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Abstract

Tracking the behavior of animals and their group dynam-
ics in nature offers a crucial look into the delicate ecolog-
ical networks that compose wildlife diversity. The velvety
tree ant (Liometopum occidentale) is an ecologically dom-
inant ant species found in South Western North America;
their extensive foraging activity shapes forest communities,
and their nests are a biodiversity hot-spot for a multitude
of symbiotic invertebrates (myrmecophiles). Despite their
vital role in the ecosystem, their activity is largely unstud-
ied. In this work, we develop a multi-sensor camera trap,
named 'Ethocam,’ to capture ant behavioral patterns in the
field, and combine this technology with a computer vision
approach to track colony activity in an undisturbed fash-
ion. We demonstrate an accurate system for counting ants
built with minimal human labeling. We show that L. oc-
cidentale activity drops rapidly through the morning and
study the effect of environmental conditions on ant count.
We also report the occurrences of the ants’ interactions with
other invertebrates in our camera trap data. Together, these
findings demonstrate the potential of our system to capture
the behavior of Liometopum occidentale as well as its com-
plex associations with various local species including sym-
bionts, potentially at landscape scale. Our study provides
proof of concept for the promise of low-cost remote moni-
toring of social insect populations.

1. Introduction

Studying animal activity patterns in natural habitats is a
crucial complement to studying behaviors in the lab, since
it is usually impossible to recapitulate the complex web
of interspecies associations under laboratory conditions
[26][30][21]. Moreover, quantifying animal behavior in
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natural contexts is critical for understanding how a given
species contributes to the dynamics of ecological commu-
nities and higher-level ecosystem processes. This is espe-
cially true for ecologically important social insects such as
ants, bees and termites, where colonies are often large and
exert major effects on the habitat at large by way of their
associations with other species and impacts on nutrient dis-
tribution and habitat structure. In many terrestrial ecosys-
tems, ants in particular are keystone organisms that control
the populations of diverse other invertebrates, both via pre-
dation and by forging beneficial symbioses with mutualis-
tic herbivores [24]. The ramifications of these interactions
can permeate whole communities, even re-configuring the
predator-prey dynamics in large mammals [16]. Ecosys-
tems can thus be especially sensitive to changes in the com-
position of the ant fauna. Human-mediated habitat loss and
fragmentation, climate change, and the introduction of ex-
otic species, including invasives, have all been shown to
disrupt native ant communities, with often dramatic con-
sequences for the native ecosystem [24].

The ability to monitor the collective behavior and eco-
logical interactions of ants in the field, long term, is hugely
desirable [31]. Such data would not only illuminate natural,
colony-level behaviors that are impossible to reconstitute in
the lab, but could also permit quantification of the ecosys-
tem services that ants provide, as well as lead to predictive
models for how ant species may respond to different types
of disturbance. Potentially, such a monitoring system could
be implemented at a large scale, across multiple colonies
within a habitat. To our knowledge, no such automated ap-
proach has to date been developed.

The velvety tree ant (Liometopum occidentale) is an eco-
logically dominant ant species in Southern California, form-
ing extensive colonies containing hundreds of thousands to
millions of workers. Despite the high prevalence of this
ant species in semi-intact ecosystems across its range, lit-
tle is known about its biology and behavior in the wild
[12]. These ants are known to have large foraging areas, are
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Figure 1. (A). Ethocam setup with various components annotated. (B). Ethocam inside waterproof enclosure attached to custom made
80-20 rail setup for imaging ant nest. (C). Ethocam positioned to be approximately 10 cm away from the surface of the nest. (D-F).
Schematic of our machine vision pipeline. (D) Raw data collected from an ant nest was run through Faster R-CNN for detection. (E) The
resulting detections were passed through a tracker (F) to generate ant trajectories. (G) Overlaid ant trajectories over the course of 2 minute
videos at different time points obtained by our ant tracker (modified SORT) shows ant activity. (H) Examples of three other arthropods
captured in raw camera trap footage illustrating ant nests as a biodiversity hub.

speculated to form massive supercolonies spreading mul-
tiple kilometers, and may maintain nest locations in trees
for several years [33]. Species of the genus Liometopum,
including L. occidentale, are also known to engage in a di-
versity of interspecies relationships, including trophic mu-
tualisms with hemipteran bugs. Colonies of L. occidentale
ant are also targeted by several species of socially parasitic
“myrmecophile” beetles of the family Staphylinidae (rove
beetles) [12][23]. Previous reports suggest that activity pat-
terns of Liometopum are equally diurnal and nocturnal [28]
with temperature determining activity level. Here, we lever-
age L. occidentale’s stable nest locations, large colony size,
rich inter-species associations and vital ecological role to
pioneer a field-based ant tracking method.

Our system detects and tracks the activity of L. occiden-
tale ants at colony locations using modern computer vision
techniques and is scalable to habitat-wide monitoring. In
this proof-of-concept study, we use an in-house designed
and built camera trap to record high-quality videos of an
ant nest entrance for 2 minutes every hour throughout the
day. Using a combination of traditional image processing
techniques for weak supervision combined with a small set
of human annotations, we train and evaluate a computer vi-
sion pipeline consisting of Faster R-CNN [27] for object de-
tection and a modified version of SORT [2] for multi-object
tracking. We successfully track ant trajectories over the day
and obtain a measure of ant count. We evaluate the per-
formance of our method both in and out of distribution and

show that our method closely follows ground truth ant count
trends. We also show that our method predicts ant counts
as well as single-frame human annotations (that is annota-
tions without using temporal information). Our methods are
sufficient to extract novel scientific insight on the behavior
of L. occidentale in their natural habitat. In particular, we
demonstrate that our method generates robust estimates of
ant counts in the field with small amounts of initial training
data.

1.1. Related work

Detection. Object detection seeks to localize objects of
a certain category or set of categories in images, and is a
highly-studied challenge in the computer vision community
[13]. In this work, we rely on the well-established Faster
R-CNN [27] two-stage object detection architecture with a
ResNet50 backbone [11]. Our system is modular, allowing
for drop-in replacement of newer architectures [8, 18, 29]
as-needed.

Multi-Object Tracking. Multi-object tracking is a notori-
ously difficult problem, requiring robust detections in of-
ten crowded scenes, management of occlusions, and re-
identification of individuals returning to view [15, 20].
Canonical multi-object tracking challenges use pedestrian
data [7], and algorithmic approaches range from simple
IOU overlap in subsequent frames to assign ID [2] to meth-
ods using object appearance through time [32] to learning



whole graph structures to generate tracks [4]. Methods
using feature information require objects to have visually
distinguishable appearance, which make their value tenta-
tive for groups of genetically similar sister ants which look
nearly identical. Hence, we employed the simple and well-
performing SORT algorithm [2] for our ant tracking task.

Tracking Social Insects. Previous approaches to tracking
social insects in a lab setting are predominantly marker-
based [22][6], which is not feasible for natural colonies with
tens of thousands of individuals. [14] developed an ant de-
tector plus tracker using framewise detections with Mask-
RCNN, and subsequent tracking by minimizing an optimal
transport cost function between consecutive frames. The
tracker maintains identities by minimizing the cost, based
on spatial distance and appearance, of each ant in frame K
with all other ants in frame K+1. This work is designed for
tracking foraging paths of carpenter ants (Camponotus ru-
fipes) at night, under consistent IR light. These methods are
insufficient to handle the fluctuation in ambient lighting and
massive changes in ant density and trajectory direction seen
at L. occidentale nests. [5] propose a method for tracking
ants at nests. They use a ResNet to obtain appearance fea-
tures and combine appearance and motion features to obtain
the final trajectories. Instead of collecting their own data
they use short stock videos and images obtained online from
random ant nests, and their approach relies on a large num-
ber of hand-labeled training examples. In contrast, we show
accurate ant counts even in out-of-distribution videos with
fewer than a thousand hand labeled in-distribution training
images using transfer learning for detection and using track-
ing to eliminate false positives. [25] train a U-Net architec-
ture to produce a density map given an image containing
a cluster of monarch butterflies, and subsequently obtain a
count by integrating over the density map. This approach
is not suitable for our data as it is sometimes difficult to
see individual ants in a single frame due to motion blur.
Our separate detection + tracking approach allows us to use
temporal information to resolve such cases.

2. Methods
2.1. Data collection

Data were recorded using an in-house camera trap dubbed
"Ethocam.” The Ethocam is a cheap (~$250) and open-
sourced setup consisting of a 12.3 MP raspberry pi HQ
camera, temperature, humidity and light level sensors,
GPS, power management unit WittiPi with a 10000mAh
rechargeable battery, solar charger, relays for external light
control and an e-ink persistent display. The source code and
design files are available at https://github.com/
willdickson/ethocam. The Ethocam schematic is
shown in Figure 1 A. To optimize video for ant detection, we

tested a range of camera parameters and external lighting,
first in the lab, capturing images of ants on bark in a plastic
tub (we will refer to this data subset as DATA-LAB), then
tuned for lighting variations by placing the tub and camera
outside in natural light (we will refer to this data subset as
DATA-NL for “natural light”), and made final adjustments
at the ant nest field site (we will refer to this data subset as
DATA-NEST). The final set of parameters used by the cam-
era were a frame rate of 30 FPS, a bitrate of 20000000, auto
white balance, a dynamic range compression set to high,
auto exposure and ifx set to denoise. The camera was placed
roughly 10cm from the ant nest entrance and was supported
with a custom 80-20 aluminum rail. Ultimately, there was
some motion blur when the ants were moving quickly, but
the proximity of the camera to the ants allowed us to suc-
cessfully detect and track the ants. The ant nest we used
for our proof-of-concept study was in a hollowed-out bay
tree, slightly off the path at Chaney trail in the Angeles Na-
tional Forest. We collected 2 minute long videos every hour
for 41 hours from the ant nest (13 hours from May 13th,
2021, and 14 hours each day on July 17th and 19th, 2021).
As we did not use any external lighting in this pilot study,
only footage between 7am - 7pm from May, and 6:20am -
7:20pm from July, were usable. Collecting nighttime data
remains an area of future work.

2.2. Detection

Generating Weak Supervision. To reduce the need for
hand-labeling, we use traditional computer vision tech-
niques to provide initial weak supervision. We use color
channel information to locate the ants’ distinctive orange-
brownish thorax. For each frame, we first perform a his-
togram equalization of the value channel in the HSV color
space, then convert back to the RGB. We then create a
mask by subtracting the red and blue channels and manu-
ally threshold to handle lighting variation using data col-
lected at 3 different timepoints within the DATA-NL subset
- 10:30am, 1pm and 7pm. We repeat the same for the red
and green channels, and take the intersection of the two.
We then use contour detection on this mask and OpenCV’s
[3] boundingrect function to draw bounding boxes around
the ants. This method fails when the thorax is not in view
(e.g. when the ants are in a crevice in the bark). To ad-
dress this, we add an adaptive background subtraction us-
ing OpenCV’s MOG detector, and clean the results using
morphological opening and closing. Bounding boxes are
again obtained via boundingrect. We ensemble the two
approaches to increase our recall and remove overlapping
boxes (IoU > 0.3), giving preference to the boxes extracted
using the RGB method as it qualitatively provided more pre-
cise localization.

The detections from this simple method work well for
DATA-NL, where there is little background texture or light-
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Figure 2. Activity maps produced at different times of day based on the output of the tracker.

ing variation. We found qualitatively that the performance
declines significantly when moving to DATA-NEST for a
few reasons: 1. The ant nest entrance was more complex
than the bark from the DATA-NL set (the ant nest tree was
highly textured and also redder in color causing the RGB
method to perform poorly), 2. there were moving rays
of sunlight at different locations (because of leaves in the
canopy above) and 3. wind led to some slight camera shake
which interfered with background subtraction.

To build a more robust, generalizable model to handle
diverse data at the nest site, we use our traditional com-
puter vision approach to extract approximate ant locations
from DATA-NL for weak supervision of a Faster R-CNN
ant detection model. We extract weakly-supervised bound-
ing boxes from 10,500 frames across DATA-NL, and use
a 75-25 random train-test split (note that here the test data
is also weakly-labeled). We train a Faster R-CNN with a
Resnet-50 [27] backbone, starting with Imagenet weights,
on this data for 5 epochs using the Detectron?2 library [34].

Fine-tuning on DATA-NEST. The DATA-NEST set con-
tains 2 minutes of video collected every hour between
7am-7pm on May 13th and between 6:20am-7:20pm on
July 17th and July 19th, 2021. We manually annotated
507 frames - 200 “dense frames” and 307 “’sparse frames”
where dense frames have a large number of ants (videos
between 7am-10am) and sparse frames have few ants (1-
5 ants, videos between 11am-7pm). All hand annotations
were generated with data from May 13th, hence we term
the May subset of the data as DATA-NEST-ID (ID for in-
distribution), and the set of videos entirely unseen by our
model as DATA-NEST-OOD (OOD for out-of-distribution).
We make this distinction in order to ensure we are evaluat-
ing our system as it is intended to be used, where the eval-
uation data will shift from the training distribution both vi-
sually and in ant density over time (real-world applications
almost always encounter distribution shift in deployment,
a known challenge for automated monitoring approaches
[1, 17]). DATA-NEST-ID annotations are shuffled and ran-
domly divided into a train, val and test set using a 60-20-

20 split. This resulted in 119, 43, 38 dense frames and
185, 58, 64 sparse frames in the training, validation and
test sets respectively. Starting from our weakly-supervised
DATA-NL-trained Faster R-CNN model, we fine-tune on
this small manually labeled dataset to transfer our model
to DATA-NEST. We do not see training and validation loss
diverge, indicating either little-to-no overfitting or, more
likely, a large amount of similarity between the randomly-
subsampled training and validation data. Our operating
point for use in downstream tracking is selected using
precision-recall curves on the DATA-NEST-ID test set.

2.3. Tracking

To estimate ant counts across each video from frame-wise
ant detections, we implement a tracking module - a mod-
ified version of the multi-object tracker SORT [2]. SORT
uses a Kalman filter based on linear velocity changes and
Hungarian algorithm for ID assignment. We generate new
detections by linearly interpolating bounding box coordi-
nates over detection gaps in tracks generated by SORT. This
SORT+interpolation adaptation allows us to use video in-
formation to reduce false negatives and improve detection,
while the ID maintained across a track allows us to capture
trajectory information for each ant. In some lighting condi-
tions, particularly in DATA-NEST-OOD, parts of the bark
of tree roughly resemble the shape of an ant, resulting in
repeated, stationary false positives. In order to address this,
a track is considered a stationary false positive if it moves
less than a threshold distance of 10 pixels (frames are 640
x 480) for more than 100 frames. To account for ants that
stop moving temporarily, we check if the furthest distance
moved by the entire track is less than 20 pixels.

2.4. Statistical analysis

We perform a regression analysis in order to study the ef-
fects of the recorded environmental variables on ant count.
We fit a linear regression model using the mean ant counts,
calculated per video, as the dependent variable, and tem-
perature, humidity, light level, time and day of collection
(1, 2 or 3) as the independent variables. We could not use
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Figure 3. (A). Mean ant count along with recorded environmental factors for data collected on 13th May 2021. (B). Mean ant count along
with recorded environmental factors for data collected on 17th July 2021. (C). Mean ant count along with recorded environmental factors
for data collected on 19th July 2021. (D). Log of mean ant count plotted against humidity: log(mean ant count)=0.19 x (humidity)-8.71
(R?=0.17, p<0.01). (E). Log of mean ant count plotted against temperature: log(mean ant count)=-0.16 x (temperature)+5.10 (R%=0.58,
p<0.001). (F). Log of mean ant count plotted against time: log(mean ant count)=-0.23 x (time)+4.22 (R?=0.49, p<0.001).

a mixed effects model to account for day of collection as
a random effect as we only have 3 random effect levels (3
days) as opposed to the minimum of 5-6 required for statis-
tically significant variance [10], and hence use day of col-
lection as another independent variable.

3. Results
3.1. Detection

To evaluate the performance of our preliminary, motion-
and color-based method we manually counted the number
of successfully detected ants and misses across 100 ran-
domly selected frames from the DATA-NL set. Out of 970
ant occurrences, this traditional approach missed 67 ants
and only had 3 false positives resulting in a recall of 0.93.

Our weakly-supervised model trained using manually-
thresholded motion- and color- supervision on DATA-NL is
evaluated vs. the weak labels on a held-out test set. The
precision-recall curve has a high AUC of 0.91 with a max-
imum precision and recall corresponding to a threshold of
0.65.

Table 1 shows the AP (11 point interpolation method
with 0.5 IoU) calculated using the weakly supervised model
(trained on DATA-NL) and the model fine tuned on DATA-
NEST-ID, on both the DATA-NL and DATA-NEST-ID
datasets. While we see good results of the weakly super-

vised model on DATA-NL (AP=0.89) and the fine tuned
model on DATA-NEST-ID (AP=0.79), we see poor gener-
alizations of the models across the two datasets.

We visually analyze results and failure modes in Figure
4C. We find that most false negatives are quite small and
difficult to distinguish without a motion signal. The anno-
tations were done on higher resolution 1920x1080 frames
within a video (model input resolution is 640x480), provid-
ing both motion signal and higher resolution for human an-
notation. We also see failures related to challenging lighting
conditions, particularly as it gets dark later in the evening.

3.2. Tracking

In order to robustly assess the performance of our tracker,
we manually annotated the trajectories of all ants in the first
500 frames of one dense high-activity video (9am video
from May 13th). The first 196 of these 500 frames overlap
with the densely-annotated frames from the DATA-NEST-
ID detection train/val/test splits. This represents 64325
hand-labeled detections corresponding to tracks for 315 in-
dividual ants. Linearly interpolating to fill in missing de-
tections within a SORT track improves the tracking metrics
across the board. With our SORT+interpolate we achieve
26% (82/315) mostly tracked (ID label maintained for 80%
of a given individual’s track), and only have 14% (43/315)
mostly lost tracks (individual tracked for less than 20% of
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Figure 4. (A) Stability of ant count throughout two minute videos generated via our detector+tracker approach. (B) Comparison of
ant counts in ground truth data (purple) versus raw detection counts from our fine tuned model (grey dots), plain SORT output (black),
SORT+interpolation (green), or SORT+interpolation minus false positives (filtering)(yellow). Our approach consistently under-counts ants
due to several difficult annotation types. (C) Examples of missed detections, likely due to 1) overexposure, 2) ant mostly occluded,

3) previously occluded ant freshly entering frame and 4) bark providing effective camouflage.

(D) Human generated ant counts vs

SORT+interpolation counts (one frame per video). Squares are from the DATA-NEST-OOD set, circles from DATA-NEST-ID. Yellow
dots are after filtering out false positives, purple before filtering. Human ant count was lower than from the ground truth data in (B) since
only a single frame without time series of ant movement was used for count. Our algorithm (which has temporal information) performs as
well as a human without the timeseries, as indicated by a slope which is not significantly different than 1 (non-parametric bootstrapping on
slope was used to generate a confidence interval). DATA-NEST-OOD had a large number of false positives from lighting conditions not
similar to the training set (D upper left inset, purple squares), which we filtered out based on low movement to help generalization.

their ground truth track). We have 421 ID swaps across the
evaluation set, which contains 315 ground truth IDs. We
also use the HOTA metric to evaluate our methods, which
correlates well with human perception of tracking success
[19]. This metric provides a single number that summa-
rizes how well the generated trajectory tracks align while
also docking for failed detections. The HOTA score for our
tracking approach + interpolation is 40.4, whereas SORT
without interpolation scores 38.1. These metrics indicate
that our tracker is able to maintain a large number of nearly
full-length trajectories and performs well on the DATA-
NEST-ID set.

We find that the filtering approach we propose to reduce
stationary false positives in DATA-NEST-OOD reduces the
HOTA score on DATA-NEST-ID, mostly due to the loss of
ants that remain still through large portions of the video (Ta-
ble 2). However, the filtering significantly improves our

ability to generalize to DATA-NEST-OOD, which had a
larger number of false positives since it is not represented in
the training data. The increase in counting performance in
DATA-NEST-OOD seems to be worth the trade-off in track-
ing score (see Section 3.3).

In Figure 2 we visualize ant trajectories for DATA-
NEST-ID. We see a slight increase in activity from 7am to
8am followed by a slight decrease up to 10am and then a
massive decrease from 10am - 11am. The activity remains
very low for the rest of the day.

3.3. Counting

We use the number of unique framewise track IDs to ob-
tain ant counts per-frame in DATA-NEST-ID. We compare
the counts from our algorithm to the count from the manual
track annotations, when available. In addition, to investigate
counting performance at different time points with different
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[ Model Dataset AP |

Weakly supervised DATA-NL 0.89
Weakly supervised DATA-NEST-ID 0.05
Fine tuned DATA-NL 0.28
Fine tuned DATA-NEST-ID 0.76

Table 1. Detection results on different datasets.

ambient lighting, we manually counted the number of ants
in one frame per video from DATA-NEST-ID and DATA-
NEST-OOD. Figure 3 shows predicted mean ant count vs
time of day for each of the 3 days of field data, which gives
us an estimate of stability, along with corresponding tem-
perature, humidity and light level.

Figure 4B shows the evaluation of the counts obtained
from our pipeline against the counts obtained by manually
annotating the full trajectories from the first 500 frames
from a single DATA-NEST-ID video (the 9am from May
13th). The first 196 of these 500 frames are in the dataset
used for the train-val-test splits whereas the remaining
frames were not seen by the network. We see that the ant
count generated by detector + tracker system closely fol-
lows the trend in the ground truth, thus serving as a good
measure of ant activity. Additionally, we note that, com-
pared to raw detections which fluctuate by 10-20 ants over
just a few frames (Figure 4B) in dense videos; our tracker
outputs much more consistent counts. Though we lose de-
tections with the raw SORT algorithm, the interpolation step
recovers misses and gives consistent counts that outperform
the plain detections. Visual analysis (Figure 4C) reveals that
the missed detections are difficult cases - partial occlusions,
ants freshly entering the frame, etc.

To verify the performance of the system at different time
points and more varied conditions, we compared counts
from our tracker with human counts on a single frame
from every video in DATA-NEST-ID and DATA-NEST-
OOD (Figure 4D, Table 2). We see a strong correlation with
the human count on DATA-NEST-ID, with a slope not sig-
nificantly different than one, indicating human-level perfor-
mance, and a high R? value (In-distribution results Table 2).
Our raw tracker approach struggles to generalize to the out-
of-distribution DATA-NEST-OOD, where we had an uptick
in false positive detections (Figure 4D, upper inset, purple
points, Out-of-distribution results in Table 2) in frames with
lighting not similar to our training data. Since it appears
that false positives rather than false negatives hamper gen-
eralization, we apply a simple filter to remove detections
that scarcely moved through the video. This drastically
improves generalization, increasing the R? for the DATA-
NEST-OOD count regressions from 0.54 to 0.9 and tight-
ening the confidence interval on the slopes (Table 2, Out-
of-distribution results). This illustrates that incorporating a
simple filter into our pipeline largely improves the general-
ization issue with our network and allows for robust counts

on out-of-distribution data, though quality control will be
undertaken on all future data to catch model/data drift.

The discrepancy in performance on the ground truth
tracking (where we under-count) compared to human
counts (where we match human accuracy) may be due to the
different annotation techniques. While annotating tracks we
used temporal clues from previous and subsequent frames
to find partially occluded or blurred ants whereas the counts
were obtained looking at only one frame. Though our
tracker includes temporal information, it is difficult for our
system to pick out every ant in a dense cluster and we lose
the tail of tracks post-occlusion. Although there is room
for improvement, our approach succeeds in obtaining near-
human measures of ant count with a very small amount of
manually-annotated data (507 frames).

3.4. Data Analysis

In order to assess the impacts of different environmental
factors on ant count, we fit a linear regression model with
temperature, humidity, light level, time and day as the inde-
pendent variables. We obtain an adjusted R? value of 0.42
(p<0.001) and find that temperature is the only significant
factor (p<0.05, df=1, t=-2.60). We however can not make
any claims on the effect of temperature on ant count as a
variance inflation factor analysis shows serious (>4) multi-
collinearity [9] (VIF(temperature) = 6.48, VIF(humidity) =
9.22, VIF(day) = 5.5). This makes sense due to the small
dataset size. In order to fully tease apart the effects of tem-
perature and circadian rhythm (time), we need to collect
more data over varying conditions. We will address this in
future work and leave this manuscript as proof-of-concept
of our methodology. Figures 3D, 3E and 3F show the log
of mean ant counts from all three days of collection, plotted
against humidity, temperature and time respectively.

4. Discussion

Monitoring the behavior of ecologically dominant ant
species like Liometopum occidentale in the wild promises
rich insights into biological communities. Using computer
vision approaches, we develop a pipeline to capture data,
detect, track and then analyse behavior at the ant nest. Au-
tomating these steps using computer vision and GPU ac-
celerated computing, as opposed to manually observing ac-
tivity, makes it possible to not only analyze extensive data
(weeks to years) but also allows robust, quantitative metrics
like accurate ant count and ant trajectory maps. Such data
is prohibitively laborious to obtain with human annotation.
Our data acquisition strategy allows us to collect a wealth of
useful environmental factors such as temperature, humidity
and ambient light level at the collection site.

With our proof-of-concept dataset we report a number of
interesting observations which underscore the potential of
our system: i. We observe a massive change in overall ant

1250



In-distrib.  In-distrib. In-distrib. Out-of-distrib. Out-of-distrib.
Tracker HOTA  CountR? Count slope 95% CI Count R? Count slope 95% CI
SORT 38.1 0.99 0.71-0.95 0.58 0.11-1.0
SORT+Interp 40.4 0.98 0.96-1.2 0.54 -0.14-1.5
SORT+Interp+Postproc. 34.9 0.99 0.84-1.1 0.9 0.63-1.2

Table 2. HOTA and detector ant count correlation to hand labeled counts for our tracking approaches.

activity over the course of the day and quantify ant counts
between 7am-7pm in May and between 6:20am-7:20pm in
July. For data collected on May 13th, we qualitatively see
that ant activity starts to increase again at 7:30pm, suggest-
ing imaging nighttime activity using infrared lighting may
offer further insights which we will explore in future work.
We see significantly lower ant counts in the data collected
in July as compared to May. This may be due to seasonal
and temperature changes, but further analysis and moni-
toring over longer time horizons is needed. ii. We also
observe ants performing an excavation behavior, bringing
pieces of debris from inside to the edge of the ant nest to
discard. iii. In addition to the ants themselves, we observe
other athropods (Figure 1H): two instances of the symbiotic
beetle Sceptobius lativentris, which steals ant pheromones
via grooming to move around freely inside the ant nest; a
pseudoscorpion, which may also be a symbiont of these
ants; and a member of the non-symbiotic beetle genus Silis,
which, in contrast to Sceptobius was attacked by worker
ants and dragged into the nest (Liometopum occidentale are
known to be omnivores). It is exciting that we see such
diverse behaviors and interactions in our proof-of-concept
dataset, a total video time of 82 minutes over the course
of 3 days, demonstrating the value of imaging animals in
the wild in an undisturbed manner. Further data collection
with longer video times over larger time scales along with
data collection at night will provide further, previously-
inaccessible information for this little-studied ant species
and its associated arthropod community. We generated nu-
merous ant annotations with a semi-automated approach to
train a network that performed well for DATA-NL. We then
leveraged this network to obtain initialization weights to
train a model to detect ants in DATA-NEST. We achieve
good performance on DATA-NEST with a small number of
manually annotated frames (507). Since the detector relies
only on information in a single frame, we were further able
to improve the detection performance and collect video-
level counts using our modified SORT tracker. The tracker
uses a Kalman filter constant velocity model along with in-
terpolation to recover ant detections missed by the network.
The ID assignment using the Hungarian algorithm enables
us to produce trajectories for individual ants, giving activity
maps. Although we see from Figure 4B that our ant count
undershoots human counts given a full video as context, our

counts so approach the accuracy of a human given only sin-
gle frames for annotation (Figure 4D). Qualitatively, raw
videos clearly demonstrates that ant activity drops rapidly
over the course of the day, and our tracking shows the same
trend (Figure 2, Figure 3). Using a tracker stabilizes the ant
counts (4A) during the videos, as seen in Figure 4B, where
the raw detections change in count by 10-20 ants within a
few frames.

Although there is room to improve the accuracy of our
models, our system nevertheless provides an indication on
the key focal times for future Ethocam acquisition, i.e.
times of high activity. We captured multiple instances of
various other species interacting with the ants in our small
data set. In future, we will investigate species classification
approaches to automatically recognize symbionts and other
arthropods, although we recognize that the large imbalance
between ant and symbiont sightings will prove a challenge.
If non-ant arthropods occur in-frame frequently (as our pi-
lot data imply), and can be accurately detected, further work
could include automated investigation of inter-species inter-
actions involving L. occidentale.

In summary, we have successfully developed a data
collection paradigm and computer vision methodology to
extract quantitative activity information from natural ant
colonies. We successfully tuned camera parameters and po-
sitioning to capture high quality ant nest data; we then gen-
erated detections on a per-frame basis with semi-automated
and manually generated annotations. Subsequently, we
tracked ants to improve detection, obtained trajectories and
counted ants, and validated these counts and tracker perfor-
mance both in and out of distribution. We found that L.
occidentale activity drops rapidly over the course of the day
and picks up again at night. We observed interesting trends
in ant activity potentially resulting from different environ-
mental factors and we look forward to collecting more data
over longer time horizons to explore these further. This pilot
study illustrates the potential of our system for further appli-
cations. Our low-cost, open source hardware and software
together show promise for quantitatively observing the net-
works of interactions in natural populations. Quantitative
measures will help elucidate complex, environmentally in-
fluenced animal behaviors and provide insight on how inva-
sive species and our changing climate affect the rich, native
ant biodiversity.
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