Enhancing the Ranking Context of Dense Retrieval through Reciprocal

Nearest Neighbors
George Zerveas Navid Rekabsaz Carsten Eickhoff
Brown University, USA JKU Linz University of Tiibingen, Germany

george_zerveas@brown.edu

LIT AI Lab, Austria

c.eickhoff@acm.org

navid.rekabsaz@jku.at

Abstract

Sparse annotation poses persistent challenges
to training dense retrieval models, for example
by distorting the training signal when unlabeled
relevant documents are used spuriously as neg-
atives in contrastive learning. To alleviate this
problem, we introduce evidence-based label
smoothing, a novel, computationally efficient
method that prevents penalizing the model for
assigning high relevance to false negatives. To
compute the target relevance distribution over
candidate documents within the ranking con-
text of a given query, those candidates most
similar to the ground truth are assigned a non-
zero relevance probability based on the degree
of their similarity to the ground-truth docu-
ment(s). To estimate relevance we leverage
an improved similarity metric based on recip-
rocal nearest neighbors, which can also be
used independently to rerank candidates in post-
processing. Through extensive experiments on
two large-scale ad hoc text retrieval datasets,
we demonstrate that reciprocal nearest neigh-
bors can improve the ranking effectiveness of
dense retrieval models, both when used for la-
bel smoothing, as well as for reranking. This
indicates that by considering relationships be-
tween documents and queries beyond simple
geometric distance we can effectively enhance
the ranking context.!

1 Introduction

The training of state-of-the-art ad-hoc text retrieval
models (Nogueira and Cho, 2020; Santhanam et al.,
2021; Zhan et al., 2021; Ren et al., 2021b,a; Gao
and Callan, 2021; Zhang et al., 2022; Lu et al.,
2022), which are based on transformer Language
Models, relies on large-scale datasets that are
sparsely annotated, typically comprising only a
small number of relevance judgements for each
query.” These labels are usually derived from sub-
'Our code and other resources are available at:

https://github.com/gzerveas/CODER

’E.g., on average 1.06 documents per query in
MS MARCO, Bajaj et al., 2018.

mitting the strongest pseudo-relevance signals in
user click logs to human judges for verification.
Despite potential future endeavors to extend anno-
tation, this sparsity and the resulting issue of false
negatives (Qu et al., 2021; Zhou et al., 2022) —i.e.,
only a minuscule fraction of all documents perti-
nent to a query are ever seen by users or judges
and identified as relevant — will inevitably persist.
To eliminate the sparsity, it would be necessary to
acquire either human judgements, or perhaps ex-
pensive evaluations from Large Language Models,
to verify the relevance of the entire document col-
lection (typically tens of millions of documents)
with respect to every query in the dataset, leading
to an intractable Cartesian product. Consequently,
it is crucial to explore optimizing the utilization
of existing information, and extract richer struc-
tural relationships between documents and queries,
without additional annotations.

To this end, in the present work we follow a two-
pronged approach: first, we employ the concept of
reciprocal nearest neighbors (rNN) to improve the
estimation of semantic similarity between embed-
dings of queries and documents. Two documents ¢;
and c; are said to be k-reciprocal nearest neighbors
if ¢; is within the k-nearest neighbors of ¢;, and at
the same time ¢; is within the k-nearest neighbors
of ¢j. Second, we attempt to enhance the query-
specific ranking context used to train dense retriev-
ers, going beyond the notion of using mined candi-
dates merely as negatives for contrastive learning.
By ranking context we mean a set of documents
that are in meaningful relationship to the query and
are jointly evaluated with respect to their relevance
to the query (Ai et al., 2018; Zerveas et al., 2022).
Specifically, we use the similarity of ground-truth
documents to candidates in the same ranking con-
text as the query as evidence to guide the model’s
predicted relevance probability distribution over
candidates.

Dense retrieval, the state-of-the-art approach for

10779

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 10779-10803
December 6-10, 2023 ©2023 Association for Computational Linguistics

AV |

Figure 1: Query (yellow star), positive (red cross) and
negative (full blue circles) document embedding vectors
in a shared 2D representation space. Based on top-4
Nearest Neighbors, the positive would be ranked lower
than the 3 nearest neighbors of the query. When us-
ing top-4 Reciprocal Nearest Neighbors, its ranking is
improved, because of its reciprocal relationship to the
query, which one of 3 nearest neighbors of the query
lacks. Adding an extra negative to the context (circle #1)
does not affect this ranking, but the second extra nega-
tive (#2) disrupts the reciprocal relationship, becoming
the 4th nearest neighbor of the positive.

single-stage ad-hoc retrieval, is premised on mod-
eling relevance between a query and a document
as the geometric proximity (e.g., dot-product or
cosine similarity) between their respective embed-
dings in the common representation vector space.
Top retrieval results are therefore the documents
whose embeddings are the nearest neighbors of
the query embedding. However, this modeling as-
sumption may be sub-optimal: previous work in
the field of image re-identification has shown that,
while geometric similarity can easily differentiate
between candidate embeddings in near proximity
from a query embedding, the differences between
relevance scores of candidate embeddings become
vanishingly small as distance from the query in-
creases (Qin et al., 2011). It was found that the
degree of overlap between sets of reciprocal near-
est neighbors can be used to compute an improved
measure of similarity between query and candidate
embeddings (Zhong et al., 2017).

Moreover, geometric similarity is used in min-
ing “hard” negatives, which have been consistently
found to improve performance compared to random
in-batch negatives (Xiong et al., 2020; Zhan et al.,
2021; Qu et al., 2021; Zerveas et al., 2022). Hard
negatives are typically the top-ranked candidates re-
trieved by a dense retriever (nearest neighbors to a
query embedding) that are not explicitly annotated

as relevant in the dataset.

On the one hand, the effectiveness of mined
negatives is limited by how effectively this dense
retriever can already embed queries and relevant
documents in close proximity within the shared
representation space, although the periodical or dy-
namic retrieval of negatives during training can
partially alleviate this problem (Xiong et al., 2020;
Zhan et al., 2021). On the other hand, when the
retriever used to mine hard negatives indeed suc-
ceeds in retrieving candidates that are semantically
relevant to the query, these are often not marked as
positives due to the sparsity of annotation and are
thus spuriously used as negatives for contrastive
learning (false negatives)3, confounding the train-
ing signal (Qu et al., 2021; Zhou et al., 2022).

For this reason, in this work we investigate to
what degree these issues can be mitigated through
the use of reciprocal nearest neighbors, essentially
extracting additional relationship information be-
tween queries and documents beyond flat geomet-
ric distances, such as the local degree of node con-
nectivity. Furthermore, unlike all existing dense
retrieval methods, instead of using candidates ex-
clusively as negatives, we propose using their esti-
mated similarity to the ground-truth document(s) as
evidence for label smoothing; we thus redistribute
probability weight in the target score distribution
from the ground truth to a larger number of likely
false negatives.

Finally, our work places a strong emphasis on
computational efficiency: label smoothing can be
performed entirely offline on CPUs and can be triv-
ially parallelized, while no latency is introduced
during training and our models can be trained (e.g.,
on MS MARCO) within hours, using a single GPU
with a batch size of 32. Reranking based on recip-
rocal nearest neighbors, when used, introduces a
few milliseconds latency per query on a CPU.

By contrast, the current state-of-the-art dense
retrieval methods (e.g. (Qu et al., 2021; Ren et al.,
2021b)) depend on the existence of better perform-
ing, but computationally demanding re-ranking
models such as cross-encoders, which are typically
run offline on several GPUs with huge batch sizes
and are used either for pseudo-labeling additional
training data, for discarding negatives which are
likely unlabeled positives (i.e., false negatives), or
directly for distillation through a teacher-student

3Qu et al., 2021 estimate that about 70% of the top 5
candidates retrieved by a top-performing dense retrieval model
that are not labeled as positive are actually relevant.

10780

training scheme. However, besides the very high
computational cost of such pipelines, the existence
of a model that is more powerful than the retrieval
model we wish to train is a very restrictive con-
straint, and cannot be taken for granted in many
practical settings.

Our main contributions are:
(1) We propose evidence-based label smoothing, a
novel method which mitigates the problem of false
negatives by leveraging the similarity of candidate
documents within the ranking context of a query to
the annotated ground truth in order to compute soft
relevance labels. Different from existing methods
like teacher-student distillation or pseudo-labeling,
our approach does not rely on the existence of more
powerful retrieval methods.
(2) We explore the applicability of the concept of
reciprocal nearest neighbors in improving the simi-
larity metric between query and document embed-
dings in the novel setting of ad-hoc text retrieval.
(3) Through extensive experiments on two differ-
ent large-scale ad-hoc retrieval datasets, we demon-
strate that the concept of reciprocal nearest neigh-
bors can indeed enhance the ranking context in a
computationally efficient way, both when reranking
candidates at inference time, as well as when ap-
plied for evidence-based label smoothing intended
for training.

2 Related work

Our proposed label smoothing, which encourages
the model to assign higher relevance scores to
documents intimately related to the ground truth,
conceptually finds support in prior work that pro-
posed local relevance score regularization (Diaz,
2007), adjusting retrieval scores to respect local
inter-document consistency. Despite the entirely
different methodology, both methods are premised
on the intuition that documents lying closely to-
gether in the representation vector space should
have similar scores; this in turn is related to the
cluster hypothesis, which states that closely related
documents (and thus proximal in terms of vector
representations) tend to be relevant to the same
request (Jardine and van Rijsbergen, 1971).
Zerveas et al., 2022 recently argued that jointly
scoring a large number of candidate documents
(positives and negatives) closely related to the same
query within a list-wise loss constitutes a query-
specific ranking context that benefits the assess-
ment of relevance of each individual candidate doc-

ument with respect to the query. Thus, they ex-
tended well-established insights and empirical find-
ings from Learning-to-Rank literature (Cao et al.,
2007; Aietal., 2019, 2018) to the realm of dense re-
trieval through transformer-based Language Mod-
els. While in-depth annotation of candidate doc-
uments (i.e., hundreds of relevance judgements
per query) explicitly provides a rich context for
each query in Learning-to-Rank datasets (Qin et al.,
2010; Chapelle and Chang, 2010; Dato et al., 2016),
such information is not available in the sparsely an-
notated, large-scale datasets used to train dense
retrieval models. The relationship exploited thus
far to “build a context” (practically, this means
mining hard negatives), is simply that of geometric
proximity between the embeddings of a query and
candidate documents.

Addressing the problem of sparse annotation,
several works have utilized the relevance estimates
from supervised (e.g. Hofstitter et al., 2021; Qu
et al., 2021; Ren et al., 2021b) or unsupervised (e.g.
lexical: Dehghani et al., 2017; Haddad and Ghosh,
2019) retrieval methods or other dataset-specific
heuristics (e.g. bibliography citations: Moro and
Valgimigli, 2021) to derive soft labels for docu-
ments used to train a model, e.g., in a teacher-
student distillation scheme. In this work, we in-
stead shift the perspective from assigning labels
based on similarity with respect to the query, to sim-
ilarity with respect to the ground-truth document(s),
but within a query-specific ranking context. We fur-
thermore leverage the concept of reciprocal nearest
neighbors, introduced as a reranking method for
image re-identification (Qin et al., 2011; Zhong
et al., 2017), to improve the similarity estimate.

False negatives have been identified as a sig-
nificant challenge by prior work, which has em-
ployed powerful but computationally expensive
cross-encoders (Nogueira and Cho, 2020) to dis-
card documents that receive a high similarity score
to the query and are thus likely relevant from the
pool of hard negatives (Qu et al., 2021; Ren et al.,
2021b). However, discarding top-ranking hard neg-
atives also discards potentially useful information
for training.

Recently, Zhou et al. (2022) tackled the problem
of false negatives through selective sampling of
negatives around the rank of the ground-truth doc-
ument, avoiding candidates that are ranked either
much higher than the ground truth (probable false
negatives) or much lower (too easy negatives). This

10781

approach differs from ours in the perspective of
similarity (query-centric vs ground-truth-centric),
and in the fact that information is again discarded
from the context, as only a small number of nega-
tives is sampled around the positive. Additionally,
a query latency of up to 650 ms is added during
training.

Ren et al. (2021a) leverage the similarity of can-
didate documents to the ground truth document
(positive), but in a different way and to a differ-
ent end compared to our work: all documents in
the batch (“in-batch negatives”) as well as retrieved
candidates are used as negatives in an InfoNCE loss
term, which penalizes the model when it assigns
a low similarity score between a single positive
and the query compared to the similarity score it
assigns to pairs of this positive with all other can-
didates. Thus, it requires that the ground truth lies
closer to the query than other candidates, but the
detrimental effect of false negatives on the training
signal fully persists.

By contrast, our method jointly takes into ac-
count all positives and other candidates in the rank-
ing context, and through a KL-divergence loss term
requires that the predicted relevance of the query
with respect to all documents in the ranking context
has a similar probability distribution to the target
distribution, i.e., the distribution of similarity be-
tween all ground truth positives and all candidate
documents in the context. False negatives are thus
highly likely to receive a non-zero probability in
the target distribution, and the penalty when assign-
ing a non-zero relevance score to false negatives is
lower.

3 Methods

3.1 Similarity metric based on Reciprocal
Nearest Neighbors

Nearest Neighbors are conventionally retrieved
based on the geometric similarity (here, inner prod-
uct) between embedding vectors of a query ¢ and
candidate document ¢;: s(q, ¢;) = (xq, Z(,), With
zq = m(q) and z., = m(c;) embeddings obtained
by a trained retrieval model m. We can additionally
define the Jaccard similarity s; that measures the
overlap between the sets of reciprocal neighbors
of ¢ and ¢;. We provide a detailed derivation of s
in Appendix A.1.

Instead of the pure Jaccard similarity sy, we use
a linear mixture with the geometric similarity s
controlled by hyperparameter \ € [0, 1]:

S*(qv Ci) =A S(Qv Ci) + (1 -)‘) SJ(Qa Ci)’ (1)

which we found to perform better both for rerank-
ing (as in Zhong et al., 2017), as well as for label
smoothing.

Importantly, unlike prior work (Qin et al., 2011;
Zhong et al., 2017), which considered the entire
gallery (collection) of images as a reranking con-
text for each probe, we only use as a context a
limited number of candidates previously retrieved
for each query. This is done both for computational
tractability, as well as to constrain the context to
be query-specific when computing the similarity
of documents to the ground truth; documents can
otherwise be similar to each other with respect to
many different topics unrelated to the query. We
empirically validate this choice in Section 5.1.

3.2 Evidence-based label smoothing

Uniform label smoothing is a well-established tech-
nique (Goodfellow et al., 2016) that is used to mit-
igate the effects of label noise and improve score
calibration, and was recently also employed for
contrastive learning (Alayrac et al., 2022). It in-
volves removing a small proportion € € [0, 1] of
the probability mass corresponding to the ground-
truth class and uniformly redistributing it among
the rest of the classes, thus converting, e.g., a 1-hot
vectory = [1,0,...,0] € R" to:

vy =[l—¢, ¢/(N=1),...,¢/(N=1)] € RN (2)

Nevertheless, naively distributing the probabil-
ity mass e uniformly among all candidates, as in

Eq. (2), would result in true negatives predomi-
nantly receiving a portion of it, apart from the small
number of false negatives®.

For this reason, we instead propose correcting
the sparse annotation vectors by selectively dis-
tributing relevance probability among negatives
that are highly likely to be positive, or at least are
ambiguous with respect to their relevance to the
query. The proportion of probability mass each
candidate shall receive depends on its degree of
similarity to the annotated ground-truth document,
which can be quantified by the Jaccard distance of
Eq. (11), if we wish to exclusively consider recip-
rocal nearest neighbors, or the mixed geometric-
Jaccard distance of Eq. (1), which allows any can-
didate close to the ground-truth to be considered.

“Indeed, Qu et al. (2021) observe that among mined “hard
negative” candidates, the percentage of false negatives falls to
4% by rank 40.

10782

Algorithm 1 Evidence-based label smoothing

Require: Dense retrieval model m, set of queries Q, docu-
ment collection C, set of all ground-truth label documents
per query |J £(q), Vg € Q
1: Compute embedding vectors £, = m(q), Vg € Q and
Te; = m(ci), Ve; € C.
for each query g do
Retrieve top-N Nearest Neighbors per query based
on geometric similarity: s(q,c;) = (zq,z,;) for all
cieC.
for each candidate ¢;,7 =1,..., N do
Compute relevance score 7"/ as mixed geometric
and reciprocal-NN Jaccard similarity s; with respect to
all ground-truth documents {:

1
—_— s (1, ci),
Tl 2+ e
s (lei) =X s(le) + (1= X) - ss(l,),
0<A<1

A

TN (q, Ci) =

6: Transform scores by applying normalization func-
tion fy,, boost factor b and cut-off threshold nmax:

b fn (r"(q,c:)) ifci € L(q),
r'(g, i) = —oo i1 > Nnas,
fn (r"(q,c:)) otherwise.

7: end for

end for

9: Fine-tune model m with target distribution: r(q) =
softmax (r’(g)), and loss function:
£ (r(q),8(q)) = Dk (r(q) | 8(4)),
where §(g) = softmax (8'(g)/T) is the model-predicted
score distribution, with 7" a learnable temp. param.

o]

Since the value range of similarity scores that
each model outputs is effectively arbitrary, before
applying a softmax to obtain a distribution over
candidates, we (1) perform transformations (e.g.,
max-min or std-based, see Appendix A.5.1) and
multiply the values of the original ground-truth
documents by a factor b > 1 to normalize the
range and increase the contrast between the top
and trailing candidates, and (2) we limit the num-
ber of candidates that receive a probability above
0 to the top nmax candidates in terms of their simi-
larity to the ground-truth document(s). We found
that these transformations primarily depend on the
dataset rather than the model, and that training
without limiting nmax leads to overly diffuse score
distributions. In case more than one ground-truth
documents exist for the same query, the similarity
of each candidate is the mean similarity over all
ground-truth documents (see Algorithm 1).

3.3 Computational efficiency

Computing rNN similarity involves computing pair-
wise similarities among N + 1 ranking context
elements (including the query), and reranking re-

quires sorting the N candidates by their final simi-
larity. The computational cost is thus O(N?) and
O(N log N), respectively; if we are only interested
in the top-k reranked candidates, the latter can be
reduced to O(N log k). We find (Sections 5.1, A.4)
that a small subset of the full ranking context with
size N, < N is generally sufficient when com-
puting rNN-based similarities. For MS MARCO,
N, = 60 and the delay per query when rerank-
ing on a single CPU and core (AMD EPYC 7532,
2400 MHz) is about 5 ms (Fig. 7).

Evidence-based label smoothing imposes no cost
during training or inference; it only requires offline
computation of rNN-similarities for each query
context NV, and sorting/top-k as above, followed
by simple vectorized transformations, e.g. max-
min normalization. Furthermore, all computations
above can be trivially (‘embarrassingly’) paral-
lelized in a multi-CPU/core setup.

4 Experimental setting

Datasets. To evaluate the effectiveness of our
methods, we use two large-scale, publicly avail-
able ad-hoc retrieval collections: the MS MARCO
Passage Retrieval dataset (Bajaj et al., 2018), and
TripClick, a health document retrieval dataset (Rek-
absaz et al., 2021b). Each has distinct character-
istics and represents one of the two realistic data
settings practically available for training dense re-
trieval models (see details in Appendix A.2, A.3).

Baselines. To compute the similarity metric
based on reciprocal nearest neighbors, and thus the
scores used to either rerank candidates at inference
time or calculate the smoothed labels for training,
we only need access to the encoder extracting the
document and query embeddings. The methods we
propose are therefore applicable in principle to any
dual-encoder dense retriever. However, we eschew
training pipelines based on cross-encoders, both to
ensure computational efficiency, as well as to elim-
inate the dependence on more powerful retrieval
methods. Instead, we choose CODER (Zerveas
et al., 2022), a fine-tuning framework that enhances
the performance of dense retrievers used as “base
models” through a large ranking context of query-
specific candidate documents and a list-wise loss: it
serves as a natural framework to evaluate evidence-
based label smoothing, because it allows us to di-
rectly utilize a large number of soft labels per query,
while being very light-weight computationally.
Following Zerveas et al. (2022), we select the

10783

Model MS MARCO dev.small MS MARCO dev TREC DL 2019 TREC DL 2020
MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

RocketQAv2 (Ren et al., 2021b) 0.388

ERNIE-Search (Lu et al., 2022) 0.401 -

AR?2 (Zhang et al., 2022) 0.395

AR2 + SimANS (Zhou et al., 2022) 0.409 -

TAS-B 0.344 0408 0.619 | 0.344 0407 0.618 | 0.875 0.659 0222 | 0.832 0.620 0.302

R. TAS-B 0.347 0411 0.625 | 0.346 0.410 0.623 | 0.886 0.664 0.226 | 0.828 0.627 0.311

CODER(TAS-B) 0.355 0419 0.633 | 0353 0416 0.627 | 0.857 0.668 0224 | 0.844 0.623 0.306

R. CODER(TAS-B) 0.357 0421 0.637 | 0.354 0418 0.631 | 0.853 0.679 0.231 | 0.860 0.634 0.317

CoCondenser 0.381 0446 0.665 | 0381 0446 0.664 | 0.879 0.656 0.226 | 0.833 0.618 0.301

R. CoCondenser 0.384 0.449 0.670 | 0.381 0.447 0.666 | 0.877 0.658 0.226 | 0.833 0.627 0.306

CODER(CoCond) 0.382 0447 0.668 | 0.382 0447 0.665 | 0.895 0.655 0228 | 0.844 0.639 0.314

R. CODER(CoCond) 0.384 0450 0.671 | 0.383 0.448 0.667 | 0.895 0.664 0.230 | 0.844 0.641 0.316

Table 1: Recip. NN reranking, MS MARCO collection. Metrics cut-off @10. Bold: best in model class. As a
reference, at the top we include all SOTA dense retrieval models from literature that ourperform the methods we
evaluated, noting that, unlike ours, they all rely heavily on cross-encoders for training (e.g. distillation, ranking,

pseudolabeling etc). Blue: our contributions.

Model DCTR Head RAW Head
MRR nDCG MRR nDCG Recall
BM25! 0276 0.224 - 0.199 0.128
BERT-Dot (SciBERT)? | 0.530 0.243 - - -
BERT-Cat (SciBERT)? | 0.595 0.294 - - -
RepBERT [abbrev: RB] | 0.526 0.255 | 0.574 0344 0.199
R. RepBERT 0.525 0.256 | 0.575 0.346 0.200
CODER(RB) 0.634 0316 | 0.674 0419 0.234
R. CODER(RB) 0.638 0317 | 0.679 0418 0.234
RB + CODER(RB) 0.637 0.318 | 0.679 0421 0.235
RB + R. CODER(RB) 0.641 0319 | 0.681 0.422 0.236

Table 2: Recip. NN reranking, TripClick Test (cut-off
@10). Bold: overall best, underline: best in model class.
Row !: from (Rekabsaz et al., 2021b), 2: (Hofstitter
et al., 2022). Blue: our contributions.

following base models subjected to CODER fine-
tuning :

1. RepBERT (Zhan et al., 2020), a BERT-based
model with a typical dual encoder architecture
which underpins all state-of-the-art dense retrieval
methods, trained using a triplet Max-Margin loss.

2. TAS-B (Hofstitter et al., 2021), one of the top-
performing dense retrieval methods on the MS
MARCO / TREC-DL 2019, 2020 datasets, which
has been optimized with respect to their training
process, involving a sophisticated selection of neg-
ative documents through clustering of topically re-
lated queries.

3. CoCondenser (Gao and Callan, 2021), the state-
of-the-art dense retrieval model, excluding those
which make use of heavyweight cross-encoder
(query-document term interaction) teacher models
or additional pseudo-labeled data samples; it re-
lies on corpus-specific, self-supervised pre-training
through a special architecture and contrastive loss
component.

5 Results and Discussion

5.1 Inference-time reranking with reciprocal
nearest neighbors

We first evaluate the effectiveness of reciprocal
nearest neighbors at improving the similarity met-
ric between queries and documents.

Across all query sets in two important evalua-
tion settings, MS MARCO (Table 1) and TripClick
(Table 2), we observe that using a similarity based
on reciprocal nearest neighbors can consistently
improve ranking effectiveness for all tested models.
The magnitude of improvement is generally small,
but becomes substantial when measured on the
TREC DL datasets (approx. +0.010 nDCG@10),
where a greater annotation depth and multi-level
relevance labels potentially allow to better differen-
tiate between methods.

We furthermore observe that ranking effective-
ness initially improves when increasing the size
of the ranking context (i.e., the number of candi-
dates considered for reranking), which is expected,
because the probability to include a remote ground-
truth document in the context increases. However,
as this size further increases, ranking effectiveness
saturates, often peaking at a context size of a few
tens of candidates (Figures 3, 4, 6, 9). We hypothe-
size that this happens because, as we keep adding
negatives in the context, the chance that they dis-
rupt the reciprocal neighborhood relationship be-
tween query and positive document(s) increases
(see Figure 1).

We therefore conclude that we may use a rela-
tively small number N of context candidates for
computing reciprocal nearest neighbor similarities,
which is convenient because computational com-

10784

Model TREC DL 2019 TREC DL 2020

MRR nDCG MAP Recall | MRR nDCG MAP Recall
TAS-B 0875 0.659 0222 0259 | 0.832 0.620 0.302 0.363
CODER(TAS-B) 0.857 0.668 0224 0270 | 0.844 0.623 0.306 0.365
CODER(TAS-B) + uniform sm. 0.857 0.669 0223 0273 | 0.835 0.619 0.304 0.360
CODER(TAS-B) + geom. smooth labels 0.848 0.665 0220 0271 | 0.842 0.626 0.310 0.370
CODER(TAS-B) + rNN smooth labels 0.857 0.671 0226 0276 | 0.862 0.632 0315 0.369
CODER(TAS-B) + mixed rNN/geom. smooth lab. 0.889 0.675 0.227 0.277 | 0.842 0.637 0.318 0.376
CoCondenser 0879 0.656 0226 0.269 | 0.833 0.618 0.301 0.366
CODER(CoCondenser) 0.895 0.655 0.228 0.269 | 0.844 0.639 0.314 0.384
CODER(CoCondenser) + mixed rNN/geom. smooth lab. | 0.884 0.661 0.232 0.278 | 0.856 0.646 0.316 0.383

Table 3: Evaluation of label smoothing applied to training CODER(TAS-B) on MS MARCO. Metrics cut-off @10.
Bold: best performance in each model class. Blue: our contributions.

0.126

—— CODER(TAS-B)
—— EB smoothing (rNN)
0.1241 —— EB smoothing (geom.)
+ Uniform smoothing

0.1221 1 —— Distillation (hparam. rNN)
" Distillation (hparam. geom.)
§0-1207 e RepBERT

0.1181

0.1161

0.1144

0 50000 100000 150000 200000
Step

0.3525-

0.3500 4

0.34754
S 0.3450 A
©0.34251 CODER(TAS-B)
E EB smoothing (rNN)

0.3400 1 —— EB smoothing (geom.)

0.33751 Ull'uflorm. smoothing

—— Distillation (hparam. rNN)
0.33501 Distillation (hparam. geom.)
® RepBERT
0.33251_, : : : :
0 50000 100000 150000 200000

Step

Figure 2: Evolution of performance of TAS-B (left-
most point, step 0) on MS MARCO dev validation set,
as the model is being fine-tuned through CODER. The
red curve corresponds to using evidence-based (EB)
label smoothing computed with rNN-based similarity,
whereas for the blue curve the smooth label distribution
is computed using pure geometric similarity. EB label
smoothing significantly reduces validation loss (com-
puted with the original labels, top), indicating that the
ground truth passages are receiving higher probability
in the estimated relevance distribution, but the retrieval
metric (bottom) fails to register an improvement due to
annotation sparsity (compare with Fig. 10, Appendix).
Distillation leads to precipitous degradation of perfor-
mance.

plexity scales with O(N?). In MS MARCO, a
context of 60 candidates corresponds to peak effec-
tiveness for CODER(TAS-B) and introduces a CPU
processing delay of only about 5 milliseconds per

query (Figure 7). We expect the optimal context
size to depend on the average rank that ground-
truth documents tend to receive, and for models of
similar ranking effectiveness, this would primarily
be determined by the characteristics of the dataset.

Indeed, we find that the hyperparameters in com-
puting rNN-based similarity (e.g. k, A\, 7, fu),
as well as the context size /N, predominantly de-
pend on the dataset, and to a much lesser extent
on the dense retriever: hyperparameters optimized
for CODER(TAS-B) worked very well for TAS-
B, CoCondenser and CODER(CoCondenser) on
MS MARCO, but very poorly when transferred to
TripClick.

A more detailed description and discussion
of reranking experiments is provided in Ap-
pendix A.4.

5.2 Evidence-based label smoothing

In order to achieve the best possible results using
evidence-based label smoothing, one should ideally
optimize the hyperparameters related to rNN-based
similarity for the specific task of training a retrieval
model with recomputed soft labels. However, to
avoid repeatedly computing soft labels for the train-
ing set, we simply chose an rNN configuration that
was optimized for reranking a large pool of candi-
dates (/N = 1000) in the MS MARCO collection
— i.e., the same one used in the previous section.
Although this configuration may not be optimal
for our specific task (e.g., small changes in score
values might be sufficient for reranking candidates
but ineffective as soft training labels), we expect
that it can still provide a reliable lower bound of
optimal performance.

Figure 2 shows how the ranking performance of
the TAS-B base model (left-most point, step 0) on
the validation set evolves throughout fine-tuning
through CODER. The red curve corresponds to
additionally using evidence-based label smooth-

10785

ing computed with reciprocal NN-based similarity
(rNN-related hyperparameters are the same as in
Section 5.1), whereas for the blue curve the smooth
label distribution is computed using pure geomet-
ric similarity. We observe the following seem-
ingly paradoxical phenomenon: compared to plain
CODER training, label smoothing significantly re-
duces the validation loss (computed with the orig-
inal labels, top panel), indicating that the ground
truth passages are now receiving proportionally
higher scores in the estimated relevance distribu-
tion, but the retrieval metric (bottom panel) does
not register an improvement.

In fact, this phenomenon may be fully explained
through the presence of false negatives: through the
smooth target label distribution, the model learns
to assign high relevance scores to a larger num-
ber of documents (diffuse distribution). Therefore,
it likely places a proportionally higher relevance
distribution weight to the ground truth document
compared to plain CODER, essentially improving
the relevance estimate for the ground truth, but at
the same time it distributes relevance weight to a
higher number of candidates, such that the ground
truth ends up being ranked slightly lower (see Fig-
ure 11).

The crucial question therefore is, whether the
candidates now receiving a higher relevance score
are actually relevant. Since the MS MARCO
dev dataset almost always contains only a single
positive-labeled passage per query, it is fundamen-
tally ill-suited to measure ranking effectiveness im-
provements by a training scheme that primarily
promotes a diffuse relevance distribution over sev-
eral candidates.

For this reason, we must rely on datasets con-
taining more judgements per query, such as the
TREC DL 2019, 2020 datasets: Table 3 shows that
evidence-based label smoothing using a similarity
based on reciprocal nearest neighbors can signifi-
cantly improve the performance of each dense re-
triever even beyond the benefit of the plain CODER
fine-tuning framework. Furthermore, using an rNN-
based Jaccard similarity as a metric for computing
the soft labels yields significantly better perfor-
mance than using geometric similarity, and the best
results are achieved when using a linear combina-
tion of the two metrics.

As TripClick also contains several (pseudo-
relevance) labels per query, we additionally eval-
uate the MS MARCO-trained models zero-shot

Model DCTR Head RAW Head
MRR nDCG Recall MRR nDCG Recall
RepBERT 0526 0255 0242 | 0.574 0.344 0.199
CODER(RB) 0.610 0300 0276 | 0.656 0401 0.228
CODER(RB) hparam. 0.608 0300 0277 | 0.649 0401 0.229
CODER(RB) + EB smooth. | 0.611 0.305 0.280 | 0.661 0.411 0.234

Table 4: Evaluation of evidence-based label smooth-
ing (mixed rNN - geom. similarity) on TripClick HEAD
Test. Models were trained on TripClick HEAD U TORSO
Train and validated on HEAD Val. Metrics cut-off @10.
“hparam”: model trained with same hyperparameters as
the one with label smoothing. Blue: our contributions.

(i.e., without any training) on TripClick Test and
Val (Figures 7, 8, Appendix). We again observe
that evidence-based label smoothing with an rNN-
based metric improves performance compared to
plain CODER; however, we note that in this zero-
shot setting, the best performing models were not
in general the same as the best performing mod-
els on TREC DL. The best ranking performance
was achieved by CODER(TAS-B) using soft labels
from pure rNN-based Jaccard similarity.

We thus find that in sparsely annotated datasets
like MS MARCO, validation loss might be a bet-
ter predictor of model generalization than IR met-
rics such as MRR, and that evaluation on datasets
with higher annotation depth (such as TREC DL
or TripClick), potentially even in a zero-shot set-
ting, might better reflect the ranking effectiveness
of models.

A critical difference of evidence-based label
smoothing from distillation is that soft document
labels are computed based on their similarity to
the ground truth instead of the query. To demon-
strate the importance of this change of perspec-
tive, we show how CODER fine-tuning performs
when using soft labels coming from geometric sim-
ilarity with respect to the query, as in distillation
(Figure 2, purple curves): even when applying the
same transformations to the scores as in the case of
evidence-based label smoothing, the model’s per-
formance rapidly degrades instead of improving.
This is expected, because distillation only works
when a superior model is available; training cannot
be bootstrapped from the scores of the model itself.

We also observe that, unlike evidence-based la-
bel smoothing, uniform label smoothing fails to
noticeably improve performance compared to plain
CODER fine-tuning (Figure 2, Table 3), even when
we ensure that the exact same probability weight
as in the case of evidence-based smoothing is dis-
tributed from the ground-truth positive(s) among

10786

the rest of the candidates.

Finally, we examine how EB label smoothing
performs when training in an important alterna-
tive setting, TripClick: a dataset with significantly
more relevance labels per query, that come from
pseudo-relevance feedback without human judge-
ments. Unlike above, here we investigate the joint
optimization of rNN-related parameters together
with training-specific parameters (e.g., learning
rate and linear warm-up steps), instead of using
the same rNN-related hyperparameters for label
smoothing as for reranking. To allow this, we train
on the union of the HEAD and TORSO training subsets
(avg. 42 and 9 annotations per query, respectively),
and omit the TAIL subset, which consists of a large
number of rare queries (each with only 3 annota-
tions on average). We use HEAD Val as a validation
set, and evaluate on HEAD Test.

Table 4 and Figure 10 show that training with
mixed geometric/NN-based smooth labels signif-
icantly improves performance also in this dataset
setting compared to plain CODER training (+0.010
nDCG@10). To ensure that any improvement can-
not be attributed to better hyperparameters found
during the joint optimization described above, we
also apply the same hyperparameters to plain
CODER training (denoted “hyperparam.” in the
table). We observe similar improvements on TORSO
Test and TORSO Val (Appendix Table 9).

6 Conclusion

We propose evidence-based label smoothing to ad-
dress sparse annotation in dense retrieval datasets.
To mitigate penalizing the model in case of false
negatives during training, we compute the target
relevance distribution by assigning non-zero rele-
vance probabilities to candidates most similar to
the ground truth. To estimate similarity we leverage
reciprocal nearest neighbors, which allows consid-
ering local connectivity in the shared representation
space, and can independently be used for reranking.
Extensive experiments on two large-scale retrieval
datasets and three dense retrieval models demon-
strate that our method can effectively improve rank-
ing, while being computationally efficient and fore-
going the use of resource-heavy cross-encoders. Fi-
nally, we find that evaluating on sparsely annotated
datasets like MS MARCO dev may systematically
underestimate models with less sharp (i.e. more
diffuse) relevance score distributions.

Acknowledgements

G. Zerveas would like to thank the Onassis Founda-
tion for supporting this research. The contribution
of N. Rekabsaz is supported by the State of Up-
per Austria and the Federal Ministry of Education,
Science, and Research, through grant LIT-2021-
YOU-215.

Limitations

We believe that in principle, the methods we pro-
pose are applicable to any dual-encoder dense re-
triever: computing the similarity metric based on
reciprocal nearest neighbors only requires access
to the encoder extracting the document and query
embeddings.

However, we note that the reason we were able
to compute the soft labels for evidence-based la-
bel smoothing completely offline was that we uti-
lized CODER as a fine-tuning framework: CODER
only fine-tunes the query encoder, using fixed doc-
ument representations. Using evidence-based la-
bel smoothing in a training method with learnable
document embeddings means that the rNN-based
similarity has to be computed dynamically at each
training step (or periodically every few training
steps), because their mutual distances/similarities
will change during training, albeit slowly. Simi-
larly, every time candidates/negatives are retrieved
dynamically (periodically, as in Xiong et al., 2020,
or at each step, as in Zhan et al., 2021) the rNN-
based similarity has to be recomputed among this
new set. Nevertheless, as we discuss in the paper,
we only need to use a context of tens or at most a
couple of hundred candidates in order to compute
the rNN-based similarity most effectively. Even in
these cases, this would therefore introduce at most
up to a hundred milliseconds of training delay per
batch, while inference would remain unaffected.

Ethics Statement

By being computationally efficient and foregoing
the use of resource-heavy cross-encoders in its
pipeline, our method allows top-performing dense
retrieval models to be fine-tuned on MS MARCO
within 7 hours on a single GPU. We therefore be-
lieve that it is well-aligned with the goal of training
models in an environmentally sustainable way, the
importance of which has been recently acknowl-
edged by the scientific community Information Re-
trieval and more broadly (Scells et al., 2022).

10787

On the other hand, the transformer-based Infor-
mation Retrieval models examined in our study
may intrinsically exhibit societal biases and stereo-
types. As prior research has discussed (Gezici
et al., 2021; Rekabsaz et al., 2021a; Rekabsaz and
Schedl, 2020; Bigdeli et al., 2022; Krieg et al.,
2022; Bigdeli et al., 2021; Fabris et al., 2020),
these biases stem from the latent biases acquired
by transformer-based language models throughout
their pre-training, as well as the fine-tuning process
on IR collections. Consequently, the practical use
of these models might result in prejudiced treat-
ment towards various social groups (e.g., as mani-
fested in their representation or ranking in retrieval
result lists). We therefore firmly encourage a mind-
ful and accountable application of these models.

References

Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce
Croft. 2018. Learning a Deep Listwise Context
Model for Ranking Refinement. In The 41st Interna-
tional ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, SIGIR *18, pages
135-144, New York, NY, USA. Association for Com-
puting Machinery.

Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Na-
dav Golbandi, Michael Bendersky, and Marc Na-
jork. 2019. Learning Groupwise Multivariate
Scoring Functions Using Deep Neural Networks.
arXiv:1811.04415 [cs]. ArXiv: 1811.04415.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Fliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a Visual Language Model for Few-Shot
Learning. ArXiv:2204.14198 [cs].

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. MS MARCO: A Human Gen-
erated MAchine Reading COmprehension Dataset.
arXiv:1611.09268 [cs]. ArXiv: 1611.09268.

Amin Bigdeli, Negar Arabzadeh, Shirin Seyedsalehi,
Morteza Zihayat, and Ebrahim Bagheri. 2022. A
light-weight strategy for restraining gender biases
in neural rankers. In Advances in Information Re-
trieval, pages 47-55, Cham. Springer International
Publishing.

Amin Bigdeli, Negar Arabzadeh, Morteza Zihayat, and
Ebrahim Bagheri. 2021. Exploring gender biases in
information retrieval relevance judgement datasets.
In Advances in Information Retrieval, pages 216-224,
Cham. Springer International Publishing.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
ICML °07, pages 129-136, New York, NY, USA.
Association for Computing Machinery.

Olivier Chapelle and Yi Chang. 2010. Yahoo! Learning
to Rank Challenge Overview. In Proceedings of the
2010 International Conference on Yahoo! Learning
to Rank Challenge - Volume 14, YLRC’10, pages
1-24, Haifa, Israel. JMLR.org.

Domenico Dato, Claudio Lucchese, Franco Maria Nar-
dini, Salvatore Orlando, Raffaele Perego, Nicola
Tonellotto, and Rossano Venturini. 2016. Fast Rank-
ing with Additive Ensembles of Oblivious and Non-
Oblivious Regression Trees. ACM Transactions on
Information Systems, 35(2):15:1-15:31.

Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn,
Jaap Kamps, and W. Bruce Croft. 2017. Neural Rank-
ing Models with Weak Supervision. In Proceedings
of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR °17, pages 6574, New York, NY, USA. Asso-
ciation for Computing Machinery.

Fernando Diaz. 2007. Regularizing query-based re-
trieval scores. Information Retrieval, 10(6):531-562.

Alessandro Fabris, Alberto Purpura, Gianmaria Silvello,
and Gian Antonio Susto. 2020. Gender stereotype
reinforcement: Measuring the gender bias conveyed
by ranking algorithms. Information Processing &
Management.

Luyu Gao and Jamie Callan. 2021. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. ArXiv, abs/2108.05540.

Gizem Gezici, Aldo Lipani, Yucel Saygin, and Emine
Yilmaz. 2021. Evaluation metrics for measuring bias
in search engine results. Information Retrieval Jour-

nal, 24(2):85-113.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press, Cambridge, MA,
USA.

Dany Haddad and Joydeep Ghosh. 2019. Learning
More From Less: Towards Strengthening Weak Su-
pervision for Ad-Hoc Retrieval. In Proceedings of
the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR’ 19, pages 857-860, New York, NY, USA. As-
sociation for Computing Machinery.

10788

Sebastian Hofstitter, Sophia Althammer, Mete
Sertkan, and Allan Hanbury. 2022. Establishing
Strong Baselines for TripClick Health Retrieval.
arXiv:2201.00365 [cs]. ArXiv: 2201.00365.

Sebastian Hofstétter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy J. Lin, and A. Hanbury. 2021. Effi-
ciently Teaching an Effective Dense Retriever with
Balanced Topic Aware Sampling. SIGIR.

N. Jardine and C. J. van Rijsbergen. 1971. The use of
hierarchic clustering in information retrieval. Infor-
mation Storage and Retrieval, 7(5):217-240.

Klara Krieg, Emilia Parada-Cabaleiro, Markus Schedl,
and Navid Rekabsaz. 2022. Do perceived gender bi-
ases in retrieval results affect relevance judgements?
In Proceedings of the European Conference on In-
formation Retrieval, Workshop on Algorithmic Bias
in Search and Recommendation (ECIR-BIAS 2022),
pages 104-116, Cham. Springer.

Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng
Shi, Zhengjie Huang, Shikun Feng Yu Sun, Hao
Tian, Hua Wu, Shuaigiang Wang, Dawei Yin, and
Haifeng Wang. 2022. ERNIE-Search: Bridging
Cross-Encoder with Dual-Encoder via Self On-
the-fly Distillation for Dense Passage Retrieval.
ArXiv:2205.09153 [cs].

Gianluca Moro and Lorenzo Valgimigli. 2021. Effi-
cient Self-Supervised Metric Information Retrieval:
A Bibliography Based Method Applied to COVID
Literature. Sensors, 21(19):6430. Number: 19 Pub-
lisher: Multidisciplinary Digital Publishing Institute.

Rodrigo Nogueira and Kyunghyun Cho. 2020. Pas-
sage Re-ranking with BERT. arXiv:1901.04085 [cs].
ArXiv: 1901.04085.

Danfeng Qin, Stephan Gammeter, Lukas Bossard, Till
Quack, and Luc van Gool. 2011. Hello neighbor:
Accurate object retrieval with k-reciprocal nearest
neighbors. In CVPR 2011, pages 777-784. ISSN:
1063-6919.

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010.
LETOR: A benchmark collection for research on
learning to rank for information retrieval. Informa-
tion Retrieval, 13(4):346-374.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5835-5847, On-
line. Association for Computational Linguistics.

Navid Rekabsaz, Simone Kopeinik, and Markus Schedl.
2021a. Societal biases in retrieved contents: Mea-
surement framework and adversarial mitigation for
bert rankers. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

Navid Rekabsaz, Oleg Lesota, Markus Schedl, Jon
Brassey, and Carsten Eickhoff. 2021b. TripClick:
The Log Files of a Large Health Web Search Engine.
In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 2507-2513. Association for
Computing Machinery, New York, NY, USA.

Navid Rekabsaz and Markus Schedl. 2020. Do neural
ranking models intensify gender bias? In Proceed-
ings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 2065-2068.

Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu,
Wayne Xin Zhao, QiaoQiao She, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. 2021a. PAIR: Leveraging
Passage-Centric Similarity Relation for Improving
Dense Passage Retrieval. Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2173-2183. ArXiv: 2108.06027.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
QiaoQiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021b. RocketQAv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2825-2835, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2021. Col-
BERTV2: Effective and Efficient Retrieval via
Lightweight Late Interaction. ArXiv:2112.01488
[cs].

Harrisen Scells, Shengyao Zhuang, and Guido Zuccon.
2022. Reduce, reuse, recycle: Green information
retrieval research. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR °22,
page 2825-2837, New York, NY, USA. Association
for Computing Machinery.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Re-
trieval. arXiv:2007.00808 [cs]. ArXiv: 2007.00808.

George Zerveas, Navid Rekabsaz, Daniel Cohen, and
Carsten Eickhoff. 2022. CODER: An efficient frame-
work for improving retrieval through COntextual
document embedding reranking. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1062610644, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing Dense
Retrieval Model Training with Hard Negatives. In
Proceedings of the 44th International ACM SIGIR

10789

Conference on Research and Development in Infor-
mation Retrieval, pages 1503—1512, Virtual Event
Canada. ACM.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang,
and Shaoping Ma. 2020. RepBERT: Contextu-
alized Text Embeddings for First-Stage Retrieval.
arXiv:2006.15498 [cs]. ArXiv: 2006.15498.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv,
Nan Duan, and Weizhu Chen. 2022. Adversarial
Retriever-Ranker for dense text retrieval. In Inter-
national Conference on Learning Representations
(ICLR).

Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li.
2017. Re-ranking Person Re-identification with k-
Reciprocal Encoding. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 3652-3661. ISSN: 1063-6919.

Kun Zhou, Yeyun Gong, Xiao Liu, Wayne Xin Zhao,
Yelong Shen, Anlei Dong, Jingwen Lu, Rangan Ma-
jumder, Ji-rong Wen, and Nan Duan. 2022. SimANS:
Simple ambiguous negatives sampling for dense text
retrieval. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 548-559, Abu Dhabi, UAE.
Association for Computational Linguistics.

10790

A Appendix

A.1 Jaccard similarity based on Reciprocal
Nearest Neighbors

Let C be a collection of documents, including the
query used for search, and NN(q, k) denote the
set of k-nearest neighbors of a probe ¢ € C — be-
sides the query, ¢ here can also be a document
or any other element that can be embedded in
the common representation space. If d(q,c;) =
dg(xq,%¢;), ¢i € C is a metric (distance) in the
vector space within which the embeddings of the
query x4 and documents x; reside, we can formally
write:

NN(Q? k) = {Ci | dg(XCi7XQ) < dQ(XCIwXQ)7 3)
Vie N:1<i<|C|},

where |-| denotes the cardinality of a set, and doc-
ument ci, is the k-nearest neighbor of the query
based on d, i.e., the k-th element in the list of all
documents in C sorted by distance d from the query
in ascending order’. Naturally, [NN(q, k)| = .

The set of k-reciprocal nearest neighbors can
then be defined as:

R(q,k) = {ci | ¢; € NN(q,k) A\ q € NN(c;,k)},

“4)
i.e., to be considered a k-reciprocal neighbor, a doc-
ument must be included in the k-nearest neighbors
of the query, but at the same time the query must
also be included in the k-nearest neighbors of the
same document. This stricter condition results in a
stronger similarity relationship than simple nearest
neighbors, and [R(q, k)| < k.

Since using the above definition as-is can be
overly restrictive, prior work has proposed applying
it iteratively in order to construct an extended set of
highly related documents to the query that would
have otherwise been excluded. Thus, Zhong et al.
(2017) define the extended set:

R*(q,k) == R(q, k) UR(ci, Tk),

2
s.t. |R(q, k) N R(Ci,’rk)‘ > g’R(Ci’Tk)’7 ®)
Ve, € R(q, k).
>When some measure of similarity s is used instead
of a distance d, the relationship equivalently becomes:

$(Xe;5Xq) = $(Xcp,Xq), and the k-nearest neighbors are
the first £ documents sorted by s in descending order.

Effectively, we examine the set of 7k-nearest recip-
rocal neighbors of each reciprocal neighbor of ¢
(where T € [0, 1] is a real parameter), and provided
that it already has a substantial overlap with the
original set of reciprocal neighbors of ¢, we add it
to the extended set. The underlying assumption is
that if a document is closely related to a set of doc-
uments that are closely related to the query, then
it is most likely itself related to the query, even if
there is no direct connection in terms of geomet-
ric proximity. Thus, one can improve recall at the
possible expense of precision.

Although using this new set of neighbors as the
new set of candidates and sorting them by their
distance d can form the basis of a retrieval method,
Zhong et al. (2017) additionally proceed to define a
new distance that takes into account this set, which
is used alongside d. Specifically, they use the Jac-
card distance between the (extended) reciprocal
neighbor sets of a query ¢ and documents ¢;:

|R*(g, k) UR*(¢s

dj(g,c) =1~ ’Z;I (6)
)

This distance quantifies similarity between two el-
ements (here, ¢ and c;) as a measure of overlap
between sets of neighbors robustly related to each
of them.

To reduce the computational complexity of com-
puting the Jaccard distance, which relies on the
time-consuming, CPU-bound operations of finding
the intersection and union of sets, one may instead
carry out the computation with algebraic opera-
tions, by defining for each element ¢ € C sparse
vectors of dimensionality |C|, where non-zero di-
mensions denote graph connectivity to other doc-
uments. Instead of using binary vectors, one may
assign to each neighbor c; a weight that depends on
its geometric distance to the probe g. Thus, follow-
ing Zhong et al. (2017), we define the elements of
reciprocal connectivity vectors v, € |C| as follows:

o { fw (d(q,c;)) ife; € R*(q, k) e

9,¢ 0 otherwise

While Zhong et al. (2017) exclusively use f,,(x) =
exp(—x), one one can use any monotonically de-
creasing function, and we found that f,,(z) = —x
in fact performs better in our experiments.

10791

Finally, instead of directly using the sparse vec-
tors above, which would yield a discretized similar-
ity metric, we perform a local expansion, mixing
each one of them (including the query) with its Kexp
neighboring vectors (again including the query, if
among the neighbors):

kexp

> Vi, Vej € NN(ci, kexp) - (8)
exp j=1

1

Ve, =

c; L

It is possible to use the element-wise min and

max operators on the expanded sparse vectors from

Eq. (8)) to compute the number of candidates in the

intersection and union sets of Eq. (6) respectively
as:

|R*(q,k) "R (ci, k)| = Zmin(vq,vq) 9)
|R*(q,k) UR*(cs, k)| = Zmax(vq,vci),
(10)

and thus the Jaccard distance in Eq. (6) can be
written as:

C .
ZL:|1 mm(vq,c]') Ucmﬂ

C
Z‘]:‘I max(”q,cg') Ucz-,c]-)

dj(q,c) =1— 1D

Finally, we note that instead of the pure Jaccard
distance d j, we use as the final distance d* a linear
mixing between the geometric distance d and d ;
with a hyperparameter A € [0, 1]:

d*(q,¢;) = Md(q,¢;) + (1 — N)d(q,ci),

which we found to perform better both for rerank-
ing (as in Zhong et al., 2017), as well as for label
smoothing.

(12)

A.2 Data
A.2.1 MS MARCO and TREC Deep Learning

Following the standard practice in related con-
temporary literature, we use the MS MARCO
dataset (Bajaj et al., 2018), which has been sourced
from open-domain logs of the Bing search en-
gine, for training and evaluating our models. The
MS MARCO passage collection contains about 8.8
million passages and the training set contains about
503k queries labeled with one or (rarely) more rele-
vant passages (1.06 passages per query, on average),
on a single level of relevance.

For validation of the trained models we use a
subset of 10k samples from “MS MARCO dev”,
which is a set containing about 56k labeled queries,
and refer to it as “MS MARCO dev 10k”. As a
test set we use a different, officially designated sub-
set of “MS MARCO dev”, originally called “MS
MARCO dev.small”, which contains 6980 queries.
Often, in literature and leaderboards it is mislead-
ingly referred to as “MS MARCO dev”.

Because of the very limited annotation depth
(sparsity) in the above evaluation sets, we also eval-
uate on the TREC Deep Learning track 2019 and
2020 test sets, each containing 43 and 54 queries
respectively, labeled to an average “depth” of more
than 210 document judgements per query, and us-
ing 4 levels of relevance: “Not Relevant” (0), “Re-
lated” (1), “Highly Relevant” (2) and “Perfect” (3).
According to the official (strict) interpretation of
relevance labels®, a level of 1 should not be consid-
ered relevant and thus be treated just like a level
of 0, while the lenient interpretation considers pas-
sages of level 1 relevant when calculating metrics.

A.2.2 TripClick

TripClick is a recently introduced health IR
dataset (Rekabsaz et al., 2021b) based on click
logs that refer to about 1.5M MEDLINE articles.
The approx. 700k unique queries in its training set
are split into 3 subsets, HEAD, TORSO and TAIL,
based on their frequency of occurrence: queries
in TAIL are asked only once or a couple of times,
while queries in HEAD have been asked tens or
hundreds of times. As a result, each query in
HEAD, TORSO and TAIL on average ends up with
41.9, 9.1 and 2.8 pseudo-relevance labels, using a
click-through model (RAW) where every clicked
document is considered relevant. The dataset also
includes alternative relevance labels using the Doc-
ument Click-Through Rate (DCTR), on 4 distinct
levels (the latter follow the same definitions as
the TREC Deep Learning evaluation sets). We
note that, although the number of labels per query
is much higher than MS MARCO, unlike the lat-
ter, these labels have not been verified by human
judges.

For validation and evaluation of our models we
use the officially designated validation and test set,
respectively (3.5k queries each).

6https: //trec.nist.gov/data/deep2019.html

10792

A.3 Evaluation

All training and evaluation experiments are pro-
duced with the same seed for pseudo-random num-
ber generators. We use mean reciprocal rank
(MRR), normalized discounted cumulative gain
(nDCG), mean average precision (MAP) and re-
call to evaluate the models on TREC DL tracks,
MS MARCO and TripClick, in line with past
work (e.g. (Xiong et al., 2020; Zhan et al., 2021;
Hofstitter et al., 2021; Rekabsaz et al., 2021b)).
While relevance judgements are well-defined in
MS MARCO and TripClick, for the TREC DL
tracks there exist strict and lenient interpretations
of the relevance scores of judged passages (see Sec-
tion A.2). In this work, we use the official, strict
interpretation. We calculate the metrics using the
official TREC evaluation software.’

Ttrec.nist. gov/trec_eval/index.html

10793

A.4 Inference-time reranking with reciprocal
nearest neighbors

Prior work on rNN reranking considered the en-
tire gallery of images (collection C) as a reranking
context for each probe, i.e. N = |C|. With |C| in
the order of tens of millions, this is intractable for
the task of web retrieval using transformer LMs,
and a smaller context size must be used instead.
To investigate the importance of the context size,
we therefore initially fix the number of in-context
candidates per query to a large number within rea-
sonable computational constraints (N = 1000)
and optimize the hyperparameters of reciprocal
nearest neighbors (e.g. k, kexp, A, 7, fiy) on the
MS MARCO dev.small subset.

We first rerank candidates initially ranked by
a CODER-optimized TAS-B retriever, denoted as
“CODER(TAS-B)”. To determine an appropriate
size of reranking context, we first sort candidates by
their original relevance score (geometric similarity)
and then recompute query similarity scores with a
growing number of in-context candidates (selected
in the order of decreasing geometric similarity from
the query), while measuring changes in ranking
effectiveness.

Figure 3 shows that rNN-based reranking
slightly improves effectiveness compared to rank-
ing purely based on geometric similarity, with
the peak improvement registered around a con-
text size of 60 candidates. This behavior is consis-
tent when evaluating rNN-based raranking using
the same hyperparameters on different query sets:
MS MARCO dev (Fig. 4), which is an order of
magnitude larger, and TREC DL 2020 (Fig. 5) and
TREC DL 2019 (Fig. 6), where the improvement is
larger (possibly because it can be measured more
reliably due to the greater annotation depth). In all
cases performance clearly saturates as the number
of candidates grows (somewhat slower for TREC
DL 2019). The same behavior as described above
is observed when reranking the original TAS-B
model’s results using the same hyperparameters
chosen for the CODER-trained version, with the
performance benefit being approximately twice as
large (Fig. 8).

While it is expected that progressively increas-
ing the context size will increase performance, as
there is a greater chance to include the ground-truth
passage(s) which may have been initially ranked
lower (i.e. embedded farther from the query), the
peak and subsequent degradation or saturation is

a novel finding. We hypothesize that it happens
because the more negative candidates are added in
the context, the higher the chance that they disrupt
the reciprocal neighborhood relationship between
query and positive document(s) (see Figure 1).

We can therefore conclude that we may use a
relatively small number N of context candidates
for computing reciprocal nearest neighbors similar-
ities, which is convenient because computational
complexity scales with O(N?). For a context of 60
candidates, a CPU processing delay of only about
5 milliseconds per query is introduced (Figure 7).
These results additionally indicate that the context
size should best be treated as a NN hyperparam-
eter to be jointly optimized with the rest, which
is reasonable, as it is expected to depend on the
average rank that ground-truth documents tend to
receive.

After optimizing rNN-related hyperparameters
(including the context size) on MS MARCO
dev.small for CODER(TAS-B), we evaluate NN
reranking on the other evaluation sets (including its
x 8 larger superset MS MARCO dev) and present
the results in Table 1. We observe that a simi-
larity based on reciprocal nearest neighbors can
indeed improve ranking effectiveness compared
to using purely geometric similarity. The improve-
ment is more pronounced on the TREC DL datasets
(+0.011 nDCG@10), where a greater annotation
depth and multi-level relevance labels potentially
allow to better differentiate between methods.

Additionally, we find that rankings from TAS-
B — whose embeddings are relatively similar to
CODER(TAS-B) — also improve, despite the fact
that hyperparameters were chosen based on the
CODER(TAS-B) model (also see Figure 8).

The strongest dense retrieval models we eval-
uate, CoCondenser and CODER(CoCondenser),
also show improved performance, again measured
primarily on TREC DL: the former improves by
+0.009 nDCG@10 on TREC DL 2020 and the lat-
ter by 0.009 nDCG@10 on TREC DL 2019. No-
tably, reranking effectiveness when using the exact
same hyperparameters as for CODER(TAS-B) and
TAS-B is only very slightly worse.

By contrast, when transferring hyperparameters
selected for MS MARCO to reranking candidates
on the TripClick dataset, we find that performance
deteriorates with respect to geometric similarity.
Therefore, we can conclude that NN hyperparam-
eters predominantly depend on the dataset, and to

10794

Hyperparameter TAS-B |, CODER(TAS-B) , CoCondenser , CODER(CoCondenser)

N,.: context size 60 60 53 63
k: num. NN 21 21 21 19
Fexp: num. NN for expansion 3 3 5 8
7 trust factor 0 0 0.128 0.5
A: linear comb. coeff. 0.451 0.451 0.469 0.473

Table 5: Hyperparameters for reranking with Reciprocal Nearest Neighbors, MS MARCO.

@ Max: (60, 0.3563) —@— Recip, NN reranking 0.42050 1 @_ Max: (60, 0.4205) —@— Recip, NN reranking
0.3562 1 —--- geometric sim. —-—- geometric sim.
0.42025 A
0.3560 A
0.420001 ®
0.3558 A
- o 0.41975 A
— 0.3556 - —
© &
& 3 0.41950
= 0.3554 e
b
®
0.3552 0.41925
0.3550 i
035504 | . 0.41900
| o.4187
0.3548 - J, 0.41875¢ 7
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of candidates Number of candidates

Figure 3: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on MS MARCO
dev.small, as the number of candidates in the ranking context grows. Hyperparameters are optimized for a context
of 1000 candidates. Performance is slightly improved compared to ranking exclusively based on geometric similarity
and peaks at 60 in-context candidates.

Max: (60, 0.3540) —@— Recip, NN reranking 0.4174 1 ax: (60, 0.4173) —e— Recip, NN reranking
0.3540 - —=- geometric sim. —-—- geometric sim.
0.4172 A
0.3539 -
0.4170 A
0.3538 -
= b=
® ® 0.4168
& 0.3537 I
e =
= c
0.3536 0.4166
0.3535 - 0.4164 -
35341 60,
0.3534 | 03533 0.4162 ® 0-4162
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of candidates Number of candidates

Figure 4: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on MS MARCO
dev, as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3.
Performance is slightly improved compared to ranking exclusively based on geometric similarity and peaks at 60
in-context candidates.

10795

@_Max: (60,0.3151) —e— Recip, NN reranking @ Max: (60, 0.6310) —e— Recip, NN reranking
—== geometric sim. —== geometric sim.
0.314 0.630
0.312 A | 0.628 -
o
3 r =
® ®
o Q
< o
= 0.310 4 Q
0.626 1
®
0.308 |
0.624
0.6226
030603057 e
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of candidates Number of candidates

Figure 5: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on TREC
DL 2020, as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3.
Performance is improved compared to ranking exclusively based on geometric similarity and peaks at 60 in-context
candidates.

—e— Recip, NN reranking Max: (720, 0.2308) —e— Recip, NN reranking Max: (720, §.6770)
| === geometric sim. —=—= geometric sim.
0.230 0.676 A
0.228 1 0.674
Opt: (60, 0.2262) o
S 0.226 ~ i
-@c ® 0.672
2 g
<
= 0.2240 % Opt: (60, 0.6706)
0.224 == === T T T T T s s s s s s e e 0.670 -
0.6684
02227 | 0.668 -
0.220 A l 0.666 -
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of candidates Number of candidates

Figure 6: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B) results on TREC
DL 2019, as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3.
Performance is improved compared to ranking exclusively based on geometric similarity but does not clearly
saturate.

10796

140 A

120 A

100 A

80

60

Time per query [ms]

40 A
Opt: (60, 4.90)

20 A

0 200 400 600 800 1000
Number of candidates

Figure 7: Time delay per query (in milliseconds) when reranking using reciprocal nearest neighbors-based similarity,
as the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3. Processing
time scales according to O(N 2). Processor (1 CPU, 1 core): AMD EPYC 7532 32-Core Processor, 2400 MHz.

0.34575 Max: (240, 0..—@— Recip. NN rerank 0.4090 A Max: (240, 0.: —e— Recip. NN rerank
—==- geometric sim. —== geometric sim.
0.34550 - <
0.4085 A
0.34525 A
0.345001 ¢
= S 0.4080 -
e 8
£ 0.34475 A 9 ®
= 2
0.34450 - 0.4075 -
0.34425 4
0.4070 -
0.34400 -
J' 0.3438 J, 0.4066
0.34375 £—====7 ———oommmmmmmmROmmmRRETTTTY pm=mmmaa e e e e ————
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of candidates Number of candidates

Figure 8: Performance of reciprocal nearest neighbors-based reranking of TAS-B results on MS MARCO dev, as
the number of candidates in the ranking context grows. Hyperparameters are the same as in Fig. 3. Performance
is improved compared to ranking exclusively based on geometric similarity and peaks at approx. 60 in-context
candidates.

10797

Max: (120, 0.681(—@— Recip, NN reranking
0.6815 1 —=—=- geometric sim.

0.6810
2 0.6805 |
©
o
4
=
0.6800
0.6795
0.6792
I e bttt bbbty
T T T T
0 200 400 600 800 1000
Number of candidates
Max: (40, 0.4229) —e— Recip, NN reranking
——- geometric sim.
0.4228 1
0.4226 1
o 0.4224 4
=
©
Q
3
< 0.4222 4
0.4220]
0.4218 4
0.4217

T T T T
0 200 400 600 800 1000
Number of candidates

Figure 9: Performance of reciprocal nearest neighbors-
based reranking of CODER(RepBERT) results on
TripClick HEAD Test, as the number of candidates in
the ranking context grows.

a much lesser extent on the dense retriever.

After optimizing hyperparameters on TripClick
HEAD Val, we evaluate on HEAD Test, using both
RAW (binary) as well as DCTR (multi-level) rele-
vance labels; we present the results in Table 2. Also
for this dataset, which differs substantially in char-
acteristics from MS MARCO, we again observe
that using reciprocal nearest neighbors to compute
the similarity metric can slightly improve ranking
effectiveness for all examined retrieval methods.
We also observe the same saturation behavior with
respect to the ranking context size, i.e. the number
of candidates considered when reranking (Fig. 9).

10798

A.5 Evidence-based label smoothing

0.1151 —— CODER(RepBERT)
0.68 —— CODER(RepBERT) (hyperparam.)
0.1104 —— EB smoothing (geom.)
' —— EB smoothing (rNN)
0.66 ® RepBERT
0.1051
3 0.64
x 0-62 =1 0.100
=
0.60 4
—— CODER(RepBERT) 0.095 -
058 1 —— CODER(RepBERT) (hyperparam.)
’ —— EB smoothing (geom.)
—— EB smoothing (rNN) 0.0901
0.56 1 ® RepBERT
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Step Step

Figure 10: Evolution of performance of RepBERT (left-most point, step 0) on the TripClick HEAD Val validation
set, as the model is being fine-tuned through CODER on TripClick HEADUTORSO Train. The red curve corresponds
to additionally using evidence-based label smoothing computed with reciprocal NN-based similarity, whereas for
the blue curve the smooth label distribution is computed using pure geometric similarity. Only evidence-based
smoothing with rfNN similarity substantially improves performance compared to plain CODER(RepBERT), despite
“CODER(RepBERT) (hyperparam.)” and “EB smoothing” with geometric similarity using the same training
hyperparameters.

EB label smoothing hyperparam. CODER(TAS-B) CODER(CoCondenser)

b: boost factor 1.222 1.525

Nmax: Softmax cut-off 4 32

frn: normalization func. max-min std-based
learning rate: peak value 1.73¢:06 137e06

learning rate: linear warm-up steps 9000 12000

Table 6: Hyperparameters for training with evidence-based label smoothing, MS MARCO. The hyperparameters
related to computing rNN-based similarity are the same as in Table 5.

10799

Original predicted distribution
0.45

0.45
0.4
31 KL-div: 0.3133
MRR: 0.333
‘ Ground truth (label) distribution
1.0 4 :
0.1
0.8 -
0.0+ 9 0 . 9

Cand.1 Cand.2 Cand.3 Cand.4 Gr.truth Cand.5

°
w

Probability

o
N

o
o

Predicted distribution with label smoothing
0.21 0.21 0.21 0.21

0.200 1 a4
0.175 1
0.16
0.2+

0.150 1

3 1 0 0 0 0 0
. 0.0+ T T T T T

MRR: 0-200 —— Cand.1 Cand.2 Cand.3 Cand.4 Gr.truth Cand.5

0,075 1 KL-div: 0.3002

0.050 1

0.025 1

0.000 - 9

Cand.1 Cand.2 Cand.3 Cand.4 Gr.truth Cand.5

Probability

°
>

o
=
I~}
a

Probability

Figure 11: Because many more documents receive higher than zero relevance in the target distribution after label
smoothing, by design it promotes a diffuse predicted distribution (bottom). Thus, although the predicted relevance
of the ground-truth positive document is now significantly higher compared to when not using label smoothing
(top), indicating a model improvement, the document ends up ranking lower because of the dispersed relevance
estimates, and thus the MRR metric decreases. By contrast, the KL-divergence (i.e. loss function) correctly captures
the improvement in assessing the relevance of the ground-truth positive. We note that in sparsely annotated datasets
like MS MARCO, the “1-hot” ground-truth annotations (right) are very often incorrect among the top ranks, and
some of the candidates ranked more highly than the ground truth (e.g. Candidates 3 and 4 in the figure) may actually
be relevant, which would render the MRR metric spurious; Qu et al., 2021 estimate that about 70% of the top 5
candidates retrieved by a top-performing dense retrieval model that are not labeled as positive are in fact relevant.

Test: DCTR Head RAW Head
Model MRR@10 nDCG@10 Recall@10 | MRR@10 nDCG@10 Recall@10
TAS-B 0.278 0.139 0.130 0.339 0.188 0.113
CODER(TAS-B) 0.279 0.140 0.130 0.338 0.191 0.115
CODER(TAS-B) 0.285 0.143 0.134 0.344 0.195 0.116
+ geom. smooth labels
CODER(TAS-B) 0.288 0.144 0.134 0.347 0.195 0.116
+ rNN smooth labels
CODER(TAS-B) 0.284 0.142 0.132 0.342 0.192 0.115
+ mixed rNN/geom. smooth lab.
CoCondenser 0.242 0.114 0.105 0.293 0.157 0.092
CODER(CoCondenser) 0.251 0.117 0.107 0.306 0.161 0.093
CODER(CoCondenser) 0.250 0.117 0.107 0.304 0.162 0.094
+ mixed rNN/geom. smooth lab.

Table 7: Performance of models trained on MS MARCO but zeroshot-evaluated on TripClick Test. Bold: overall
best, Underline: best in model class.

10800

Val: DCTR Head RAW Head

Model MRR@10 nDCG@10 Recall@10 | MRR@10 nDCG@10 Recall@10
TAS-B 0.299 0.145 0.136 0.355 0.200 0.118
CODER(TAS-B) 0.300 0.146 0.140 0.353 0.203 0.121
CODER(TAS-B) 0.297 0.147 0.140 0.355 0.204 0.121
+ geom. smooth labels —

CODER(TAS-B)

+ tNN smooth labels 0.300 0.147 0.141 0.357 0.205 0.122
CODER(TAS-B)

+ mixed rNN/geom. smooth lab. 0.299 0.147 0.141 0.355 0.204 0.122
CoCondenser 0.247 0.115 0.105 0.308 0.167 0.097
CODER(CoCondenser) 0.254 0.120 0.111 0.314 0.173 0.101
CODER(CoCondenser)

+ mixed rNN/geom. smooth lab. 0.254 0.118 0.109 0.311 0.169 0.098

Table 8: Performance of models trained on MS MARCO but zeroshot-evaluated on TripClick Val. Bold: overall
best, Underline: best in model class.

Test RAW Torso Val RAW Torso
Model MRR@10 nDCG@10 Recall@10 | MRR@10 nDCG@10 Recall@10
RepBERT 0.338 0.247 0.309 0.398 0.288 0.342
CODER(RepBERT) 0.390 0.276 0.330 0.426 0.310 0.354
CODER(RepBERT) hyperparam. 0.389 0.277 0.331 0.428 0.310 0.354
CODER(RepBERT) 0.391 0.282 0.340 0.421 0.312 0.367
+ mixed rNN/geom. smooth label.

Table 9: Label smoothing applied to CODER(RepBERT) trained on TripClick HEAD U TORSO Train, validated on
HEAD Val; evaluation on TORSO Test and Val.

10801

A.5.1 Score normalization

In standard contrastive learning, including when using a KL-divergence loss, as in CODER (Zerveas et al.,
2022), there is a very stark difference between the probability of the handful of ground-truth documents
and the zero probability of the negatives in the target (ground-truth) distribution.

In evidence-based label smoothing, we are using the continuous similarity scores of candidates with
respect to the ground-truth positive document(s) as soft labels for training, which means that that there is
a reduced contrast between the highest and smallest score values. Additionally, the output values of the
model’s similarity estimate reside within an arbitrary value range, determined primarily by the model’s
weights, and for the same rank, there is a large variance of values between queries (Fig. 12). This means
that after passing through a softmax, which is highly non-linear, the target score distribution will be either
concentrated or diffuse, depending on the range of score values for each particular query. Normalizing
values into the same range will facilitate learning consistent relevance estimates. Furthermore, given a
single query, we wish that target scores rapidly decrease as the rank increases (Fig. 13).

Score for each rank Normalized score for each rank

0850 = Median

5%

5%
= Mean

Std. Dev

= Median 10
25%
0.825 1 5%

0.07 == hoaa a9

Std. Dev.
0.800

o8
0775

07

£ 0.750 - g
& H
0725 06
0.700 05
—_
0675
- 04
0.650
0 5 10 15 20 25 30 £ 40 0 5 10 15 20 5 30 k- 40
Rank Rank
Figure 12: Similarity scores per rank across a large number of queries.
Score for each rank Score after softmax for each rank
10 — Normalized 007 —— Normalized
‘Emperature TEmperature
0.06
08
005
06
004
"
04 003
0.02
02
001
00 =
000 T T T T T
0 200 400 600 B00 1000 0 20 40 60 80 100 120 140

Rank Rank

Figure 13: Similarity scores of the top 1000 candidates for a single query, sorted in descending order. Since they
are used as training labels, to avoid very diffuse estimated score distributions, we need to ensure that there is a
large contrast between the top and bottom candidates and that probability (i.e. values after the scores pass through
a softmax) abruptly decreases after the first few ranks. We achieve this through appropriate normalization - here,
max-min (blue) instead of dividing by max (orange).

Therefore, to facilitate learning, we wish to ensure that (a) there is large enough contrast between the
first and last ranks, and (b) this is true for all queries. We can achieve this by applying a normalizing
function f,, such as max-min, on the vector s € RY of candidate scores for a single query:

10802

s — min(s)

fuls) =

(13)

max(s) — min(s)

or the following, which is based on the standard deviation ¢ across /N candidate scores for a single query:

fuls) = S in(s) (14)

g

> <5i - Zj Sj/N)2

where o0 =
? N

10803

