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Abstract

This study characterized ocean biological carbon pump metrics in the second iteration of the REgional Carbon Cycle Assess-
ment and Processes (RECCAP2) project, a coordinated, international effort to constrain contemporary ocean carbon air-sea
fluxes and interior carbon storage trends using a combination of observation-based estimates, inverse models, and global ocean
biogeochemical models. The analysis here focused on comparisons of global and biome-scale regional patterns in particulate
organic carbon production and sinking flux from the RECCAP2 model ensemble against observational products derived from
satellite remote sensing, sediment traps, and geochemical methods. There was generally encouraging model-data agreement
in large-scale spatial patterns, though with substantial spread across the model ensemble and observational products. The
global-integrated, model ensemble-mean export production, taken as the sinking particulate organic carbon flux at 100 m (6.41
+ 1.52 Pg C yr—-1), and export ratio defined as sinking flux divided by net primary production (0.154 £ 0.026) both fell at the
lower end of observational estimates. Comparison with observational constraints also suggested that the model ensemble may
have underestimated regional biological CO2 drawdown and air-sea CO2 flux in high productivity regions. Reasonable model-
data agreement was found for global-integrated, ensemble-mean sinking particulate organic carbon flux into the deep ocean at
1000 m (0.95 + 0.64 Pg C yr-1) and the transfer efficiency defined as flux at 1000m divided by flux at 100m (0.121 + 0.035),
with both variables exhibiting considerable regional variability. Future modeling studies are needed to improve system-level

simulation of interaction between model ocean physics and biogeochemical response.
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Key Points:

¢ Global-scale, ocean biogeochemical simulations are compared with observation-based
estimates of the marine biological carbon pump.

e A multi-model ensemble exhibits relatively good agreement with observation-based
metrics for carbon export flux and transfer efficiency.

¢ Based on identified model-observation and inter-model differences, we provide guidance
for future model evaluations and development.
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Abstract

This study characterized ocean biological carbon pump metrics in the second iteration of
the REgional Carbon Cycle Assessment and Processes (RECCAP2) project, a coordinated,
international effort to constrain contemporary ocean carbon air-sea fluxes and interior carbon
storage trends using a combination of observation-based estimates, inverse models, and global
ocean biogeochemical models. The analysis here focused on comparisons of global and biome-
scale regional patterns in particulate organic carbon production and sinking flux from the
RECCAP2 model ensemble against observational products derived from satellite remote sensing,
sediment traps, and geochemical methods. There was generally encouraging model-data
agreement in large-scale spatial patterns, though with substantial spread across the model ensemble
and observational products. The global-integrated, model ensemble-mean export production, taken
as the sinking particulate organic carbon flux at 100 m (6.41 + 1.52 Pg C yr''), and export ratio
defined as sinking flux divided by net primary production (0.154 + 0.026) both fell at the lower end
of observational estimates. Comparison with observational constraints also suggested that the
model ensemble may have underestimated regional biological CO; drawdown and air-sea CO> flux
in high productivity regions. Reasonable model-data agreement was found for global-integrated,
ensemble-mean sinking particulate organic carbon flux into the deep ocean at 1000 m (0.95 + 0.64
Pg C yr') and the transfer efficiency defined as flux at 1000m divided by flux at 100m (0.121 +
0.035), with both variables exhibiting considerable regional variability. Future modeling studies
are needed to improve system-level simulation of interaction between model ocean physics and
biogeochemical response.

Plain Language Summary

Phytoplankton in the surface ocean create each year an amount of organic carbon
approximately equivalent to all the annual photosynthesis by plants on land. A small fraction of
this newly formed organic carbon is exported below the surface layer, and an even smaller amount
makes it all the way to the deep ocean. The transport of organic carbon to the sub-surface ocean,
called the biological carbon pump, influences the global-scale distributions of ocean nutrients,
oxygen, and inorganic carbon as well as the amount of carbon dioxide in the atmosphere. The
global rates and geographic patterns of photosynthesis and carbon flux out of the surface ocean
have previously been constructed from ship measurements and satellite remote sensing. Here, we
compare these observation-based estimates to a suite of three-dimensional, numerical ocean
models and find broadly similar results. The model simulations also capture aspects of the
biological carbon pump deeper in the water column, where there are fewer direct constraints from
field observations. Our comparison of observations and simulations identifies some deficiencies
in the models that should be corrected in order to better simulate climate change impacts on the
biological carbon pump.

1 Introduction

Marine biogeochemical processes play a central role in the global Earth System,
modulating the distribution of inorganic carbon, oxygen, and nutrients within the ocean and the
partitioning of carbon between ocean and atmosphere reservoirs (Broecker and Peng, 1982;
Sarmiento and Gruber, 2002; Devries, 2022; Iversen, 2023; Siegel et al., 2023). Because of the
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strong oceanic influence on atmospheric CO> concentration and thus planetary climate, there is
considerable scientific focus on quantifying both the baseline and trends in ocean carbon storage
and fluxes arising from the uptake of anthropogenic CO; and climate change impacts on marine
biogeochemical and physical dynamics (Henson et al., 2016; DeVries et al., 2019; Hauck et al.,
2020; Canadell et al., 2021; Crisp et al., 2022; Wilson et al., 2022; Gruber et al., 2023). The
REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated,
international effort to constrain contemporary ocean carbon air-sea fluxes and interior storage
trends using a combination of observation-based estimates, inverse models, and global ocean
biogeochemical models (GOBMs) (Wanninkhof et al., 2013; Khatiwala et al., 2013). The second
phase, RECCAP2, extends the original synthesis using additional years of ocean observations and
updated methodology and numerical results (DeVries et al., 2023; Hauck et al., 2023) as well as
expanding the scope of the analysis, in this case into biological carbon pump magnitude and
efficiency.

In a simple 1-D form, the marine biological carbon pump can be viewed as the net
production of particulate organic carbon (POC) and inorganic carbon (PIC) in the surface ocean,
downward vertical transport of particulate carbon into the thermocline and deep sea, and
subsequent respiration and remineralization of particulate carbon back into dissolved inorganic
carbon (DIC) (Volk and Hoffert, 1985). The downward organic carbon transport, or export flux,
drives subsurface marine biogeochemistry, fuels deep-ocean ecosystems, and influences ocean
carbon storage and atmospheric COz. The biological pump accentuates the vertical gradient in DIC
already established from CO; system thermal solubility and temperature gradients, and deep-ocean
carbon storage reflects a net balance between the biological carbon pump source and physical
ocean circulation processes that return elevated deep-ocean DIC waters back to the surface ocean
via upwelling and vertical mixing (Sarmiento and Gruber, 2006). The relationship between ocean
carbon storage and the strength of the biological pump is not necessarily straightforward because
of physical-biological interactions; for example, stronger overturning circulation can enhance both
biological export through increased nutrient supply and the physical return of high-DIC deep-
ocean waters to the surface (Doney et al., 2006). The vertical structure of the biological carbon
pump is also important. Sinking POC fluxes decline rapidly in the thermocline (0 to ~1000 m
depth), with only a fraction of surface export flux reaching the deep ocean below 1000 m (Martin
et al., 1987; Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022). Deeper remineralization
depths, that is the transport of a greater fraction of POC into the lower thermocline or deep ocean
prior to respiration, enhances ocean carbon storage because of generally reduced physical return
rates to the surface ocean for deeper waters, and therefore longer retention times for the
remineralized DIC, although with substantial regional variations associated with circulation
pathways and rates (Kwon et al., 2009; Siegel et al., 2021).

Net primary production (NPP) by surface ocean phytoplankton generates POC and
dissolved organic carbon (DOC), and most marine NPP is converted rapidly back to DIC through
zooplankton grazing of living biomass and detritus or through the microbial loop involving
consumption of POC and DOC pools. Export fluxes require an excess of community production
of organic carbon over respiration that in turn must be supported by an external supply of new
nutrients over sufficient time and space scales (Ducklow and Doney, 2013). The fraction of NPP
that is exported (export ratio = export flux/NPP), is modulated by the magnitude and seasonality
of NPP, environmental conditions, and phytoplankton and zooplankton community composition
(Laufkotter et al., 2016). Export flux from the euphotic zone occurs through multiple pathways
including gravitational sinking of POC (e.g., living and dead cells; fecal pellets; marine snow),
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physical subduction and mixing of POC and DOC below the surface layer, and active biological
transport by vertically migrating organisms (Siegel et al., 2016). Contemporary models capture,
with varying levels of sophistication and skill, biological processes involved in NPP and export
flux from the upper ocean (Fennel et al., 2022), though models tend to focus on gravitational
particle sinking and many do not incorporate all of the relevant export pathways (Boyd et al., 2019;
Henson et al., 2022) or dynamics governing vertical carbon fluxes from the surface to the deep sea
(Burd, 2024). Here we focus on simulated export via gravitational particle sinking, which is
incorporated in virtually all global ocean biogeochemical models in some form. Observation-based
estimates of the global export flux have a large range (~5-12 Pg C yr!; Siegel et al., 2016), which
is almost identical to the range in export estimates for the modern-day era simulated by coupled
climate models (4.5-12 Pg C yr'!; Henson et al., 2022), i.e. the observations-based estimates of
export flux provide a poor constraint for biogeochemical models. Because of differences in model
climate responses and parameterizations of the ocean biological carbon pump, substantial
uncertainties also plague projections of future changes in export flux in response to climate change.
For example, Henson et al. (2022) found a large inter-model spread in projected changes in export
flux by 2100 of between +0.16 and -1.98 Pg C yr'! (+1.8 to -41%) under the high-emission SSP5-
8.5 scenario.

Much of the export flux of organic carbon from the euphotic zone, taken here as the
downward flux through 100m (F100), is consumed by respiration in the mesopelagic zone (100 —
1000 m). The diverse mechanisms for vertical transport and remineralization of organic matter in
the mesopelagic are only partially captured in models (Fennel et al., 2022). A steep decline with
depth in the gravitational sinking flux of particles is well documented from mid-depth sediment
traps (e.g., Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022), but the exact processes
involved are less well quantified and may include physical and biological particle fragmentation
(Briggs et al., 2020) as well as particle consumption and repackaging by zooplankton (Stukel et
al., 2019). Particle fluxes and the depth-scale of remineralization are affected by particle
composition, size, density, and sinking speeds. Particles can vary widely from small, slowly
sinking dead cells and detrital material, to large marine snow aggregates with enhanced sinking
speeds from captured ballast material, to large rapidly sinking fecal pellets (Lam et al., 2011;
Omand et al., 2020). Vertical migrators transport organic carbon downward from the euphotic
zone into the mesopelagic, respiring CO»> and releasing fecal pellets at depth (Archibald et al.,
2019). Sinking particle fluxes and mesopelagic biological processes typically are not modeled in
great mechanistic detail in contemporary global ocean biogeochemical models, and often relatively
simplistic empirical relationships such as variants of the Martin power-law flux curve (Martin et
al., 1987) are used in place of explicit representation of the processes controlling mesopelagic flux
attenuation.

The proportion of sinking exported POC that survives remineralization in the mesopelagic
zone to reach depths > 1000 meters is referred to as the transfer efficiency, given here as the ratio
of sinking fluxes at 100 and 1000 meters (E1000/100). POC reaching 1000m depth is remineralized
below the main thermocline and is likely sequestered on timescales of >100 years, thus
contributing to the long-term ocean carbon sink (Siegel et al., 2021). There is currently little
consensus on the global magnitude or spatial patterns of transfer efficiency, with some approaches
suggesting that Eiooo/100 1s high at high latitudes and low at low latitudes (Marsay et al., 2015;
Weber et al., 2016; DeVries and Weber, 2017), whilst others imply the opposite pattern (Lam et
al., 2011; Henson et al., 2012; Guidi et al., 2015; Mouw et al., 2016b; Dinauer et al. 2022). A
variety of approaches have been used to generate these estimates, including paired in situ
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observations of 2**Th-derived export flux and deep sediment trap flux (Henson et al. 2012), vertical
profiles of flux from drifting sediment traps (Marsay et al., 2015) or inverting the observed nutrient
and/or oxygen distributions using an inverse model (Weber et al., 2016; Devries and Weber, 2017;
Cram et al., 2018). The differing approaches, and differing time and space scales that they integrate
over, are likely a significant source of the uncertainty in global Eiooo100 patterns. In CMIP6
models, there are substantial differences in both the preindustrial mean E1000/100 (varying from 3%
to 25% across models) and its response to 21% century climate change, with projections showing
both increases and decreases in E1oo0/100 over time (Wilson et al., 2022).

Early model skill assessments relied heavily on model-data comparisons to transient
tracers, ocean physics, and sub-surface nutrient and oxygen fields that reflect the imprint of
biological pump fluxes and ocean circulation (e.g., Matsumoto et al., 2004; Doney et al. 2004;
Najjar et al. 2007). However, observational constraints on the ocean biological carbon pump have
advanced considerably since the early global 3-D ocean biogeochemical modelling efforts (e.g.,
Bacastow and Maier-Reimer, 1990; Maier-Reimer, 1993). Global-scale data compilations of
primary production, surface export and mesopelagic sinking carbon fluxes are now available based
on a wealth of satellite remote sensing, sediment traps, and geochemical methods (e.g., Henson et
al. 2012; Mouw et al., 2016a). Past model-data skill assessments using multi-model ensembles
have highlighted differences in simulated ocean biological carbon pump patterns, magnitudes, and
mechanisms and identified model biases relative to admittedly imperfect observational estimates
(Laufkotter et al., 2015; Laufkotter et al., 2016). This study expands on these past assessment
efforts of the ocean biological carbon pump to include the current generation of global ocean
biogeochemical models compiled for RECCAP2 (DeVries et al., 2023).

The objective of this study is to characterize the global-scale biological carbon pump from
RECCAP2 models and compare the simulation results with observation-based metrics. The focus
is on the spatial patterns and global-integrated rates from the multi-model ensemble mean taking
into consideration inter-model spread. Key metrics include export of sinking POC from the surface
euphotic zone and the efficiency of POC transfer through the mesopelagic ocean, both of which
are central to ocean carbon storage. Based on identified model-observation and inter-model
differences, we also provide guidance for future global ocean biogeochemical model evaluations
and development that could include targeted, more detailed analyses of dynamics and biases within
individual RECCAP models.

2 Methods and Data

2.1 RECCAP2 model simulations and observational data products

This study leveraged a collection of ocean simulation and observational data sets, outlined
in Table 1, assembled for RECCAP2 following standardized protocols and data reporting for
numerical and observation-based pCO; products (RECCAP2 Ocean Science Team, 2022; DeVries
et al., 2023; Miiller, 2023). The RECCAP2 ocean data sets included monthly surface and annual
ocean interior output for the contemporary period from more than a dozen global ocean
biogeochemical model hindcast simulations, including both forward and data-assimilated models,
along with observation-based surface ocean pCO:> interpolation products. Many of the models
included in the RECCAP2 suite have been used in the Global Carbon Project to assess the ocean
carbon sink (Hauck et al., 2020; Friedlingstein et al., 2022). Here, we present model results for
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211 1985 to 2018 from RECCAP2 simulation A, which was forced with historical atmospheric
212 reanalysis data and increasing atmospheric CO;, and hence represents both steady-state and
213 variable climate processes and both natural, pre-industrial carbon fluxes and anthropogenic carbon
214 fluxes caused by rising atmospheric CO> (DeVries et al., 2023).

215

216  Table 1. Description of RECCAP2 global ocean biogeochemical hindcast models, global data-
217  assimilated models, and observation-based products used in this study. For more details see

218 Tables S1 and S2 in DeVries et al. (2023). The World Ocean Atlas (WOA) data set was also

219  used in the model-data evaluation.

220

221 Global hindcast models Data range References

222  CCSM-WHOI 1958-2017  Doney et al. (2009)

223  CESM-ETHZ 1980-2018  Lindsay et al. (2014); Yang and Gruber (2016)
224 CNRM-ESM2-1 1980-2018  Séférian et al. (2019; 2020); Berthet et al. (2019)
225 EC-Earth3 1980-2018  Doscher et al. (2021)

226 FESOM-REcoM-LR 1980-2018  Hauck et al. (2020)

227  MPIOM-HAMOCC 1980-2018  Ilyina et al. (2013); Mauritsen et al. (2019)

228 MOMG6-Princeton 1980-2018  Liao et al. (2020); Stock et al. (2020)

229 MRI-ESM2-1 1980-2018  Urakawa et al. (2020); Tsujino et al. (2017)
230  NorESM-OC1.2 1980-2018  Schwinger et al. (2016)

231 NEMO-PlankTOM12.1 1980-2018  Le Quéré et al. (2016); Wright et al. (2021)
232 ORCAI-LIM3-PISCES 1980-2018  Aumont et al. (2015)

233

234  Data-assimilated models

235 ECCO-Darwin 1995-2018  Carroll et al. (2020; 2022)
236  SIMPLE-TRIM Climatology DeVries and Weber (2017)
237

238 pCO:; interpolation products

239  CMEMS-LSCE-FFNN 1985-2018  Chau et al. (2022)

240 JenaMLS 1985-2018  Rodenbeck et al. (2013); Rodenbeck et al. (2022)
241  MPI-SOMFFN 1982-2018  Landschiitzer et al. (2016)
242 NIES-ML3 1980-2020  Zeng et al. (2022)

243 OceanSODA-ETHZ 1985-2018  Gregor and Gruber (2021)
244 LDEO HPD 1985-2018  Gloege et al. (2022)

245 UOEX Wat20 1985-2019  Watson et al. (2020)

246

247  World Ocean Atlas

248 Oxygen and AOU Climatology Garcia et al. (2019)

249

250 Biological carbon pump metrics
251 net primary production, export production,

252 and sinking POC flux Climatology Mouw et al. (2016a; 2016b)

253

254

255 Spatial 2D model output and pCO: interpolation products were provided to RECCAP2

256  with 1° x 1° resolution at monthly time steps, and 3D model output was resolved at annual time
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steps. All estimates derived in this study were computed on the 1° x 1° grid. Global multi-model
ensembles, spatial integrals and averages were computed as needed from the gridded results. For
the aggregation to sub-basin ocean regions, ocean biomes based on Fay and McKinley (2014) were
used in most instances to facilitate consistent regional intercomparison across RECCAP2 studies
(e.g., Hauck et al., 2023). Longhurst provinces (Supplement Figure S1; Reygondeau et al., 2013)
were additionally used in some of the biological pump model-observational comparisons to be
consistent with one of the key observational data synthesis products (Mouw et al., 2016a). The
notation and units for the biological, chemical and physical variables used in this study are
described in Table 2. More details on the RECCAP2 ocean data sets can be found in DeVries et
al. (2023).

We also used an observational compilation of surface ocean export production and sinking
POC flux combined with satellite ocean color data products for primary production synthesized in
Mouw et al. (2016a) and as aggregated to Longhurst regional provinces in Mouw et al. (2016b).
The full dataset includes over 15000 individual sediment trap and 2**Th POC flux measurements
at 673 locations, combined with satellite-derived estimates of NPP. Chlorophyll measurements
collected from the SeaWiFS sensor on the OrbView-2 ocean color satellite, spanning from August
1997 to December 2010, were used to derive NPP using the vertically generalized production
model (VGPM) (Behrenfeld and Falkowski, 1997) on an equal-area grid with 9-km resolution.
The climatology in Mouw et al. (2016a) used an interpolation approach to combine the satellite
timeseries and short-deployment (<30 days trap cup intervals) sediment trap POC flux
measurements at overlapping locations. Over 43% of the POC flux measurements were collected
after 1997, overlapping with the satellite record. For each POC flux location, median monthly
values are computed and binned into biogeochemical Longhurst provinces for the climatology.
The POC flux climatology also has a depth dimension, with depth bins centered at 20 m for a near-
surface layer, in 50 m intervals in the upper thermocline, and in 200 m intervals from 500 m to
5000 m.

Table 2. Glossary and description of modeled, observed, and derived variables including
notation and units.

Output
Variable Name Units frequency | Description
2D or surface ocean properties
pCO, patm monthly |Surface ocean pCO2
Vertically-integrated net primary production
NPP mol C m?2yr! |monthly |of organic carbon
Fio0 mol C m?2yr! |monthly |POC sinking flux at 100 m
Fio00 mol C m?2yr! |monthly |POC sinking flux at 1000 m
3D or Interior Ocean Properties
T °C annual Seawater potential temperature
S - annual Salinity (PSS-78)
F3p mol Cm?2yr! |annual |3D field of POC sinking flux
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(0)) mol Oz m* annual Dissolved oxygen concentration

Derived Variables

E1o0/vpp = Fi00/NPP - monthly |Surface Export Ratio
E1000/100 = F1000/F100 - monthly |Mesopelagic Transfer Efficiency
E1000/npp = Fio00/NPP - monthly |Surface to Deep-sea Export Efficiency
AOU umol kg! monthly |Apparent oxygen utilization

2.2 Ocean biological pump and biogeochemical metrics

Our analysis utilized biogeochemical model estimates of vertically integrated NPP and
export fluxes of sinking POC flux across a shallow surface at the approximate base of the euphotic
zone (100 m, Fio0) and at the base of the main thermocline (1000 m, Fioo0). Note that the 1000 m
fluxes were not provided for all models (see Figure 2¢), and therefore the ensemble means for Fioo
and Fioo0 were constructed from different subsets of RECCAP2 simulations. The export ratio,
Evoonpep, was computed as the ratio of POC sinking flux at 100 m divided by net integrated primary
production:

_ Figo
Eioo/npp = NPP

(1)
The transfer efficiency across the 1000 m depth horizon, E1o00/100, Was similarly computed as the
ratio of sinking POC fluxes at 100 m and 1000 m:

E _ Figoo
1000/100 =
100

)

A depth of 1000 m is taken as an approximate boundary between the main thermocline with
ventilation timescales of years to decades and the deep ocean with time-scales of a century and
longer (Siegel et al., 2021).

The relationship between the biological pump and the inorganic CO> system was examined
by partitioning the seasonal variability in surface seawater pCO> into thermal and non-thermal
components following Takahashi et al. (2002). We refer readers interested in a thorough analysis

of RECCAP2 CO; system seasonality to Rodgers et al. (2023). The temperature effect on pCO>

was calculated for isochemical seawater using the approximation %TCOZD = 0.0423 (°C™!) from

the experimental value from Takahashi et al. (1993). The seasonal cycle in monthly surface
temperature anomalies relative to the annual mean surface temperature generated a corresponding
seasonal variation in the thermal (temperature-dependent) pCO2 component about the pCO» annual
mean:

pcoéhermal = (pCOZ)mean X exp [0-0423(Tm0nthly - Tmean)]

3)
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Ocean hindcast simulations typically capture quite well the seasonal cycle of sea surface
temperature because the ocean models are forced by atmospheric reanalysis products and heat flux
boundary conditions that effectively contain information on the observed temperature record
(Doney et al., 2007); the same model-data agreement transfers to the thermal pCO; seasonal
component. The non-thermal pCO> component was computed by subtracting the thermal
component from the monthly pCO; values, and the seasonal amplitude ApCO2 non-thermai Was
calculated as the seasonal peak-to-trough difference. The non-thermal pCO> component reflects
seasonal variations in DIC and alkalinity from biological organic and inorganic carbon production
and remineralization, air-sea CO2 gas exchange, and physical transport and mixing. Note that the
seasonal phasing of the non-thermal pCO> component can be distinct from the phasing of the total
pCO:> cycle. This is especially the case in the low latitudes, where the thermal component
dominates the seasonal cycle (Takahashi et al., 1993; Landschiitzer et al., 2018; Rodgers et al.,
2023).

We also computed apparent oxygen utilization (AOU) using modeled dissolved oxygen,
salinity, and potential temperature fields. Modeled average AOU at 100 m (AOUj0) and 1000 m
depth (AOUj000) were found using nearest depth bins in model products (bins centered within 50
m of depths). The simulated AOU fields are compared against the World Ocean Atlas (WOA) data
product (Garcia et al., 2019).

3 Results

3.1 Simulated ocean biological carbon pump metrics

Global spatial fields of present-day biological carbon pump variables are displayed in
Figure 1 for the RECCAP2 model ensemble mean with the corresponding ensemble standard
deviation in Figure S1. Biome-scale ensemble-mean averages and within-ensemble standard
deviation values for the biological pump metrics are reported in Table 3 using the standard
RECCAP2 biomes by ocean basin (Figure S2; Fay and McKinley, 2014).

The magnitude and spatial patterns of simulated annual mean NPP and export flux from
sinking POC (F00) (Figure 1a and 1b) are broadly similar to observational estimates (Section 3.2).
Simulated upper-ocean biological pump variables showed large geographic variations with annual-
mean NPP ranging on biome scales (Table 3) from 8 to 21 mol C m™2 yr! and Fg ranging from
1.1t02.9 mol C m~ yr!. The simulated spatial patterns reflect euphotic zone temperature, nutrient
supply, and grazing and loss rates that govern phytoplankton standing stock in the models
(Falkowski et al., 1998; Laufkotter et al., 2015; Laufkétter et al., 2016). The imprint of nutrient
supply was particularly evident in the elevated NPP and export fluxes found in equatorial and
coastal upwelling regions, western boundary currents, and mid-latitude bands of deep seasonal
mixing. Within-ensemble standard deviations (G) of NPP and F';9p were elevated in the equatorial
band, and high onpp values were found also in the Southern Ocean indicating substantial model
disagreement within the ensemble (Figure S1a and S1b). Biome-scale onpp values ranged from 2.1
to 6.6 mol C m2 yr! (from as low as 0.22 to nearly 0.72 times the ensemble mean in parts of the
Southern Ocean); biome-scale 600 values varied from 0.4 to >1.0 mol C m2 yr~! with the largest
absolute and fractional within-ensemble variation of >0.7 times the ensemble mean occurring in
the western equatorial Pacific.
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The local POC sinking flux at the base of the mesopelagic (F7000) ranged at biome scale
from 0.09 to 0.54 mol C m~2 yr~! with broadly similar patterns to F;gs, though with some notable
exceptions such as the high F900 values in tropical low-oxygen zones in the eastern tropical Pacific
and Arabian Sea (Figure 1c). Note the roughly half to full order of magnitude decline in scale in
Figure 1 from NPP to F99 and then Figo to Fio00. This indicates first that the bulk of simulated
NPP is recycled within the euphotic zone above 100 m, rather than exported as sinking POC flux,
and second that most of the sinking POC flux at 100 m is remineralized in the mesopelagic, rather
than reaching the deep ocean below 1000 m. As for NPP and F190, some correspondence was found
for the spatial patterns of ensemble-mean F9p0 and Gri000. Highest biome-scale Grig00 values of
0.26 to 0.29 mol C m2 yr! occurred in the North Pacific and eastern equatorial Pacific, equal to
0.85 and 0.53 times the ensemble-mean 009 for those biomes; biome-scale crp00 values of ~0.5
or more of the ensemble-mean were common, with even higher fractional values locally such is in
the eastern subtropical North Pacific (Figure Slc; Table 3).

The fraction of NPP exported across 100 m, or export ratio (Eoonpp, Figure 1d; Table 3)
varies at the biome scale in the ensemble mean from 0.12 to 0.21 with elevated values in high
latitudes. The spatial patterns for within-ensemble E;9onpp standard deviation (Figure S1d) mirror
that of the mean E;gonpp with biome-mean standard deviations of 0.035 to 0.050 in most biomes
and up to 0.091 in the sub-polar Southern Ocean biome where there is more within-ensemble
model spread.
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Figure 1. Multi-model ensemble averages of biological pump parameters from 1985 to 2018
across all RECCAP2 model simulations (simulation A). Maps of annual mean (a) integrated net
primary productivity NPP, (b) particulate organic carbon export fluxes at 100 m F,,,, and (c) 1000
m depth F 4, all in mol C m2 yr-!. Ensemble mean (d) surface export efficiency ratio E;oq/npp =
Fi00/NPP (Eq. 1), (e) mesopelagic transfer efficiency at 1000 m Ey09/100 = Fio00/F,y, (Eq. 2), and
(f) export efficiency to the deep ocean E; 5o npp = Fio00/NPP, all ratios unitless.

100

The ensemble-mean transfer efficiency through the mesopelagic, E1000/100 (Figure 1e; Table
3), exhibited background levels at the biome-scale of 0.09-0.14 for most biomes and ranging as
high as 0.18 in the eastern equatorial Pacific biome; sub-biome regional values up to 0.3 occurred
in the eastern tropical Pacific, western and eastern tropical Atlantic, and Arabian Sea and Bay of
Bengal. Some ocean biogeochemical models reduce sub-surface POC remineralization in low-
oxygen zones, using a parameterization based on local oxygen concentrations, driving higher
E1000/100 values in low-oxygen regions such as the eastern tropical Pacific, Arabian Sea and Bay of
Bengal. Furthermore, POC flux mineral ballasting from Saharan dust deposition, prescribed as an
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external forcing, is likely an important contributor in at least some models (CCSM-WHOI and
CESM-ETHZ) to high E000/100 in the western tropical Atlantic (Lima et al., 2014). The ensemble
Ei000100 standard deviation (Figure Sle) generally followed Ejgooi00 with particularly large
oE 10001100 values up to 0.3 in the western tropical Atlantic reflecting differences across models in
the parameterization of POC sinking in the presence of desert dust. The metric Eipoonrp (Figure
1f), combining surface export and mesopelagic transfer efficiencies, had generally similar spatial
patterns to Eo00/100 but with lower values, reflecting the small fraction of NPP that sinks below
1000 m and is sequestered in the deep ocean. More than a factor of two variation was found for
metric E;goonpp across biomes (0.012 to 0.027) with large within-ensemble variation for some
biomes where the standard deviation approached or exceeded the ensemble mean.

Table 3. Model ensemble averages and standard deviations of biological pump parameters by
RECCAP?2 regional biomes (Figure S2) (see also Figure 1) grouped as Sub-Polar Seasonally
Stratified (SPSS), Sub-Tropical Seasonally Stratified (STSS), Sub-Tropical Permanently Stratified
(STPS), Equatorial (EQU), and Mediterranean (MED). Table includes annual means and standard
deviations for vertically integrated net primary productivity NPP, particulate organic carbon export
fluxes at 100 m F,,,, and 1000 m depth F,,, all in mol C m2 yr!, and average surface export
efficiency ratio Ejzo/npp = Fi0o/NPP, mesopelagic transfer efficiency at 1000 m Ejgo0/100 =
Fio00/F o, and export efficiency to the deep ocean Ejzgo/npp = Fig0o/NPP, all ratios unitless.
Ensemble were not computed for the small, high-latitude polar ice biomes due to noisy and/or
missing data across the full ensemble.

NPP Fioo Fiooo Eroonree Eio00100 E1oooee
SPSS

N. PACIFIC 11.89+4.81  221+0.65  0.307+0.263 0.206+0.076  0.124+0.071  0.018+0.012
N.ATLANTIC |9.3043.00  1.7740.65  0.17740.156 0.211£0.075 0.116+0.060  0.014+0.009
SOUTHERN | 9.2446.64  1.5940.60  0.197£0.119  0.213+0.091  0.132+£0.071  0.023+0.025
STSS

N. PACIFIC 13.5343.68  2.04£0.70  0.206+0.117  0.161£0.040  0.114+0.049  0.014+0.006
N.ATLANTIC | 12.984328  1.93+0.54  0.165:0.069 0.162£0.049  0.099+0.036  0.014+0.006
SOUTHERN | 13.91£5.02  2.1240.39  0.222+0.087 0.173+0.053  0.109+0.040  0.016+0.009
STPS

N. PACIFIC 8924324  1.18+0.61 0.17740.102  0.131+£0.047  0.132+0.049  0.017+0.010
N.ATLANTIC |7.7042.37 0097044  0.092+0.057 0.121£0.051  0.140+0.097  0.013:0.008
S.ATLANTIC | 9.78+2.16  1.33+0.41 0.138+0.090  0.130+0.043  0.104+0.040  0.012:0.008
INDIAN 16.67+4.75  2.25+0.85  0.284+0.162  0.143£0.035 0.130+0.063  0.016+0.008
EQU

W.PACIFIC | 11.03£531  1.44+1.06  0.10£0.078  0.134+£0.059  0.089+0.050  0.013+0.011
E. PACIFIC 21.16+5.16  2.91+0.74  0.542+0.288  0.151£0.043  0.178+0.086  0.027+0.015
ATLANTIC 14334471 1.94£0.65  0.27240.137  0.145£0.039  0.140+0.043  0.019+0.010
MED 9.2143.71 1.3440.79  0.074+£0.062  0.141+0.060  0.119+0.107 0.011+ 0.008
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To illustrate differences among the models making up the RECCAP2 multi-model
ensemble, global integrals of the annual average biological pump metrics are displayed in Figure
2. A box-whisker plot is shown for each model ensemble member quantifying the interannual
variability for each model for the RECCAP2 reporting period (1985-2018). Note that some
RECCAP2 models did not report Fiooo, resulting in missing estimates for E1ooo/100 and E1oooNpp.
Some models stood out as either anomalously low (e.g. FESOM-REcoM-LR for NPP) or high
(e.g. NEMO-PlankTOM12.1 for Fioo) relative to the other RECCAP2 ensemble members, though
inter-model agreement alone was not necessarily a robust indicator of model skill (see Section
3.2). For global Eioonpp, the models were roughly split into low (0.10-0.12) and high (0.16-0.19)
groups (Figure 2d). Global Fio00, E1000/100, and E1ooonpp varied widely for the smaller number of
available models (Figure 2c, 2e, and 2f).
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435  Figure 2. Boxplots showing median values (1985-2018), interannual interquartile ranges, and
436  outliers of biological pump metrics across model products in RECCAP2 ensemble (simulation A).
437  Globally integrated, annual (a) net primary productivity NPP, (b) particulate organic carbon export
438  fluxes at 100 m F,4, and (c) 1000 m depth Fyq, , all in Pg C y~!. Global and annual average (d)
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surface export efficiency ratio E;oo npp = Fi0o/NPP (Eq. 1), (e) mesopelagic transfer efficiency at
1000 m Ejg00/100 = Fio00/F4, (EQ. 2), and (f) export efficiency to the deep ocean E;goo/nppr =
Fi000/NPP, all ratios unitless. CCSM-WHOI output does not include the year 2018 and SIMPLE-
TRIM does not simulate interannual variability. Efficiency ratios are not given in panels d, e, and
f for models lacking the corresponding NPP, F,,, O Fygq0-

3.2 Model-observational comparisons

The global ocean biological carbon pump metrics from the RECCAP2 multi-model
ensemble were compared against corresponding literature values in Table 4 and Figure 3. The
RECCAP2 multi-model ensemble global-integrated NPP value, 42.7 + 10.9 Pg C yr!, was at the
lower end of literature estimates (43.5-68 Pg C yr!), and the inter-quartiles have limited overlap.
Similarly, global-integrated Figo from the multi-model ensemble of 6.41 + 1.52 Pg C yr! was
lower than the mean of the literature estimates of sinking POC flux (~8 Pg C yr’!, range 4-13 Pg
C yr!), though the inter-quartiles overlapped substantially because of the large range in
observation-based estimates. The global-integrated model ensemble Fioo0 value of 0.95 + 0.64 Pg
C yr! fell between one low estimate of 0.66 Pg C yr~! (Henson et al., 2012) and two other literature
estimates of 1.1 Pg C yr!. The global multi-model ensemble-mean export and transfer efficiencies,
Erooner (0.15 £ 0.03) and Erooor100 (0.12 = 0.04), were within the range of literature values after
removing the high Eioo values (0.3 and 0.38) from Laws et al. (2000) and acknowledging one low
outlier model for global E1000/100 (~0.05; CCSM-WHOI; Figure 2e).

The wide range of literature estimates reflects differences in measurement methodologies,
biases, and uncertainties in the datasets used for biological carbon pump metric estimation, as well
as uncertainties introduced by data sampling biases, aggregation, time/space interpolation and
modeling approaches. At global scales, in situ observational sampling for some variables remains
sparse and regionally patchy, and satellites, empirical relationships, and numerical models have
been used to gap-fill for global-scale product generation. For example, even with field data sets
available for ocean NPP based on “C uptake incubation studies, satellite remote sensing has been
required to create uniform global NPP products, which have been calibrated/validated against '*C
NPP field data. A variety of in situ methods have been used to estimate surface ocean export flux
estimates (~Fio0) — drifting sediment traps, 2**Th deficit, etc. To derive global-scale fields of
export, extrapolation from the limited in situ data is required which generates uncertainties in the
derived estimates due to the underlying data sparsity (Henson et al., 2024). Typically, satellite data
is used to build an empirical relationship between flux and readily derived variables, such as sea
surface temperature or chlorophyll concentration. Other approaches include merging satellite data
with food-web models (e.g., Siegel et al., 2014). Observation-based global Figoo estimates have
been generated from sediment trap data (Mouw et al., 2016a), and estimates of both global Fioo
and Fio00 have been derived from inverse and data-assimilation ocean models (e.g., Devries and
Weber, 2017; Nowicki et al., 2022).
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478  Table 4. Comparison of literature-based, global observation-based ocean biological carbon pump
479  metrics with the RECCAP2 model ensemble means and within-ensemble standard deviations.
480 Note that SIMPLE-TRIM data assimilation results from Devries and Weber (2017) are also

481
482

included in the RECCAP-2 model ensemble.

Net Primary Production NPP (Pg C yr'!)

References

43.5

VGPM Behrenfeld & Falkowski (1997)

52 CAFE Silsbe et al. 2016

68 Carr (2002) & Carr et al. 2006
49 Marra et al. (2003)

52 CbPM2 Behrenfeld et al. 2005
42.7+10.9 RECCAP2 model ensemble mean and STD
POC Export ~Fip (Pg C yr'")

4 Henson et al. (2012)

9.6 Dunne et al. (2007)

11.1-12.9 Laws et al. (2000)

5.7 Siegel et al. (2014)

9.6 Schlitzer (2000); inversion
9-13 Laws et al. (2011)

8.8 (7.3 at 100 m)

DeVries & Weber (2017); data assimilating

7.3 (6.4 at 100 m)

Nowicki et al. (2022)

6.41 +1.52

RECCAP2 model ensemble-mean and STD

POC Flux 1000 m Fj5 (Pg C yr')

0.66

Henson et al. (2012)

1.1 DeVries & Weber (2017)
1.1 Nowicki et al. (2022)
0.95 + 0.64 RECCAP2 model ensemble mean and STD

Export Ratio ~E;ponrp

0.1 Henson et al. (2012)

0.19 Dunne et al. (2007)

0.3 Laws et al. (2000); food web
0.38 Laws et al. (2000); empirical
0.103 Siegel et al. (2014)

0.17 Devries & Weber (2017)
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0.13 (for POC only) Nowicki et al. (2022)
0.18 (for POC + DOC + vertical migration)
0.154 = 0.026 RECCAP2 model ensemble mean and STD
Transfer Flux Efficiency Ep00/100
0.19 Henson et al. (2012)
0.13 DeVries & Weber (2017)
0.15 Nowicki et al. (2022)
0.121 £ 0.035 RECCAP2 model ensemble mean
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Figure 3. Box-whisker plots showing median values and interquartile ranges of biological pump
parameters from 1985-2018 averaged across model products in RECCAP2 ensemble (simulation
A). Global integrated, annual (a) net primary productivity NPP, (b) particulate organic carbon
export fluxes at 100 m F,,,, and (c) 1000 m depth F,, , all in Pg C yr'! (note that the median line
for Fi,00 1 also the upper interquartile because two of the three observational estimates match).
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491 Global and annual average surface export efficiency ratio (d) E,go/npp = Fi0o/NPP (Eq. 1), and (e)

492 mesopelagic transfer efficiency at 1000 m E;o50/100 = Fio00/F 4o, (EQ. 2), all ratios unitless.
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493
Province | Province | Province Description
Number | Code
1 NADR Westerlies - N. Atlantic Drift Province

Longhurst Ocean Provinces 2 NASW Westerlies - N. Atlantic Subtropical Gyral Province (West)

3 GUIA Coastal - Guianas Coastal Province
4 SATL Trades - South Atlantic Gyral Province (SATG)
5 BERS Polar - N. Pacific Epicontinental Province
6 PSAW Westerlies - Pacific Subarctic Gyres Province (West)
7 PSAE Westerlies - Pacific Subarctic Gyres Province (East)
8 NPPF Westerlies - N. Pacific Polar Front Province
9 NPSW Westerlies - N. Pacific Subtropical Gyre Province (West)
10 PNEC Trades - N. Pacific Equatorial Countercurrent Province
11 PEQD Trades - Pacific Equatorial Divergence Province
12 SPSG Westerlies - S. Pacific Subtropical Gyre Province
13 ARAB Coastal - NW Arabian Upwelling Province
14 MONS Trades - Indian Monsoon Gyres Province

494

495

496  Figure 4. Map of Longhurst provinces (Reygondeau et al., 2013) used in analysis of biological
497  pump field observations and model results (Mouw et al., 2016a).

498
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Figure 5. Box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges,
and outliers for annual-mean (a) vertical integrated primary production (NPPin), (b) sinking POC
fluxes at 100m (Fi00), and (c) sinking POC flux at 1000m (F,4), all in Pg C yr'!, pooled into
biogeochemical Longhurst ocean provinces (Figure 4) and compared to the observational
climatology for the same provinces constructed by Mouw et al. (2016b). Robust uncertainty
estimates are not available for the observational climatology which averages available data that is
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often spatially sparse and/or concentrated in brief time intervals. Note that only provinces with
sufficient observational data are plotted (see Figure 4).

The biological carbon pump model comparison to observation-based estimates was
extended in Figure 5 to a regional level using the observational data of Mouw et al. (2016a) as
aggregated by Mouw et al. (2016b) into monthly climatological values for Longhurst
biogeographic provinces (Figure 4). The Mouw et al. (2016a) date set aggregates the limited
available field data that is often spatially sparse and locally high frequency with considerable
mesoscale variability, some of which may be aliased into monthly and province scale averages.
Therefore, robust uncertainty estimates are not available for the Mouw et al. (2016b) observational
climatology. The variations across the RECCAP2 models are displayed as box-whisker plots. The
members of the model ensemble exhibited a wide range of NPP, Fio0 and Fioo0 values for many
provinces, but still the observational climatology falls within the multi-model ensemble inter-
quartiles for only about half of the provinces. The substantial model-observational offsets indicate
recurring regional differences consistent across multiple models in the RECCAP2 ensemble; these
disagreements could be targets for future ocean biogeochemical model development and analyses
of observational sampling biases. The model ensemble members also exhibited extreme model-
data differences in some provinces where the observational climatology value falls outside the
simulated range including model outliers. The RECCAP2 models consistently underestimated the
strength of biological carbon pump metrics, relative to the observational climatology, in polar and
sub-polar provinces in the North Pacific (N. Pacific epicontinental sea, BERS, low NPP and Fio0)
and North Atlantic (N. Atlantic Drift, NADR, low NPP); and in equatorial provinces in the Indian
(Northwest Arabian Sea upwelling, ARAB, low NPP), Pacific (Trades-Pacific Equatorial
Divergence, PEQD, low Fio0) and Atlantic (Guianas coast, GUIA, low Fioo0; note, the observed
high Guianas coast value reflects a small, productive region that may not be well represented in
global-scale models). In other provinces, the model ensemble overestimated the biological pump
in the South Pacific gyre (SPSG, high NPP and Fi00), Indian monsoon gyre (MONS, high NPP
and F00), and Western Pacific subarctic gyres (PSAW, high F1o00).

3.3 Biological pump imprint on ocean CO; system and biogeochemistry

The ocean biological carbon pump imprints on surface and sub-surface biogeochemistry
(see Introduction), and these effects are simulated in the RECCAP2 models. A strong positive
mesopelagic AOU signal is generated by cumulative biological O> consumption along the
ventilation paths of subsurface waters (Najjar et al., 2007). AOU fields thus integrate non-local,
large-scale biogeochemical dynamics and physical resupply of O from the surface. A key
contributor to AOU is the remineralization of sinking POC flux in the mesopelagic, quantified by
the large decline between Fioo and Fiooo and low transfer efficiency through the mesopelagic
E1000/100 (Figures 1-3; Tables 3 and 4). For the RECCAP2 model ensemble, there was generally
good model-data agreement in the geographic pattern in AOU averaged over the mesopelagic
(100-1000 m) (Figure 6). The model ensemble captured the regional AOU variation of <50 to
>250 umol kg!, though substantial disagreement arose on the scale of Longhurst provinces where
the model-ensemble interquartile spans the observational data for only a handful of provinces
(Figure 6¢). The RECCAP2 models did not exhibit a strong inter-model relationship between
global mean AOU and Fioo (not shown). The weak relationship between AOU and Fioo across
models likely highlights the influence on AOU of substantial variations in the strength of model
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thermocline ventilation rates that could also influence simulated anthropogenic CO> uptake (e.g.,
Dutay et al., 2002; Matsumoto et al., 2004). Model deep-ocean AOU was not evaluated because
model spin-up time scales were too short for the simulations to reach steady-state (Séférian et al.,
2019), an issue that also would affect simulated deep-ocean preindustrial DIC (Mikaloff Fletcher
et al., 2007). Some imprint of the observational fields used for model initial conditions could also
be retained in the simulated mesopelagic AOU depending on the model spin-up procedure.

a Model Ensemble b World Ocean Atlas
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Figure 6. Analysis of apparent oxygen utilization (AOU, umol kg™!) vertically averaged over the
mesopelagic zone (100-1000 m): (a) spatial map of RECCAP2 multi-model ensemble average,
and (b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2
multi-model ensemble medians, interquartile ranges, and outliers pooled into biogeochemical
Longhurst ocean provinces (Figure 4).

The simulated regional patterns and global integrated surface POC export Fioo (Figures 1

—3; Tables 3 and 4) must be balanced on appropriate time and space scales by new production and

external nutrient supply, largely from physical upwelling and mixing for most ocean regions



570
571
572
573
574
575
576
577
578
579
580

581
582

583
584

585
586
587
588
589
590
591
592
593
594
595
596
597
598

manuscript submitted to Global Biogeochemical Cycles

(Ducklow and Doney, 2013). As an indicator of physical controls on export associated with
nutrient supply, the individual RECCAP2 model, global-integrated F10 values exhibited a positive
correlation with global-ocean anthropogenic CO; uptake (Figure 7) (DeVries et al., 2023). This is
consistent with findings from previous model intercomparison exercises where models with
stronger thermocline ventilation had both larger export flux and anthropogenic CO- uptake (Najjar
et al.,, 2007). The Fipo—anthropogenic CO> uptake correlation, therefore, is indirect through a
common underlying physical mechanism whereby stronger ventilation enhances both the
downward transport of anthropogenic CO; correlation and the upward transport of nutrients and
thus Fioo. The physical-chemical solubility mechanisms controlling ocean anthropogenic CO:
uptake are well documented, and there is no evidence of any significant role for biogeochemical
processes, though climate-change biogeochemical feedbacks on ocean carbon storage may become
more important in the future (Canadell et al., 2021).
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Figure 7. Scatter plot of global-integrated ocean anthropogenic CO- uptake (mean of 1985-2018)
(Pg C yr!) versus particulate organic carbon (POC) export flux (Figo, Pg C yr!) for individual
RECCAP2 models. Anthropogenic CO: uptake for the same RECCAP2 models was taken from
DeVries et al. (2023) A linear regression and confidence intervals for the regression are overlain.
The Fioo—anthropogenic CO; uptake correlation was indirect through a common underlying
physical mechanism whereby stronger ventilation enhances both the downward transport of
anthropogenic CO; correlation and the upward transport of nutrients and thus F1oo.

Seasonal variations in upper-ocean biogeochemistry were used as a metric of the physical
controls associated with seasonal mixing and nutrient supply, which are reflected in simulated
POC export. By correcting for seasonal thermal variations in pCO2 (Equation 3), we used model
monthly pCO: fields to quantify the combined effects of seasonal biogeochemical, gas-exchange
and physical processes through the seasonal amplitude of non-thermal pCO2, ApCO2 non-thermal
(Takahashi et al., 2002). The geographic pattern of ApCO2 non-thermal from the RECCAP2 model
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ensemble was similar to the pattern from the mean of the pCO- observational products (Figure 8a
and 8b). Both the model ensemble and observational products exhibited regional variations of
ApCO2 non-thermal that ranged from 30 to >150 patm with elevated values in mid- to high latitudes
as well as equatorial and eastern boundary current upwelling regions. However, the magnitude of
ApCO2 non-thermal in the model ensemble was considerably lower in the mid- to high latitude northern
hemisphere, eastern tropical Pacific, and Brazil-Malvinas convergence region, suggesting a
generally weaker modeled seasonal cycling of DIC. The same low bias in the RECCAP2 models
was evident on the scale of Longhurst provinces where the observational products fell at the top
end or well above the model-ensemble interquartile (Figure 8c). In many ocean regions, strong
seasonality in mixed layer depth modulates vertical nutrient supply and annual-mean biological
productivity. The weaker model ensemble ApCO2 non-thermal Values (Figure 8), therefore, may be
linked to regional patterns of lower NPP and Fioo relative to observations (Figure 5) in the North
Pacific (BERS province), North Atlantic (NADR province), eastern equatorial Pacific (PEQD),
and Brazil-Malvinas convergence (western part of SATL province).
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Figure 8. Analysis characterizing the combined effects of seasonal biogeochemical, gas-exchange
and physical processes using the seasonal amplitude of non-thermal Apco,, ... (a) spatial
map of RECCAP2 multi-model ensemble average, (b) spatial map from pCO> observational data
products, and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile
ranges, and outliers pooled into biogeochemical Longhurst ocean provinces (Figure 4). The
province means from each observational product are plotted in panel (c¢) as individual points rather
than as box-whiskers because of the limited number of observational products.

4 Discussion and Conclusions

Our analysis of the ocean biological carbon pump fields from the RECCAP2 multi-model
ensemble revealed generally encouraging agreement with many aspects of observed patterns.
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Global-integrated NPP and surface export flux (F1o0) from the RECCAP2 models tended to fall at
the lower end of observational estimates (Figure 3 and Table 4), and geographic patterns in NPP
were generally consistent with observational data products (Figures 1 and 5). Similar to previous
model intercomparison studies (Laufkdtter et al., 2015; Laufkotter et al., 2016), we found
substantial within-ensemble variation in global biological carbon pump metrics, including the
presence of model outliers (Figure 3), indicating that these aspect of biogeochemical models have
not necessarily converged with time.

Regional patterns in the RECCAP2 model-mean ensemble included elevated NPP, surface
export flux (Fioo) and export efficiency (Eio0) in high-latitudes and coastal and equatorial
upwelling regions, with lower values in more oligotrophic regions. These results are in line with
previous studies that found that a substantial proportion of NPP in nutrient-rich regions is driven
by large phytoplankton such as diatoms and, combined with an active zooplankton population, this
can generate a significant export flux in the form of both dense aggregates and fecal pellets. High-
latitude elevated biomass, colder temperatures (Dunne et al., 2005), and strong seasonality also
have been implicated in observations of higher POC export fluxes in spring and/or summer months
contributing to the annual mean (Buesseler et al., 2001; Lampitt et al., 2001; Bol et al., 2018;
Henson et al., 2023). In low nutrient regimes, such as the lower latitude oligotrophic gyres,
previous studies report export flux to be low (Henson et al., 2012) but relatively constant
throughout the year with small seasonal increases in fluxes (Karl et al., 2012). Future studies of
the RECCAP2 ensemble could investigate in more detail the seasonality in NPP, Fig, and Eioo,
exploring, for example, the seasonal variability in export ratio that can be substantial due in part
to the time lag between NPP and export flux (Henson et al., 2015; Giering et al., 2017; Laws and
Maiti, 2019; Henson et al., 2015).

The sinking POC flux into the deep ocean (Fio00) and mesopelagic transfer efficiency
across the mesopelagic zone (E1o00/100) in the RECCAP2 multi-model ensemble (Figures 1 and 5)
exhibited different spatial patterns than found for surface export, similar to findings of previous
studies (e.g., Henson et al., 2012). Simulated F1000 and E1000/100 Were greater in the tropical eastern
Pacific, eastern Atlantic, and Arabian Sea, and Eioo0/100 was also elevated in the western tropical
North Atlantic and, to a lesser extent, Southern Ocean. Previous model studies have also found
substantial regional variations due to particle size and composition effects (Lima et al., 2014) that
modify empirical power curves used for modeling POC sinking and remineralization (Martin et
al., 1987). Model parameterizations tend to increase the effective remineralization length scales
and thus transfer to depth in regions with high mineral fluxes (e.g., dust, CaCOs3, silica) (Armstrong
et al., 2002) or in tropical oxygen minimum zones (Laufkétter et al., 2017; Dinauer et al., 2022).
The RECCAP2 regional variations in mesopelagic transfer efficiency, modulated with basin-scale
variations in physical circulation-driven sequestration time-scale (Siegel et al., 2021), influence
the effect of the biological pump on ocean carbon storage (Kwon et al., 2009).

While we focused primarily on long-term mean NPP and export fluxes, the RECCAP2
models also exhibited year-to-year variability (Table S1), though typically much lower than
within-ensemble model differences (Figure 2), and small long-term temporal trends (Table S2).
No consistent positive or negative trend was observed across the models in simulated NPP and
sinking POC fluxes at 100m and 1000m, with NPP trends of order +£0.01 Pg C yr!/year over the
33 years of the time series (1985-2018). Although these trends could contain a signal from climate
change, the relatively short duration of the RECCAP2 analysis period resulted in large signal to
noise due to interannual variability. Previous modeling studies indicate that chlorophyll and NPP
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time series of 30-40 years length are needed to distinguish climate change trends from natural
variability (Henson et al., 2010). Hence, the RECCAP2 analysis period may indeed not be long
enough to separate trends from interannual variability. While a recent study suggests that climate-
change trends can emerge more rapidly in ocean color remote-sensing reflectance (Cael et al.,
2023), any actual climate change signal in models may be masked by temporal biases associated
with incomplete model spin-up and resulting temporal drift (Séférian et al., 2016).

Our analysis of the biological carbon pump was relevant in several ways to the primary
focus of the RECCAP2 ocean project on air-sea CO> fluxes and ocean uptake of anthropogenic
COz (DeVries et al., 2023). Biological net CO uptake and carbon export modulate the background,
pre-industrial and contemporary spatial and seasonal patterns of surface ocean pCO- and sea-air
CO: flux that must be accounted for to determine anthropogenic CO; perturbations. The low model
F1o0 values globally (Figure 3) and for mid- to high-latitude Northern Hemisphere and eastern
equatorial Pacific provinces (Figure 5), relative to observations, suggested that the RECCAP2
model ensemble may have underestimated biological CO2 drawdown in high productivity regions.
Potential issues were also identified in simulated seasonal biogeochemical, gas-exchange and
physical dynamics as captured in the seasonal amplitude of non-thermal pCO> variations, with
weaker ApCO2 non-thermal Values found at mid- to high-latitudes and in the eastern equatorial Pacific
in the model ensemble relative to observations (Figure 8). Future work with more detailed model
diagnostics could explore the connections between regional biases in simulated annual-mean and
seasonal export production and biases in air-sea CO; flux as observed in other RECCAP2 studies
(DeVries et al., 2023; Hauck et al., 2023).

Ocean circulation modulates biological export flux on basin to global scales (Najjar et al.,
2007), and the range in RECCAP2 global-integrated Fioo values indicated that substantial
differences exist in simulated ocean physics within the RECCAP2 marine biogeochemical models
(Doney et al., 2004). The same ocean circulation variations also likely influenced the
anthropogenic CO; uptake estimates from DeVries et al. (2023) as indicated by the positive
correlation between anthropogenic CO; uptake and Fioo across individual RECCAP2 models
(Figure 7). This is supported by further analysis of the RECCAP2 models demonstrating that the
rate of ocean overturning circulation is strongly correlated with anthropogenic CO: uptake in the
models (Terhaar et al., 2023). Variations in model export could also be compared against metrics
of physical stratification (Fu et al., 2022). The substantial inter-model spread in both physical and
biogeochemical metrics likely reflects common factors resulting from differences in simulated
thermocline ventilation and exchange between the surface and mid-depth ocean.

A set of additional model development recommendations emerge from our analyses. One
path forward would leverage independent model skill evaluation for inert chemical tracers (e.g.,
CFC-11, CFC-12, SF¢) using standard ocean model intercomparison protocols (e.g., CMIP6 Ocean
Model Intercomparison Project; Orr et al., 2017). The transient tracer simulations would help
decipher the physical-biological factors controlling simulated AOU (Figure 6). Remineralization
of sinking biological organic matter structures sub-surface ocean dissolved inorganic carbon, Oa,
and nutrient fields, a signal that must be addressed in observational estimates of anthropogenic
CO.. While the predominant pathway for ocean anthropogenic CO: uptake involves physical-
chemical dynamics, rather than biological dynamics, the same physical circulation and mixing
processes influence biogeochemical rates such as nutrient supply. Therefore, evaluation and
improvement of the ocean biological pump may provide additional insight.



716
717
718
719
720
721
722
723
724
725
726
727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

751
752
753
754
755
756
757
758
759
760

manuscript submitted to Global Biogeochemical Cycles

The substantial variation in biological pump metrics shown here highlighted the need to
reconcile inter-model and model-observational differences. Challenges arise for model
improvement because there is limited agreement on the appropriate parameterizations for many
key processes of biological carbon export (Henson et al., 2022), subsurface particle sinking, and
remineralization. Many global models include detailed representation of euphotic zone processes
but rather more simplistic representation of mesopelagic processes. Thus, the simulated global-
scale biological carbon pump responses to interannual variability, let alone decadal climate
change, remain poorly constrained (Henson et al., 2016). Following the mechanistic approach
reported in previous model intercomparison studies for primary production (Laufkétter et al.,
2015) and export production (Laufkétter et al., 2016), future studies could emphasize how overall
model behavior reflects differences in model parameterizations, functional equations, and
parameter values in both the euphotic and mesopelagic zones.

Opportunities exist to leverage process-level information from lab and field studies to
improve model treatment of POC production, sinking POC flux and extension of export pathways
beyond POC gravitational sinking, for example physical subduction and active migration by
organisms (Boyd et al., 2019; Siegel et al., 2016; Henson et al., 2022; Siegel et al., 2023).
Phytoplankton community structure, captured to some degree in many models, influences
magnitude and composition of export flux from the euphotic zone, the heterotrophic consumers of
sinking POC and zooplankton community structure (Boyd and Newton, 1995; Cavan et al., 2019).
Model treatments could be improved for grazers, such as zooplankton, that act to decrease particle
flux by consuming phytoplankton and sinking POC, while also increasing flux by packaging POC
into fecal pellets with a wide range of sinking speeds (Turner, 2015; Steinberg and Landry, 2017).
Grazer diel vertical migration may also need to be incorporated as a carbon shunt below the depth
horizons of most intense heterotrophic activity (i.e., upper mesopelagic zone), consuming POC in
the surface ocean and respiring it at grazer resident daytime depth (Bianchi et al., 2013). More
mechanistic treatment of particle dynamics may also be feasible. Particle disaggregation,
physically through shear or biologically through fragmentation by grazers, likely contributes
substantially to the decline in POC flux with depth while also providing a POC source for
mesopelagic microbes (Laurenceau-Cornec et al., 2020; Briggs et al., 2020). Microbes also can
reduce POC flux directly, as they constantly attach and detach from sinking POC (Kierboe et al.,
2002; Kierboe et al., 2003), hydrolyzing and respiring the POC. While variable particle sinking
speed is included in some model parameterizations, large meta-analyses of empirical data have
struggled to find a strong link between sinking rate and size of particles, because of the vast
variability in particle type, methods used to measure sinking rate, and environment the particles
were collected from (Cael et al., 2021).

Many of these process-level insights are already driving progress on mechanistic
parameterizations for sinking particle flux (e.g., Dinauer et al., 2022), vertical migration (e.g.,
Archibald et al., 2019), and other key factors in the marine biological pump. Together with global-
scale ocean biogeochemical data compilations and syntheses (e.g., Mouw et al., 2016a; Mouw et
al., 2016b, Clements et al., 2023) there are now promising new opportunities to evaluate, constrain,
and improve ocean biological carbon pump simulations. Based on the model-data analysis
presented here, the RECCAP2 multi-model ensemble exhibited relatively good agreement with
observed biological carbon pump metrics, where there is sufficient data. The analysis also
identified model-data biases and substantial differences among some of the models included in
RECCAP2. These biases should be used to guide directions for future model development.
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The REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated, international
effort to constrain contemporary ocean carbon air-sea fluxes and interior storage trends using a combination
of field observations, inverse model products, and ocean biogeochemical hindcast simulations. The second
phase, RECCAP2, extends the original synthesis using additional years of ocean observational data and
updated numerical results (DeVries et al., 2023) as well as expanding the scope of the observational and model
analysis, in this case into the biological carbon pump magnitude and efficiency.
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TE 1 000npp

Figure S1. Maps of within-ensemble standard deviation of biological pump parameters. Standard
deviations across model ensemble members are computed relative to the average model ensemble
presented in Figure 1 for: (a) vertically integrated primary productivity oypp, (b) particulate
organic carbon export fluxes at 100 m oF, 4, and (c) 1000 m oF, 0, all in moles C m~ y~!, and (d)
surface export efficiency ratio E,zo/npp = Fi00/NPP, (€) mesopelagic transfer efficiency at 1000 m
E1000/100 = Fro00/F 4y and (f) export efficiency to the deep ocean E;og9/npp = Fig00/NPP, all ratios
unitless.
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Ocean Provinces modified from Biomes defined in Faye

and McKinley (2014)

Biome Number | Biome Acronym Biome Description
18 SOSPSS Southern Ocean Subpolar Seasonally Stratified
17 NaAEQU N. Atlantic Equatorial
16 SOICE Southern Ocean Ice
15 NPICE North Pacific Ice
14 NPSTPS N. Pacific Subtropical Permanently Stratified
13 NaSTPS N. Atlantic Subtropical Seasonally Stratified
12 SOSTSS Southern Ocean Subtropical Seasonally Stratified
1 BARENTS Barents Sea
10 PEQUE Eastern Equatorial Pacific
9 PEQUW Western Equatorial Pacific
8 NAICE N. Atlantic Ice
7 NaSTSS N. Atlantic Subtropical Seasonally Stratified
6 NPSTSS N. Pacific Subtropical Seasonally Stratified
5 NPSPSS N. Pacific Subpolar Seasonally Stratified
4 INDSTPS Indian Ocean Subtropical Permanently Stratified
3 MED Mediterranean Sea
2 SASTPS S. Atlantic Subtropical Permanently Stratified
1 NaSPSS N. Atlantic Subpolar Seasonally Stratified

Figure S2. Map of standard RECCAP2 biomes by ocean basin (Fay and McKinley, 2014). The
biomes include polar (ICE), subpolar seasonally-stratified (SPSS), subtropical seasonally stratified
(STSS), subtropical permanently stratified (STPS), and equatorial regions (EQU); note the
equatorial Pacific is divided into western and eastern sub-basins. The equatorial eastern Pacific
and Atlantic, monsoon-influenced Indian, and seasonally-stratified biomes generally exhibited
relatively high NPP, Fioo, and Fio00. Polar and sub-polar biomes exhibited relatively high Eioo.
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Figure S3. Analysis of the seasonal cycle of non-thermal Apco, . ... = (a) spatial map of
RECCAP2 multi-model ensemble average, (b) spatial map from pCO- observational data products,
and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges, and
outliers pooled into Fay and McKinley biomes (Figure S2).
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Figure S4. Analysis of apparent oxygen utilization (AOU) vertically averaged over the
mesopelagic zone (100-1000 m) (a) spatial map of RECCAP2 multi-model ensemble average, and
(b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2 multi-
model ensemble medians, interquartile ranges, and outliers pooled into Fay and McKinley biomes
(Figure S2).

Supporting Information Tables



manuscript submitted to Global Biogeochemical Cycles

1467 Table S1. Interannual variability (1985-2018) for the RECCAP2 simulations (simulation A) for
1468  global-integrated, annual-mean variables: vertically integrated net primary productivity NPP and

1469  particulate organic carbon export fluxes at 100 m F;,, and 1000 m depth Fj,yo. Interannual
1470  variability (standard deviation) are in Pg C y~!.
1471

FESOM MPIOM

- MOMG6- - Nor ES ORCAL
CCSM- CESM- CNRM- ECCO- EC- REcoM Princeto HAMO MRI- M- -LIM3-  PlankT

WHOI ETHZ ESM2 Darwin Earth3 LR n CC ESM2-0 OC1.2 PISCES OMI12
NPP' 01914 03743 02000 07272 0.2194 03878 03204 1.5377 04127 03518 0.2286 0.3655
F100 00352 0.0491 0.0304 0.1966 0.0412 0.1079 0.0383 0.2004 0.0736 0.0717 0.0484 0.1447

F1000 (0024 0.0140 0.0000 0.1107 0.0000 0.0143 0.0000 0.0419 0.0103 0.0283 0.0000 0.0000
1472

1473 Table S2. Long-term temporal trends (1985-2018) for the RECCAP2 simulations (simulation A)
1474  for global-integrated, annual-mean variables: vertically integrated net primary productivity NPP

1475 and particulate organic carbon export fluxes at 100 m F;, and 1000 m depth F;o. Trends are in
1476 Pg C y !/year,
1477

FESOM MPIOM

- MOMG6- - Nor ES ORCAL
CCSM- CESM- CNRM- ECCO- EC- REcoM Princeto HAMO MRI- M- -LIM3-  PlankT

WHOI ETHZ ESM2 Darwin Earth3 = LR n CC ESM2-0 OC1.2 PISCES OMI12
NPP™ 0140 -0.0172 0.0005 -0.0727 0.0017 -0.0094 0.0102 0.0028 -0.0047 0.0009 0.0190 0.0184
F100 .0031 -0.0020 0.0000 -0.0209 0.0000 0.0013 0.0010 0.0001 0.0002 0.0017 0.0029 0.0237

F1000 5 0002 -0.0002 0.0000 -0.0117 0.0000 0.0004 0.0000 0.0013 0.0000 -0.0001 0.0000 0.0000
1478

1479
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Key Points:

¢ Global-scale, ocean biogeochemical simulations are compared with observation-based
estimates of the marine biological carbon pump.

e A multi-model ensemble exhibits relatively good agreement with observation-based
metrics for carbon export flux and transfer efficiency.

¢ Based on identified model-observation and inter-model differences, we provide guidance
for future model evaluations and development.
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Abstract

This study characterized ocean biological carbon pump metrics in the second iteration of
the REgional Carbon Cycle Assessment and Processes (RECCAP2) project, a coordinated,
international effort to constrain contemporary ocean carbon air-sea fluxes and interior carbon
storage trends using a combination of observation-based estimates, inverse models, and global
ocean biogeochemical models. The analysis here focused on comparisons of global and biome-
scale regional patterns in particulate organic carbon production and sinking flux from the
RECCAP2 model ensemble against observational products derived from satellite remote sensing,
sediment traps, and geochemical methods. There was generally encouraging model-data
agreement in large-scale spatial patterns, though with substantial spread across the model ensemble
and observational products. The global-integrated, model ensemble-mean export production, taken
as the sinking particulate organic carbon flux at 100 m (6.41 + 1.52 Pg C yr''), and export ratio
defined as sinking flux divided by net primary production (0.154 + 0.026) both fell at the lower end
of observational estimates. Comparison with observational constraints also suggested that the
model ensemble may have underestimated regional biological CO; drawdown and air-sea CO> flux
in high productivity regions. Reasonable model-data agreement was found for global-integrated,
ensemble-mean sinking particulate organic carbon flux into the deep ocean at 1000 m (0.95 + 0.64
Pg C yr') and the transfer efficiency defined as flux at 1000m divided by flux at 100m (0.121 +
0.035), with both variables exhibiting considerable regional variability. Future modeling studies
are needed to improve system-level simulation of interaction between model ocean physics and
biogeochemical response.

Plain Language Summary

Phytoplankton in the surface ocean create each year an amount of organic carbon
approximately equivalent to all the annual photosynthesis by plants on land. A small fraction of
this newly formed organic carbon is exported below the surface layer, and an even smaller amount
makes it all the way to the deep ocean. The transport of organic carbon to the sub-surface ocean,
called the biological carbon pump, influences the global-scale distributions of ocean nutrients,
oxygen, and inorganic carbon as well as the amount of carbon dioxide in the atmosphere. The
global rates and geographic patterns of photosynthesis and carbon flux out of the surface ocean
have previously been constructed from ship measurements and satellite remote sensing. Here, we
compare these observation-based estimates to a suite of three-dimensional, numerical ocean
models and find broadly similar results. The model simulations also capture aspects of the
biological carbon pump deeper in the water column, where there are fewer direct constraints from
field observations. Our comparison of observations and simulations identifies some deficiencies
in the models that should be corrected in order to better simulate climate change impacts on the
biological carbon pump.

1 Introduction

Marine biogeochemical processes play a central role in the global Earth System,
modulating the distribution of inorganic carbon, oxygen, and nutrients within the ocean and the
partitioning of carbon between ocean and atmosphere reservoirs (Broecker and Peng, 1982;
Sarmiento and Gruber, 2002; Devries, 2022; Iversen, 2023; Siegel et al., 2023). Because of the
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strong oceanic influence on atmospheric CO> concentration and thus planetary climate, there is
considerable scientific focus on quantifying both the baseline and trends in ocean carbon storage
and fluxes arising from the uptake of anthropogenic CO; and climate change impacts on marine
biogeochemical and physical dynamics (Henson et al., 2016; DeVries et al., 2019; Hauck et al.,
2020; Canadell et al., 2021; Crisp et al., 2022; Wilson et al., 2022; Gruber et al., 2023). The
REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated,
international effort to constrain contemporary ocean carbon air-sea fluxes and interior storage
trends using a combination of observation-based estimates, inverse models, and global ocean
biogeochemical models (GOBMs) (Wanninkhof et al., 2013; Khatiwala et al., 2013). The second
phase, RECCAP2, extends the original synthesis using additional years of ocean observations and
updated methodology and numerical results (DeVries et al., 2023; Hauck et al., 2023) as well as
expanding the scope of the analysis, in this case into biological carbon pump magnitude and
efficiency.

In a simple 1-D form, the marine biological carbon pump can be viewed as the net
production of particulate organic carbon (POC) and inorganic carbon (PIC) in the surface ocean,
downward vertical transport of particulate carbon into the thermocline and deep sea, and
subsequent respiration and remineralization of particulate carbon back into dissolved inorganic
carbon (DIC) (Volk and Hoffert, 1985). The downward organic carbon transport, or export flux,
drives subsurface marine biogeochemistry, fuels deep-ocean ecosystems, and influences ocean
carbon storage and atmospheric COz. The biological pump accentuates the vertical gradient in DIC
already established from CO; system thermal solubility and temperature gradients, and deep-ocean
carbon storage reflects a net balance between the biological carbon pump source and physical
ocean circulation processes that return elevated deep-ocean DIC waters back to the surface ocean
via upwelling and vertical mixing (Sarmiento and Gruber, 2006). The relationship between ocean
carbon storage and the strength of the biological pump is not necessarily straightforward because
of physical-biological interactions; for example, stronger overturning circulation can enhance both
biological export through increased nutrient supply and the physical return of high-DIC deep-
ocean waters to the surface (Doney et al., 2006). The vertical structure of the biological carbon
pump is also important. Sinking POC fluxes decline rapidly in the thermocline (0 to ~1000 m
depth), with only a fraction of surface export flux reaching the deep ocean below 1000 m (Martin
et al., 1987; Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022). Deeper remineralization
depths, that is the transport of a greater fraction of POC into the lower thermocline or deep ocean
prior to respiration, enhances ocean carbon storage because of generally reduced physical return
rates to the surface ocean for deeper waters, and therefore longer retention times for the
remineralized DIC, although with substantial regional variations associated with circulation
pathways and rates (Kwon et al., 2009; Siegel et al., 2021).

Net primary production (NPP) by surface ocean phytoplankton generates POC and
dissolved organic carbon (DOC), and most marine NPP is converted rapidly back to DIC through
zooplankton grazing of living biomass and detritus or through the microbial loop involving
consumption of POC and DOC pools. Export fluxes require an excess of community production
of organic carbon over respiration that in turn must be supported by an external supply of new
nutrients over sufficient time and space scales (Ducklow and Doney, 2013). The fraction of NPP
that is exported (export ratio = export flux/NPP), is modulated by the magnitude and seasonality
of NPP, environmental conditions, and phytoplankton and zooplankton community composition
(Laufkotter et al., 2016). Export flux from the euphotic zone occurs through multiple pathways
including gravitational sinking of POC (e.g., living and dead cells; fecal pellets; marine snow),
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physical subduction and mixing of POC and DOC below the surface layer, and active biological
transport by vertically migrating organisms (Siegel et al., 2016). Contemporary models capture,
with varying levels of sophistication and skill, biological processes involved in NPP and export
flux from the upper ocean (Fennel et al., 2022), though models tend to focus on gravitational
particle sinking and many do not incorporate all of the relevant export pathways (Boyd et al., 2019;
Henson et al., 2022) or dynamics governing vertical carbon fluxes from the surface to the deep sea
(Burd, 2024). Here we focus on simulated export via gravitational particle sinking, which is
incorporated in virtually all global ocean biogeochemical models in some form. Observation-based
estimates of the global export flux have a large range (~5-12 Pg C yr!; Siegel et al., 2016), which
is almost identical to the range in export estimates for the modern-day era simulated by coupled
climate models (4.5-12 Pg C yr'!; Henson et al., 2022), i.e. the observations-based estimates of
export flux provide a poor constraint for biogeochemical models. Because of differences in model
climate responses and parameterizations of the ocean biological carbon pump, substantial
uncertainties also plague projections of future changes in export flux in response to climate change.
For example, Henson et al. (2022) found a large inter-model spread in projected changes in export
flux by 2100 of between +0.16 and -1.98 Pg C yr'! (+1.8 to -41%) under the high-emission SSP5-
8.5 scenario.

Much of the export flux of organic carbon from the euphotic zone, taken here as the
downward flux through 100m (F100), is consumed by respiration in the mesopelagic zone (100 —
1000 m). The diverse mechanisms for vertical transport and remineralization of organic matter in
the mesopelagic are only partially captured in models (Fennel et al., 2022). A steep decline with
depth in the gravitational sinking flux of particles is well documented from mid-depth sediment
traps (e.g., Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022), but the exact processes
involved are less well quantified and may include physical and biological particle fragmentation
(Briggs et al., 2020) as well as particle consumption and repackaging by zooplankton (Stukel et
al., 2019). Particle fluxes and the depth-scale of remineralization are affected by particle
composition, size, density, and sinking speeds. Particles can vary widely from small, slowly
sinking dead cells and detrital material, to large marine snow aggregates with enhanced sinking
speeds from captured ballast material, to large rapidly sinking fecal pellets (Lam et al., 2011;
Omand et al., 2020). Vertical migrators transport organic carbon downward from the euphotic
zone into the mesopelagic, respiring CO»> and releasing fecal pellets at depth (Archibald et al.,
2019). Sinking particle fluxes and mesopelagic biological processes typically are not modeled in
great mechanistic detail in contemporary global ocean biogeochemical models, and often relatively
simplistic empirical relationships such as variants of the Martin power-law flux curve (Martin et
al., 1987) are used in place of explicit representation of the processes controlling mesopelagic flux
attenuation.

The proportion of sinking exported POC that survives remineralization in the mesopelagic
zone to reach depths > 1000 meters is referred to as the transfer efficiency, given here as the ratio
of sinking fluxes at 100 and 1000 meters (E1000/100). POC reaching 1000m depth is remineralized
below the main thermocline and is likely sequestered on timescales of >100 years, thus
contributing to the long-term ocean carbon sink (Siegel et al., 2021). There is currently little
consensus on the global magnitude or spatial patterns of transfer efficiency, with some approaches
suggesting that Eiooo/100 1s high at high latitudes and low at low latitudes (Marsay et al., 2015;
Weber et al., 2016; DeVries and Weber, 2017), whilst others imply the opposite pattern (Lam et
al., 2011; Henson et al., 2012; Guidi et al., 2015; Mouw et al., 2016b; Dinauer et al. 2022). A
variety of approaches have been used to generate these estimates, including paired in situ
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observations of 2**Th-derived export flux and deep sediment trap flux (Henson et al. 2012), vertical
profiles of flux from drifting sediment traps (Marsay et al., 2015) or inverting the observed nutrient
and/or oxygen distributions using an inverse model (Weber et al., 2016; Devries and Weber, 2017;
Cram et al., 2018). The differing approaches, and differing time and space scales that they integrate
over, are likely a significant source of the uncertainty in global Eiooo100 patterns. In CMIP6
models, there are substantial differences in both the preindustrial mean E1000/100 (varying from 3%
to 25% across models) and its response to 21% century climate change, with projections showing
both increases and decreases in E1oo0/100 over time (Wilson et al., 2022).

Early model skill assessments relied heavily on model-data comparisons to transient
tracers, ocean physics, and sub-surface nutrient and oxygen fields that reflect the imprint of
biological pump fluxes and ocean circulation (e.g., Matsumoto et al., 2004; Doney et al. 2004;
Najjar et al. 2007). However, observational constraints on the ocean biological carbon pump have
advanced considerably since the early global 3-D ocean biogeochemical modelling efforts (e.g.,
Bacastow and Maier-Reimer, 1990; Maier-Reimer, 1993). Global-scale data compilations of
primary production, surface export and mesopelagic sinking carbon fluxes are now available based
on a wealth of satellite remote sensing, sediment traps, and geochemical methods (e.g., Henson et
al. 2012; Mouw et al., 2016a). Past model-data skill assessments using multi-model ensembles
have highlighted differences in simulated ocean biological carbon pump patterns, magnitudes, and
mechanisms and identified model biases relative to admittedly imperfect observational estimates
(Laufkotter et al., 2015; Laufkotter et al., 2016). This study expands on these past assessment
efforts of the ocean biological carbon pump to include the current generation of global ocean
biogeochemical models compiled for RECCAP2 (DeVries et al., 2023).

The objective of this study is to characterize the global-scale biological carbon pump from
RECCAP2 models and compare the simulation results with observation-based metrics. The focus
is on the spatial patterns and global-integrated rates from the multi-model ensemble mean taking
into consideration inter-model spread. Key metrics include export of sinking POC from the surface
euphotic zone and the efficiency of POC transfer through the mesopelagic ocean, both of which
are central to ocean carbon storage. Based on identified model-observation and inter-model
differences, we also provide guidance for future global ocean biogeochemical model evaluations
and development that could include targeted, more detailed analyses of dynamics and biases within
individual RECCAP models.

2 Methods and Data

2.1 RECCAP2 model simulations and observational data products

This study leveraged a collection of ocean simulation and observational data sets, outlined
in Table 1, assembled for RECCAP2 following standardized protocols and data reporting for
numerical and observation-based pCO; products (RECCAP2 Ocean Science Team, 2022; DeVries
et al., 2023; Miiller, 2023). The RECCAP2 ocean data sets included monthly surface and annual
ocean interior output for the contemporary period from more than a dozen global ocean
biogeochemical model hindcast simulations, including both forward and data-assimilated models,
along with observation-based surface ocean pCO:> interpolation products. Many of the models
included in the RECCAP2 suite have been used in the Global Carbon Project to assess the ocean
carbon sink (Hauck et al., 2020; Friedlingstein et al., 2022). Here, we present model results for
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211 1985 to 2018 from RECCAP2 simulation A, which was forced with historical atmospheric
212 reanalysis data and increasing atmospheric CO;, and hence represents both steady-state and
213 variable climate processes and both natural, pre-industrial carbon fluxes and anthropogenic carbon
214 fluxes caused by rising atmospheric CO> (DeVries et al., 2023).

215

216  Table 1. Description of RECCAP2 global ocean biogeochemical hindcast models, global data-
217  assimilated models, and observation-based products used in this study. For more details see

218 Tables S1 and S2 in DeVries et al. (2023). The World Ocean Atlas (WOA) data set was also

219  used in the model-data evaluation.

220

221 Global hindcast models Data range References

222  CCSM-WHOI 1958-2017  Doney et al. (2009)

223  CESM-ETHZ 1980-2018  Lindsay et al. (2014); Yang and Gruber (2016)
224 CNRM-ESM2-1 1980-2018  Séférian et al. (2019; 2020); Berthet et al. (2019)
225 EC-Earth3 1980-2018  Doscher et al. (2021)

226 FESOM-REcoM-LR 1980-2018  Hauck et al. (2020)

227  MPIOM-HAMOCC 1980-2018  Ilyina et al. (2013); Mauritsen et al. (2019)

228 MOMG6-Princeton 1980-2018  Liao et al. (2020); Stock et al. (2020)

229 MRI-ESM2-1 1980-2018  Urakawa et al. (2020); Tsujino et al. (2017)
230  NorESM-OC1.2 1980-2018  Schwinger et al. (2016)

231 NEMO-PlankTOM12.1 1980-2018  Le Quéré et al. (2016); Wright et al. (2021)
232 ORCAI-LIM3-PISCES 1980-2018  Aumont et al. (2015)

233

234  Data-assimilated models

235 ECCO-Darwin 1995-2018  Carroll et al. (2020; 2022)
236  SIMPLE-TRIM Climatology DeVries and Weber (2017)
237

238 pCO:; interpolation products

239  CMEMS-LSCE-FFNN 1985-2018  Chau et al. (2022)

240 JenaMLS 1985-2018  Rodenbeck et al. (2013); Rodenbeck et al. (2022)
241  MPI-SOMFFN 1982-2018  Landschiitzer et al. (2016)
242 NIES-ML3 1980-2020  Zeng et al. (2022)

243 OceanSODA-ETHZ 1985-2018  Gregor and Gruber (2021)
244 LDEO HPD 1985-2018  Gloege et al. (2022)

245 UOEX Wat20 1985-2019  Watson et al. (2020)

246

247  World Ocean Atlas

248 Oxygen and AOU Climatology Garcia et al. (2019)

249

250 Biological carbon pump metrics
251 net primary production, export production,

252 and sinking POC flux Climatology Mouw et al. (2016a; 2016b)

253

254

255 Spatial 2D model output and pCO: interpolation products were provided to RECCAP2

256  with 1° x 1° resolution at monthly time steps, and 3D model output was resolved at annual time
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steps. All estimates derived in this study were computed on the 1° x 1° grid. Global multi-model
ensembles, spatial integrals and averages were computed as needed from the gridded results. For
the aggregation to sub-basin ocean regions, ocean biomes based on Fay and McKinley (2014) were
used in most instances to facilitate consistent regional intercomparison across RECCAP2 studies
(e.g., Hauck et al., 2023). Longhurst provinces (Supplement Figure S1; Reygondeau et al., 2013)
were additionally used in some of the biological pump model-observational comparisons to be
consistent with one of the key observational data synthesis products (Mouw et al., 2016a). The
notation and units for the biological, chemical and physical variables used in this study are
described in Table 2. More details on the RECCAP2 ocean data sets can be found in DeVries et
al. (2023).

We also used an observational compilation of surface ocean export production and sinking
POC flux combined with satellite ocean color data products for primary production synthesized in
Mouw et al. (2016a) and as aggregated to Longhurst regional provinces in Mouw et al. (2016b).
The full dataset includes over 15000 individual sediment trap and 2**Th POC flux measurements
at 673 locations, combined with satellite-derived estimates of NPP. Chlorophyll measurements
collected from the SeaWiFS sensor on the OrbView-2 ocean color satellite, spanning from August
1997 to December 2010, were used to derive NPP using the vertically generalized production
model (VGPM) (Behrenfeld and Falkowski, 1997) on an equal-area grid with 9-km resolution.
The climatology in Mouw et al. (2016a) used an interpolation approach to combine the satellite
timeseries and short-deployment (<30 days trap cup intervals) sediment trap POC flux
measurements at overlapping locations. Over 43% of the POC flux measurements were collected
after 1997, overlapping with the satellite record. For each POC flux location, median monthly
values are computed and binned into biogeochemical Longhurst provinces for the climatology.
The POC flux climatology also has a depth dimension, with depth bins centered at 20 m for a near-
surface layer, in 50 m intervals in the upper thermocline, and in 200 m intervals from 500 m to
5000 m.

Table 2. Glossary and description of modeled, observed, and derived variables including
notation and units.

Output
Variable Name Units frequency | Description
2D or surface ocean properties
pCO, patm monthly |Surface ocean pCO2
Vertically-integrated net primary production
NPP mol C m?2yr! |monthly |of organic carbon
Fio0 mol C m?2yr! |monthly |POC sinking flux at 100 m
Fio00 mol C m?2yr! |monthly |POC sinking flux at 1000 m
3D or Interior Ocean Properties
T °C annual Seawater potential temperature
S - annual Salinity (PSS-78)
F3p mol Cm?2yr! |annual |3D field of POC sinking flux
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(0)) mol Oz m* annual Dissolved oxygen concentration

Derived Variables

E1o0/vpp = Fi00/NPP - monthly |Surface Export Ratio
E1000/100 = F1000/F100 - monthly |Mesopelagic Transfer Efficiency
E1000/npp = Fio00/NPP - monthly |Surface to Deep-sea Export Efficiency
AOU umol kg! monthly |Apparent oxygen utilization

2.2 Ocean biological pump and biogeochemical metrics

Our analysis utilized biogeochemical model estimates of vertically integrated NPP and
export fluxes of sinking POC flux across a shallow surface at the approximate base of the euphotic
zone (100 m, Fio0) and at the base of the main thermocline (1000 m, Fioo0). Note that the 1000 m
fluxes were not provided for all models (see Figure 2¢), and therefore the ensemble means for Fioo
and Fioo0 were constructed from different subsets of RECCAP2 simulations. The export ratio,
Evoonpep, was computed as the ratio of POC sinking flux at 100 m divided by net integrated primary
production:

_ Figo
Eioo/npp = NPP

(1)
The transfer efficiency across the 1000 m depth horizon, E1o00/100, Was similarly computed as the
ratio of sinking POC fluxes at 100 m and 1000 m:

E _ Figoo
1000/100 =
100

)

A depth of 1000 m is taken as an approximate boundary between the main thermocline with
ventilation timescales of years to decades and the deep ocean with time-scales of a century and
longer (Siegel et al., 2021).

The relationship between the biological pump and the inorganic CO> system was examined
by partitioning the seasonal variability in surface seawater pCO> into thermal and non-thermal
components following Takahashi et al. (2002). We refer readers interested in a thorough analysis

of RECCAP2 CO; system seasonality to Rodgers et al. (2023). The temperature effect on pCO>

was calculated for isochemical seawater using the approximation %TCOZD = 0.0423 (°C™!) from

the experimental value from Takahashi et al. (1993). The seasonal cycle in monthly surface
temperature anomalies relative to the annual mean surface temperature generated a corresponding
seasonal variation in the thermal (temperature-dependent) pCO2 component about the pCO» annual
mean:

pcoéhermal = (pCOZ)mean X exp [0-0423(Tm0nthly - Tmean)]

3)
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Ocean hindcast simulations typically capture quite well the seasonal cycle of sea surface
temperature because the ocean models are forced by atmospheric reanalysis products and heat flux
boundary conditions that effectively contain information on the observed temperature record
(Doney et al., 2007); the same model-data agreement transfers to the thermal pCO; seasonal
component. The non-thermal pCO> component was computed by subtracting the thermal
component from the monthly pCO; values, and the seasonal amplitude ApCO2 non-thermai Was
calculated as the seasonal peak-to-trough difference. The non-thermal pCO> component reflects
seasonal variations in DIC and alkalinity from biological organic and inorganic carbon production
and remineralization, air-sea CO2 gas exchange, and physical transport and mixing. Note that the
seasonal phasing of the non-thermal pCO> component can be distinct from the phasing of the total
pCO:> cycle. This is especially the case in the low latitudes, where the thermal component
dominates the seasonal cycle (Takahashi et al., 1993; Landschiitzer et al., 2018; Rodgers et al.,
2023).

We also computed apparent oxygen utilization (AOU) using modeled dissolved oxygen,
salinity, and potential temperature fields. Modeled average AOU at 100 m (AOUj0) and 1000 m
depth (AOUj000) were found using nearest depth bins in model products (bins centered within 50
m of depths). The simulated AOU fields are compared against the World Ocean Atlas (WOA) data
product (Garcia et al., 2019).

3 Results

3.1 Simulated ocean biological carbon pump metrics

Global spatial fields of present-day biological carbon pump variables are displayed in
Figure 1 for the RECCAP2 model ensemble mean with the corresponding ensemble standard
deviation in Figure S1. Biome-scale ensemble-mean averages and within-ensemble standard
deviation values for the biological pump metrics are reported in Table 3 using the standard
RECCAP2 biomes by ocean basin (Figure S2; Fay and McKinley, 2014).

The magnitude and spatial patterns of simulated annual mean NPP and export flux from
sinking POC (F00) (Figure 1a and 1b) are broadly similar to observational estimates (Section 3.2).
Simulated upper-ocean biological pump variables showed large geographic variations with annual-
mean NPP ranging on biome scales (Table 3) from 8 to 21 mol C m™2 yr! and Fg ranging from
1.1t02.9 mol C m~ yr!. The simulated spatial patterns reflect euphotic zone temperature, nutrient
supply, and grazing and loss rates that govern phytoplankton standing stock in the models
(Falkowski et al., 1998; Laufkotter et al., 2015; Laufkétter et al., 2016). The imprint of nutrient
supply was particularly evident in the elevated NPP and export fluxes found in equatorial and
coastal upwelling regions, western boundary currents, and mid-latitude bands of deep seasonal
mixing. Within-ensemble standard deviations (G) of NPP and F';9p were elevated in the equatorial
band, and high onpp values were found also in the Southern Ocean indicating substantial model
disagreement within the ensemble (Figure S1a and S1b). Biome-scale onpp values ranged from 2.1
to 6.6 mol C m2 yr! (from as low as 0.22 to nearly 0.72 times the ensemble mean in parts of the
Southern Ocean); biome-scale 600 values varied from 0.4 to >1.0 mol C m2 yr~! with the largest
absolute and fractional within-ensemble variation of >0.7 times the ensemble mean occurring in
the western equatorial Pacific.
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The local POC sinking flux at the base of the mesopelagic (F7000) ranged at biome scale
from 0.09 to 0.54 mol C m~2 yr~! with broadly similar patterns to F;gs, though with some notable
exceptions such as the high F900 values in tropical low-oxygen zones in the eastern tropical Pacific
and Arabian Sea (Figure 1c). Note the roughly half to full order of magnitude decline in scale in
Figure 1 from NPP to F99 and then Figo to Fio00. This indicates first that the bulk of simulated
NPP is recycled within the euphotic zone above 100 m, rather than exported as sinking POC flux,
and second that most of the sinking POC flux at 100 m is remineralized in the mesopelagic, rather
than reaching the deep ocean below 1000 m. As for NPP and F190, some correspondence was found
for the spatial patterns of ensemble-mean F9p0 and Gri000. Highest biome-scale Grig00 values of
0.26 to 0.29 mol C m2 yr! occurred in the North Pacific and eastern equatorial Pacific, equal to
0.85 and 0.53 times the ensemble-mean 009 for those biomes; biome-scale crp00 values of ~0.5
or more of the ensemble-mean were common, with even higher fractional values locally such is in
the eastern subtropical North Pacific (Figure Slc; Table 3).

The fraction of NPP exported across 100 m, or export ratio (Eoonpp, Figure 1d; Table 3)
varies at the biome scale in the ensemble mean from 0.12 to 0.21 with elevated values in high
latitudes. The spatial patterns for within-ensemble E;9onpp standard deviation (Figure S1d) mirror
that of the mean E;gonpp with biome-mean standard deviations of 0.035 to 0.050 in most biomes
and up to 0.091 in the sub-polar Southern Ocean biome where there is more within-ensemble
model spread.
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Figure 1. Multi-model ensemble averages of biological pump parameters from 1985 to 2018
across all RECCAP2 model simulations (simulation A). Maps of annual mean (a) integrated net
primary productivity NPP, (b) particulate organic carbon export fluxes at 100 m F,,,, and (c) 1000
m depth F 4, all in mol C m2 yr-!. Ensemble mean (d) surface export efficiency ratio E;oq/npp =
Fi00/NPP (Eq. 1), (e) mesopelagic transfer efficiency at 1000 m Ey09/100 = Fio00/F,y, (Eq. 2), and
(f) export efficiency to the deep ocean E; 5o npp = Fio00/NPP, all ratios unitless.

100

The ensemble-mean transfer efficiency through the mesopelagic, E1000/100 (Figure 1e; Table
3), exhibited background levels at the biome-scale of 0.09-0.14 for most biomes and ranging as
high as 0.18 in the eastern equatorial Pacific biome; sub-biome regional values up to 0.3 occurred
in the eastern tropical Pacific, western and eastern tropical Atlantic, and Arabian Sea and Bay of
Bengal. Some ocean biogeochemical models reduce sub-surface POC remineralization in low-
oxygen zones, using a parameterization based on local oxygen concentrations, driving higher
E1000/100 values in low-oxygen regions such as the eastern tropical Pacific, Arabian Sea and Bay of
Bengal. Furthermore, POC flux mineral ballasting from Saharan dust deposition, prescribed as an
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external forcing, is likely an important contributor in at least some models (CCSM-WHOI and
CESM-ETHZ) to high E000/100 in the western tropical Atlantic (Lima et al., 2014). The ensemble
Ei000100 standard deviation (Figure Sle) generally followed Ejgooi00 with particularly large
oE 10001100 values up to 0.3 in the western tropical Atlantic reflecting differences across models in
the parameterization of POC sinking in the presence of desert dust. The metric Eipoonrp (Figure
1f), combining surface export and mesopelagic transfer efficiencies, had generally similar spatial
patterns to Eo00/100 but with lower values, reflecting the small fraction of NPP that sinks below
1000 m and is sequestered in the deep ocean. More than a factor of two variation was found for
metric E;goonpp across biomes (0.012 to 0.027) with large within-ensemble variation for some
biomes where the standard deviation approached or exceeded the ensemble mean.

Table 3. Model ensemble averages and standard deviations of biological pump parameters by
RECCAP?2 regional biomes (Figure S2) (see also Figure 1) grouped as Sub-Polar Seasonally
Stratified (SPSS), Sub-Tropical Seasonally Stratified (STSS), Sub-Tropical Permanently Stratified
(STPS), Equatorial (EQU), and Mediterranean (MED). Table includes annual means and standard
deviations for vertically integrated net primary productivity NPP, particulate organic carbon export
fluxes at 100 m F,,,, and 1000 m depth F,,, all in mol C m2 yr!, and average surface export
efficiency ratio Ejzo/npp = Fi0o/NPP, mesopelagic transfer efficiency at 1000 m Ejgo0/100 =
Fio00/F o, and export efficiency to the deep ocean Ejzgo/npp = Fig0o/NPP, all ratios unitless.
Ensemble were not computed for the small, high-latitude polar ice biomes due to noisy and/or
missing data across the full ensemble.

NPP Fioo Fiooo Eroonree Eio00100 E1oooee
SPSS

N. PACIFIC 11.89+4.81  221+0.65  0.307+0.263 0.206+0.076  0.124+0.071  0.018+0.012
N.ATLANTIC |9.3043.00  1.7740.65  0.17740.156 0.211£0.075 0.116+0.060  0.014+0.009
SOUTHERN | 9.2446.64  1.5940.60  0.197£0.119  0.213+0.091  0.132+£0.071  0.023+0.025
STSS

N. PACIFIC 13.5343.68  2.04£0.70  0.206+0.117  0.161£0.040  0.114+0.049  0.014+0.006
N.ATLANTIC | 12.984328  1.93+0.54  0.165:0.069 0.162£0.049  0.099+0.036  0.014+0.006
SOUTHERN | 13.91£5.02  2.1240.39  0.222+0.087 0.173+0.053  0.109+0.040  0.016+0.009
STPS

N. PACIFIC 8924324  1.18+0.61 0.17740.102  0.131+£0.047  0.132+0.049  0.017+0.010
N.ATLANTIC |7.7042.37 0097044  0.092+0.057 0.121£0.051  0.140+0.097  0.013:0.008
S.ATLANTIC | 9.78+2.16  1.33+0.41 0.138+0.090  0.130+0.043  0.104+0.040  0.012:0.008
INDIAN 16.67+4.75  2.25+0.85  0.284+0.162  0.143£0.035 0.130+0.063  0.016+0.008
EQU

W.PACIFIC | 11.03£531  1.44+1.06  0.10£0.078  0.134+£0.059  0.089+0.050  0.013+0.011
E. PACIFIC 21.16+5.16  2.91+0.74  0.542+0.288  0.151£0.043  0.178+0.086  0.027+0.015
ATLANTIC 14334471 1.94£0.65  0.27240.137  0.145£0.039  0.140+0.043  0.019+0.010
MED 9.2143.71 1.3440.79  0.074+£0.062  0.141+0.060  0.119+0.107 0.011+ 0.008
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To illustrate differences among the models making up the RECCAP2 multi-model
ensemble, global integrals of the annual average biological pump metrics are displayed in Figure
2. A box-whisker plot is shown for each model ensemble member quantifying the interannual
variability for each model for the RECCAP2 reporting period (1985-2018). Note that some
RECCAP2 models did not report Fiooo, resulting in missing estimates for E1ooo/100 and E1oooNpp.
Some models stood out as either anomalously low (e.g. FESOM-REcoM-LR for NPP) or high
(e.g. NEMO-PlankTOM12.1 for Fioo) relative to the other RECCAP2 ensemble members, though
inter-model agreement alone was not necessarily a robust indicator of model skill (see Section
3.2). For global Eioonpp, the models were roughly split into low (0.10-0.12) and high (0.16-0.19)
groups (Figure 2d). Global Fio00, E1000/100, and E1ooonpp varied widely for the smaller number of
available models (Figure 2c, 2e, and 2f).
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435  Figure 2. Boxplots showing median values (1985-2018), interannual interquartile ranges, and
436  outliers of biological pump metrics across model products in RECCAP2 ensemble (simulation A).
437  Globally integrated, annual (a) net primary productivity NPP, (b) particulate organic carbon export
438  fluxes at 100 m F,4, and (c) 1000 m depth Fyq, , all in Pg C y~!. Global and annual average (d)
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surface export efficiency ratio E;oo npp = Fi0o/NPP (Eq. 1), (e) mesopelagic transfer efficiency at
1000 m Ejg00/100 = Fio00/F4, (EQ. 2), and (f) export efficiency to the deep ocean E;goo/nppr =
Fi000/NPP, all ratios unitless. CCSM-WHOI output does not include the year 2018 and SIMPLE-
TRIM does not simulate interannual variability. Efficiency ratios are not given in panels d, e, and
f for models lacking the corresponding NPP, F,,, O Fygq0-

3.2 Model-observational comparisons

The global ocean biological carbon pump metrics from the RECCAP2 multi-model
ensemble were compared against corresponding literature values in Table 4 and Figure 3. The
RECCAP2 multi-model ensemble global-integrated NPP value, 42.7 + 10.9 Pg C yr!, was at the
lower end of literature estimates (43.5-68 Pg C yr!), and the inter-quartiles have limited overlap.
Similarly, global-integrated Figo from the multi-model ensemble of 6.41 + 1.52 Pg C yr! was
lower than the mean of the literature estimates of sinking POC flux (~8 Pg C yr’!, range 4-13 Pg
C yr!), though the inter-quartiles overlapped substantially because of the large range in
observation-based estimates. The global-integrated model ensemble Fioo0 value of 0.95 + 0.64 Pg
C yr! fell between one low estimate of 0.66 Pg C yr~! (Henson et al., 2012) and two other literature
estimates of 1.1 Pg C yr!. The global multi-model ensemble-mean export and transfer efficiencies,
Erooner (0.15 £ 0.03) and Erooor100 (0.12 = 0.04), were within the range of literature values after
removing the high Eioo values (0.3 and 0.38) from Laws et al. (2000) and acknowledging one low
outlier model for global E1000/100 (~0.05; CCSM-WHOI; Figure 2e).

The wide range of literature estimates reflects differences in measurement methodologies,
biases, and uncertainties in the datasets used for biological carbon pump metric estimation, as well
as uncertainties introduced by data sampling biases, aggregation, time/space interpolation and
modeling approaches. At global scales, in situ observational sampling for some variables remains
sparse and regionally patchy, and satellites, empirical relationships, and numerical models have
been used to gap-fill for global-scale product generation. For example, even with field data sets
available for ocean NPP based on “C uptake incubation studies, satellite remote sensing has been
required to create uniform global NPP products, which have been calibrated/validated against '*C
NPP field data. A variety of in situ methods have been used to estimate surface ocean export flux
estimates (~Fio0) — drifting sediment traps, 2**Th deficit, etc. To derive global-scale fields of
export, extrapolation from the limited in situ data is required which generates uncertainties in the
derived estimates due to the underlying data sparsity (Henson et al., 2024). Typically, satellite data
is used to build an empirical relationship between flux and readily derived variables, such as sea
surface temperature or chlorophyll concentration. Other approaches include merging satellite data
with food-web models (e.g., Siegel et al., 2014). Observation-based global Figoo estimates have
been generated from sediment trap data (Mouw et al., 2016a), and estimates of both global Fioo
and Fio00 have been derived from inverse and data-assimilation ocean models (e.g., Devries and
Weber, 2017; Nowicki et al., 2022).
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478  Table 4. Comparison of literature-based, global observation-based ocean biological carbon pump
479  metrics with the RECCAP2 model ensemble means and within-ensemble standard deviations.
480 Note that SIMPLE-TRIM data assimilation results from Devries and Weber (2017) are also

481
482

included in the RECCAP-2 model ensemble.

Net Primary Production NPP (Pg C yr'!)

References

43.5

VGPM Behrenfeld & Falkowski (1997)

52 CAFE Silsbe et al. 2016

68 Carr (2002) & Carr et al. 2006
49 Marra et al. (2003)

52 CbPM2 Behrenfeld et al. 2005
42.7+10.9 RECCAP2 model ensemble mean and STD
POC Export ~Fip (Pg C yr'")

4 Henson et al. (2012)

9.6 Dunne et al. (2007)

11.1-12.9 Laws et al. (2000)

5.7 Siegel et al. (2014)

9.6 Schlitzer (2000); inversion
9-13 Laws et al. (2011)

8.8 (7.3 at 100 m)

DeVries & Weber (2017); data assimilating

7.3 (6.4 at 100 m)

Nowicki et al. (2022)

6.41 +1.52

RECCAP2 model ensemble-mean and STD

POC Flux 1000 m Fj5 (Pg C yr')

0.66

Henson et al. (2012)

1.1 DeVries & Weber (2017)
1.1 Nowicki et al. (2022)
0.95 + 0.64 RECCAP2 model ensemble mean and STD

Export Ratio ~E;ponrp

0.1 Henson et al. (2012)

0.19 Dunne et al. (2007)

0.3 Laws et al. (2000); food web
0.38 Laws et al. (2000); empirical
0.103 Siegel et al. (2014)

0.17 Devries & Weber (2017)
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0.13 (for POC only) Nowicki et al. (2022)
0.18 (for POC + DOC + vertical migration)
0.154 = 0.026 RECCAP2 model ensemble mean and STD
Transfer Flux Efficiency Ep00/100
0.19 Henson et al. (2012)
0.13 DeVries & Weber (2017)
0.15 Nowicki et al. (2022)
0.121 £ 0.035 RECCAP2 model ensemble mean
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Figure 3. Box-whisker plots showing median values and interquartile ranges of biological pump
parameters from 1985-2018 averaged across model products in RECCAP2 ensemble (simulation
A). Global integrated, annual (a) net primary productivity NPP, (b) particulate organic carbon
export fluxes at 100 m F,,,, and (c) 1000 m depth F,, , all in Pg C yr'! (note that the median line
for Fi,00 1 also the upper interquartile because two of the three observational estimates match).
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491 Global and annual average surface export efficiency ratio (d) E,go/npp = Fi0o/NPP (Eq. 1), and (e)

492 mesopelagic transfer efficiency at 1000 m E;o50/100 = Fio00/F 4o, (EQ. 2), all ratios unitless.
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493
Province | Province | Province Description
Number | Code
1 NADR Westerlies - N. Atlantic Drift Province

Longhurst Ocean Provinces 2 NASW Westerlies - N. Atlantic Subtropical Gyral Province (West)

3 GUIA Coastal - Guianas Coastal Province
4 SATL Trades - South Atlantic Gyral Province (SATG)
5 BERS Polar - N. Pacific Epicontinental Province
6 PSAW Westerlies - Pacific Subarctic Gyres Province (West)
7 PSAE Westerlies - Pacific Subarctic Gyres Province (East)
8 NPPF Westerlies - N. Pacific Polar Front Province
9 NPSW Westerlies - N. Pacific Subtropical Gyre Province (West)
10 PNEC Trades - N. Pacific Equatorial Countercurrent Province
11 PEQD Trades - Pacific Equatorial Divergence Province
12 SPSG Westerlies - S. Pacific Subtropical Gyre Province
13 ARAB Coastal - NW Arabian Upwelling Province
14 MONS Trades - Indian Monsoon Gyres Province

494

495

496  Figure 4. Map of Longhurst provinces (Reygondeau et al., 2013) used in analysis of biological
497  pump field observations and model results (Mouw et al., 2016a).

498
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Figure 5. Box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges,
and outliers for annual-mean (a) vertical integrated primary production (NPPin), (b) sinking POC
fluxes at 100m (Fi00), and (c) sinking POC flux at 1000m (F,4), all in Pg C yr'!, pooled into
biogeochemical Longhurst ocean provinces (Figure 4) and compared to the observational
climatology for the same provinces constructed by Mouw et al. (2016b). Robust uncertainty
estimates are not available for the observational climatology which averages available data that is
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often spatially sparse and/or concentrated in brief time intervals. Note that only provinces with
sufficient observational data are plotted (see Figure 4).

The biological carbon pump model comparison to observation-based estimates was
extended in Figure 5 to a regional level using the observational data of Mouw et al. (2016a) as
aggregated by Mouw et al. (2016b) into monthly climatological values for Longhurst
biogeographic provinces (Figure 4). The Mouw et al. (2016a) date set aggregates the limited
available field data that is often spatially sparse and locally high frequency with considerable
mesoscale variability, some of which may be aliased into monthly and province scale averages.
Therefore, robust uncertainty estimates are not available for the Mouw et al. (2016b) observational
climatology. The variations across the RECCAP2 models are displayed as box-whisker plots. The
members of the model ensemble exhibited a wide range of NPP, Fio0 and Fioo0 values for many
provinces, but still the observational climatology falls within the multi-model ensemble inter-
quartiles for only about half of the provinces. The substantial model-observational offsets indicate
recurring regional differences consistent across multiple models in the RECCAP2 ensemble; these
disagreements could be targets for future ocean biogeochemical model development and analyses
of observational sampling biases. The model ensemble members also exhibited extreme model-
data differences in some provinces where the observational climatology value falls outside the
simulated range including model outliers. The RECCAP2 models consistently underestimated the
strength of biological carbon pump metrics, relative to the observational climatology, in polar and
sub-polar provinces in the North Pacific (N. Pacific epicontinental sea, BERS, low NPP and Fio0)
and North Atlantic (N. Atlantic Drift, NADR, low NPP); and in equatorial provinces in the Indian
(Northwest Arabian Sea upwelling, ARAB, low NPP), Pacific (Trades-Pacific Equatorial
Divergence, PEQD, low Fio0) and Atlantic (Guianas coast, GUIA, low Fioo0; note, the observed
high Guianas coast value reflects a small, productive region that may not be well represented in
global-scale models). In other provinces, the model ensemble overestimated the biological pump
in the South Pacific gyre (SPSG, high NPP and Fi00), Indian monsoon gyre (MONS, high NPP
and F00), and Western Pacific subarctic gyres (PSAW, high F1o00).

3.3 Biological pump imprint on ocean CO; system and biogeochemistry

The ocean biological carbon pump imprints on surface and sub-surface biogeochemistry
(see Introduction), and these effects are simulated in the RECCAP2 models. A strong positive
mesopelagic AOU signal is generated by cumulative biological O> consumption along the
ventilation paths of subsurface waters (Najjar et al., 2007). AOU fields thus integrate non-local,
large-scale biogeochemical dynamics and physical resupply of O from the surface. A key
contributor to AOU is the remineralization of sinking POC flux in the mesopelagic, quantified by
the large decline between Fioo and Fiooo and low transfer efficiency through the mesopelagic
E1000/100 (Figures 1-3; Tables 3 and 4). For the RECCAP2 model ensemble, there was generally
good model-data agreement in the geographic pattern in AOU averaged over the mesopelagic
(100-1000 m) (Figure 6). The model ensemble captured the regional AOU variation of <50 to
>250 umol kg!, though substantial disagreement arose on the scale of Longhurst provinces where
the model-ensemble interquartile spans the observational data for only a handful of provinces
(Figure 6¢). The RECCAP2 models did not exhibit a strong inter-model relationship between
global mean AOU and Fioo (not shown). The weak relationship between AOU and Fioo across
models likely highlights the influence on AOU of substantial variations in the strength of model
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thermocline ventilation rates that could also influence simulated anthropogenic CO> uptake (e.g.,
Dutay et al., 2002; Matsumoto et al., 2004). Model deep-ocean AOU was not evaluated because
model spin-up time scales were too short for the simulations to reach steady-state (Séférian et al.,
2019), an issue that also would affect simulated deep-ocean preindustrial DIC (Mikaloff Fletcher
et al., 2007). Some imprint of the observational fields used for model initial conditions could also
be retained in the simulated mesopelagic AOU depending on the model spin-up procedure.

a Model Ensemble b World Ocean Atlas
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Figure 6. Analysis of apparent oxygen utilization (AOU, umol kg™!) vertically averaged over the
mesopelagic zone (100-1000 m): (a) spatial map of RECCAP2 multi-model ensemble average,
and (b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2
multi-model ensemble medians, interquartile ranges, and outliers pooled into biogeochemical
Longhurst ocean provinces (Figure 4).

The simulated regional patterns and global integrated surface POC export Fioo (Figures 1

—3; Tables 3 and 4) must be balanced on appropriate time and space scales by new production and

external nutrient supply, largely from physical upwelling and mixing for most ocean regions
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(Ducklow and Doney, 2013). As an indicator of physical controls on export associated with
nutrient supply, the individual RECCAP2 model, global-integrated F10 values exhibited a positive
correlation with global-ocean anthropogenic CO; uptake (Figure 7) (DeVries et al., 2023). This is
consistent with findings from previous model intercomparison exercises where models with
stronger thermocline ventilation had both larger export flux and anthropogenic CO- uptake (Najjar
et al.,, 2007). The Fipo—anthropogenic CO> uptake correlation, therefore, is indirect through a
common underlying physical mechanism whereby stronger ventilation enhances both the
downward transport of anthropogenic CO; correlation and the upward transport of nutrients and
thus Fioo. The physical-chemical solubility mechanisms controlling ocean anthropogenic CO:
uptake are well documented, and there is no evidence of any significant role for biogeochemical
processes, though climate-change biogeochemical feedbacks on ocean carbon storage may become
more important in the future (Canadell et al., 2021).
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Figure 7. Scatter plot of global-integrated ocean anthropogenic CO- uptake (mean of 1985-2018)
(Pg C yr!) versus particulate organic carbon (POC) export flux (Figo, Pg C yr!) for individual
RECCAP2 models. Anthropogenic CO: uptake for the same RECCAP2 models was taken from
DeVries et al. (2023) A linear regression and confidence intervals for the regression are overlain.
The Fioo—anthropogenic CO; uptake correlation was indirect through a common underlying
physical mechanism whereby stronger ventilation enhances both the downward transport of
anthropogenic CO; correlation and the upward transport of nutrients and thus F1oo.

Seasonal variations in upper-ocean biogeochemistry were used as a metric of the physical
controls associated with seasonal mixing and nutrient supply, which are reflected in simulated
POC export. By correcting for seasonal thermal variations in pCO2 (Equation 3), we used model
monthly pCO: fields to quantify the combined effects of seasonal biogeochemical, gas-exchange
and physical processes through the seasonal amplitude of non-thermal pCO2, ApCO2 non-thermal
(Takahashi et al., 2002). The geographic pattern of ApCO2 non-thermal from the RECCAP2 model
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ensemble was similar to the pattern from the mean of the pCO- observational products (Figure 8a
and 8b). Both the model ensemble and observational products exhibited regional variations of
ApCO2 non-thermal that ranged from 30 to >150 patm with elevated values in mid- to high latitudes
as well as equatorial and eastern boundary current upwelling regions. However, the magnitude of
ApCO2 non-thermal in the model ensemble was considerably lower in the mid- to high latitude northern
hemisphere, eastern tropical Pacific, and Brazil-Malvinas convergence region, suggesting a
generally weaker modeled seasonal cycling of DIC. The same low bias in the RECCAP2 models
was evident on the scale of Longhurst provinces where the observational products fell at the top
end or well above the model-ensemble interquartile (Figure 8c). In many ocean regions, strong
seasonality in mixed layer depth modulates vertical nutrient supply and annual-mean biological
productivity. The weaker model ensemble ApCO2 non-thermal Values (Figure 8), therefore, may be
linked to regional patterns of lower NPP and Fioo relative to observations (Figure 5) in the North
Pacific (BERS province), North Atlantic (NADR province), eastern equatorial Pacific (PEQD),
and Brazil-Malvinas convergence (western part of SATL province).
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Figure 8. Analysis characterizing the combined effects of seasonal biogeochemical, gas-exchange
and physical processes using the seasonal amplitude of non-thermal Apco,, ... (a) spatial
map of RECCAP2 multi-model ensemble average, (b) spatial map from pCO> observational data
products, and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile
ranges, and outliers pooled into biogeochemical Longhurst ocean provinces (Figure 4). The
province means from each observational product are plotted in panel (c¢) as individual points rather
than as box-whiskers because of the limited number of observational products.

4 Discussion and Conclusions

Our analysis of the ocean biological carbon pump fields from the RECCAP2 multi-model
ensemble revealed generally encouraging agreement with many aspects of observed patterns.
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Global-integrated NPP and surface export flux (F1o0) from the RECCAP2 models tended to fall at
the lower end of observational estimates (Figure 3 and Table 4), and geographic patterns in NPP
were generally consistent with observational data products (Figures 1 and 5). Similar to previous
model intercomparison studies (Laufkdtter et al., 2015; Laufkotter et al., 2016), we found
substantial within-ensemble variation in global biological carbon pump metrics, including the
presence of model outliers (Figure 3), indicating that these aspect of biogeochemical models have
not necessarily converged with time.

Regional patterns in the RECCAP2 model-mean ensemble included elevated NPP, surface
export flux (Fioo) and export efficiency (Eio0) in high-latitudes and coastal and equatorial
upwelling regions, with lower values in more oligotrophic regions. These results are in line with
previous studies that found that a substantial proportion of NPP in nutrient-rich regions is driven
by large phytoplankton such as diatoms and, combined with an active zooplankton population, this
can generate a significant export flux in the form of both dense aggregates and fecal pellets. High-
latitude elevated biomass, colder temperatures (Dunne et al., 2005), and strong seasonality also
have been implicated in observations of higher POC export fluxes in spring and/or summer months
contributing to the annual mean (Buesseler et al., 2001; Lampitt et al., 2001; Bol et al., 2018;
Henson et al., 2023). In low nutrient regimes, such as the lower latitude oligotrophic gyres,
previous studies report export flux to be low (Henson et al., 2012) but relatively constant
throughout the year with small seasonal increases in fluxes (Karl et al., 2012). Future studies of
the RECCAP2 ensemble could investigate in more detail the seasonality in NPP, Fig, and Eioo,
exploring, for example, the seasonal variability in export ratio that can be substantial due in part
to the time lag between NPP and export flux (Henson et al., 2015; Giering et al., 2017; Laws and
Maiti, 2019; Henson et al., 2015).

The sinking POC flux into the deep ocean (Fio00) and mesopelagic transfer efficiency
across the mesopelagic zone (E1o00/100) in the RECCAP2 multi-model ensemble (Figures 1 and 5)
exhibited different spatial patterns than found for surface export, similar to findings of previous
studies (e.g., Henson et al., 2012). Simulated F1000 and E1000/100 Were greater in the tropical eastern
Pacific, eastern Atlantic, and Arabian Sea, and Eioo0/100 was also elevated in the western tropical
North Atlantic and, to a lesser extent, Southern Ocean. Previous model studies have also found
substantial regional variations due to particle size and composition effects (Lima et al., 2014) that
modify empirical power curves used for modeling POC sinking and remineralization (Martin et
al., 1987). Model parameterizations tend to increase the effective remineralization length scales
and thus transfer to depth in regions with high mineral fluxes (e.g., dust, CaCOs3, silica) (Armstrong
et al., 2002) or in tropical oxygen minimum zones (Laufkétter et al., 2017; Dinauer et al., 2022).
The RECCAP2 regional variations in mesopelagic transfer efficiency, modulated with basin-scale
variations in physical circulation-driven sequestration time-scale (Siegel et al., 2021), influence
the effect of the biological pump on ocean carbon storage (Kwon et al., 2009).

While we focused primarily on long-term mean NPP and export fluxes, the RECCAP2
models also exhibited year-to-year variability (Table S1), though typically much lower than
within-ensemble model differences (Figure 2), and small long-term temporal trends (Table S2).
No consistent positive or negative trend was observed across the models in simulated NPP and
sinking POC fluxes at 100m and 1000m, with NPP trends of order +£0.01 Pg C yr!/year over the
33 years of the time series (1985-2018). Although these trends could contain a signal from climate
change, the relatively short duration of the RECCAP2 analysis period resulted in large signal to
noise due to interannual variability. Previous modeling studies indicate that chlorophyll and NPP



672
673
674
675
676
677

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

693
694
695
696
697
698
699
700
701
702
703
704

705
706
707
708
709
710
711
712
713
714
715

manuscript submitted to Global Biogeochemical Cycles

time series of 30-40 years length are needed to distinguish climate change trends from natural
variability (Henson et al., 2010). Hence, the RECCAP2 analysis period may indeed not be long
enough to separate trends from interannual variability. While a recent study suggests that climate-
change trends can emerge more rapidly in ocean color remote-sensing reflectance (Cael et al.,
2023), any actual climate change signal in models may be masked by temporal biases associated
with incomplete model spin-up and resulting temporal drift (Séférian et al., 2016).

Our analysis of the biological carbon pump was relevant in several ways to the primary
focus of the RECCAP2 ocean project on air-sea CO> fluxes and ocean uptake of anthropogenic
COz (DeVries et al., 2023). Biological net CO uptake and carbon export modulate the background,
pre-industrial and contemporary spatial and seasonal patterns of surface ocean pCO- and sea-air
CO: flux that must be accounted for to determine anthropogenic CO; perturbations. The low model
F1o0 values globally (Figure 3) and for mid- to high-latitude Northern Hemisphere and eastern
equatorial Pacific provinces (Figure 5), relative to observations, suggested that the RECCAP2
model ensemble may have underestimated biological CO2 drawdown in high productivity regions.
Potential issues were also identified in simulated seasonal biogeochemical, gas-exchange and
physical dynamics as captured in the seasonal amplitude of non-thermal pCO> variations, with
weaker ApCO2 non-thermal Values found at mid- to high-latitudes and in the eastern equatorial Pacific
in the model ensemble relative to observations (Figure 8). Future work with more detailed model
diagnostics could explore the connections between regional biases in simulated annual-mean and
seasonal export production and biases in air-sea CO; flux as observed in other RECCAP2 studies
(DeVries et al., 2023; Hauck et al., 2023).

Ocean circulation modulates biological export flux on basin to global scales (Najjar et al.,
2007), and the range in RECCAP2 global-integrated Fioo values indicated that substantial
differences exist in simulated ocean physics within the RECCAP2 marine biogeochemical models
(Doney et al., 2004). The same ocean circulation variations also likely influenced the
anthropogenic CO; uptake estimates from DeVries et al. (2023) as indicated by the positive
correlation between anthropogenic CO; uptake and Fioo across individual RECCAP2 models
(Figure 7). This is supported by further analysis of the RECCAP2 models demonstrating that the
rate of ocean overturning circulation is strongly correlated with anthropogenic CO: uptake in the
models (Terhaar et al., 2023). Variations in model export could also be compared against metrics
of physical stratification (Fu et al., 2022). The substantial inter-model spread in both physical and
biogeochemical metrics likely reflects common factors resulting from differences in simulated
thermocline ventilation and exchange between the surface and mid-depth ocean.

A set of additional model development recommendations emerge from our analyses. One
path forward would leverage independent model skill evaluation for inert chemical tracers (e.g.,
CFC-11, CFC-12, SF¢) using standard ocean model intercomparison protocols (e.g., CMIP6 Ocean
Model Intercomparison Project; Orr et al., 2017). The transient tracer simulations would help
decipher the physical-biological factors controlling simulated AOU (Figure 6). Remineralization
of sinking biological organic matter structures sub-surface ocean dissolved inorganic carbon, Oa,
and nutrient fields, a signal that must be addressed in observational estimates of anthropogenic
CO.. While the predominant pathway for ocean anthropogenic CO: uptake involves physical-
chemical dynamics, rather than biological dynamics, the same physical circulation and mixing
processes influence biogeochemical rates such as nutrient supply. Therefore, evaluation and
improvement of the ocean biological pump may provide additional insight.
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The substantial variation in biological pump metrics shown here highlighted the need to
reconcile inter-model and model-observational differences. Challenges arise for model
improvement because there is limited agreement on the appropriate parameterizations for many
key processes of biological carbon export (Henson et al., 2022), subsurface particle sinking, and
remineralization. Many global models include detailed representation of euphotic zone processes
but rather more simplistic representation of mesopelagic processes. Thus, the simulated global-
scale biological carbon pump responses to interannual variability, let alone decadal climate
change, remain poorly constrained (Henson et al., 2016). Following the mechanistic approach
reported in previous model intercomparison studies for primary production (Laufkétter et al.,
2015) and export production (Laufkétter et al., 2016), future studies could emphasize how overall
model behavior reflects differences in model parameterizations, functional equations, and
parameter values in both the euphotic and mesopelagic zones.

Opportunities exist to leverage process-level information from lab and field studies to
improve model treatment of POC production, sinking POC flux and extension of export pathways
beyond POC gravitational sinking, for example physical subduction and active migration by
organisms (Boyd et al., 2019; Siegel et al., 2016; Henson et al., 2022; Siegel et al., 2023).
Phytoplankton community structure, captured to some degree in many models, influences
magnitude and composition of export flux from the euphotic zone, the heterotrophic consumers of
sinking POC and zooplankton community structure (Boyd and Newton, 1995; Cavan et al., 2019).
Model treatments could be improved for grazers, such as zooplankton, that act to decrease particle
flux by consuming phytoplankton and sinking POC, while also increasing flux by packaging POC
into fecal pellets with a wide range of sinking speeds (Turner, 2015; Steinberg and Landry, 2017).
Grazer diel vertical migration may also need to be incorporated as a carbon shunt below the depth
horizons of most intense heterotrophic activity (i.e., upper mesopelagic zone), consuming POC in
the surface ocean and respiring it at grazer resident daytime depth (Bianchi et al., 2013). More
mechanistic treatment of particle dynamics may also be feasible. Particle disaggregation,
physically through shear or biologically through fragmentation by grazers, likely contributes
substantially to the decline in POC flux with depth while also providing a POC source for
mesopelagic microbes (Laurenceau-Cornec et al., 2020; Briggs et al., 2020). Microbes also can
reduce POC flux directly, as they constantly attach and detach from sinking POC (Kierboe et al.,
2002; Kierboe et al., 2003), hydrolyzing and respiring the POC. While variable particle sinking
speed is included in some model parameterizations, large meta-analyses of empirical data have
struggled to find a strong link between sinking rate and size of particles, because of the vast
variability in particle type, methods used to measure sinking rate, and environment the particles
were collected from (Cael et al., 2021).

Many of these process-level insights are already driving progress on mechanistic
parameterizations for sinking particle flux (e.g., Dinauer et al., 2022), vertical migration (e.g.,
Archibald et al., 2019), and other key factors in the marine biological pump. Together with global-
scale ocean biogeochemical data compilations and syntheses (e.g., Mouw et al., 2016a; Mouw et
al., 2016b, Clements et al., 2023) there are now promising new opportunities to evaluate, constrain,
and improve ocean biological carbon pump simulations. Based on the model-data analysis
presented here, the RECCAP2 multi-model ensemble exhibited relatively good agreement with
observed biological carbon pump metrics, where there is sufficient data. The analysis also
identified model-data biases and substantial differences among some of the models included in
RECCAP2. These biases should be used to guide directions for future model development.
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The REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated, international
effort to constrain contemporary ocean carbon air-sea fluxes and interior storage trends using a combination
of field observations, inverse model products, and ocean biogeochemical hindcast simulations. The second
phase, RECCAP2, extends the original synthesis using additional years of ocean observational data and
updated numerical results (DeVries et al., 2023) as well as expanding the scope of the observational and model
analysis, in this case into the biological carbon pump magnitude and efficiency.
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TE 1 000npp

Figure S1. Maps of within-ensemble standard deviation of biological pump parameters. Standard
deviations across model ensemble members are computed relative to the average model ensemble
presented in Figure 1 for: (a) vertically integrated primary productivity oypp, (b) particulate
organic carbon export fluxes at 100 m oF, 4, and (c) 1000 m oF, 0, all in moles C m~ y~!, and (d)
surface export efficiency ratio E,zo/npp = Fi00/NPP, (€) mesopelagic transfer efficiency at 1000 m
E1000/100 = Fro00/F 4y and (f) export efficiency to the deep ocean E;og9/npp = Fig00/NPP, all ratios
unitless.
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Ocean Provinces modified from Biomes defined in Faye

and McKinley (2014)

Biome Number | Biome Acronym Biome Description
18 SOSPSS Southern Ocean Subpolar Seasonally Stratified
17 NaAEQU N. Atlantic Equatorial
16 SOICE Southern Ocean Ice
15 NPICE North Pacific Ice
14 NPSTPS N. Pacific Subtropical Permanently Stratified
13 NaSTPS N. Atlantic Subtropical Seasonally Stratified
12 SOSTSS Southern Ocean Subtropical Seasonally Stratified
1 BARENTS Barents Sea
10 PEQUE Eastern Equatorial Pacific
9 PEQUW Western Equatorial Pacific
8 NAICE N. Atlantic Ice
7 NaSTSS N. Atlantic Subtropical Seasonally Stratified
6 NPSTSS N. Pacific Subtropical Seasonally Stratified
5 NPSPSS N. Pacific Subpolar Seasonally Stratified
4 INDSTPS Indian Ocean Subtropical Permanently Stratified
3 MED Mediterranean Sea
2 SASTPS S. Atlantic Subtropical Permanently Stratified
1 NaSPSS N. Atlantic Subpolar Seasonally Stratified

Figure S2. Map of standard RECCAP2 biomes by ocean basin (Fay and McKinley, 2014). The
biomes include polar (ICE), subpolar seasonally-stratified (SPSS), subtropical seasonally stratified
(STSS), subtropical permanently stratified (STPS), and equatorial regions (EQU); note the
equatorial Pacific is divided into western and eastern sub-basins. The equatorial eastern Pacific
and Atlantic, monsoon-influenced Indian, and seasonally-stratified biomes generally exhibited
relatively high NPP, Fioo, and Fio00. Polar and sub-polar biomes exhibited relatively high Eioo.




1449
1450

1451
1452
1453
1454
1455

manuscript submitted to Global Biogeochemical Cycles

a RECCAP2 Model Ensemble b pCO, Interpolation Products
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Figure S3. Analysis of the seasonal cycle of non-thermal Apco, . ... = (a) spatial map of
RECCAP2 multi-model ensemble average, (b) spatial map from pCO- observational data products,
and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges, and
outliers pooled into Fay and McKinley biomes (Figure S2).
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a Model Ensemble b World Ocean Atlas
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Figure S4. Analysis of apparent oxygen utilization (AOU) vertically averaged over the
mesopelagic zone (100-1000 m) (a) spatial map of RECCAP2 multi-model ensemble average, and
(b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2 multi-
model ensemble medians, interquartile ranges, and outliers pooled into Fay and McKinley biomes
(Figure S2).
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1467 Table S1. Interannual variability (1985-2018) for the RECCAP2 simulations (simulation A) for
1468  global-integrated, annual-mean variables: vertically integrated net primary productivity NPP and

1469  particulate organic carbon export fluxes at 100 m F;,, and 1000 m depth Fj,yo. Interannual
1470  variability (standard deviation) are in Pg C y~!.
1471

FESOM MPIOM

- MOMG6- - Nor ES ORCAL
CCSM- CESM- CNRM- ECCO- EC- REcoM Princeto HAMO MRI- M- -LIM3-  PlankT

WHOI ETHZ ESM2 Darwin Earth3 LR n CC ESM2-0 OC1.2 PISCES OMI12
NPP' 01914 03743 02000 07272 0.2194 03878 03204 1.5377 04127 03518 0.2286 0.3655
F100 00352 0.0491 0.0304 0.1966 0.0412 0.1079 0.0383 0.2004 0.0736 0.0717 0.0484 0.1447

F1000 (0024 0.0140 0.0000 0.1107 0.0000 0.0143 0.0000 0.0419 0.0103 0.0283 0.0000 0.0000
1472

1473 Table S2. Long-term temporal trends (1985-2018) for the RECCAP2 simulations (simulation A)
1474  for global-integrated, annual-mean variables: vertically integrated net primary productivity NPP

1475 and particulate organic carbon export fluxes at 100 m F;, and 1000 m depth F;o. Trends are in
1476 Pg C y !/year,
1477

FESOM MPIOM

- MOMG6- - Nor ES ORCAL
CCSM- CESM- CNRM- ECCO- EC- REcoM Princeto HAMO MRI- M- -LIM3-  PlankT

WHOI ETHZ ESM2 Darwin Earth3 = LR n CC ESM2-0 OC1.2 PISCES OMI12
NPP™ 0140 -0.0172 0.0005 -0.0727 0.0017 -0.0094 0.0102 0.0028 -0.0047 0.0009 0.0190 0.0184
F100 .0031 -0.0020 0.0000 -0.0209 0.0000 0.0013 0.0010 0.0001 0.0002 0.0017 0.0029 0.0237

F1000 5 0002 -0.0002 0.0000 -0.0117 0.0000 0.0004 0.0000 0.0013 0.0000 -0.0001 0.0000 0.0000
1478

1479



