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Abstract

Large Language Models (LLMs) have driven extraordinary
improvements in NLP. However, it is unclear how such mod-
els represent lexical concepts–i.e., the meanings of the words
they use. We evaluate the lexical representations of GPT-4,
GPT-3, and Falcon-40B through the lens of HIPE theory, a
concept representation theory focused on words describing ar-
tifacts (such as “mop”, “pencil”, and “whistle”). The theory
posits a causal graph relating the meanings of such words to the
form, use, and history of the referred objects. We test LLMs
with the stimuli used by Chaigneau et al. (2004) on human
subjects, and consider a variety of prompt designs. Our ex-
periments concern judgements about causal outcomes, object
function, and object naming. We do not find clear evidence that
GPT-3 or Falcon-40B encode HIPE’s causal structure, but find
evidence that GPT-4 does. The results contribute to a growing
body of research characterizing the representational capacity
of LLMs.

Keywords: Large Language Models; Lexical concepts;
Causal models

Introduction

The success of large language models (LLMs) at generating

human-like text has spurred a wave of recent work which

aims to measure the extent to which such models have good

representations of word meanings (i.e., lexical concepts).

Such work has taken a variety of forms across multiple do-

mains, but in general amounts to measuring the extent to

which the conceptual associations encoded by LLMs match

human associations. For example, prior work has shown that

LLMs correctly associate physical objects with their proper-

ties and affordances (Forbes et al., 2019; Da & Kasai, 2019);

common nouns with the ontological categories (Da & Kasai,

2019; Ettinger, 2020), and entities with their salient charac-

teristics (Petroni et al., 2019). By and large, the results re-

ported via such studies have been positive, albeit with sig-

nificant caveats (see Ettinger (2020) and Kassner & Schütze

(2020) for specific criticisms and Pavlick (2022) for a general

discussion).

Studies like those above are often not framed overtly in

theoretical terms. However, implicitly, they assume a theory

of lexical concepts in which meaning is defined via a com-

plex network of associations and inferences (Greenberg &

Harman, 2005). Such theories are a good first step, but con-

temporary work in psychology has tended to favor a more

nuanced picture, in which lexical concepts are embedded in

causal models (CMs) of the world (Keil, 1989; Carey, 2009;

Sloman, 2005). These CMs can capture complex inferences

about word meaning that have been documented in humans–

for example, that a raccoon remains one even after it has been

surgically altered to look and act like a skunk (Keil, 1989).

Such inferences are not easily explained by theories of con-

cepts that rely on naive association or traditional logical en-

tailment.

In this work, we adopt one such causal model theory of

lexical concepts, namely the HIPE theory (Chaigneau et al.,

2004), and use it to evaluate whether Falcon-40B (Technol-

ogy Innovation Institute, 2023), GPT-3 (Brown et al., 2020),

and GPT-4 (OpenAI, 2023) understand terms referring to

basic household objects (specifically, “mop”, “pencil”, and

“whistle”). We test these models on the stimuli which were

used to evaluate humans in the original paper. We find that

GPT-3 does not track humans in matching the predictions of

HIPE theory about the relative importance of factors deter-

mining the concepts tested, even when the experiment is re-

peated in multiple different variations to guard against a false

negative. We similarly fail to observe Falcon-40B replicating

HIPE theory’s predictions. Contrastingly, we find that GPT-4

tracks humans very well in matching the predictions of HIPE

theory on a natural reimplementation of the experiment with-

out introducing experiment variations that would increase the

chance of the model’s success.

This cognitive science-inspired experiment may contribute

towards interpreting the representations employed by LLMs.

Moreover, our findings raise important questions about how

to evaluate conceptual representations in LLMs. In partic-

ular, situating our results within a large literature of treating

language models as “psycholinguistic subjects” (Futrell et al.,

2019), a pertinent question is how to interpret the (increas-

ingly positive) results of LLMs on tests designed to assess

humans. If we are hesitant to read success on such tests alone

as evidence of “human-like” processing (as we the authors

are in this case)–what additional testing do we require?

Related Work

This work contributes to a large body of work on analyz-

ing LLMs as “psycholinguistic subjects” (Futrell et al., 2019)

by evaluating their performance on tasks designed to probe

human language understanding (Marvin & Linzen, 2018;

Warstadt et al., 2020; Ettinger, 2020), and more generally to

work that uses counterfactual manipulations of model inputs
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in order to understand model representations (P.-S. Huang

et al., 2020; Goyal et al., 2019). The phenomena we study

relate to past work on “commonsense” physical knowledge

in LLMs (Bisk et al., 2020; Forbes et al., 2019; W. Huang

et al., 2022), but differs in that we are analyzing an LLM

through the lens of a particular, empirically-validated theory

about conceptual representations in humans.

The HIPE Theory

The HIPE theory (Chaigneau et al., 2004) aims to explain hu-

mans’ representations of artifacts (in particular, the work uses

the common household objects mops, pencils, and whistles).

The HIPE theory posits that humans model an artifact using

a causal model (CM) involving the artifact’s design history

(H), the intentions of relevant agents (I), the object’s physical

structure (P), and events that occur during its use such as ac-

tions taken with it (E). More specifically, the theory posits a

particular CM as underlying human reasoning about artifacts

(Fig. 1). It hypothesizes that the object’s design history and

the user’s goal are distal causes in the CM, while the object’s

physical structure and the user’s actions with respect to it are

proximal causes in the CM. Thus, HIPE predicts that, for ex-

ample, both the physical structure of an object (e.g., having

a handle and something absorbent on one end) as well as the

reason the object was originally created (e.g., for wiping up

water) should affect how appropriate it is to call the object a

“mop”, but that the latter should have a minimal effect when

the former is fully specified.

History

Goal

Structure

Action
Outcome

Figure 1: The CM hypothesized by HIPE theory as underly-

ing human representations of artifacts.

Chaigneau et al. (2004) experimentally confirm that such a

CM specifies the structure of human representations of arti-

facts. They construct scenarios describing the history, struc-

ture, goal, and action of the three objects. Each scenario is

either a baseline scenario in which all four factors are as one

would expect them to be, or a compromised scenario in which

exactly one of the factors is altered to a compromised descrip-

tion (Figure 2). The subjects are then asked to respond to

questions about the object’s naming (“Is it appropriate to call

this object a mop?”), function (“Does this scenario illustrate

the function of a mop?”), or causal outcomes (“Is it likely

that, as a result of the events described above, John wiped up

the water spill?”) using a 1-7 Likert scale. The authors verify

that compromising the action has a more pronounced effect

than compromising the goal, and likewise that compromising

the structure has a more pronounced effect than compromis-

ing the design history. This supports the CM’s designation

of action and structure as proximal causes due to “screening

off” (Park & Sloman, 2016).

One day Jane wanted to wipe up a water spill on the kitchen
floor, but she didn’t have anything to do it with. So she de-
cided to make something. She looked around the house for
things that would allow her to make an object for wiping up a
water spill on the kitchen floor. She gathered all the materials
and made it. When she finished, she left it in the kitchen so
she could use it later. The object consisted of a bundle of thick
cloth attached to a 4-foot long stick. Later that day, John was
looking for something to wipe up a water spill on the kitchen
floor. He saw the object that Jane had made and thought that
it would be good for wiping up a water spill on the kitchen
floor. He grabbed the object with the bundle of thick cloth
pointing downward and pressed it against the water spill.

One day Jane wanted to wipe up a water spill on the kitchen
floor [...]. The object consisted of a bundle of plastic bags
attached to a 4-foot long stick. [...] pressed it against the
water spill.

Figure 2: Examples of scenarios designed to evaluate the

HIPE theory. Shown are the baseline and excerpted compro-

mised structure scenarios with added emphasis.

Reimplementing Chaigneau et al.’s (2004) experiment on

LLMs is motivated by several factors. First, given that the ex-

periment they use involves text-only stimuli and responses, it

can be comparably reimplemented on LLMs with little modi-

fication. Second, the CM hypothesized by HIPE theory is in-

tuitive, straightforward, highly general, and relevant for many

practical judgements about the physical world. This is unlike,

for example, the more subtle theories concerning representa-

tion of natural kinds (Foster-Hanson & Rhodes, 2021). Fur-

thermore, the qualitatively different results we obtain from

GPT-4 on the one hand and GPT-3 and Falcon-40B on the

other are made interesting by the fact that the common house-

hold terms studied here (such as “mop”, “pencil”, and “whis-

tle”) seem competently used even by GPT-3 (as we verify

with a simple comprehension test). Thus, our results con-

tribute to teasing apart representational capabilities that are

quite similar at face value.

Experimental design

We replicate the crucial first two experiments from Chaigneau

et al. (2004) on GPT-4 (gpt-4-031 version), GPT-3 (text-

davinci-002 version), and Falcon-40B (all with temperature

0.7 and 5 max tokens). We investigate the extent to which

compromising one of four aspects (goal, action, design his-

tory, or physical structure) of a scenario description impacts

one of three outcomes (causality, function, or naming) across

three artifact types (mop, pencil, or whistle).

First we focus on GPT-3 and consider multiple methods

for serving the stimulus to it. The results that are reported

were obtained using a setup that was most faithful to the

one humans received, including warm-up trials and the pos-

sibility that answers to later questions could be influenced

by subjects’ exposure to earlier questions. Specifically, the

scenarios are served to GPT-3 in a prompt that includes the

same guidance that was given to the human participants by

Chaigneau et al. (2004). The first element of the prompt is

an introduction consisting of a description of the experiment
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Figure 3: Heatmaps showing the pairwise difference between the scores when the factors on the x and y axes are compromised.

Column one shows the predictions based on the CM hypothesized by HIPE: compromised scenarios should decrease outcome

judgements relative to baseline, compromising action should be more significant than compromising goal, and compromising

physical structure should be more significant than compromising design history. Column two shows the human data from

Chaigneau et al. (2004), while columns three to eight show the data we obtain from GPT-4, Falcon-40B, and GPT-3. Columns

three, five, and seven elicit responses from models using the same Likert scale as in the human experiment, whereas columns

four, six, and eight use a Yes/No response.

and several demonstration responses. After the introduction

the uncompromised scenario is presented and the Yes/No re-

sponse is recorded. The compromised scenarios are then

presented in random order. For each new scenario, we al-

low GPT-3 access to its entire response history as part of the

prompt (since humans would have memory of their own past

responses). The prompts we construct can thus be seen as a

type of “in context learning”. That is, when GPT-3 is gener-

ating a Yes/No reply for the k+1 scenario, it receives the in-

troductory instructions and examples as well as the sequence

of the first k scenarios and its own generated replies to those

scenarios as part of the prompt. We record the probability that

the model assigns to “yes” or versions thereof in response to

each scenario. To control for possible effects from the order

in which the compromised prompts are presented, two sets

of results are averaged. Figure 2 shows excerpts from the

prompts provided to GPT-3.

We also consider a further five variations on the above

prompting design, which differ in how the scenarios are

presented to GPT-3 and the manner in which a response

is recorded. However, these alternative variations yield a

lower Spearman correlation between the human and GPT-3

results (ranging between 0.28 and 0.5, versus 0.81 for the ver-

sion presented here) and are less true to the original experi-

ment. The largely negative result we will report for GPT-3 is

strengthened by these numerous attempts to adapt the stimu-

lus to it. By contrast, we will report positive results for GPT-4

despite only implementing the most faithful re-construction

of the original experiment on it.

We reimplement the final version of the above experiment

on GPT-4 following its release, and do the same with Falcon-

40B. However, since OpenAI does not support the retrieval of

probabilities associated with tokens generated by GPT-4, we

instead repeat each question ten times and calculate the prob-

ability that the model generates a response including “yes” or

versions thereof. The ten responses are split across two runs

of five to control for the particular random order in which

questions are presented. We report results in Figure 3 us-

ing the system message “You are a helpful assistant”. Results

from a version with the system message “You are a helpful as-

sistant with an excellent understanding of the physical world”

were also obtained (this slightly increases the correlation be-

tween the results from GPT-4 and human subjects, but is not

necessary for observing a positive result). For parity we redo

this experiment on GPT-3 with repeated output generation in-

stead of the direct retrieval of output probabilities and present

these results here. We find a Spearman correlation of 0.96 be-

tween the experiments run on GPT-3 with and without direct

probability retrieval, giving us confidence that the results ob-

tained from GPT-4 without direct access to probabilities are

6113



comparable to what would be obtained with direct access. Be-

cause we find the results from GPT-4 to be more binary when

using the Yes/No response as compared to the human data

which was collected using a Likert scale, we re-implement

the experiment with GPT-4 using a Likert response. For par-

ity we do the same with GPT-3 and Falcon-40B.

We further investigate whether the models respond in the

expected way to compromising distal factors by using a Lik-

ert scale re-implementation of Experiment 2 from Chaigneau

et al. (2004), which tests a cumulative effect of compromis-

ing both distal factors while leaving the proximal factors un-

changed. After providing the model with the same introduc-

tory prompt as above, we provide it with the baseline sce-

nario, elicit its response on a Likert scale, accumulate this

response, and then provide it successively with the next three

scenarios in which one or both of function and history are

compromised. We repeat this experiment for all three objects,

running a given question / object combination twice with five

responses collected from the model each time. We omit the

naming question from this experiment for comparability with

Chaigneau et al. (2004), who do the same. Full prompts and

code are provided on Github.1

Results

Experiment 1

Figure 3 shows the predictions made according to the CM hy-

pothesized by HIPE, the results obtained by Chaigneau et al.

(2004) on human subjects, and the results obtained by us on

GPT-4, GPT-3, and Falcon-40B. The CM predicts that history

should have a less significant effect on outcome judgements

than structure, and that goal should have a less significant

effect than action. This corresponds to the diagonal of two

green and two orange boxes in the CM predictions column

of the figure. Furthermore, the CM predicts that compro-

mising any factor should have a negative effect on outcome

judgements relative to baseline, but with distal factors yield-

ing a smaller negative effect than proximal factors. This cor-

responds to the orange horizontal and green vertical bars in

the CM predictions column, lightening towards the left and

top respectively due to the weaker effect of the distal factors.

The human subject results abide neatly by these predictions

in the case of causality and function judgements. We observe

a clear red box of four cells towards the top right, mirrored

by a green box towards the bottom left. This subsumes the

green/orange diagonal of the CM prediction, and corresponds

to the stronger result of a larger effect of each proximal factor

than both distal factors, rather than only a weaker result of

structure being more significant than history and action being

more significant than goal. We also see a green vertical bar on

the right and a corresponding red bar on the bottom, lighten-

ing at the top and left respectively. This corresponds to every

factor making a negative difference relative to baseline, with

distal factors mattering less than proximal factors.

1https://github.com/smusker/Causal Models Of Word Meaning

In the naming case, we see a somewhat different pattern

in the human data than predicted by the CM. As the CM

predicts, we observe a green column to the right that light-

ens in the top half, indicating that compromising any factor

compromises the outcome judgement, but that proximal fac-

tors compromise the outcome judgement to a greater extent.

However, a prominent red column in the fourth position mir-

rored by a green horizontal fourth row corresponds to a larger

negative effect on the outcome when compromising structure

than when compromising other features. This is intuitively

reasonable: for example, using a bowl as a spoon does less to

make it no longer be a bowl than flattening it does.

The results from GPT-4 bear a striking resemblance to the

human data. In the causality and function heatmaps, we see a

green vertical on the right and a red horizontal on the bottom,

lightening towards the top right and bottom left respectively.

We also see strong red boxes in the top right mirrored by

green boxes in the bottom left. In the naming case, we see the

same strong red column and green row appear in the fourth

positions, corresponding to a dominating effect of compro-

mising structure on the outcome compared to the effect of

compromising other factors.

Overall there is a 0.88 Spearman correlation between the

GPT-4 and human data with a Yes/No response (column four

of Figure 3). The results from GPT-4 collected with a Yes/No

response are more binary than the results from human sub-

jects that were collected using a Likert scale response. In

particular, the human data shows some effect of compromis-

ing distal factors thus not demonstrating full screening off of

the distal factors by the proximal ones, while the Yes/No-

response data from GPT-4 does not show this property. This

is due to the difference in response modality, and we verify

that re-implementing the experiment on GPT-4 with a Likert-

scale response (column three of Figure 3) eliminates this ef-

fect and increases the Spearman correlation with the human

data from 0.88 to 0.92.

The results from GPT-3 are less consistent with the predic-

tions based on the CM and with the human data. First we

focus on the results elicited using the same Likert scale from

the human experiment (column seven of Figure 3). Across all

three questions, we see that GPT-3 (like humans) consistently

considers the compromised scenarios as less consistent with

the concept than the baseline scenario. However, when com-

paring the effect of history to structure and the effect of goal

to action across the three questions, GPT-3’s responses only

agree with the CM predictions in 3 out of 6 cases. More-

over, the Spearman correlation with the human data is only

0.67. However, these results may be due simply to the fail-

ure of GPT-3 to competently use a Likert scale. Indeed, after

initially experimenting with a Likert scale on GPT-3, this ap-

proach was abandoned due to evidence that the model was

not competently using such a response format. The results

from a Likert scale experiment on GPT-3 are included here

primarily for comparability with GPT-4, as the latter model

appears to competently use the scale and exhibits the closest

6114



similarity to the human data when using this setup from the

original human experiment.

When replacing the Likert scale with a simpler to use

Yes/No response (column eight of Figure 3), the results from

GPT-3 correlate more closely with the human data (Spear-

man correlation = 0.81). Additionally, when comparing the

effect of history to structure and the effect of goal to ac-

tion across the three questions, GPT-3’s responses agree with

the CM predictions in 5 out of 6 cases. However, these ap-

parently positive observations cannot be taken at face value.

First, as noted earlier, there is a high Spearman correlation

of 0.96 between the version of the Yes/No experiment con-

ducted on GPT-3 that uses the direct retrieval of the log prob-

ability of “yes” with the version that uses the frequency of

“yes” generations shown here. However, in the former ver-

sion, when comparing the effect of history to structure and

the effect of goal to action across the three questions, GPT-

3’s responses only agree with the CM predictions in 4 out

of 6 cases - closer to the chance level of 3/6. Second, as

noted in the experimental design section, several reimple-

mentations of the experiment on GPT-3 failed to yield pos-

itive results. Third, the human data show a pattern of high

Spearman correlation between causality and function ques-

tions (0.99) with a much lower correlation between those

questions and the naming one (0.64 causal/naming, 0.60 func-

tion/naming). Similarly, the GPT-4 data show Spearman cor-

relations of 0.95 causal/function, 0.58 causal/naming, and

0.54 function/naming in the Yes/No response version. By

contrast, in the GPT-3 Yes/No response data the correlation

between questions is high in all comparisons (all pairwise

correlations ≥ 0.89 in the Yes/No version and ≥ 0.85 in the

Likert version). Furthermore, while in the naming question

we see a very strong effect of structure compared to all other

factors in the human and GPT-4 data, we see a stronger effect

from action in the GPT-3 data (this can be seen in the redder

fourth columns of the naming plots from the human and GPT-

4 data, compared to the redder third column in the equivalent

plot from the GPT-3 data). These discrepancies suggest non-

trivial differences between how humans and GPT-4 on the one

hand and GPT-3 on the other process these questions.

The results from Falcon-40B appear positive, although we

will see in the following section that the model’s performance

in the second experiment casts doubt on the positivity of its

results in the first experiment. Across the Likert (column five)

and Yes/No (column 6) versions, when comparing the effect

of history to structure and the effect of goal to action across

the three questions, Falcon-40B’s responses agree with the

CM predictions in 12 out of 12 cases. With one exception

(the effect of history in the case of causality), compromis-

ing any factor also has the expected negative effect relative

to baseline. The correlation with human responses is moder-

ate and is comparable to the correlation between GPT-3 and

the human responses, at 0.74 in the Likert version and 0.62

in the Yes/No version. In the Yes/No version, the correlation

between responses in different questions exhibits the same

pattern as in the human and GPT-4 responses: 0.95 causal

/ function, 0.58 causal / naming, and 0.70 function / nam-

ing. However, the same pattern is not observed in the Likert

version with Spearman correlations of 0.94 causal / function,

0.79 causal / naming, and 0.90 function / naming (the latter

correlation in particular is expected to be low but is not).

Experiment 2

Experiment 1 primarily tests that the subject exhibits the

screening off of distal factors: i.e., when distal factors are

compromised but the proximal factors that are hypothesized

to mediate their effect are left unchanged, the compromising

effect of the distal factors should be largely masked.

Nevertheless, one should expect compromising the distal

factors to have some effect on outcome judgements and in-

deed this is observed in Experiment 1. Experiment 2 further

investigates the effect of compromising distal factors by veri-

fying that compromising each distal factor independently re-

sults in a lowered outcome judgement relative to baseline and

that compromising both of these factors together results in an

even lower outcome judgement. Following Chaigneau et al.

(2004) for comparability, we present results from LLMs that

average function and causal outcome judgements across the

three object types.

History Goal History Goal Baseline

1
2
3
4
5
6
7

R
at

in
gs

Human
GPT-4
Falcon
GPT-3

Figure 4: Human and LLM data collected in Experiment 2.

Human data are from Chaigneau et al. (2004). The chart

shows the subject’s mean rating, averaged across function

and causality for all three objects, when the factor or fac-

tors shown on the x-axis are compromised. Error bars are

the Standard Error of the Mean.

As can be observed in Figure 4, data collected from GPT-4

and -3 follow the same trend observed in the human subjects2.

In particular, compromising history, goal, or both together

each yield a lower outcome rating than baseline. Moreover,

compromising both of these distal factors together yields a

2Note that human subjects were prompted with “warm-up” ques-
tions using the Likert scale, which they are encouraged to discuss
with each other. We have access to these questions but not records
of human responses, and so we provide GPT-4 with these questions
accompanied with our own responses to them as part of its prompt.
This successfully primes GPT-4 and -3 to use the scale meaning-
fully, but it should not be expected to be calibrated to the absolute
magnitude of the original human subjects.
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Comparisons (GPT-4) t value Significant?

History < Baseline 18.6 Yes

Goal < Baseline 14.7 Yes

History Goal < Baseline 30.1 Yes

History > History Goal 13.0 Yes

Goal > History Goal 29.8 Yes

Comparisons (GPT-3) t value Significant?

History < Baseline 23.0 Yes

Goal < Baseline 13.1 Yes

History Goal < Baseline 37.1 Yes

History > History Goal 18.6 Yes

Goal > History Goal 20.1 Yes

Comparisons (Falcon) t value Significant?

History < Baseline 1.5 No

Goal < Baseline 0.7 No

History Goal < Baseline 0.6 No

History > History Goal NA NA

Goal > History Goal 0.1 No

Table 1: Table showing details from statistical testing of the

difference between mean response values across the questions

of Experiment 2. Chaigneau et al. (2004) conduct the same

comparisons using the human data, finding that the expected

differences are significant to at least the p ≤ 0.01 level. We

test for significance at the 0.05 level, and report NA where the

difference in value is not in the predicted direction thus mak-

ing statistical testing unnecessary. In all cases of significance

at the 0.05 level, we also observe significance to at the least

the p ≤ 0.0005 level. Our data for the statistical testing are

the responses from LLMs shown in Figure 4.

lower outcome rating than compromising either of them in-

dependently. Chaigneau et al. (2004) find that these five pair-

wise comparisons are statistically significant in the human

data, and we find that the same holds in the data collected

from GPT-4 and -3. By contrast, Falcon-40B fails to produce

the expected results. The combined effect of history and goal

is not observed to be greater than the separate effects of those

factors, yielding a negative result for Falcon-40B on Experi-

ment 2. Moreover, in Experiment 2 we do not find history and

goal independently to have a negative effect relative to base-

line. This constitutes a failure of Falcon-40B on a subset of

the comparisons of interest from Experiment 1, which weak-

ens the fairly positive results from that model in the earlier

experiment. Further information is shown in Table 1.

Discussion and limitations

Our results show a similarity between the responses of GPT-4

and human subjects in both Experiment 1 and 2. We observe

positive results with GPT-3 on Experiment 2, but mixed re-

sults on Experiment 1. Falcon-40B shows relevant similarity

to the human responses in Experiment 1 but not in Experi-

ment 2, and it fails in Experiment 2 in a manner that is not

consistent with success on Experiment 1. Overall our results

show a marked difference between the responses from human

subjects and GPT-4 on the one hand and GPT-3 / Falcon-40B

on the other, which may suggest a qualitative difference be-

tween these models in how they represent common artifacts.

At the highest level, we interpret these results as speak-

ing to the need for a broad and rigorous discussion about

evaluation in the modern age of LLMs. Recent years have

relied increasingly on tests from cognitive science and psy-

cholinguistics as a source of more rigorous, more controlled,

and more hypothesis-driven evaluations of language models

(Bastings et al., 2022). Such experiments have been primar-

ily fruitful in the context of two types of arguments. First,

they have produced insightful negative results (e.g., Ettinger

(2020)). In such cases, models’ failure on psycholinguistic

tests can be taken as evidence that the models probably lack

at least some aspect of whatever mechanism humans use to

perform the same tasks. Second, such tests have produced

insightful positive results (e.g., Linzen et al. (2016)). For ex-

ample, models’ success has been used specifically to counter

learnability or “poverty of the stimulus” arguments, and thus

to question the usefulness of specific diagnostic tests. That is,

if some behavior is assumed to require a given capacity, and

a model that is known to lack that capacity nonetheless pro-

duces that behavior, then a different test is needed to diagnose

the capacity of interest.

The present study may best be viewed as an instance of the

latter. Theories like HIPE are generally assumed to be tests

of causal models which presuppose that agents’ representa-

tions are grounded in the physical and goal-oriented world. If

models with access only to text (or at most text and images)

are presumed to lack this grounding, then the success of mod-

els on this task may suggest that the human results on HIPE

tests are not necessarily diagnostic of such grounding. Thus,

further tests must be developed to determine what represen-

tations underlie models’ (and humans’) behavior.

Importantly, caution should be exercised in interpret-

ing positive results on psychological tests as diagnostic of

“human-like” or even “human-level” processing. Only in

some cases are positive results in such tests clearly inter-

pretable, such as against a backdrop of a clear learnability

argument (i.e., a claim about some capacity that the model

being studied is known a priori not to possess). However, the

likelihood of increased positive results in the LLM era could

lead to psycholinguistic tests being hastily viewed as diagnos-

tic of human-like processing. Thus, we raise questions about

what role such tests should play in future evaluations of mod-

els’ representations. In particular, if success on behavioral

tests alone is not a sufficient test of competence, what is?

Our work is limited in that we use the same materials as

Chaigneau et al. (2004) and aim to preserve comparability

with the data they collect from human subjects. As such, we

consider only the three artifacts from the original study and

average results across them. Results could differ if more ob-

jects were included. However, comparable data from human

subjects do not appear to exist for a broader class of objects.
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