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ABSTRACT Microbes commonly organize into communities consisting of hundreds 
of species involved in complex interactions with each other. 16S ribosomal RNA (16S 
rRNA) amplicon profiling provides snapshots that reveal the phylogenies and abundance 
profiles of these microbial communities. These snapshots, when collected from multiple 
samples, can reveal the co-occurrence of microbes, providing a glimpse into the network 
of associations in these communities. However, the inference of networks from 16S 
data involves numerous steps, each requiring specific tools and parameter choices. 
Moreover, the extent to which these steps affect the final network is still unclear. In 
this study, we perform a meticulous analysis of each step of a pipeline that can convert 
16S sequencing data into a network of microbial associations. Through this process, 
we map how different choices of algorithms and parameters affect the co-occurrence 
network and identify the steps that contribute substantially to the variance. We further 
determine the tools and parameters that generate robust co-occurrence networks and 
develop consensus network algorithms based on benchmarks with mock and synthetic 
data sets. The Microbial Co-occurrence Network Explorer, or MiCoNE (available at https://
github.com/segrelab/MiCoNE) follows these default tools and parameters and can help 
explore the outcome of these combinations of choices on the inferred networks. 
We envisage that this pipeline could be used for integrating multiple data sets and 
generating comparative analyses and consensus networks that can guide our under­
standing of microbial community assembly in different biomes.

IMPORTANCE Mapping the interrelationships between different species in a microbial 
community is important for understanding and controlling their structure and function. 
The surge in the high-throughput sequencing of microbial communities has led to the 
creation of thousands of data sets containing information about microbial abundances. 
These abundances can be transformed into co-occurrence networks, providing a glimpse 
into the associations within microbiomes. However, processing these data sets to obtain 
co-occurrence information relies on several complex steps, each of which involves 
numerous choices of tools and corresponding parameters. These multiple options pose 
questions about the robustness and uniqueness of the inferred networks. In this study, 
we address this workflow and provide a systematic analysis of how these choices of tools 
affect the final network and guidelines on appropriate tool selection for a particular data 
set. We also develop a consensus network algorithm that helps generate more robust 
co-occurrence networks based on benchmark synthetic data sets.

KEYWORDS Microbiome, 16S rRNA, interaction, denoising, taxonomy, network 
inference, correlations, QIIME2, co-occurrence, networks, consensus algorithm, pipeline, 
nextflow

M icrobial communities are ubiquitous and play an important role in marine and 
terrestrial environments, urban ecosystems, and human health (1–7). These 
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microbial communities, or microbiomes, often comprise several hundreds of differ­
ent microbial strains interacting with each other and their environment, often 
through complex metabolic and signaling relationships (8–11). Understanding how 
these interconnections shape community structure and function is a fundamental 
challenge in microbial ecology and has applications in the study of microbial ecosystems 
across different biomes. With the advancement in DNA sequencing technologies (12–14), 
more information can be extracted from these microbial community samples than ever 
before. In particular, high-throughput sequencing, including metagenomic sequencing 
and sequencing of 16S ribosomal RNA (16S rRNA) gene amplicons (hereafter referred to 
as 16S data) of microbial communities, can help detect, identify, and quantify a large 
portion of the constitutive microorganisms of a microbiome (15–18). These advances 
have led to large-scale data collection efforts involving terrestrial (2, 4, 19), marine (1, 3), 
and human-associated microbiota (7, 20, 21).

This wealth of information has the potential to help us understand how commun­
ities assemble and operate. In particular, a powerful tool for translating microbiome 
composition data into knowledge is the construction of association (co-occurrence) 
networks, in which microbial taxa are represented by nodes, and frequent co-occurren­
ces (or negative co-occurrences) across data sets are encoded as edges between nodes. 
While the relationship between directly measured interactions (22–24) and statistically 
inferred co-occurrence is still poorly understood (25, 26), a significant amount of effort 
has gone into estimating co-occurrences from large microbiome sequence data sets 
(27–30).

The importance of these networks is twofold: first, they can serve as maps that help 
identify hubs of keystone species (26, 31) and the community response to environmental 
perturbations or underlying host conditions (32); second, they can serve as a bridge 
toward building mechanistic models of microbial communities, greatly enhancing our 
capacity to understand and control them. For example, multiple studies have shown 
the importance of specific microbial associations in the healthy microbiome (7, 21, 33) 
and their role in dysbiosis (32, 34, 35). In the context of terrestrial biogeochemistry, 
co-occurrence networks were shown to help understand microbiome assembly (36) and 
the response of microbial communities to environmental perturbations (37).

One of the most frequently used avenues for inferring co-occurrence networks is 
the parsing and analysis of 16S sequencing data (26, 38). Numerous software tools 
and pipelines have been developed to analyze 16S sequencing data, with a strong 
emphasis on the known limitations of this method, including resolution, sequencing 
depth, compositional nature, sequencing errors, and copy number variations (39, 40). 
Popular methods for different phases of the analysis of 16S data include tools for 
(i) quality checking and trimming the sequencing reads, (ii) denoising and clustering 
the trimmed reads (41–43), (iii) assigning taxonomy to the denoised reads (44), (iv) 
processing and transforming the taxonomy count matrices (45), and (v) inferring the 
co-occurrence network (46–48). Different specific algorithms are often aggregated into 
popular online platforms (such as MG-RAST (49) and Qiita (50)) and software packages 
(such as Quantitative Insights Into Microbial Ecology 2 (QIIME2) (51)). The different 
methods and tools can lead to vastly different inferences of community compositions 
and co-occurrence networks (52, 53), making it difficult to reliably compare networks 
across different publications and studies. This difference is partially due to the focus 
of existing platforms on operational taxonomic unit (OTU) or exact sequence variant 
(ESV) generation and not on the effects of upstream statistical methods on the inferred 
co-occurrence networks. Furthermore, no organized framework currently exists that can 
systematically analyze and compare each step in the pipeline for processing amplicons 
into co-occurrence networks.

In this study, we present a standardized 16S data analysis pipeline called Micro­
bial Co-occurrence Network Explorer (MiCoNE) that produces robust and reproduci­
ble co-occurrence networks from 16S sequence data of microbial communities and 
enables users to interactively explore how the network would change upon using 
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different alternative tools and parameters at each step. Our pipeline is coupled to an 
online integrative tool for the organization, visualization, and analysis of inter-microbial 
networks called Microbial Interaction Network Database (MIND) (54), which is available 
at http://microbialnet.org/. Through a systematic comparative analysis, we determine 
which steps of the MiCoNE pipeline have the largest influence on the final network and 
which choice seems to have the optimal agreement with the tested mock and synthetic 
data sets. These steps together with our default settings ensure better reproducibility 
and easier comparison of co-occurrence networks across data sets. We expect that our 
tool will also be useful for benchmarking future alternative methods and ensuring a 
transparent evaluation of the possible biases introduced by the use of specific tools.

RESULTS

MiCoNE

We developed MiCoNE, a flexible and modular pipeline for the inference of co-occur­
rence networks from 16S data. MiCoNE incorporates various popular, publicly available 
tools as well as custom Python modules for 16S data analysis and network inference 
(see Methods). The different steps that are a part of the MiCoNE co-occurrence net­
work inference workflow (Fig. 1) can be grouped into five major modules: (i) sequence 
processing (SP), (ii) Denoising and Clustering (DC), (iii) taxonomy assignment (TA), (iv) 
OTU processing (OP), and (v) network inference (NI). Each module in the pipeline is 
implemented through multiple tools (see Methods and Fig. 1). The effects of chang­
ing any intermediate step of the pipeline can be evaluated in terms of the final net­
work outcome as well as on any of the intermediate metrics and data outputs. The 
choice of tools and parameters is encoded in a configuration file (with parameters as 
shown in Tables S2–S6 at https://github.com/segrelab/MiCoNE-pipeline-paper). Through 
a systematic analysis of tool combinations at each step of the pipeline, we estimated how 
much the final co-occurrence network depends on the possible choices at each step.

Our analysis involved two types of data: The first type consisted of 16S sequencing 
data from samples of human stool microbiomes from a fecal microbiome transplant 
(FMT) study of autism (55). The second type was a collection of data sets synthetically or 
artificially created for the specific goal of evaluating computational analysis tools. In 
particular, in order to benchmark each step in MiCoNE, we used both mock data (labeled 
mock4, mock12, and mock16) from mockrobiota (56) and synthetic networks generated 
using the NorTA (47) and seqtime (26) approaches (see Methods).

DC: Denoising and clustering methods differ in their identification of sequen­
ces that are low in abundance

The DC step is commonly carried out to generate representative sequences (in the form 
of OTU/ESV tables) from the demultiplexed and trimmed 16S sequencing data. In order 
to compare the count tables generated by different tools, we processed the 16S 
sequencing reads (from the FMT study (55)) using five different methods: open-reference 
clustering, closed-reference clustering, de novo clustering, Divisive Amplicon Denoising 
Algorithm 2 (DADA2) (42), and Deblur (43). The first three methods are from the vsearch 
plugin from QIIME2 (51). The closed and open reference methods in this analysis use the 
Greengenes (57) database for reference sequence alignment.

A comparison of the different methods was carried out by calculating the mean 
UniFrac distances across all samples (Fig. 2). The analysis was performed using both the 
weighted UniFrac (58) (Fig. 2A) distance metric, which takes into account the counts of 
the representative sequences, and the unweighted UniFrac (59) (Fig. 2B) distance metric, 
which gives equal weights to each sequence.

The first main message emerging from this analysis is that the representative 
sequences generated by the different methods, with the exception of Deblur, are similar 
to each other when weighted by their abundance (Fig. 2A). A second message is that the 
different methods differ mainly in the assignment of sequences of lower abundance. This 
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FIG 1 The workflow of the MiCoNE pipeline. The steps of the workflow can be broken down into 

five major groups: (SP) sequence processing, (DC) denoising and clustering, (TA) taxonomy assignment, 

(OP) OTU and ESV processing, and (NI) network inference. Each step incorporates several processes 

(blue boxes), each of which, in turn, has several alternative algorithms for the same task (indicated by 

the text to the right of the blue boxes). Each arrow describes the data that is being passed from one 

step to another. The inputs to the pipeline are 16S rRNA sequencing reads, and the final output is the 

consensus network generated from the inferred co-occurrence networks. For details on each process and 

the different outputs, see Methods.
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can be inferred from the unweighted comparison (Fig. 2B) which shows an increase in 
dissimilarity between each pair of methods (see additional details in Supplementary and 
Fig. S2).

These comparisons only elucidate the similarity between a pair of methods. To 
determine which tool most accurately recapitulates the reference sequences in the 
samples, we applied the same pipeline step to process the mock data sets (mock4, 
mock12, and mock16) and compared the predicted representative sequences with the 

FIG 2 The representative sequences generated by the different denoising and clustering methods differ in their identification 

of sequences that are low in abundance. (A) The average weighted UniFrac distance between the representative sequences 

shows that the representative sequences and their compositions are fairly identical between the methods (with the exception 

of Deblur (DB) due to the low ESV count). (B) The relatively larger average unweighted UniFrac distance indicates that 

methods differ in their identification of sequences that are lower in abundance. The number of OTUs or ESVs generated by the 

respective methods is provided in the parenthesis next to their names. The data used for the analysis in (A and B) were the 

samples from the fecal microbiome transplant (FMT) data set (55), containing both healthy subjects and subjects with autism 

spectrum disorder (ASD). (C and D) The distributions of the average weighted and unweighted UniFrac distance between the 

predicted sequence profile and the expected sequence profile in the mock data sets. The average weighted UniFrac distances 

show that de novo (DN) and open reference (OR) were the best-performing methods in most of the data sets, while they 

are the worst-performing methods under the unweighted UniFrac metric. The good performance of DADA2 (D2) under both 

distance metrics combined with its approach of identifying ESVs using de novo methods prompts us to use it as the default 

method for the DC step. The data used for the analysis in (C and D) were the mock4, mock12, and mock16 data sets from 

mockrobiota (56).
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true sequences and their distribution. The results (Fig. 2C and D) show that the predicted 
sequence distributions are overall different from the expected ones. The variation across 
data sets indicates that the data sets themselves play a big role in method performance. 
We note that there is no method that outperforms the rest in all data sets (see Supple­
mentary for an extended discussion). Based on being among the top performers on 
the mock data sets, their de novo error-correcting nature, and previous independent 
evaluation (60), DADA2 and Deblur appear to be the most reliable. This is because the 
open-reference and de novo clustering methods return a much larger number of OTUs 
compared to the other pipelines and would affect the accuracy of the NI step if stringent 
filtering is not performed. Overall, since DADA2 as compared to Deblur displays better 
performance on all the mock data sets on the weighted UniFrac metric, we set this tool 
as the default for the DC step of the pipeline. However, if comparison across studies that 
have sequenced different 16S regions is required, closed- and open-reference might be a 
better option.

After the denoising, the sequences are subject to chimera checking (CC). The MiCoNE 
pipeline supports two different CC methods: “uchime-denovo” (51) and “remove bimera” 
(42). We did not notice any notable difference between the two methods (Fig. S3), 
implying that they identify and remove mostly the same set of sequences as chimeras. 
Since the remove bimera method was originally developed in conjunction with DADA2, 
we use this method as the default. The DC step, thus, results in a reduced set of unique 
sequences, which will be referred to as representative sequences in the subsequent 
steps.

TA: Taxonomy databases vary widely in taxonomy assignments beyond order 
level

Taxonomy databases are used to assign taxonomic identities to the representative 
sequences obtained after the DC step. The three 16S taxonomic reference databases 
used in this study are SILVA (61), Greengenes (GG) (57), and National Center for 
Biotechnology Information (NCBI) RefSeq (62) (see Methods). These databases vary 
substantially in terms of taxonomy hierarchies, including species names and phyloge­
netic relationships (63). Assignment using a particular database also requires a query 
tool. We used the “Naive Bayes” classifier from QIIME2 for the GG and SILVA databases 
and the “BLAST” tool (included as a QIIME2 plugin) for the NCBI database. These tools 
have been well quantified and optimized (44); hence, we made use of the default 
parameters in our analyses.

The representative sequences obtained using the default settings of the DC step were 
used for taxonomic assignment using the three reference databases. Fig. 3A depicts a 
flow diagram that shows how the top 50 representative sequences (sorted by abun­
dance) are assigned a Genus according to the three databases. The different databases 
lead to assignments that qualitatively display similar distributions. However, the assigned 
Genus compositions also display clear differences, as does the percentage of unassigned 
representative sequences (pink). Some of the differences in Genus composition have 
a clear explanation, for example, abundant Genera such as Bacteroides and Escherichia 
are assigned to different representative sequences. The large percentage of unassigned 
sequences is due to the large fraction of the representative sequences assigned to an 
“unknown” Genus during the assignment process (see Methods).

After the assignment, we performed a pairwise comparison of the similarity between 
the top 100 assignments (by abundance) from different databases at every taxonomic 
level (Fig. 3B). The comparisons of the assignments below the order level (Family, Genus, 
and Species) show less than 45% similarity between any pair of databases. This implies 
that the assignments from each reference database are fairly unique. The comparison of 
all assigned genera (Fig. S4), instead of just the top 100, contains a higher percentage of 
mismatches. This suggests that, comparatively, the most abundant sequences are more 
consistently matched to the same taxonomies, at least for the data set tested in the 
current analysis.
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FIG 3 Taxonomic reference databases vary in terms of their taxonomy assignments below the order level. (A) The taxonomic 

assignments of the top 50 representative sequences using the three different reference databases. This result illustrates how 

the same sequences are assigned to different genera under different databases. A significant portion of the representative 

sequences is assigned to an “unknown” genus in two of three databases (GreenGenes and NCBI). The number of assigned 

genera for each database is displayed at the top of each column. (B) The number of representative sequences assigned to the 

same taxonomic label when using different reference databases (for the top 100 representative sequences). The mismatches 

are fewer at higher taxonomic levels but, even at the order level there exists greater than 51% of mismatches, demonstrating 

the poor agreement in taxonomic labels assigned by the different databases. The data used for the analysis in (A and B) were 

samples (healthy and ASD) from the FMT data set. (C) The Bray-Curtis dissimilarity between the predicted taxonomy profile 

and expected taxonomy profile in the mock data sets shows that there is no singular best choice of database for every data 

set, as all the databases show similar performances. The GreenGene database and the Naive Bayes classifier are chosen as the 

defaults for the TA step of MiCoNE due to their popularity. The data sets used for the analysis in (C) were the mock data sets 

from mockrobiota.
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To obtain an absolute measure of the accuracy of the taxonomic assignments, we 
used the representative sequences from the DC step for mock data sets as the query 
sequences and the expected taxonomic composition as the standard to compare 
against. We used the Bray-Curtis distance metric (64) to calculate the distance between 
the predicted and expected taxonomic distribution (Fig. 3C). We find that none of the 
databases perform better than the others in absolute terms and that the dissimilarity 
with the expected composition is high (> 0.5 for Family and Genus and > 0.9 for Species), 
indicating that all the databases have some limitations when trying to recapture the 
expected taxonomic composition.

Since no database performs better than others against mock data sets, the choice of 
which database to use could be driven by other reasons (see Supplementary discussion). 
One reason to choose a particular database could be the frequency of updates and the 
potential for future growth. Both GG, due to its frequent use in the literature (63), and 
NCBI, due to its regular revision and maintenance, could be good choices for TA. In our 
default pipeline, we choose GG as the default method.

The TA step results in a taxonomic counts table that is used as input to the subse­
quent steps of the pipeline. Note that the count tables at different levels can be obtained 
through aggregation; for example, Genus count tables were obtained by summing up 
the counts of the lower taxonomy levels (Species and OTU) that map to the same higher 
taxonomy level entity.

NI: Different network inference methods drastically affect edge-density and 
connectivity

The ten NI methods we used in this step fall into two groups: the first set of methods 
(Pearson, Spearman, SparCC (38, 46) and propr (65)) infers pairwise correlations, while 
the second set (SpiecEasi (47), FlashWeave (48), COZINE (66), HARMONIES (67), SPRING 
(68), and mLDM (69)) infers direct associations. In general, when we refer to co-occur­
rences, we include the associations from both correlation-based methods and direct 
association-based methods. On the other hand, when mentioning correlations, we will 
exclusively refer to edges inferred by the correlation methods. Note that while Pearson 
and Spearman methods are included in the pipeline for completeness, they tend to 
generate a large number of spurious edges as they are not intended for compositional 
data sets. Thus, they are not included in subsequent quantitative analyses.

Filtered (see OP step in Methods) genus-level counts table obtained using the default 
settings in the previous steps were used as input for the different NI algorithms (Fig. 
4). Even from a visual inspection (Fig. 4A), one can see that the different networks 
differ vastly in their edge-density and connectivity, with common edges often displaying 
inverted signs.

To quantify the differences between the networks, we analyzed the distribution of 
common nodes and edges (Fig. 4B and C) using UpSet plots (70). The node intersection 
analysis shows that the networks have 33 out of 68 total unique nodes in common and 
that no network possesses a unique node (only nodes with connections are included). 
Edge intersections in contrast show that only 8 edges (out of 202 total unique edges) are 
in common between all the methods, and each network has many unique edges. These 
results indicate a substantial rewiring of connections in different inferred networks and 
prompted us to identify associations robust across methods, through consensus 
algorithms.

NI: The scaled-sum consensus method shows high precision in benchmark 
data sets

Inspired by previous approaches (71, 72), we developed two methods that take into 
consideration the evidence offered by each NI algorithm and generate a consensus 
network that contains the common edges among the inferred networks.

Both of our approaches—simple voting (SV) and scaled-sum (SS)—combine appro­
priately filtered networks inferred from correlation-based and direct association methods 
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FIG 4 Networks generated using different network inference methods show notable differences in terms of edge-density 

and connectivity. (A) The nine different networks generated by the different network inference methods (excluding mLDM). 

The nodes for each network (representing taxa) are arranged in the same positions in a circular layout, and the differences 

in the connections can be directly visualized and compared. The green links are positive associations, and the orange links 

represent negative associations. The networks look dissimilar and vary widely in terms of connectivity, and it is notable that 

the correlation-based methods generally produce networks with higher edge-densities. A threshold of 0.3 was set for the 

correlation-based methods (sparcc, propr, spearman, and pearson), and a threshold of 0.01 was set for the direct association 

methods (flashweave, spieceasi, cozine, harmonies, and spring). (B) The node overlap Upset plot indicates that all the networks 

have a large proportion of common nodes involved in connections (33 out of 68). Conversely (C), the edge overlap Upset plot 

shows that a very small fraction of these connections are actually shared (8 out of 202). The data used in this analysis were 

the healthy stool samples from the FMT data set. mLDM is not shown in the comparisons because the algorithm failed to 

converge for the particular network combination used here (default setting of the MiCoNE pipeline).
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(see Methods). We chose the SS method as the pipeline default since this method takes 
into account the weights of the associations in the determination of the final consensus. 
The pipeline enables the selection of any subset of methods for the consensus calcula­
tion. Currently, by default, all direct association methods (SpiecEasi, COZINE, HARMO­
NIES, SPRING, mLDM, and FlashWeave) are used, together with SparCC and propr.

Similar to what was done for the previous steps of the pipeline analysis, and in 
analogy with previous estimations of NI accuracy (47, 53), we evaluated the NI algorithms 
and the final consensus network using synthetic interaction data. For this purpose, we 
generated synthetic interaction data using the “NorTA” (47) and “seqtime” (73) meth­
ods (see Methods). For each method, an OTU counts table was generated based on 
the selected parameters and abundance distributions. This counts table was used as 
the input to the MiCoNE pipeline to generate predicted associations. The interaction 
network used to generate the counts table was used as the source of true interactions 
to calculate the precision and sensitivity (Fig. 5) of the consensus algorithms. These 
values are also compared with the precision and sensitivity of four individual NI methods 
(two correlation-based methods, i.e., propr and FlashWeave, and two direct association 
methods, i.e., SparCC and SpiecEasi), which were selected based on their high precision 
(see Fig. S5 and S6). As shown in Fig. 5, the consensus algorithm, especially the SS 
method, captures true associations with high precision (through the removal of edges 
that are either not present in most of the inference methods or whose association 
strength is low across methods). Although this increase in precision is associated with 
a drop in sensitivity (as the consensus parameter θ increases), the consensus networks 
provide valuable and practically helpful results, in the form of a short list of high­confi­
dence associations. Overall, the SS method for θ = 1.000 performs the best (precision 
= 1.000 for both NorTA and seqtime). Fig. S5 and S6 show the precision and sensitivity 
values of all NI and consensus algorithms for each interaction network in the synthetic 
data sets. The SS method for θ = 0.333 (default option in the pipeline) shows a 
high precision (0.956 with NorTA; 0.688 with seqtime) without displaying a significant 
reduction in sensitivity (Fig. 5; Fig. S5 and S6 ). However, if higher precision is required, θ 
> 0.5 can be considered.

Impact of different pipeline steps on co-occurrence networks

In order to analyze the effect of different processing methods on the inferred co-
occurrence networks (before consensus estimation), we generated networks using all 
possible combinations of methods and quantified the variability due to each choice (Fig. 
6A). This was achieved by building a linear model of the edges of the network as a 
function of the various steps in the pipeline workflow (see Methods). Fig. 6A shows the 
percentage of total variation among the co-occurrence networks due to the different 
steps of the pipeline. The TA step, or more specifically the choice of 16S reference 
database, contributes the most (65.4%) to the variation in the networks, followed by the 
OP step (26.8%). This result highlights the importance of the TA step in the 16S data 
analysis workflow, implying that a change in the reference database will result in 
drastically different inferred networks. This is likely due to the differential assignment of 
representative sequences to taxonomic entities (Fig. 3; Fig. S4), which drastically alter the 
nodes and, hence, the underlying network topology.

The effects of the different steps of the pipeline on the inferred networks can be 
visualized through dimensionality reduction. The PCA in Fig. 6B shows all the above 
networks, colored by the tools used in the DC, TA, OP, and NI steps in each subfigure. The 
major effect of the TA step choice, shown before in Fig. 6A, is also reflected in the PCA 
plot, where networks segregate based on the database used (Fig. 6B; Fig. S1). Addition­
ally, the plot also shows that the variation between the networks decreases when the low 
abundance OTUs are removed from the network. It is also evident that, in the NI step, 
some networks, especially those inferred using the direct association NI methods, are 
much closer in the PCA plot regardless of the reference database used. The network 
variance analysis performed on the supplementary data set (74) (stool samples from 
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radiation-exposed bank vole) shown in Fig. S8 supports these observations, implying 
that these findings are fairly consistent across different data sets. These results suggest 
that the most important criterion for accurate comparative analysis of co-occurrence 
networks is the taxonomy reference database followed by the level of filtering of the 
taxonomy tables and the NI algorithm used.

The default pipeline

The systematic analyses in the previous sections illustrate that the choice of tools and 
parameters can have a big impact on the final consensus co-occurrence network. 
However, the mock communities and synthetic data provide an opportunity to select 

FIG 5 The associations generated by the scaled-sum consensus method show high precision in benchmarks using synthetic data sets. The different points on 

the box plot show the precision (A and C) and sensitivity (B and D) of co-occurrence networks generated through individual network inference methods and 

consensus network construction approaches. Precision and sensitivity are estimated based on the comparisons with two sets of synthetic benchmark data sets 

(“NorTA” and “seqtime,” see Methods). The independent algorithms chosen for the comparison are the two best-performing correlation-based (propr, sparcc) 

and direct-association-based (spieceasi, flashweave) methods. For consensus network inference, we used the scaled-sum (SS) and simple voting (SV) methods. A 

weight threshold of 0.1 and a P-value threshold of 0.05 were applied to each network before the calculation of precision and sensitivity. The purpose behind the 

construction of the consensus algorithms is to capture true associations in the data through the removal of associations that have a lower probability of being 

present in the networks inferred by different inference algorithms. Therefore, an increase in precision is followed by a decrease in sensitivity. The SS consensus 

method consistently obtained the overall best precision for θ ≥ 0.333 on both benchmark data sets. Among all the individual network inference methods, 

spieceasi shows the best average precision. When using the presence of edges in all inferred networks as a requirement (θ = 1.000), the simple voting method 

also outperforms spieceasi on average precision. Therefore, we set the scaled-sum consensus method with θ = 0.333 as the default tool for consensus network 

inference since this option provides a good balance of precision and sensitivity (see also Fig. S5 and S6). The correlation-based methods (propr and SparCC) and 

the simple-voting consensus method return networks with higher sensitivities.
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combinations of tools that yield the most accurate and robust results. As highlighted in 
the above sections for individual steps, we propose a set of tools and parameters as the 
defaults for the pipeline (Table 1).

Fig. 7 shows the co-occurrence networks inferred for the healthy subjects (control) 
and subjects with autism­specific disorder (ASD) in the FMT study (55) (constructed using 
the default tools and parameters from Table 1). This figure demonstrates a typical use 
case of comparative analysis of networks using the MiCoNE pipeline. As a consequence 
of using the consensus network algorithm, the final co-occurrence networks are sparse 
and can be visually compared and examined.

FIG 6 The choice of reference database has the largest impact on network variance. (A) The percentage of variance in the networks (generated from the FMT 

data set) contributed by the denoising and clustering (DC), chimera checking (CC), taxonomy assignment (TA), OTU processing (OP), and network inference (NI) 

steps of the pipeline calculated using ANOVA on a linear model (see Methods). A weight threshold of 0.1 and a P-value threshold of 0.05 were applied to each 

network before the analysis. The taxonomy database contributes most to the variance between the networks (65.4%) followed by the filtering of the counts 

matrix (26.8%) in the OP step. The variation due to the NI, DC, and CC steps is much smaller in comparison (6.553%, 0.648%, and 0.003%, respectively). The 

negligible fraction labeled as the residual is an artifact that arises when multiple steps are changed at the same time. (B) All the inferred networks generated 

from various combinations of tools are shown as points on a PCA plot. Each point on the PCA plot represents a network inferred using different combinations 

of tools and parameters that are available in the MiCoNE pipeline. The color of the points corresponds to the tools used at each step of the pipeline (DC, TA, OP, 

and NI). The points on the PCA plot can be grouped based on the TA step, but the extent of this separation decreases when the filtering is turned on in the OP 

step, confirming that the variability in the networks decreased upon filtering out the taxonomic entities at low abundance. Some algorithms, especially the direct 

association methods, at the NI step can also be seen to generate networks that are less variable compared to the others. The DC step does not seem to have any 

correlation with the variation in the networks on the PCA plot.
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The analysis of the rewiring of associations in the ASD samples with respect to the 
control provides a guide for the identification of key genera that could be linked to 
dysbiosis. We observed 22 unique links in the network for control samples, 12 unique 
links in the network for ASD subjects, and 7 edges in common between the two 
networks. Although these unique associations do not imply actual interactions, they 
can still serve as potential starting points for literature surveys and further experimental 
exploration of mechanistic processes underlying dysbiosis. For example, Prevotella and 
Porphyromonas, genera previously implicated in ASD (55, 75) and cognitive impairment 
(76), display modified connectivity in our network, suggesting that the observed 
associations may be relevant for understanding the role of these bacteria in disease. 
Additional visualization and comparison of networks can be performed using the MIND 
(54).

Fig. S7 shows a sensitivity analysis in which we compared the default network against 
networks generated by altering one of the steps of the pipeline relative to the default. 
This result, both visually (Fig. S7A) and quantitatively (Fig. S7B), suggests that the most 
significant changes occur when the OP or TA steps are changed from the default value.

TABLE 1 Tools used in the MiCoNE pipelinea

Workflow step Module/condition Tool/parameter References/value

Denoising and clustering Denoise and cluster Closed reference [51]
Open reference [51]
De novo [51]
DADA2 [42]
Deblur [43, 51]

Chimera checking Uchime-de novo [51]
Remove bimera [42]

Taxonomy assignment Query tool Blast [44]
Naive bayes classifier [44]

Database Greengenes 13 8 [57]
SILVA 138 [61]
NCBI RefSeq (Oct 2021) [62]

OTU processing Filter(off) Prevalence threshold 2/n samples
Abundance threshold 0.001
Observation sum threshold 10

Filter(on) Prevalence threshold 0.05
Abundance threshold 0.01
Observation sum threshold 100

Network inference Bootstrapping Fastspar bootstraps v1.0 [46]
fastspar pvalues v1.0 [46]

Direct association SpiecEasi v1.1.2 [47]
FlashWeave.jl v0.18.1 [48]
COZINE v1.0 [66]
HARMONIES v1.0 [67]
SPRING v1.0.4 [68]
mLDM v1.1 [69]

Correlation-based SparCC (FastSpar v1.0) [46]
Pearson -
Spearman -
propr v2.1.2 [65]

Consensus algorithm Scaled-sum 0.333
Simple voting 1.000

aThe tools highlighted in gray are the defaults for the pipeline that are recommended based on the benchmarks with the mock and synthetic data sets. The consensus 
algorithm in the network inference (NI) step incorporates all the modules (bootstrapping, direct association, and correlation-based) to generate the consensus network.
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DISCUSSION

Why MiCoNE?

A myriad of tools and methods have been developed for different parts of the workflow 
for inference of co-occurrence networks from 16S rRNA data. Our analyses have shown 
that networks generated using different combinations of tools and approaches can be 
substantially different from each other, highlighting the need for a clear evaluation of 
the source of variability and tools that provide the most robust and accurate results. 
Our newly developed software, MiCoNE, is a customizable pipeline for the inference of 
co-occurrence networks from 16S rRNA data that enable users to compare networks 
generated by multiple possible combinations of tools and parameters. Importantly, in 
addition to revisiting the test cases presented in this work, users will be able to explore 
the effect of various tool combinations on their own data sets of interest. The MiCoNE 
pipeline has been built in a modular fashion; its plug-and-play architecture enables users 
to add new tools and steps, either using existing packages that have not been examined 
in the present work or those developed in the future. The MiCoNE Python package 
provides functions and methods to perform a detailed analysis of the count matrices 
and the co-occurrence networks. The inferred networks are exported to a custom JSON 
format (see Supplementary) by default but can also be exported to Cytoscape (77), GML 
(78), and many other popular formats via the Python package.

While several tools/workflows such as QIIME2 (51) and NetCoMi (79) can be used to 
generate co-occurrence networks from 16S sequencing data, no single tool exists that 
integrates the complete process of inferring microbial interaction networks from 16S 
sequencing reads. MiCoNE is unique as it offers this functionality packaged in a workflow 
that can be run locally, on a computer cluster, or in the cloud.

FIG 7 Comparison of networks generated from the control and ASD samples of the FMT data set using the MiCoNE pipeline. The networks for the ASD (left) 

and control (right) samples were generated using the default tools and parameters recommended by the MiCoNE pipeline as described in Table 1. There are 22 

unique links in the network for control samples, 12 unique links in the network for ASD subjects, and 7 edges in common between both networks. The changes 

in these connections can serve as potential starting points for further experimental validations or literature surveys.
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The default pipeline and recommended tools

Through MiCoNE, in addition to transparently revealing the dependence of co-occur­
rence networks on tool and parameter choices (see discussion in Supplementary text 
for details on the DC, TA, and OP steps), we have taken advantage of our spectrum of 
computational options and the availability of mock and synthetic data sets to suggest a 
default standard setting that streamlines comparisons across data sets. Additionally, we 
have developed a consensus approach that can reliably generate fairly robust networks 
across multiple tool choices. Even if, in the current analysis, we have shown the relevance 
of our approach to two very different types of microbiome data sets (human and vole 
stool), it is important to remember that there is no universal standard for microbial 
interaction data, and our conclusions are based on the specific data sets used in our 
analysis. While our analysis is based on several mock and synthetic data sets that 
cover a diverse range of abundance distributions and network topologies, data sets 
with drastically different distributions may require a re-assessment of the best settings. 
However, the MiCoNE pipeline provides a platform for easy evaluation of accuracy, 
variance, and other properties at each workflow step for any other data set of interest.

The networks generated by different network inference methods show considerable 
differences in edge-density and connectivity, partially due to the underlying assump­
tions regarding sparsity, distribution, and compositionality. To address this issue, we 
have developed two consensus algorithms (simple voting and SS method) that generate 
networks whose links have evidence based on multiple inference algorithms.

We find that the SS method performs the best on synthetic data sets and is, therefore, 
chosen as the default for the NI step of the pipeline. Notably, the consensus network 
displays a higher precision and returns a concise list of robust associations representing a 
valuable set for experimental validation follow-up.

Future directions

Future work building upon our current results could enhance the network inference 
process in multiple ways. The current analyses make use of a FMT data set with 
control and ASD samples, stool samples from radiation-exposed bank vole, three mock 
community data sets, and several data sets generated by two synthetic interaction 
methods. Incorporating data sets from a broad spectrum of biomes with varying 
microbial distributions into MiCoNE will likely increase the robustness and generalizabil­
ity of the results from these analyses.

The network analyses in this study are primarily at the Genus level, wherein the lowest 
resolution of a node is a Genus, and if an entity cannot be resolved to the Genus level, 
the next taxonomic level is used (e.g., Family). Consequently, two entities belonging to 
the same lineage where one entity is resolved to the Genus level and another is resolved 
to the Family level are treated as two different nodes in the network. Thus, developing an 
overlap metric to compare nodes with shared lineages within and across networks could 
enable more biologically and phylogenetically relevant comparisons.

In thinking about the possible biological interpretations of the co-occurrence 
network computed by us and others, it is important to remember that there is no solid 
basis for assuming that these networks carry information about physical or meta­
bolic interactions (80, 81). Comparing co-occurrence networks and directly measured 
interactions remains a major unresolved challenge (82, 83), which needs to be investiga­
ted further. Understanding this connection will be beneficial for predicting interactions 
in systems where direct interaction measurements cannot be taken. Further, benchmark­
ing of co-occurrence networks could also be pursued through the use of literature-based 
interactions (1) or biological benchmark interaction data (84). Additionally, MiCoNE could 
be extended to enable the processing of metagenomics sequencing data, facilitating the 
analysis of a much larger and diverse range of data sets and domains of life.

Although in the current analysis, we have only used default parameter values 
recommended by the tool creators, the MiCoNE pipeline could be used in the future 
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to explore any combinations of parameters and optimize these values for improved 
network inference. Overall, there likely is no “best method” for the various steps of 
16S data analysis, and hence, MiCoNE is intended to help researchers to identify the 
methods and algorithms that are most suitable for their data sets in an easy-to-use and 
reproducible manner.

We envision that MiCoNE, and its underlying tools and databases, will be increasingly 
useful for building large comparative analyses across studies. It enables rapid, configura­
ble, and reproducible inference of microbial networks and furthers the formulation of 
hypotheses about the role of these interactions on community composition and stability. 
These comparative analyses will require coupled network analysis and visualization tools 
(such as MIND (54)) and need systematic access to data sets, shared in accordance with 
FAIR standards (81).

MATERIALS AND METHODS

16S rRNA sequencing data sets

This study utilized two types of 16S rRNA sequencing data sets: biological data sets 
and mock/synthetic data sets. Biological data sets are collections of sequencing reads 
obtained from naturally occurring microbial community samples. The current analysis 
used stool samples from the FMT study of autism (55) as the biological data set. This 
data set was chosen because the sequences were easily accessible on Qiita (50, 85) and 
optimally pre-processed according to the Earth Microbiome Project (EMP) (2) protocol, 
allowing them to be used directly as input to the MiCoNE pipeline. The study was 
composed of multiple sequencing runs. The runs that contained paired-end reads (run 
2 (10M reads), run 3 (750K reads), and run 4 (16M reads)), were downloaded from 
Qiita (50, 85) (study ID 10532) and used as input sequences for the MiCoNE pipeline. 
Sequences from both control (212 samples including neurotypical and donors) and ASD 
(126 samples) patients were included in the analyses. All the network analyses in the 
study, unless explicitly mentioned, were performed on the control and ASD samples in 
the FMT study. The mock community 16S data sets are experimental sequencing data 
obtained for artificially assembled collections of DNA of species in known proportions. 
The mock data sets used for this study, obtained from mockrobiota (56), are labeled 
mock4, mock12, and mock16. The mock4 community is composed of 21 bacterial strains. 
Two replicate samples from mock4 contain all species in equal abundances, and two 
additional replicate samples contain the same species in unequal abundances. The 
mock12 community is composed of 27 bacterial strains that include closely related taxa 
with some pairs having only one to two nucleotide differences from one another. The 
mock16 community is composed of 49 bacteria and 10 Archaea, all represented in equal 
amounts. In addition to these data sets, we have utilized a data set containing stool 
samples from radiation-exposed bank vole (74) (Qiita study ID 13114) for supplementary 
analyses.

MiCoNE

The flowchart describing the workflow of MiCoNE, our complete 16S data-analysis 
pipeline, is shown in Fig. 1. The pipeline integrates many publicly available tools as 
well as custom R or Python modules and scripts to extract co-occurrence associations 
from 16S sequence data. Each of these tools corresponds to a distinct module that 
recapitulates the relevant analyses. All such individual modules are available as part 
of the MiCoNE package. The inputs to the pipeline by default are raw untrimmed 16S 
rRNA sequence reads, but the software can be alternatively configured to use trimmed 
sequences, OTU tables and other types of intermediate data (see documentation). The 
configuration and modular nature of the MiCoNE package enables users to start and 
end the pipeline at any point in the workflow and run parts of the pipeline in isolation. 
The pipeline supports both paired-end and single-end reads and additionally supports 
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independently processing reads from multiple runs and merging the OTU tables in 
the DC step. The final output of the pipeline is the inferred network of co-occurrence 
relationships among the microbes present in the samples.

The MiCoNE pipeline provides both a Python API together with a command-line 
interface and only uses a single configuration file (nextflow.config) to encode the 
configuration parameters. The MiCoNE Python API provides several OTU table and 
network-related functions and methods, enabling detailed comparison of counts tables 
and inferred networks if desired. Exploring the effects of these combinations of methods 
on the resultant networks is difficult and inconvenient since different tools differ in their 
input and output formats and require interconversions between the various formats. 
The pipeline facilitates this comparative exploration by providing a variety of modules 
for interconversion between various formats and allowing for easy incorporation of new 
tools as modules. It also contains helper functions that can help in parsing taxonomies 
and communicate with the NCBI taxonomy database to query taxonomy by name or 
taxonomic IDs. The configuration file along with the run file (main.nf ) lists the inputs, 
output, and the steps to be performed during runtime along with the parameters to be 
used (if different from defaults) for the various steps. The default settings of the pipeline 
are shown in Table 1 (with default parameter values shown in Tables S2–S6 at https://
github.com/segrelab/MiCoNE-pipeline-paper). Since the entire pipeline run is stored in 
the form of a text file (the configuration file), subsequent runs are highly reproducible 
and changes can be easily tracked using version control. The pipeline makes use of 
the nextflow workflow manager (86) under the hood, making it readily usable on the 
local machine, cluster, or cloud with minimal configuration change. It also allows for 
automatic parallelization of all possible processes, both within and across samples. The 
pipeline is designed to be modular: each tool or method is organized into modules that 
can be easily modified or replaced. This modular architecture simplifies the process of 
adding new tools (refer to the modules section in the MiCoNE documentation). The main 
components of the pipeline are detailed in the subsequent sections.

Sequence processing (SP)

This module deals with processing the raw multiplexed 16S sequence data into 
demultiplexed, quality-controlled, trimmed sequences. It consists of the demultiplex­
ing and trimming processes. The demultiplexing process deals with separating the 
multiplexed sequences into individual samples based on barcodes. The trimming process 
handles the quality control steps such as trimming adapters and low-quality nucleotide 
stretches from the sequences. The parameters and tools in this process are fixed and 
are not available for user customization. The various tools used for the processes were 
adapted from QIIME2 v2021.8.0 (51). The list of tools used in this step, along with their 
modules and references, is provided in Table 1.

Denoising and clustering (DC)

This module deals with processing the quality-controlled, trimmed 16S sequence data 
into OTU or ESV count tables. It consists of the following processes: denoising (or 
clustering) and CC. The denoise/cluster process handles the conversion of the demulti­
plexed, trimmed sequences into OTU or ESV count tables (some methods, like closed 
reference and open reference clustering, make use of a taxonomy reference database for 
clustering). The chimera checking process handles the removal of chimeric sequences 
created during the polymerase chain reaction step. The output of this module is a matrix 
of counts that describes the number of reads of a particular OTU or ESV (rows of the 
matrix) present in each sample (columns of the matrix). The options currently available 
in the pipeline for DC are open reference clustering, closed reference clustering, and de 
novo clustering methods from the vsearch plugin of QIIME2 v2021.8.0(51) and denoising 
methods from DADA2 v1.14 (42) (from the DADA2 R package) and Deblur v1.1.0 (43) 
(from the deblur plugin of QIIME2). The quality filtering and CC tools are derived from 
those used in QIIME2 v2021.8.0 (uchime-de novo method) and DADA2 (remove bimera 
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method). The list of tools used in this step, along with their modules and references, is 
provided in Table 1.

For the UniFrac analysis in Fig. 2, we had set a count threshold of 10, such that if the 
count of the representative sequences in a particular sample is less than the threshold, it 
is omitted from the analysis. Additionally, for Fig. 2C and D, the expected sequences from 
the mock communities were trimmed to the V4 region before being subject to UniFrac 
analyses.

Taxonomy assignment (TA)

This module deals with assigning taxonomies to the representative sequences (OTUs 
or ESVs). In order to assign taxonomies to a particular sequence, a taxonomy database 
and a query tool are necessary. The taxonomy database contains a collection of 16S 
sequences of microorganisms, and the query tool allows one to compare a sequence 
of interest to all the sequences in the database to identify the best matches. Finally, a 
consensus method is used to identify the most probable match from the list of best 
matches. The pipeline incorporates GreenGenes (GG) 13_8 (57) (99% identity), SILVA 138 
(61) (99% identity), and the NCBI (16S RefSeq as of October 2021) (62) databases for 
TA. SILVA and GG are two popular 16S databases used for taxonomy identification, and 
the NCBI RefSeq nucleotide database contains 16S rRNA sequences as a part of two 
BioProjects—33175 and 33317. The three databases vastly differ in terms of their last 
update status—GG was last updated in May 2013, SILVA was last updated in August 
2020 at the time of writing, and NCBI is updated regularly as new sequences are curated. 
These databases were downloaded and built using the RESCRIPt QIIME2 plugin (87). 
The Naive Bayes classifier and the NCBI blast used as the query tools in this study were 
from the QIIME2 package, and the parameters used were the defaults of the package. 
The consensus algorithm used is the default method used by the classifiers in QIIME2. 
During the assignment, a representative sequence might be assigned an “unknown” 
Genus for one of two reasons: the first is if the taxonomy identifier associated with 
the sequence in the database did not contain a given Genus; the second, more likely 
reason, is that the database contains multiple sequences that are very similar to the 
query (representative) sequence and the consensus algorithm (from QIIME2) is unable to 
assign one particular Genus at the required confidence. The assignments in SILVA were 
originally substantially different from the other two databases (40% mismatch) even at 
the Phylum level. However, this was corrected via minor adjustments to the taxonomic 
names, such as changing Bacteroidota to Bacteroidetes in the SILVA Phylum assignments. 
The full list of changes can be found in script figure4ab_data.py in the data and scripts 
repository. The list of tools used in this step, along with their modules and references, is 
provided in Table 1.

OTU and ESV processing

This module deals with normalization, filtering, forking, grouping, and applying 
transformations to the OTU or ESV counts matrix. Normalization of the count matrix 
involves converting the count matrix of read counts into a count matrix containing 
relative abundances. The module also supports rarefaction, which is a normalization 
technique used to overcome the bias that might arise due to variable sampling depth 
in different samples. This is performed by subsampling of the matrix to a specified 
rarefaction depth (45) in order to obtain samples with equal library sizes. However, due 
to the potential biases and false positives (88, 89) that might arise during the process, 
the rarefaction module is disabled by default and can be enabled in the configuration 
if needed. Hence, although the pipeline supports rarefaction, it is turned off by default. 
In addition to rarefaction, the MiCoNE pipeline also supports total sum scaling and the 
centered log ratio transformation (from the speiceasi R package). However, since most 
of the NI methods perform normalization and other transformation operations on the 
counts matrix as a part of their workflow, the analyses reported in the paper do not 
explicitly normalize the counts matrices. Filtering is performed to remove samples or 
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features (OTUs or ESVs) from the counts matrix that are sparse. By default, when the OP 
module is “on,” the samples are filtered out if the total reads in a sample are less than 
500 and features are filtered out if the relative abundance is less than 1%; prevalence 
(percentage of samples containing feature) is less than 5% and count sum across all the 
samples is less than 100. When the OP module is “off,” the filtering is still performed, 
but threshold parameters are much more relaxed. The parameters used are given in 
Table 1. The forking operation splits the count matrix into multiple matrices based on 
sample metadata column; this is useful, for example, to compare case versus control. 
The group operation transforms the OTU or ESV count matrix into a taxonomic count 
matrix at the requested level by adding up counts that map to the same taxonomy and 
is carried out at the end of the OP step. Finally, transformations are performed in order 
to correct for and overcome the compositional bias that is inherent in the counts matrix 
(in the analysis performed in the study, these were disabled and directly handled by the 
NI algorithm). All the modules in this step were implemented using functions from the 
biom-format Python package (90).

Network inference (NI)

This module deals with the inference of co-occurrence associations from the processed 
taxonomic counts matrix. The input count matrices are collapsed to the Genus level 
(or any other required taxonomy level) using the group module at the OP step. These 
collapsed matrices are used as input to the NI methods to produce association matrices 
at the appropriate taxonomy level. These associations can be represented as a network, 
with nodes representing the taxonomies of the microorganisms and edges representing 
the associations between them.

The pipeline includes four methods for pairwise correlation metrics and six methods 
for direct association metrics (refer to Table 1). Pairwise correlation methods involve the 
calculation of the correlation coefficient between each pair of nodes (taxonomic entity 
like Genera) leading to the inclusion of spurious indirect connections. On the other 
hand, direct association methods use conditional independence to avoid the detection 
of correlated but indirectly connected taxonomic entities (31, 47). A null model is created 
by resampling and permuting the counts matrix and recalculating the correlations (see 
next section for details on network analysis and statistics). These permuted association 
matrices are used to calculate the significance of the inferred correlations by calculating 
the P-values against this null model (46). Brown’s P-value merging method (91) is used 
for combining P-values from the pairwise correlations methods to obtain a consensus 
P-value, which can be used to filter for significance. The permutations and P-value 
calculations are only performed on the correlations-based methods. In the final module 
of this step, the consensus algorithms are used to create the final consensus network 
using associations from all the NI methods (except Pearson and Spearman, by default). 
The outputs of this step are co-occurrence association networks encoded in the JSON 
format (refer to Supplementary) which can also be exportable to a variety of network 
formats. The list of tools used in this step, along with their modules and references, is 
provided in Table 1.

Consensus network and P-value merging

The consensus methods combine networks inferred from both correlation-based and 
direct association methods. First, for the correlation-based methods, we calculate 
P-values using null models and then merge the P-values using Brown’s P-value merging 
method (92, 93). Second, we filter all the inferred networks based on an association 
strength threshold of 0.1 and a P-value cutoff of 0.05. Finally, we apply the consensus 
algorithms we have developed on these filtered networks. These steps are elaborated on 
in the subsequent sections.
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Notation

This section defines the notation used to describe the consensus network algorithm of 
the MiCoNE pipeline. Note that all networks to be compared were updated to have the 
same number of nodes.

w, is the number of co-occurrence networks to be integrated into the consensus 
network (by default, it is equal to the total number of NI methods excluding Spearman 
and Pearson, 8)

q is the number of unique nodes across all w co-occurrence networks
Ni is the matrix of edge weights for the ith co-occurrence network. This is a q × q 

matrix, where i ∈ {1, . . . , w}. Ni
a,b represents edge (a, b) in network i

Pi is the matrix of P-values for all edges of the ith co-occurrence network. This is a q × q 
matrix, where i ∈ {1, . . . , w}N̄ iis the “flattened” version of the adjacency matrix Ni into a q2 × 1 column vector, 

where all columns are stacked onto each other into a q2 long vector. Element N̄ji
corresponds to the jth edge in the ith networkP̄iis the “flattened” version of the adjacency matrix Pi into a q2 × 1 column vector, 
where all columns are stacked onto each other into a q2 long vector.

Permutations and P-value calculation

For all correlation-based methods, k ≤ w, 1000 permutations of the original OTU counts 
data were generated (46). The correlations in the permuted OTU tables are recalculated 
using the different correlation-based algorithms. Finally, the P-value is determined based 
on how often a more extreme association is observed for randomly permuted data. 
Note that all the direct association-based methods used in the study have their own 
regularization methods built in and, hence, do not need to undergo this procedure.

P-value merging

The next step in the consensus algorithm workflow is to merge the P-values for the 
networks generated by the correlation-based methods. This step is performed using the 
Brown’s P-value merging method (92, 93).

As described in more detail in the Supplementary and in the original reference (92), 
the final combined P-value is given by

(1)P̂j = 1.0 − Φ2f ψ/c
where, ψ = − 2i = 1

k
log(P̄ji ) and Φ2f = CDF χ2f2

where P̂j is the combined P-value for the edge j, f is the number of degrees of 
freedom, and c is a scale factor.

Note that we do not use Pearson and Spearman methods in the P-value merging step 
to determine the consensus network. These methods are only used for demonstration 
and comparison. The combined P-values are used to threshold for significance right 
before the consensus algorithm is applied to the inferred networks.

Consensus methods

The consensus algorithm was designed to increase the precision (number of true 
positives) at the end of the NI step. For this purpose, we developed two simple algo­
rithms that combine the edges reported by the different NI tools. Both the algorithms 
make use of a user­defined parameter θ (0 ≤ θ ≤ 1) in order to threshold the edges 
from the individual methods. The inputs to both the algorithms are the co-occurrence 

networks (association matrices) N̄ i (flattened version of Ni) generated by each method 
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i, and the threshold parameter θ. Here, the N̄ i each have the same set of nodes q and 
only differ by the value of the association inferred between every pair. Networks that 
do not have a particular node are updated such that the node is added as an isolated 

component. In this manner, N̄ji  represents edge j in network i .
Note that the consensus method is only used to filter relevant interactions. If a 

given pair of nodes is inferred to have edges that satisfy the consensus requirements, 
all corresponding edges from the w networks will be returned by the algorithm, as 
a multigraph. Based on this approach, MiCoNE reports as the default output, the 
consensus network where each edge is annotated with weights (correlations for the 
correlation-based methods and direct associations for the other methods) from all the 
methods used in the consensus algorithm.

ALGORITHM 1 - SIMPLE VOTING (SV):

The SV method performs a voting-based consensus to determine whether an edge 
will exist between a given node-pair in the final consensus network (71, 72). For each pair 
of nodes, we determine the number of NI methods that report an edge j between them, 

i.e., N̄ji , ∀i ∈ {1,…,w}. Each node-pair will have an edge in the final consensus network if 
the number of reported edges is larger than the threshold (Equation 3).

The number of reported edges is computed as follows:
For each edge j, we obtain Mj which represents the number of networks in which 

edge j is reported. Formally, Mj is calculated as the following function:

(2)Mj = f(g(N̄ji = 1),…, g(N̄ji = w))
where g and f are defined as follows:

g(x) = 0,  if  x = 0,−1,  if  x < 0,
1,  if  x > 0

and

f(x1,…,xw) = max #(i ∣ xi = −1), #(i ∣ xi = 1)
where # refers to the cardinality of the set.
The edge j is selected to be present in the final consensus network if the number of 

networks in which j appears is greater than a threshold, i.e.,

(3)Mj ≥ ⌊θ × w⌋
where θ is the user­defined threshold parameter.

The SV method returns the union of the networks when 0 ≤ θ ≤ 1w  and will return the 

intersection when (w − 1)w ≤ θ ≤ 1. In general, if (n − 1)w ≤ θ ≤ nw , this algorithm will report 

an edge in the consensus network when at least n network inference methods report 
this edge.

ALGORITHM 2 - SCALED-SUM (SS) METHOD:
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This algorithm generates a consensus network based on the sum of all edges (weights 
of associations) reported between a pair of nodes (71, 72). Since in generating a 
consensus network using this method we sum the edges reported by direct association 
methods with those from correlation-based methods, summing of the edges is preceded 
by a pre-processing step, in which all networks are re-scaled.

First, the network generated by each NI method (N̄ i) is re-scaled into a normalized 

version (S̄i), as follows:

(4)S̄i = N̄i
max( ∣ N̄i ∣ ) , ∀i ∈ 1,…,w

In this way, it is guaranteed that max( ∣ S̄i ∣ ) = 1.
Next, for each edge j , we sum the weights of all reported edges from the different 

networks.

(5)sj = ∑i = 1

w S̄ji
An edge j will be included in the consensus network if sj passes a threshold.

(6)∣ sj ∣> (w − 1) × θ
The advantage of this method over the SV method is that it also takes into account 

the strength of the association reported for that particular node in the inferred networks.

Network variability

Notation

This section defines the notation used for the network variability analysis performed for 
Fig. 6.

W, is the number of co-occurrence networks generated from all possible combina­
tions of tools and parameters in the workflow. Note that this is different from w, which 
counted only the different NI modules.

Q, is the number of unique nodes across all W networks.
Ni is the edge weights of the ith co-occurrence network represented as a Q × Q 

adjacency matrix, where i ∈ {1, . . . , W}. Na, bi  represents the edge (a, b) in network iN̄ iis the “flattened” version of the adjacency matrix Ni into a Q2 × 1 column vector, 
where all columns are stacked onto each other into a Q2 long vector.

Principal component analysis and variability calculation

In order to compare across different networks and calculate the degree of variability 
induced by the choice of different modules, we organized multiple networks into a single 
mathematical structure that we could use for linear regression. First, we obtained the 

co-occurrence network N̄ i for each of the W possible tool and parameter combinations in 
the workflow. We then constructed a matrix N̄  whose ith column is the flattened version 

of the ith network, that is, the column vector N̄ i. Therefore, N̄ji  is the weight of edge j in 
the network i is assigned a value of 0 if edge j did not exist in network i but was present 
in one of the other networks. Note that row j of N̄ , N̄j is the vector that encodes the 
values of edge j across all the networks.

N̄ = N̄1
1 N̄1

2 ⋯ N̄1
WN̄2

1 N̄2
2 ⋯ N̄2

W⋮ ⋮ ⋮ ⋮N̄Q2
1 N̄Q2

2 ⋯ N̄Q2
W
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To infer the variability contributed due to the different steps in the pipeline, we can 
perform a linear regression on each edge in N̄  and a subsequent ANOVA to extract 
the within-group variances. A major issue with this approach is that the possibility 
of correlations existing between the edges of the network could lead to inaccurate 
estimates of the variance if a linear model were used to directly model the relationships 
between edges and steps in the workflow. Therefore, in order to remedy this issue, we 
performed a PCA (principal component analysis) on the matrix N̄  to obtain the C matrix 
(W × c) of components for each network, such that we reduce the dimensions from the 
Q2 dimensional edge space to a c dimensional component space.

We then use linear regression to express each component Cj (where j ∈ 1:c) as a 
linear function of categorical variables that describe the possible options in each of the 
steps of the pipeline.

In particular, we infer parameters αj such that

(7)Cj = i = 1

5 αjDC(i)δjDC(i) + i = 1

2 αjCC(i)δjCC(i) + i = 1

3 αjTA(i)δjTA(i)
+ i = 1

2 αjOP(i)δjOP(i) + i = 1

10 αjNI(i)δjNI(i) + ϵj
where αi are the coefficients of the regression, ϵi are the residuals, and δi are the 

indicator variables that correspond to the processes utilized in the pipeline used to 

create the network Ni; for example, δiDC(1) = 1 if the DC (1) process was used in the 
generation of the network Ni.

Here,

1. DC(i) ∈  {CR, OR, DN, D2, DB}
2. CC(i) ∈  {remove bimera, uchime-de novo}
3. TA(i) ∈  {NaiveBayes(GG), NaiveBayes(SILVA), BLAST(NCBI)}
4. OP(i) ∈  {Filter(on), Filter(off)}
5. NI(i) ∈  {SparCC, propr, Spearman, Pearson, SpiecEasi, COZINE, HARMONIES, SPRING, 
mLDM, FlashWeave}

The variance contributed by each step of the pipeline was calculated for every 
component in C matrix through ANOVA using the Python statsmodels (94) package 
and is shown in Fig. 6A. The total variance for the network was calculated by adding the 
variances for each connection and normalizing with the degrees of freedom. The merged 
network table N̄  was used as the input to the PCA to generate Fig. 6B.

Synthetic interaction data

We generated synthetic interaction data using two methodologies previously used for 
benchmarking NI methods.

The first method, “seqtime” (73), used generalized Lotka-Volterra (gLV) equations to 
model the microbial community dynamics and utilized the Klemm-Eguı́luz algorithm 
to generate a clique-based interaction network (26). We used the seqtime R package to 
simulate communities with number of species (N) varying from 10 to 150 (10, 25, 50, 100, 
150, and 200). The initial species concentrations were randomly sampled from a Poisson 
distribution, and the simulation was rerun to generate a number of samples (S) varying 
from 50 to 500 (50, 100, 200, 500) for different communities. The abundance values of the 
species in the community at the end of the simulation time were used to create the OTU 
table.

The second method, “NorTA”, used the Normal to Anything (NorTA) approach coupled 
with a given interaction network topology to generate the abundance distribution of the 
microbial community (47). We used the spieceasi R package (47) to simulate commun­
ities with different network topologies (scale-free, cluster, block, Erdos-Renyi, band, 
and hub) and target abundance distributions (Negative Binomial, Poisson, Zero­Inflated 
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Negative Binomial). The OTU table was generated using the American Gut Project 
example in the spieceasi package (amgut1.filt) with the default parameter options.

For each method, we generated the OTU table depicting the abundances of species 
and used this as input to generate association networks using MiCoNE pipeline. The 
interaction matrix was used as the source of expected (true) interactions and the 
associations predicted using MiCoNE were the source of predicted interactions. Finally, 
for each data set, we evaluated the precision and sensitivity of the associations predicted 
by the individual NI methods as well as the consensus (Fig. 5; Fig. S5 and S6).

Statistical analyses

DC step

In order to compare the representative sequences generated by the various methods 
in the DC step, we employed both the weighted (58) (Fig. 2A) and unweighted UniFrac 
methods (59) (Fig. 2B). The UniFrac distance metric (unique fraction metric) is a beta-
diversity measure that computes the distance between two sets of taxa as the fraction 
of the branch length of the tree that leads to descendants from either one environment 
or the other, but not both (59). The weighted UniFrac distance metric takes into account 
the abundances of the representative sequences when calculating shared and unshared 
branch lengths, whereas the unweighted UniFrac distance metric does not and, hence, 
gives equal weights to each sequence. In Fig. 2, the distances between methods are the 
distance between the reference sequence distribution for a pair of methods averaged 
over every sample in the data set. All UniFrac calculations were performed using the 
scikit-bio (95) v0.5.6 Python package.

TA step

In Fig. 3C, we used the Bray-Curtis distance metric to calculate the distance between 
the predicted (using the taxonomy databases in the TA step) and expected taxonomic 
distribution. The Bray-Curtis distance is used to quantify the compositional dissimilarity 
between two different taxonomic distributions defined by vectors u and v . It is defined 
as

d = ∑i |ui − vi|∑i |ui + vi|
The Bray-Curtis distance calculations were performed using the scipy (64) v1.8.0 

Python package.

NI step

In Fig. 5, we evaluated the precision and sensitivity of the inferred association networks 
(using the various NI algorithms and the consensus methods) against the original 
interaction network used to create the taxonomic distribution. We used the following 
formulations of precision and sensitivity to calculate the accuracy of the predictions:

Precision = TPTP + FP
Sensitivity = TPFN + TP

where TP stands for true positives; FP for false positives. and FN for false negatives.
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Supplemental Material

Fig. S1 (mSystems00961-22-s0001.eps). The t-SNE plot of all the inferred networks 
clusters the networks based on the taxonomy reference database used. Each point on 
the t-SNE plot represents a network inferred using different combinations of tools and 
parameters that are available in the MiCoNE pipeline. The points are colored by the 
tools and parameters used in DC step (A), TA step (B), OP step (C), and NI step (D). The 
separation of the points based on taxonomy reference database shows that the points 
cluster based on reference database in high-dimensional space.
Fig. S2 (mSystems00961-22-s0002.eps). The UniFrac distance between the 1000 
most abundant representative sequences is higher than that when all sequences are 
considered. Each value is the average UniFrac distance between the reference sequen­
ces generated by the various methods in the DC step (similar to Fig. 2). There is an 
increase in both weighted and unweighted UniFrac distances compared to when all 
the representative sequences are considered. This shows that the 1000 most abundant 
representative sequences generated by the DC methods are not as similar to each other. 
And since the weighted UniFrac is much smaller than the unweighted UniFrac distance, 
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we can conclude that those reference sequences that are present in the middle of the 
abundance distribution (considering all sequences) are dissimilar.
Fig. S3 (mSystems00961-22-s0003.eps). The weighted and unweighted UniFrac 
distances are small for the representative sequences generated using remove bimera and 
uchime for each denoising method. With the exception of de novo and open reference 
under the unweighted UniFrac metric, all the other methods have high similarity, 
implying that the two CC methods, uchime and remove bimera, produce similar outputs. 
This is especially true for the DADA2 and Deblur methods which are the recommended 
denoising methods in the MiCoNE pipeline. Therefore, remove bimera is recommended 
as the default chimera method if one is using DADA2 and uchime-de novo when one 
is using Deblur since these methods were developed for these respective algorithms 
(QIIME2 uses uchime-de novo in the Deblur workflow).
Fig. S4 (mSystems00961-22-s0004.eps). The pairwise comparison of assignments 
generated using different databases for all representative sequences has a higher 
proportion of mismatches. The comparison made here is similar to Fig. 3B, but instead of 
the top 100 taxonomic entities (by abundance), all the assignments from one database 
are matched with those from the other two databases. The higher percentage of 
mismatches implies that the assigned taxonomies in the more abundant sequences (top 
100) match more consistently.
Fig. S5 (mSystems00961-22-s0005.eps). The precision and sensitivity of the inferred 
networks on the “NorTA” synthetic interaction data. The different consensus methods 
used are SS and SV methods. Pearson and Spearman methods are not used in the 
calculation of the consensus. Among all the independent NI methods, SpiecEasi has the 
best average precision (0.944), but the overall best precision was consistently obtained 
by the SS method (0.956, 0.985, and 1.000). The SV method when using the presence of 
edges in all inferred networks as a requirement (θ = 1.000) also outperforms SpiecEasi 
on average precision (0.969). Although SpiecEasi has a higher sensitivity, if the goal of 
NI is to obtain the list of associations that have a high probability of existing in the real 
microbial community, then the consensus methods perform better.
Fig. S6 (mSystems00961-22-s0006.eps). The precision and sensitivity of the inferred 
networks on the “seqtime“ synthetic interaction data. The different consensus methods 
used are scaled-sum (SS) and simple voting (SV) methods. Pearson and Spearman 
methods are not used in the calculation of the consensus. Among all the independent 
network inference methods, SpiecEasi has the best average precision (0.624), but the 
overall best precision was consistently obtained by the scaled-sum method (0.688, 0.820, 
and 1.000). The simple voting method when using the presence of edges in all inferred 
networks as a requirement (θ = 1.000) also outperforms SpiecEasi on average precision 
(0.692). These results show that the SS method is not only much better suited for 
inferring robust and accurate interactions from count data generated from network 
topologies (NorTA), but it is also capable of accurately extracting real associations from 
Lotka-Volterra simulations.
Fig. S7 (mSystems00961-22-s0007.eps). Sensitivity analysis of the default settings of 
the MiCoNE pipeline. (A) The network constructed using the default pipeline parameters 
(DC=DADA2, CC=remove bimera, TA=GG, OP=Filter(on), NI=scaled-sum consensus) is 
compared against networks generated when one of the steps uses a different tool. 
The layout is created by fixing the positions of all the nodes from all networks and 
then drawing only the relevant edges, making the connections directly comparable. The 
edges colored green are positive associations and those in red are negative associations. 
We observe that changing the TA and OP steps leads to the creation of the most number 
of unique edges. (B) The dot plot showing the fraction of nodes (left) and edges (right) 
in common between the default network and the networks generated by changing one 
step of the default pipeline. The low value of the common fraction for TA and OP steps 
shows that these steps induce the biggest changes in nodes and edges. The NI step is 
not shown in this analysis because the consensus methods use edges from the individual 
NI methods and a comparison would be biased.
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Fig. S8 (mSystems00961-22-s0008.eps). Network variance analysis of the stool samples 
from radiation-exposed bank vole (EMP data set). (A) The percentage of variance in 
the networks contributed by the denoising and clustering (DC), taxonomy assignment 
(TA), OTU processing (OP), and network inference (NI) steps of the pipeline calculated 
using ANOVA on a linear model (see Methods). A weight threshold of 0.1 and a P-value 
threshold of 0.05 were applied to each network before the analysis. The taxonomy 
database contributes most to the variance between the networks (57.96%) followed by 
the filtering of the counts matrix (33.48%) in the OP step. The variation due to the NI, 
DC, and CC steps is much smaller in comparison (6.69%, 1.30%, and 0.00%, respectively). 
The negligible fraction labeled as the residual is an artifact that arises when multiple 
steps are changed at the same time. (B) All the inferred networks generated from various 
combinations of tools are shown as points on a PCA plot. Each point on the PCA plot 
represents a network inferred using different combinations of tools and parameters that 
are available in the MiCoNE pipeline. The color of the points corresponds to the tools 
used at each step of the pipeline (DC, TA, OP, and NI). The points on the PCA plot can be 
largely grouped based on the TA step, and the extent of this separation decreases when 
the filtering is turned on in the OP step. However, unlike Fig. 6B, here, we observe that 
the networks that utilize GG and NCBI databases have the variation along similar axes in 
the two-dimensional PCA plot. This could imply that the taxonomy assignments returned 
by these two databases for this data set might be more similar to each other compared 
to those in the FMT data set.
Table S1 (mSystems00961-22-s0009.pdf). Table of global network metrics for networks 
inferred from all possible combinations of tools. In each row, one tool in a particular step 
is kept constant, and the metric is calculated for every possible combination of tools for 
the other steps of the pipeline. Therefore, each row shows the grouped average metric 
for each tool in every step of the pipeline. The network inference methods show the 
most variation in the global network metrics compared to tools in other steps of the 
pipeline.
Supplemental Text (mSystems00961-22-s0010.pdf). Supplemental text describing data 
processing, synthetic interaction data generation, network metrics, P-value merging, 
additional network variance analysis, and supplemental discussion sections.
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