (Figure 2, Table 3), even when

we ensure that the exact same probability weight

as in the case of evidence-based smoothing is dis-

tributed from the ground-truth positive(s) among
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the rest of the candidates.

Finally, we examine how EB label smoothing

performs when training in an important alterna-

tive setting, TripClick: a dataset with significantly

more relevance labels per query, that come from

pseudo-relevance feedback without human judge-

ments. Unlike above, here we investigate the joint

optimization of rNN-related parameters together

with training-specific parameters (e.g., learning

rate and linear warm-up steps), instead of using

the same rNN-related hyperparameters for label

smoothing as for reranking. To allow this, we train

on the union of the HEAD and TORSO training subsets

(avg. 42 and 9 annotations per query, respectively),

and omit the TAIL subset, which consists of a large

number of rare queries (each with only 3 annota-

tions on average). We use HEAD Val as a validation

set, and evaluate on HEAD Test.

Table 4 and Figure 10 show that training with

mixed geometric/rNN-based smooth labels signif-

icantly improves performance also in this dataset

setting compared to plain CODER training (+0.010

nDCG@10). To ensure that any improvement can-

not be attributed to better hyperparameters found

during the joint optimization described above, we

also apply the same hyperparameters to plain

CODER training (denoted “hyperparam.” in the

table). We observe similar improvements on TORSO

Test and TORSO Val (Appendix Table 9).

6 Conclusion

We propose evidence-based label smoothing to ad-

dress sparse annotation in dense retrieval datasets.

To mitigate penalizing the model in case of false

negatives during training, we compute the target

relevance distribution by assigning non-zero rele-

vance probabilities to candidates most similar to

the ground truth. To estimate similarity we leverage

reciprocal nearest neighbors, which allows consid-

ering local connectivity in the shared representation

space, and can independently be used for reranking.

Extensive experiments on two large-scale retrieval

datasets and three dense retrieval models demon-

strate that our method can effectively improve rank-

ing, while being computationally efficient and fore-

going the use of resource-heavy cross-encoders. Fi-

nally, we find that evaluating on sparsely annotated

datasets like MS MARCO dev may systematically

underestimate models with less sharp (i.e. more

diffuse) relevance score distributions.
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Limitations

We believe that in principle, the methods we pro-

pose are applicable to any dual-encoder dense re-

triever: computing the similarity metric based on

reciprocal nearest neighbors only requires access

to the encoder extracting the document and query

embeddings.

However, we note that the reason we were able

to compute the soft labels for evidence-based la-

bel smoothing completely offline was that we uti-

lized CODER as a fine-tuning framework: CODER

only fine-tunes the query encoder, using fixed doc-

ument representations. Using evidence-based la-

bel smoothing in a training method with learnable

document embeddings means that the rNN-based

similarity has to be computed dynamically at each

training step (or periodically every few training

steps), because their mutual distances/similarities

will change during training, albeit slowly. Simi-

larly, every time candidates/negatives are retrieved

dynamically (periodically, as in Xiong et al., 2020,

or at each step, as in Zhan et al., 2021) the rNN-

based similarity has to be recomputed among this

new set. Nevertheless, as we discuss in the paper,

we only need to use a context of tens or at most a

couple of hundred candidates in order to compute

the rNN-based similarity most effectively. Even in

these cases, this would therefore introduce at most

up to a hundred milliseconds of training delay per

batch, while inference would remain unaffected.

Ethics Statement

By being computationally efficient and foregoing

the use of resource-heavy cross-encoders in its

pipeline, our method allows top-performing dense

retrieval models to be fine-tuned on MS MARCO

within 7 hours on a single GPU. We therefore be-

lieve that it is well-aligned with the goal of training

models in an environmentally sustainable way, the

importance of which has been recently acknowl-

edged by the scientific community Information Re-

trieval and more broadly (Scells et al., 2022).
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On the other hand, the transformer-based Infor-

mation Retrieval models examined in our study

may intrinsically exhibit societal biases and stereo-

types. As prior research has discussed (Gezici

et al., 2021; Rekabsaz et al., 2021a; Rekabsaz and

Schedl, 2020; Bigdeli et al., 2022; Krieg et al.,

2022; Bigdeli et al., 2021; Fabris et al., 2020),

these biases stem from the latent biases acquired

by transformer-based language models throughout

their pre-training, as well as the fine-tuning process

on IR collections. Consequently, the practical use

of these models might result in prejudiced treat-

ment towards various social groups (e.g., as mani-

fested in their representation or ranking in retrieval

result lists). We therefore firmly encourage a mind-

ful and accountable application of these models.
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A Appendix

A.1 Jaccard similarity based on Reciprocal

Nearest Neighbors

Let C be a collection of documents, including the

query used for search, and NN(q, k) denote the

set of k-nearest neighbors of a probe q ∈ C – be-

sides the query, q here can also be a document

or any other element that can be embedded in

the common representation space. If d(q, ci) ≡
dg(xq,xci), ci ∈ C is a metric (distance) in the

vector space within which the embeddings of the

query xq and documents xi reside, we can formally

write:

NN(q, k) = {ci | dg(xci ,xq) ≤ dg(xck ,xq),

∀i ∈ N : 1 ≤ i ≤ |C|},
(3)

where |·| denotes the cardinality of a set, and doc-

ument ck is the k-nearest neighbor of the query

based on d, i.e., the k-th element in the list of all

documents in C sorted by distance d from the query

in ascending order5. Naturally, |NN(q, k)| = k.

The set of k-reciprocal nearest neighbors can

then be defined as:

R(q, k) = {ci | ci ∈ NN(q, k) ∧ q ∈ NN(ci, k)},
(4)

i.e., to be considered a k-reciprocal neighbor, a doc-

ument must be included in the k-nearest neighbors

of the query, but at the same time the query must

also be included in the k-nearest neighbors of the

same document. This stricter condition results in a

stronger similarity relationship than simple nearest

neighbors, and |R(q, k)| ≤ k.

Since using the above definition as-is can be

overly restrictive, prior work has proposed applying

it iteratively in order to construct an extended set of

highly related documents to the query that would

have otherwise been excluded. Thus, Zhong et al.

(2017) define the extended set:

R∗(q, k) := R(q, k) ∪R(ci, Äk),

s.t.
∣

∣R(q, k) ∩R(ci, Äk)
∣

∣ ≥
2

3

∣

∣R(ci, Äk)
∣

∣,

∀ci ∈ R(q, k).

(5)

5When some measure of similarity s is used instead
of a distance d, the relationship equivalently becomes:
s(xci ,xq) ≥ s(xck ,xq), and the k-nearest neighbors are
the first k documents sorted by s in descending order.

Effectively, we examine the set of Äk-nearest recip-

rocal neighbors of each reciprocal neighbor of q
(where Ä ∈ [0, 1] is a real parameter), and provided

that it already has a substantial overlap with the

original set of reciprocal neighbors of q, we add it

to the extended set. The underlying assumption is

that if a document is closely related to a set of doc-

uments that are closely related to the query, then

it is most likely itself related to the query, even if

there is no direct connection in terms of geomet-

ric proximity. Thus, one can improve recall at the

possible expense of precision.

Although using this new set of neighbors as the

new set of candidates and sorting them by their

distance d can form the basis of a retrieval method,

Zhong et al. (2017) additionally proceed to define a

new distance that takes into account this set, which

is used alongside d. Specifically, they use the Jac-

card distance between the (extended) reciprocal

neighbor sets of a query q and documents ci:

dJ(q, ci) = 1−

∣

∣R∗(q, k) ∩R∗(ci, k)
∣

∣

∣

∣R∗(q, k) ∪R∗(ci, k)
∣

∣

. (6)

This distance quantifies similarity between two el-

ements (here, q and ci) as a measure of overlap

between sets of neighbors robustly related to each

of them.

To reduce the computational complexity of com-

puting the Jaccard distance, which relies on the

time-consuming, CPU-bound operations of finding

the intersection and union of sets, one may instead

carry out the computation with algebraic opera-

tions, by defining for each element q ∈ C sparse

vectors of dimensionality |C|, where non-zero di-

mensions denote graph connectivity to other doc-

uments. Instead of using binary vectors, one may

assign to each neighbor ci a weight that depends on

its geometric distance to the probe q. Thus, follow-

ing Zhong et al. (2017), we define the elements of

reciprocal connectivity vectors v′
q ∈ |C| as follows:

v′q,ci =

{

fw (d(q, ci)) if ci ∈ R∗(q, k)
0 otherwise

(7)

While Zhong et al. (2017) exclusively use fw(x) =
exp(−x), one one can use any monotonically de-

creasing function, and we found that fw(x) = −x
in fact performs better in our experiments.
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Finally, instead of directly using the sparse vec-

tors above, which would yield a discretized similar-

ity metric, we perform a local expansion, mixing

each one of them (including the query) with its kexp

neighboring vectors (again including the query, if

among the neighbors):

vci =
1

kexp

kexp
∑

j=1

v
′
cj
, ∀cj ∈ NN(ci, kexp) . (8)

It is possible to use the element-wise min and

max operators on the expanded sparse vectors from

Eq. (8)) to compute the number of candidates in the

intersection and union sets of Eq. (6) respectively

as:

∣

∣R∗(q, k) ∩R∗(ci, k)
∣

∣ =
∑

min(vq,vci) (9)
∣

∣R∗(q, k) ∪R∗(ci, k)
∣

∣ =
∑

max(vq,vci),

(10)

and thus the Jaccard distance in Eq. (6) can be

written as:

dJ(q, ci) = 1−

∑|C|
j=1

min(vq,cj , vci,cj )
∑|C|

j=1
max(vq,cj , vci,cj )

. (11)

Finally, we note that instead of the pure Jaccard

distance dJ , we use as the final distance d∗ a linear

mixing between the geometric distance d and dJ
with a hyperparameter ¼ ∈ [0, 1]:

d∗(q, ci) = ¼d(q, ci) + (1− ¼)dJ(q, ci), (12)

which we found to perform better both for rerank-

ing (as in Zhong et al., 2017), as well as for label

smoothing.

A.2 Data

A.2.1 MS MARCO and TREC Deep Learning

Following the standard practice in related con-

temporary literature, we use the MS MARCO

dataset (Bajaj et al., 2018), which has been sourced

from open-domain logs of the Bing search en-

gine, for training and evaluating our models. The

MS MARCO passage collection contains about 8.8

million passages and the training set contains about

503k queries labeled with one or (rarely) more rele-

vant passages (1.06 passages per query, on average),

on a single level of relevance.

For validation of the trained models we use a

subset of 10k samples from “MS MARCO dev”,

which is a set containing about 56k labeled queries,

and refer to it as “MS MARCO dev 10k”. As a

test set we use a different, officially designated sub-

set of “MS MARCO dev”, originally called “MS

MARCO dev.small”, which contains 6980 queries.

Often, in literature and leaderboards it is mislead-

ingly referred to as “MS MARCO dev”.

Because of the very limited annotation depth

(sparsity) in the above evaluation sets, we also eval-

uate on the TREC Deep Learning track 2019 and

2020 test sets, each containing 43 and 54 queries

respectively, labeled to an average “depth” of more

than 210 document judgements per query, and us-

ing 4 levels of relevance: “Not Relevant” (0), “Re-

lated” (1), “Highly Relevant” (2) and “Perfect” (3).

According to the official (strict) interpretation of

relevance labels6, a level of 1 should not be consid-

ered relevant and thus be treated just like a level

of 0, while the lenient interpretation considers pas-

sages of level 1 relevant when calculating metrics.

A.2.2 TripClick

TripClick is a recently introduced health IR

dataset (Rekabsaz et al., 2021b) based on click

logs that refer to about 1.5M MEDLINE articles.

The approx. 700k unique queries in its training set

are split into 3 subsets, HEAD, TORSO and TAIL,

based on their frequency of occurrence: queries

in TAIL are asked only once or a couple of times,

while queries in HEAD have been asked tens or

hundreds of times. As a result, each query in

HEAD, TORSO and TAIL on average ends up with

41.9, 9.1 and 2.8 pseudo-relevance labels, using a

click-through model (RAW) where every clicked

document is considered relevant. The dataset also

includes alternative relevance labels using the Doc-

ument Click-Through Rate (DCTR), on 4 distinct

levels (the latter follow the same definitions as

the TREC Deep Learning evaluation sets). We

note that, although the number of labels per query

is much higher than MS MARCO, unlike the lat-

ter, these labels have not been verified by human

judges.

For validation and evaluation of our models we

use the officially designated validation and test set,

respectively (3.5k queries each).

6
https://trec.nist.gov/data/deep2019.html
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A.3 Evaluation

All training and evaluation experiments are pro-

duced with the same seed for pseudo-random num-

ber generators. We use mean reciprocal rank

(MRR), normalized discounted cumulative gain

(nDCG), mean average precision (MAP) and re-

call to evaluate the models on TREC DL tracks,

MS MARCO and TripClick, in line with past

work (e.g. (Xiong et al., 2020; Zhan et al., 2021;

Hofstätter et al., 2021; Rekabsaz et al., 2021b)).

While relevance judgements are well-defined in

MS MARCO and TripClick, for the TREC DL

tracks there exist strict and lenient interpretations

of the relevance scores of judged passages (see Sec-

tion A.2). In this work, we use the official, strict

interpretation. We calculate the metrics using the

official TREC evaluation software.7

7
trec.nist.gov/trec_eval/index.html
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A.4 Inference-time reranking with reciprocal

nearest neighbors

Prior work on rNN reranking considered the en-

tire gallery of images (collection C) as a reranking

context for each probe, i.e. N = |C|. With |C| in

the order of tens of millions, this is intractable for

the task of web retrieval using transformer LMs,

and a smaller context size must be used instead.

To investigate the importance of the context size,

we therefore initially fix the number of in-context

candidates per query to a large number within rea-

sonable computational constraints (N = 1000)

and optimize the hyperparameters of reciprocal

nearest neighbors (e.g. k, kexp, ¼, Ä , fw) on the

MS MARCO dev.small subset.

We first rerank candidates initially ranked by

a CODER-optimized TAS-B retriever, denoted as

“CODER(TAS-B)”. To determine an appropriate

size of reranking context, we first sort candidates by

their original relevance score (geometric similarity)

and then recompute query similarity scores with a

growing number of in-context candidates (selected

in the order of decreasing geometric similarity from

the query), while measuring changes in ranking

effectiveness.

Figure 3 shows that rNN-based reranking

slightly improves effectiveness compared to rank-

ing purely based on geometric similarity, with

the peak improvement registered around a con-

text size of 60 candidates. This behavior is consis-

tent when evaluating rNN-based raranking using

the same hyperparameters on different query sets:

MS MARCO dev (Fig. 4), which is an order of

magnitude larger, and TREC DL 2020 (Fig. 5) and

TREC DL 2019 (Fig. 6), where the improvement is

larger (possibly because it can be measured more

reliably due to the greater annotation depth). In all

cases performance clearly saturates as the number

of candidates grows (somewhat slower for TREC

DL 2019). The same behavior as described above

is observed when reranking the original TAS-B

model’s results using the same hyperparameters

chosen for the CODER-trained version, with the

performance benefit being approximately twice as

large (Fig. 8).

While it is expected that progressively increas-

ing the context size will increase performance, as

there is a greater chance to include the ground-truth

passage(s) which may have been initially ranked

lower (i.e. embedded farther from the query), the

peak and subsequent degradation or saturation is

a novel finding. We hypothesize that it happens

because the more negative candidates are added in

the context, the higher the chance that they disrupt

the reciprocal neighborhood relationship between

query and positive document(s) (see Figure 1).

We can therefore conclude that we may use a

relatively small number N of context candidates

for computing reciprocal nearest neighbors similar-

ities, which is convenient because computational

complexity scales with O(N2). For a context of 60

candidates, a CPU processing delay of only about

5 milliseconds per query is introduced (Figure 7).

These results additionally indicate that the context

size should best be treated as a rNN hyperparam-

eter to be jointly optimized with the rest, which

is reasonable, as it is expected to depend on the

average rank that ground-truth documents tend to

receive.

After optimizing rNN-related hyperparameters

(including the context size) on MS MARCO

dev.small for CODER(TAS-B), we evaluate rNN

reranking on the other evaluation sets (including its

×8 larger superset MS MARCO dev) and present

the results in Table 1. We observe that a simi-

larity based on reciprocal nearest neighbors can

indeed improve ranking effectiveness compared

to using purely geometric similarity. The improve-

ment is more pronounced on the TREC DL datasets

(+0.011 nDCG@10), where a greater annotation

depth and multi-level relevance labels potentially

allow to better differentiate between methods.

Additionally, we find that rankings from TAS-

B – whose embeddings are relatively similar to

CODER(TAS-B) – also improve, despite the fact

that hyperparameters were chosen based on the

CODER(TAS-B) model (also see Figure 8).

The strongest dense retrieval models we eval-

uate, CoCondenser and CODER(CoCondenser),

also show improved performance, again measured

primarily on TREC DL: the former improves by

+0.009 nDCG@10 on TREC DL 2020 and the lat-

ter by 0.009 nDCG@10 on TREC DL 2019. No-

tably, reranking effectiveness when using the exact

same hyperparameters as for CODER(TAS-B) and

TAS-B is only very slightly worse.

By contrast, when transferring hyperparameters

selected for MS MARCO to reranking candidates

on the TripClick dataset, we find that performance

deteriorates with respect to geometric similarity.

Therefore, we can conclude that rNN hyperparam-

eters predominantly depend on the dataset, and to
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Hyperparameter TAS-B CODER(TAS-B) CoCondenser CODER(CoCondenser)

Nr: context size 60 60 53 63

k: num. NN 21 21 21 19

kexp: num. NN for expansion 3 3 5 8

Ä : trust factor 0 0 0.128 0.5

¼: linear comb. coeff. 0.451 0.451 0.469 0.473

Table 5: Hyperparameters for reranking with Reciprocal Nearest Neighbors, MS MARCO.

Figure 3: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on MS MARCO

dev.small, as the number of candidates in the ranking context grows. Hyperparameters are optimized for a context

of 1000 candidates. Performance is slightly improved compared to ranking exclusively based on geometric similarity

and peaks at 60 in-context candidates.

Figure 4: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on MS MARCO

dev, as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3.

Performance is slightly improved compared to ranking exclusively based on geometric similarity and peaks at 60

in-context candidates.
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Figure 5: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on TREC

DL 2020, as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3.

Performance is improved compared to ranking exclusively based on geometric similarity and peaks at 60 in-context

candidates.

Figure 6: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on TREC

DL 2019, as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3.

Performance is improved compared to ranking exclusively based on geometric similarity but does not clearly

saturate.
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Figure 7: Time delay per query (in milliseconds) when reranking using reciprocal nearest neighbors-based similarity,

as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3. Processing

time scales according to O(N2). Processor (1 CPU, 1 core): AMD EPYC 7532 32-Core Processor, 2400 MHz.
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Figure 8: Performance of reciprocal nearest neighbors-based reranking of TAS-B results on MS MARCO dev, as

the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3. Performance

is improved compared to ranking exclusively based on geometric similarity and peaks at approx. 60 in-context

candidates.
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Figure 9: Performance of reciprocal nearest neighbors-

based reranking of CODER(RepBERT) results on

TripClick HEAD Test, as the number of candidates in

the ranking context grows.

a much lesser extent on the dense retriever.

After optimizing hyperparameters on TripClick

HEAD Val, we evaluate on HEAD Test, using both

RAW (binary) as well as DCTR (multi-level) rele-

vance labels; we present the results in Table 2. Also

for this dataset, which differs substantially in char-

acteristics from MS MARCO, we again observe

that using reciprocal nearest neighbors to compute

the similarity metric can slightly improve ranking

effectiveness for all examined retrieval methods.

We also observe the same saturation behavior with

respect to the ranking context size, i.e. the number

of candidates considered when reranking (Fig. 9).
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A.5 Evidence-based label smoothing
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Figure 10: Evolution of performance of RepBERT (left-most point, step 0) on the TripClick HEAD Val validation

set, as the model is being fine-tuned through CODER on TripClick HEAD∪TORSO Train. The red curve corresponds

to additionally using evidence-based label smoothing computed with reciprocal NN-based similarity, whereas for

the blue curve the smooth label distribution is computed using pure geometric similarity. Only evidence-based

smoothing with rNN similarity substantially improves performance compared to plain CODER(RepBERT), despite

“CODER(RepBERT) (hyperparam.)” and “EB smoothing” with geometric similarity using the same training

hyperparameters.

EB label smoothing hyperparam. CODER(TAS-B) CODER(CoCondenser)

b: boost factor 1.222 1.525

nmax: softmax cut-off 4 32

fn: normalization func. max-min std-based

learning rate: peak value 1.73e-06 1.37e-06

learning rate: linear warm-up steps 9000 12000

Table 6: Hyperparameters for training with evidence-based label smoothing, MS MARCO. The hyperparameters

related to computing rNN-based similarity are the same as in Table 5.
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Figure 11: Because many more documents receive higher than zero relevance in the target distribution after label

smoothing, by design it promotes a diffuse predicted distribution (bottom). Thus, although the predicted relevance

of the ground-truth positive document is now significantly higher compared to when not using label smoothing

(top), indicating a model improvement, the document ends up ranking lower because of the dispersed relevance

estimates, and thus the MRR metric decreases. By contrast, the KL-divergence (i.e. loss function) correctly captures

the improvement in assessing the relevance of the ground-truth positive. We note that in sparsely annotated datasets

like MS MARCO, the “1-hot” ground-truth annotations (right) are very often incorrect among the top ranks, and

some of the candidates ranked more highly than the ground truth (e.g. Candidates 3 and 4 in the figure) may actually

be relevant, which would render the MRR metric spurious; Qu et al., 2021 estimate that about 70% of the top 5

candidates retrieved by a top-performing dense retrieval model that are not labeled as positive are in fact relevant.

Test: DCTR Head RAW Head

Model MRR@10 nDCG@10 Recall@10 MRR@10 nDCG@10 Recall@10

TAS-B 0.278 0.139 0.130 0.339 0.188 0.113

CODER(TAS-B) 0.279 0.140 0.130 0.338 0.191 0.115

CODER(TAS-B)

+ geom. smooth labels

0.285 0.143 0.134 0.344 0.195 0.116

CODER(TAS-B)

+ rNN smooth labels

0.288 0.144 0.134 0.347 0.195 0.116

CODER(TAS-B)

+ mixed rNN/geom. smooth lab.

0.284 0.142 0.132 0.342 0.192 0.115

CoCondenser 0.242 0.114 0.105 0.293 0.157 0.092

CODER(CoCondenser) 0.251 0.117 0.107 0.306 0.161 0.093

CODER(CoCondenser)

+ mixed rNN/geom. smooth lab.

0.250 0.117 0.107 0.304 0.162 0.094

Table 7: Performance of models trained on MS MARCO but zeroshot-evaluated on TripClick Test. Bold: overall

best, Underline: best in model class.
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Val: DCTR Head RAW Head

Model MRR@10 nDCG@10 Recall@10 MRR@10 nDCG@10 Recall@10

TAS-B 0.299 0.145 0.136 0.355 0.200 0.118

CODER(TAS-B) 0.300 0.146 0.140 0.353 0.203 0.121

CODER(TAS-B)

+ geom. smooth labels
0.297 0.147 0.140 0.355 0.204 0.121

CODER(TAS-B)

+ rNN smooth labels
0.300 0.147 0.141 0.357 0.205 0.122

CODER(TAS-B)

+ mixed rNN/geom. smooth lab.
0.299 0.147 0.141 0.355 0.204 0.122

CoCondenser 0.247 0.115 0.105 0.308 0.167 0.097

CODER(CoCondenser) 0.254 0.120 0.111 0.314 0.173 0.101

CODER(CoCondenser)

+ mixed rNN/geom. smooth lab.
0.254 0.118 0.109 0.311 0.169 0.098

Table 8: Performance of models trained on MS MARCO but zeroshot-evaluated on TripClick Val. Bold: overall

best, Underline: best in model class.

Test RAW Torso Val RAW Torso

Model MRR@10 nDCG@10 Recall@10 MRR@10 nDCG@10 Recall@10

RepBERT 0.338 0.247 0.309 0.398 0.288 0.342

CODER(RepBERT) 0.390 0.276 0.330 0.426 0.310 0.354

CODER(RepBERT) hyperparam. 0.389 0.277 0.331 0.428 0.310 0.354

CODER(RepBERT)

+ mixed rNN/geom. smooth label.

0.391 0.282 0.340 0.421 0.312 0.367

Table 9: Label smoothing applied to CODER(RepBERT) trained on TripClick HEAD ∪ TORSO Train, validated on

HEAD Val; evaluation on TORSO Test and Val.
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A.5.1 Score normalization

In standard contrastive learning, including when using a KL-divergence loss, as in CODER (Zerveas et al.,

2022), there is a very stark difference between the probability of the handful of ground-truth documents

and the zero probability of the negatives in the target (ground-truth) distribution.

In evidence-based label smoothing, we are using the continuous similarity scores of candidates with

respect to the ground-truth positive document(s) as soft labels for training, which means that that there is

a reduced contrast between the highest and smallest score values. Additionally, the output values of the

model’s similarity estimate reside within an arbitrary value range, determined primarily by the model’s

weights, and for the same rank, there is a large variance of values between queries (Fig. 12). This means

that after passing through a softmax, which is highly non-linear, the target score distribution will be either

concentrated or diffuse, depending on the range of score values for each particular query. Normalizing

values into the same range will facilitate learning consistent relevance estimates. Furthermore, given a

single query, we wish that target scores rapidly decrease as the rank increases (Fig. 13).

Figure 12: Similarity scores per rank across a large number of queries.

Figure 13: Similarity scores of the top 1000 candidates for a single query, sorted in descending order. Since they

are used as training labels, to avoid very diffuse estimated score distributions, we need to ensure that there is a

large contrast between the top and bottom candidates and that probability (i.e. values after the scores pass through

a softmax) abruptly decreases after the first few ranks. We achieve this through appropriate normalization - here,

max-min (blue) instead of dividing by max (orange).

Therefore, to facilitate learning, we wish to ensure that (a) there is large enough contrast between the

first and last ranks, and (b) this is true for all queries. We can achieve this by applying a normalizing

function fn, such as max-min, on the vector s ∈ R
N of candidate scores for a single query:
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fn(s) =
s −min(s)

max(s)−min(s)
(13)

or the following, which is based on the standard deviation Ã across N candidate scores for a single query:

fn(s) =
s −min(s)

Ã
, (14)

where Ã =

√

√

√

√

∑

i

(

si −
∑

j sj/N
)

2

N
.
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