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Abstract—Machine Learning models are widely employed to
drive many modern data systems. While they are undeniably
powerful tools, ML models often demonstrate imbalanced per-
formance and unfair behaviors. The root of this problem often lies
in the fact that different subpopulations commonly display diver-
gent trends: as a learning algorithm tries to identify trends in the
data, it naturally favors the trends of the majority groups, leading
to a model that performs poorly and unfairly for minority pop-
ulations. Our goal is to improve the fairness and trustworthiness
of ML models by applying only non-invasive interventions, which
don’t alter the data or the learning algorithm. We use a simple
but key insight: the divergence of trends between different popu-
lations, and, consecutively, between a learned model and minority
populations, is analogous to data drift, which indicates poor
conformance between parts of the data and the trained model.

We explore two strategies (model-splitting and reweighing) to
resolve this drift, aiming to improve the overall conformance of
models to the underlying data. Both our methods introduce novel
ways to employ the recently-proposed data profiling primitive
of Conformance Constraints. Our splitting approach is based
on a simple data drift strategy: training separate models for
different populations. Our DIFFAIR algorithm enhances this
simple strategy by employing conformance constraints, learned
over the data partitions, to select the appropriate model to use
for predictions on each serving tuple. However, the performance
of such a multi-model strategy can degrade severely under poor
representation of some groups in the data. We thus propose a
single-model, reweighing strategy, CONFAIR, to overcome this
limitation. CONFAIR employs conformance constraints in a novel
way to derive weights for training data, which are then used to
build a single model. Our experimental evaluation over 7 real-
world datasets shows that both DIFFAIR and CONFAIR improve
the fairness of ML models. We demonstrate scenarios where
DIFFAIR has an edge, though CONFAIR has the greatest practical
impact and outperforms other baselines. Moreover, as a model-
agnostic technique, CONFAIR stays robust when used against
different models than the ones on which the weights have been
learned, which is not the case for other states of the art.

Index Terms—data management, fairness, data profiling

I. INTRODUCTION

While Machine Learning (ML) models are widely employed
in many modern data systems for their undeniable predicting
power, they often demonstrate imbalanced performance and
unfair behaviors (e.g., different model performance across
subpopulations). Such fairness issues have been extensively
studied within the machine learning and data management
communities, among others, in the past decade [1]-[19].

In this paper, we recast these fairness issues as a problem of
data drift, and we address it with solutions that directly aim to
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improve the conformance between data and model. Although
fairness issues may be caused by a breadth of factors, they
often manifest as data imbalances (e.g., skewed representation
in populations or positive labels, or subpopulations exhibiting
differing patterns in the distribution of their attributes and
labels). Such imbalances can be modeled as a type of internal
drift between subpopulations (or groups for brevity), which
can cause a model to perform poorly over minority groups in
its deployment. Specifically, as a learning algorithm attempts
to identify a pattern within a given population, it tends to
prioritize the pattern of the majority group' due to their
prevalence. The produced model thus does not conform to the
minority group, and, as a result, its predictions for members
of that group are unfair and less reliable.

Example 1. The dataset in Fig.1 contains two groups, which
are color-coded in blue and orange. The attributes X1 and
X2 of these groups show dissimilar distributions, as can be
observed from the x and y-axis, respectively, indicating a data
drift over groups. The positive and negative ground truth labels
for a classification model are marked by circles and triangles,
respectively. A model trained on this dataset (black line) tends
to conform to the majority group (blue points). As a result, a
significant number of minority records (orange points) receive
incorrect predictions (orange points with red outline).

We view unfair model behavior (regardless of cause) as drift
between groups and we use drift quantification techniques to
characterize and resolve it. Our solutions are non-invasive i.e.,
they do not alter the data or the learning algorithm. Instead,
we aim to improve fairness by improving the conformance
between minority data and models. We resolve drift between
groups w.r.t. the model’s conformity through two strategies:
Strategy 1: Our model-splitting approach, DIFFAIR, is de-
signed around a simple strategy to address data drift over
groups: training separate models for different groups, such that
each produced model conforms to its training data better.

Example 2. For the dataset in Fig.l, DIFFAIR produces a
separate model (orange dashed line) for the minority group
(orange points), which is significantly different from the overall
model (black line). DIFFAIR also produces a model for the ma-
Jjority group, closely aligned with the black line (not displayed

"We use majority and minority groups to refer to the populations that are
over- and under-represented, respectively, in the data or in the preferred labels.
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Fig. 1: An example of input data containing two groups: major-

ity and minority color-coded in blue and orange, respectively.
The attributes X; and X, of these groups show dissimilar
distributions, indicating a drift over groups. An unfair model
(black line) prioritizes the pattern of the majority group (blue
points), and predicts poorly (with fewer positive outputs) for
minorities (e.g., orange points with red outline). DIFFAIR im-
proves the conformance between data and model by building
separate models for different groups (e.g., orange dashed line
for minorities). CONFAIR improves the conformance by deriv-
ing a single model (green dash-dot line) that emphasizes the
densest areas (green squares) of the input data for both groups.

2.0

to avoid visual clutter). By building models that conform to
different groups, DIFFAIR reduces the number of incorrect
predictions for the minority, leading to a fair outcome, i.e., the
ratio of positive model outcomes is similar for both groups.

Similar strategies of developing and deploying multiple
models to address drift in unseen data have also been em-
ployed in production settings of ML models [20]-[25]. For
example, ensemble learning directly combines the output of
several models according to some aggregation rules or explicit
fairness objectives to derive predictions. Within the family of
model-splitting strategies, DIFFAIR differs from these methods
by deriving predictions based on models’ conformity with
training data. The novelty of our approach lies in the use of
Conformance Constraints (CCs) to quantify such conformance.
DIFFAIR is unique in the way that it uses CC-based data
profiling to assign classifiers, i.e., a point is assigned with the
classifier trained on the subset of data it most resembles. DIF-
FAIR does not aggregate predictions, though one could design
a hybrid method that uses CC violations to appropriately weigh
different predictions. CCs automatically learn from a given
dataset numerical constraints that summarize the distribution
of data points in terms of their distance to the densest areas
in the input data [26]. We use CCs as an off-the-shelf tool to
derive these summary descriptors for each subgroup, and to
quantify the degree of drift of a serving tuple from each group.

Example 3. Profiling the four subsets of the data in Fig.l
(blue circles, blue triangles, orange circles, and orange trian-
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gles) using CCs, results in four sets of constraints (depicted as
green rectangles). Each set of constraints describes the densest
areas in the corresponding subset of the data by some distribu-
tive patterns of the attributes. For example, the constraints
for the minority positive group (orange circles) specify the
rectangular region 1.38 < X1 < 1.5AN0.68 < X2 <0.8. The
distance of a point from this region positively corresponds to
the point’s violation of these constraints, while points inside
the region get zero violations.

During the deployment of group-dependent models, DIF-
FAIR selects for each tuple the model that the tuple best
conforms to, i.e., the model that results in the minimum CC
violation for the serving tuple. DIFFAIR has three advantages
over the naive approach of using group membership to separate
models: (1) it does not need group membership information,
which may be unavailable due to legal and discrimination
considerations (e.g., protected attributes such as gender, race,
and disability status); (2) it similarly avoids quality issues com-
monly observed with demographic attributes due to privacy
and discrimination considerations, which disproportionately
affect minority groups [27]; (3) it assigns the best model to
individuals, who may deviate from their own group’s pattern
and be served better by another group’s model. The alternative
approach of learning a separate model to determine model
selection is prone to mistakes due to drift between groups,
while DIFFAIR is robust to data drift by design (i.e., explicitly
quantifying drift through CCs).

A general limitation of model-splitting approaches, how-
ever, is that their performance can degrade significantly when
a group’s representation is particularly poor in the data. For
example, if the population of a group is very small, or if
its labels are severely skewed (e.g., mostly negative labels),
the model trained on such data will likely be of low quality.
Suppose a minority group has 90% negative and 10% positive
labels; a model that always assigns a negative prediction may
achieve high accuracy over this data, but it is clearly unreliable.
This limitation is hard to address with a model-splitting ap-
proach, as small data size and skewed representation offer little
opportunity for improving the models. Instead, we propose a
single-model reweighing approach that naturally avoids these
pitfalls, which we describe next.

Strategy 2: Collecting more data to address skewed repre-
sentation is often an expensive proposition. Our reweighing
approach, CONFAIR, is a single-model strategy designed to
overcome this limitation by appropriately adjusting the weights
of existing data. CONFAIR profiles the data using CCs to
identify the densest areas of the input, and assigns higher
weights to tuples that best conform to the identified CCs.
These weights are then used in model training. Models that
do not support weights directly can still employ a weighted
sampling strategy to preprocess the training data accordingly.

Example 4. For the dataset in Fig.1, CONFAIR assigns high
weights to tuples located within the constraint areas (e.g.,
points inside green squares). The produced model (green dash-
dot line) corrects several erroneous predictions of the original



DRO [28] LAH [29] CAP [18] KAM [2] OMN [30] CONFAIR
non-invasive wrt data v v x v v v
non-invasive wrt model X X v v v v
flexible intervention x x x x v v
intra-group variability v v x x X v

Fig. 2: CONFAIR provides non-invasive and flexible interven-
tions; by allowing for variable weights within the same group,
CONFAIR can better balance the fairness-accuracy tradeoff.

model (black line), i.e., most of the red-outlined orange points
are now correctly classified. The two groups also get similar
ratios of positive predictions, indicating a fair outcome.

Reweighing strategies have been used in prior art to improve
the fairness of ML models [2], [18], [28]-[30]. The intuition
of such strategies is that balancing the weighted representation
of groups can amplify the loss of the minority group during
training, thus leading to models that better optimize for this
loss. Much of the prior work focuses on adjusting the weights
during iterative training of a model [28], [29], [31]. Such
interventions learn the weights through a black-box training
process, which cannot be audited or adjusted. In contrast,
CONFAIR supports flexible intervention: by allowing users to
control the reweighing impact, they can adjust the tradeoff
between fairness and accuracy. Moreover, CONFAIR follows
a non-invasive strategy that does not alter the data or model.
Among other non-invasive techniques [2], [30], CONFAIR
stands out by allowing variability in the weights assigned to
the members of a subpopulation. Instead of assigning identical
weights to all tuples within a minority group, CONFAIR only
increases the weights of those individuals that conform to
the densest part of the group’s data. This way, CONFAIR
avoids amplifying outliers and noise, which could mislead
the training and harm model accuracy. Figure 2 summarizes
these points of comparison between CONFAIR and prior art.

Model-splitting vs reweighing. CONFAIR and DIFFAIR
are designed to support different scenarios of data drift over
groups. In cases of significant drift, DIFFAIR is generally
better, as it may not be possible to build a single well-
conforming model (see evaluation in Section I'V-B).

Example S. For the dataset in Fig.1, CONFAIR does not re-
solve all erroneous predictions for the minority group, i.e., red-
outlined points still fall on the wrong side of the green dash-
dot line. In contrast, DIFFAIR can produce a model (orange
dashed line) that better conforms to the minority group.

When drift over groups is less stark, CONFAIR can be more
effective than DIFFAIR as it applies an early-stage intervention
(focusing on the training data), while avoiding the loss of
predicting power in splitting input and developing multiple
group-dependent models.

Scope. In this paper, we aim to improve the fairness of ML
models by increasing the conformance between the model and
data. Our work focuses on group fairness, which characterizes
if any group, collectively, is discriminated against. In this
paper, we focus on group fairness measured by disparate
impact [1], [5], [32], but our approach also supports other
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fairness metrics (e.g., Equalized Odds), discussed in the full
version [33]. These groups are often defined by demographic
attributes, such as gender, race, disability status, etc., but this
is not a requirement for our methods.

In relation to methods in the fairness literature, our
approach focuses on data-oriented interventions but requires
no invasive changes to the data itself. Compared to those
methods that alter the data directly (known as pre-processing
interventions) [2], [5], [7], [8], [18], our approach may be
less powerful due to the non-invasive setting, while the former
allows arbitrary changes to the data such that one can achieve
greater flexibility in obtaining desired fairness improvement.
However, by being non-invasive, our approach poses a lower
risk of introducing unintended drift between the training and
serving data. Furthermore, we take into account the distribu-
tion of numerical attributes, providing a rich space for fine-
tuning the balance between fairness and utility, and enabling
our approach to be easily combined with others that operate
in the categorical domain. Our approach is also different
from the methods that alter the learning algorithms or the
outcomes directly [3], [4], [6], [10], [13]-[15], [17], [34]-
[36], known as in- or post-processing interventions. These
methods often require access to models or learning algorithms
to fine-tune (or reassign) the loss for each data point during the
development (or deployment) of fair models, making them less
interpretable and difficult to audit due to technical complexity.
In contrast, our approach is explicit and easy to interpret and
audit. Our techniques rebalance fairness for specified minority
and majority groups. This process may lead to imbalances in
the treatment of other unidentified subpopulations, which is a
common effect in fairness repairs (e.g., repairing fairness w.r.t.
gender may lead to imbalances w.r.t. race) [37], [38].

In relation to clustering, our approach is designed for
supervised learning tasks rather than unsupervised settings
such as clustering tasks. Fair clustering tasks may differ based
on their definitions of fairness (we refer the reader to a
survey [39] for more detail). The employment of conformance
constraints in our approach resembles clustering, but the two
have different objectives (identifying clusters vs determining
dense areas of the input data). Clustering may be repurposed
to perform the same task, but it is not an effective alternative
to the use of numerical constraints as in CCs. This is because
most clustering techniques are sensitive to the separation of
clusters in input data, requiring that clusters are well separated
from each other. This assumption is not valid in much of our
experimental data, where drift over groups (or clusters) exists
but the groups are not clearly separated in the input space.
Moreover, clustering methods are less useful in scenarios
where individuals may deviate from their own cluster and
would receive better outcomes if they were assigned to another
cluster (e.g., assigned to the model for another group in
DIFFAIR). By analyzing the distribution of attributes, CCs are
more robust towards data drift than clustering.

Considering other data profiling primitives, CCs offer
two important advantages. (1) Numerical attributes provide
rich data context and great flexibility in achieving desired



fairness balance, and have not been exploited in deriving
fairness interventions. The focus on a continuous domain
makes our approach orthogonal to methods that work in
categorical domains to derive interventions, thus presenting the
potential for hybrid methods. (2) Constraints can be derived
efficiently over large datasets (i.e., linear in the number of
tuples and cubic in the number of attributes), which makes
our methodology practical for real-world data. Ultimately, our
approach can integrate with other profiling tools that produce
similar quantitative descriptions of input data.

Contributions. We make the following contributions:

We recast the problem of fairness in ML models as an issue
of drift over groups in input data, and, consecutively, as a
problem of conformance of the model to its underlying data.
(Section II)

We present DIFFAIR, a model-splitting strategy that im-
proves conformance between model and data by deriving
group-dependent models and deploying these models based
on the similarity of serving tuples to the training data of each
model. Experiments show that DIFFAIR is a better solution
to improve the fairness of ML models for scenarios, where
a single model is impossible to conform to all groups of
input data. (Section III-A)

We present CONFAIR, a single-model strategy that reweighs
the training tuples based on the densest areas of input data,
thus producing a single model with balanced predictive
accuracy across groups. Experiments show that CONFAIR
outperforms existing reweighing techniques, and remains
robust when its weights are used by different learning
algorithms, in contrast with other prior art. (Section III-B)
We augment our techniques with density estimation to
improve the tightness of derived conformance constraints.
(Section III-C)

We evaluate our methods against 7 real-world datasets and 4
alternative approaches. We demonstrate gains against these
baselines and show that our methods improve fairness in ML
models, while maintaining utility on par with that before
interventions. (Section IV)

II. FRAMING FAIRNESS AS DATA DRIFT

In this section, we formalize our notation and problem, we
then provide a high-level description of our model-splitting
and reweighing strategies, and, finally, we review some nec-
essary background on Conformance Constraints (CCs), a
recently-proposed profiling primitive that we use as an off-
the-shelf tool in our methods.

A. Notations and problem statement

We first discuss the notations used in the paper. We denote
variables with upper-case letters, e.g., X and Y'; values with
lower-case letters, e.g., n,m,c,i, and j; sets of variables or
values with boldface symbols, e.g., X or t; and bags of
variables with calligraphic symbols, e.g., D.

Data. We assume data D that consists of n = |D| tuples. Each
tuple is described by a set of attributes X with cardinality m =
|X| and a target attribute Y with ¢ distinct classes (or labels).
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Groups. For ease of exposition, and without loss of gener-
ality, we assume that D can be partitioned into a majority
group W and a minority group U.” For the purposes of
our work, we use the term minority to refer to a group U
that is under-represented in the data, either with respect to
the overall population, i.e., |U| is small, or with respect to
the target attribute Y within U, i.e., there exists ¢ € [1,¢],
with U; = {t|t € U A t.Y = i}, such that |U;| is small.
We further assume a user-specified binary mapping function
g : R™> ™ — [0, 1] that takes as input a tuple t and maps it to
W or U. Typically, g is a simple function over one or more
attributes in X. For example, based on the color of the data
points in Fig. 1, a tuple can be assigned to the “blue” majority
group or the “orange” minority group.

Model. We assume a model f : R™*™ — R™*¢ which takes
as input a tuple t € D and outputs a prediction as one of the
c classes of the target attribute Y. We denote the predictions
of f on D by Y. We use the following standard process to
develop a model f. We partition the input D into three disjoint
sets: training D?, validation DY, and deploy D?. We train f
on D!, optimize for its hyperparameters on DY, and deploy
and evaluate it on D?. Tuples are assigned into these three
sets independently at random (i.i.d.).

Metrics. A fairness metric A(W, U) quantifies the difference
in predictions Y between the majority W and minority U. A
lower value of A(W, U) indicates less bias in the predictions
of f. A utility function X(V,Y) quantifies the similarity
between the target attribute Y and the output Y of f- A higher
value of ¥(Y,Y) indicates higher utility for the model f.

Definition 1 (Non-invasive fair learning). Given a dataset
D, a mapping function g, and a learning algorithm f, non-
invasive fair learning seeks a learning framework that, without
altering the data in D or the learner f, it trains a model f'
using learner f, such that the fairness difference A(W,U) is
minimized, while the utility (Y, Y) is maximized.

B. Strategy overview: improving conformance

We described how data drift (across groups) leads to unfair-
ness in ML models. As a result, the produced model may not
conform to the minority group, whose predictions are, thus, not
reliable. To improve the conformance between the model and
data, we propose two strategies: a model-splitting approach
(DIFFAIR) and a reweighing approach (CONFAIR).

DIrFAIR follows a simple strategy: train separate models for
different groups and deploy these group-dependent models
collectively to improve the conformance between model and
data. A naive version of this strategy, which we will simply
refer to as MULTIMODEL, may split the input data based on
group membership (e.g., blue and orange points in Fig. 1),
train multiple models (one for each group), and choose a
model to use for a serving tuple based on its group membership
during deployment. In contrast to the naive MULTIMODEL

20ur approach can be easily extended to the general case, where the input
data contains multiple majority and minority groups.



method, DIFFAIR does not use group membership in assigning
models for serving tuples. Instead, it learns constraints to de-
scribe each group’s training data using CCs. For each serving
tuple, DIFFAIR chooses the model that minimizes the tuple’s
violation score against the CCs of the model’s training data.
This strategy has two important advantages compared to
simply relying on group membership:
o DIFFAIR affords compliance with legal considerations re-
garding discrimination when it does not rely on group
membership during deployment. Such membership infor-
mation can be sensitive and protected (e.g., gender, race,
disability status, etc.). Additionally, DIFFAIR is robust to
erroneous membership during deployment, i.e., individuals
with wrong membership information (e.g., auto-filled or
misclassified) still receive correct predictions.
DIFFAIR is flexible at handling individuality. Instead of
deploying a model based on group membership, DIFFAIR
chooses a model for each serving tuple considering the
distribution of its attributes, i.e., assigning a model to which
a tuple conforms better, regardless of which group the tuple
formally belongs to.

The novelty of DIFFAIR lies in its use of CCs to model drift
and separate data based on this drift. DIFFAIR builds a simple
mechanism around this intuition: it serves each tuple using the
model that results in the minimum CC violation score. One
can easily augment this with more sophisticated mechanisms
(e.g., ensemble learning), where conformance constraints can
be used as an explicit heuristic for aggregating predictions
from involved models.

CONFAIR aims to achieve better conformance between the
model and data through a reweighing strategy. It assigns
weights to tuples in the training data, and an ML model then
takes the new weighted data as input. CONFAIR determines
these weights based on the conformance constraints that are
learned over each group’s data. It increases the weights of
the tuples that best conform to the produced constraints (e.g.,
points located inside the green rectangles in Fig. 1). Training
a single model makes CONFAIR more robust against the poor
representation of groups, whereas model-splitting approaches,
such as MULTIMODEL and DIFFAIR, are limited by the need
for adequate group representation to train a reasonable model.

C. Background on Conformance Constraints

We proceed with a brief overview of conformance con-
straints [26]. We generally follow the formalism and notations
of the original paper, but we omit or simplify some details in
the summary we provide here; we refer the reader to Fariha
et al. [26] for more detail.

A conformance constraint is a constraint over arithmetic
relationships involving multiple numerical attributes. More
formally, a constraint ¢ is an expression of the form ¢ =
et < F(X) < €, where € and €’ are the lower and
upper bounds of the projection F(X). F(X) is a linear
combination of numerical attributes X in data D. We use ®
to denote a set of conjunctive constraints. For a tuple t, ®(t)
is computed as follows: ®@(t) = ¢1(t) A Pa(t) -+ A ¢p(t),
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and ¢;(t) == €’ < Fi(t) < €2 Vi € {1,2,...,r}. Fi(t)
is simplified from F;(t.X) for readability. In this Boolean
semantics, a tuple t satisfies the constraints ® when ®(t) = 1.
Otherwise, t violates the constraints ®.

Fariha et al. [26] also propose quantitative semantics to
measure the violation of a tuple t for constraints ®, denoted
as [®](t). We compute the violation [®](t) as follows:

[@1t) = > ai- [4i1()

(LZZ'St(F‘i7 t)
[#:](t) = U(W

dist(F;,t) = maz(0, Fy(t)
n(@)=1-e"*

Where ¢; € RT,Vi € {1,2,...,r} is the coefficient of the
expression ¢; € ® and 22:1 ¢; = 1. This factor represents the
importance of the expression ¢; and is computed as ¢; = 1 —
maI(a(F(;)(fiiin(a(F))’ w}}ere F = {Fl, e F.T} copsists of all
the projections involved in expressions ®. It is saying that the
lower the standard deviation o (F;) of the projection F} is, the
more important the expression ¢; is in computing the violation
of the tuple t. In other words, the set of constraints, whose
projections have low standard deviations, is more effective at
characterizing tuples in D.

In this quantitative semantic, a tuple t satisfies the con-
straints @ (i.e., ®(t) = 1) when the violation [®](t) = 0.
Otherwise, the lower the violation [®](t) is, the more t
conforms to ®. We employ these quantitative semantics in
our approach to profile groups’ data. In this paper, we use
®“ and ®“ to denote the sets of constraints derived over the
majority and minority groups W and U, respectively.

) Vie{1,2,...,7}
(t)

—elb et _ Ry
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ITI. FAIRNESS THROUGH CONFORMANCE

In this section, we present two methods that aim to im-
prove fairness in learning, by improving the conformance
of models to underlying data. We first describe DIFFAIR,
which enhances the naive method MULTIMODEL by using
conformance constraints to deploy the appropriate model for
serving tuples (Section III-A). Next, we introduce CONFAIR,
which uses conformance constraints to assign weights to the
training data and then build a single model over weighted
data (Section III-B). Finally, we present an optimization that
improves the effectiveness of the derived CCs: we use density
estimation to preprocess the input and filter high-variance data,
leading to tighter constraints.

A. DIFFAIR

Our model-splitting approach is designed around a simple
strategy: train separate models for different groups, such that
each produced model better conforms to its underlying data.
DIFFAIR augments this simple strategy with conformance
constraints: Roughly, DIFFAIR derives CCs from the training
data of each model, and calculates the violation of each serving
tuple against each set of constraints; it then selects the model
that corresponds to the lowest violation to serve the tuple.



Algorithm 1 DIFFAIR

Algorithm 2 CONFAIR

Require: Dataset D with attributes X, a target attribute Y, and a
mapping function g.
Ensure: A fair model f’ over D
1: Partition(D) — {D*, D", D}
>Identify majority and minority groups W and U in Dt and D"
: W' = {t|g(t) = 0,t € D'}, U" = {t|g(t) = 1,t € D'}
: WY = {t[g(t) =0,t € D"}, U” = {t|g(t) = 1,t € D"}
CY=0,C"=0
for i <+ 1,...cdo
Wi = {t|t.Y =it € W'}; Ul = {t|t.Y =i,t € U’}
Y = GetCCs(W)); & = GetCCs(UY)
C" «+ C"U®, C"+ C"UP}
: Train f* on W*; Train f*“ on U";
: Validate f* on W"; Validate f* on U";
: for t € D? do
>Produce predictions for all serving tuples
‘ PREDICT(t, C*, C")
: return [+ (f*, f*,C*,C")

TeY XA

—_

_ =
w

: procedure PREDICT(t, C*, C")
[ (t) = minqﬂﬂgcw [l:@w]](t)
Uu(t) = mi’nqwecu Hq)u]] (t)
if v (t) < v"(t) then
return [ (t)
else
return f"(t)

Algorithm 1 presents this strategy in more detail. The
algorithm takes as input a dataset D and a mapping function
g to define groups. While the pseudo-code assumes a binary
function g, it can easily generalize to more than two groups.
The algorithm first splits D into three disjoint sets: training
Dt, validation DV, and deployment D¢ (line 1). Then it
proceeds to identify groups within the first two sets using the
mapping function g (lines 2-3). The algorithm proceeds to
derive constraints for groups within the training set D*, and
DIFFAIR does so within each set of labels (lines 4-8). This
is because, in practice, individuals with positive and negative
labels may display distinct patterns in their attributes (e.g.,
triangles and circles in Fig. 1). DIFFAIR, therefore, leads to a
tighter and higher-quality set of constraints.

DIFFAIR proceeds to train two group-dependent models
f% and f* for the majority and minority, respectively, and
optimizes their parameters over the corresponding validation
sets (lines 9-10). The PREDICT procedure (lines 14-20)
outputs predictions for each serving tuple t in D¢ solely by
the constraints C* and C* without referring to the mapping
function g. The goal of PREDICT is to identify the best model
to deploy. First, we determine the label group within the
majority and the label group within the minority that tuple
t is closest to (has minimal violation (lines 15-16). Then,
comparing the majority and minority violation scores, we
select the appropriate model (lines 17-20). Note that DIFFAIR
picks the model with the best conformance, even if a tuple does
not actually belong to that group. By prioritizing conformance,
DIFFAIR achieves better accuracy, especially for members of
the minority group, leading to improved model fairness.
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Require: Dataset D with attributes X, a target attribute Y, a
mapping function g, and intervention factors «* and «* for the
majority and minority groups, respectively.

Ensure: Dataset D, augmented with a weight attribute.

1: t.5=0,Vt € D >add weight attribute S with initial value 1

2: for all ¢ do >partition D according to target Y and function g
3| W = {t]g(t)=0, t.Y =c, teD}
4 | U, = {tlg(t)=1,t.Y =c,teD}
5 Y = G’etC’CS(WC); P = GetCCS(UC) >get constraints
>Update weights for population and label skew
o |5 oo BRI i g
>Find conforming tuples
7: TY = {t|t € W, [®](t) == 0}
8 | T = {tt € UL [@X](t) == 0}
>Increase the weight of tuples conforming with minority positive labels
9: for t € TY do
10: t.S+—t.S+a"
>Increase the weight of tuples conforming with majority negative labels
11: for t € T¢ do
12: t.S +—t.S+av
return D

The run-time complexity of Algorithm 1 is bounded by the
derivation of conformance constraints—O(q*) with ¢ numer-
ical attributes for computing projections and O(nm?) with n
tuples and m attributes for producing the constraints [26]. The
training of models takes O(nm) with n tuples and m attributes
using classification algorithms such as Logistic Regression.

B. CONFAIR

Multi-model approaches are more susceptible to groups’
poor representation in the input. Splitting the dataset to
produce multiple models weakens the predictive power over
the input with small and often skewed group representation.
We explore a single-model strategy that boosts conformance
between the model and data (especially of minority groups),
without diluting learning power as in multi-model approaches.

In this section, we present CONFAIR in Algorithm 2, a
single-model approach that uses CCs in a novel way to derive
weights for the training data. For ease of exposition, the
pseudo-code assumes binary labels (i.e., ¢ 2). It further
assumes that the positive labels are over-represented in the
majority group, while the opposite holds for the minority.
These assumptions are simply for ease of presentation, and not
true restrictions of the framework. The intervention degrees a*
and o* are adjustable weight parameters to control the level of
intervention that users may wish to apply to the majority and
minority groups, respectively. By default, CONFAIR optimizes
for disparate impact by applying these weights to appropriate
labels; our technical report discusses support for other fairness
metrics through adjusting o and a" [33]. CONFAIR only
augments the weights of tuples that conform to the identified
CCs, resulting in a monotonic behavior of improvement in
fairness with respect to the intervention degree; this facilitates
tuning the parameter to each application’s fairness require-
ments. In contrast, prior art [30] augments the weights of all
tuples in a group; as data is inevitably noisy, this lead to a non-



monotonic relationship between the level of intervention and
the achieved fairness (see details in our technical report [33]).

CONFAIR adds a weight attribute S to input D initialized
in line 1. It then partitions D based on a mapping function
g and target attribute Y. For example, the dataset in Fig. 1
would be separated into four parts: the majority group with
positive labels (blue circles), the majority group with negative
labels (blue triangles), the minority group with positive labels
(orange circles), and the minority group with negative labels
(orange triangles). CONFAIR proceeds to derive constraints
on each part (line 5). It then balances the weights of tuples
in each part according to the skew in the groups’ population
and labels, i.e., increase weights for the minority and decrease
values for the majority (line 6). Next, CONFAIR focuses on
the tuples that conform to each part (lines 7 and 8). Based
on the intervention factors o and «", CONFAIR adjusts the
weights of these conforming tuples (lines 9-12). Recall that
the presented pseudo-code makes the assumption that the ma-
jority part of the data skews toward positive labels and that the
minority part of the data skews toward negative labels. Thus, to
achieve balanced predictive accuracy across groups, CONFAIR
increases the weights of majority-negative-conforming tuples
by a", and the weights of minority-positive-conforming tuples
by a*. Note that this assumption is made here for readability.
The approach can easily generalize to the labels with multiple
classes. And the skew of groups toward the labels can be easily
estimated from the data, which can guide the tuning of the
intervention factors (e.g., increase weights for the minority
group with positive labels or vice-versa). Finally, CONFAIR
returns the weight-augmented data to build an ML model.

Similar to Algorithm 1, the run-time complexity of Algo-
rithm 2 is also bounded by the derivation of conformance
constraints, which takes O(g®) with ¢ numerical attributes
for computing projections and O(nm?) with n tuples and m
attributes for deriving the constraints [26].

C. Optimizing the derivation of CCs

The effectiveness of conformance constraints is affected by
the variance of attributes in the input. A set of constraints
learned from data with high variance has low discriminative
power: most tuples will have high conformance with broad,
permissive constraints. Such weak constraints can critically
impact the effectiveness of our methods. In this section, we
propose a pre-processing optimization step that filters the
input data D using density estimation, leading to stronger
sets of conformance constraints, and by implication, increased
effectiveness for DIFFAIR and CONFAIR.

We present our optimization in Algorithm 3. The algorithm
processes each target class separately (lines 2—4), and uses
density estimation on the majority and minority sets within
the target class (lines 5-6). In our implementation, we employ
a state-of-art, tree-based, non-parametric kernel density esti-
mator [40], implemented in the scikit-learn library [41].Other
kernel density estimators can also work for this step [42]-[44].
Algorithm 3 proceeds to sort the sets W; and U; based on
density and selects the first & tuples to add to D’ (lines 7-8).

Algorithm 3 Optimization for stronger CCs

Require: Dataset D with attributes X, a target attribute Y, a
mapping function g, and a density threshold k.
Ensure: Dataset D' C D
1: D=0
2: fori<1,...cdo >process each class in target attribute Y .
3: W, = {t|t.Y =1i,g9(t) =0,t € D}
U, = {t|t.Y = i,g(t) = 1,t € D}
d" + EstimateDensity(W;)
d" + EstimateDensity(U;)
Sort W, U; in descending order of d*, d“, respectively
D' < D' U{ first k tuples in W} U { first k tuples in U;}
return D’

A

The run-time complexity of Algorithm 3 is bounded by the
density estimation, which takes O(mn?) with n tuples and
m attributes. This run-time can be improved to O(mlog(n))
using optimized data structures such as KD-Tree [40] or Ball
Tree [45] for input data in higher dimensions (e.g., m > 20).

IV. EXPERIMENTAL EVALUATION

We evaluate DIFFAIR and CONFAIR against a breadth
of datasets and methods. Our experiments demonstrate that:
(1) CONFAIR outperforms prior art in improving the fairness
of models, while maintaining high accuracy (Section IV-A);
(2) DIFFAIR can be a better solution compared to CONFAIR
for scenarios, where it is difficult to derive a single conform-
ing model (Section IV-B); (3) our optimization for deriving
stronger conformance constraints is essential (Section IV-C);
(4) our approach shows a reasonable run-time compared to
prior art (tech report [33]). We describe each experimental
component below.

Datasets. We experiment with 7 real-world datasets used
frequently in fairness literature. They include people’s demo-
graphics and information collected from various domains such
as financial and health-related services. We provide a summary
description of the major aspects and statistics of each dataset
in Figure 3. For more detail, we refer the reader to Bellamy
et al. [46] for the MEPS and LSAC datasets, Kaggle [47]
for the Credit dataset, and Ding et al. [48] for the American
Community Survey (ACS) datasets. We employ four predictive
tasks using the ACS datasets, which pertain to people’s health
insurance (ACSP and ACSH), employment (ACSE), and in-
come (ACSI). We choose to skip other frequently-used datasets
such as Adult Income [49] and COMPAS [50] because these
datasets include very few numerical attributes (e.g., no more
than 2) for deriving conformance constraints.

Models. As our methods do not depend on nor intervene with
the learners, one could apply them in combination with any
learning algorithm. We experiment with two types of learners:
Logistic Regression (LR) and XGBoost tree (XGB) from the
scikit-learn library [41].

Methods. We briefly describe each approach in our evaluation.
> NO-INTERVENTION. This baseline trains a model over the in-
put without applying any fairness intervention. The goal of all
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dataset MEPS LSAC Credit ACSP ACSH ACSE ACSI

size 15,675 24,479 120,269 86, 600 250, 847 250, 847 250, 847

# of attributes

numerical / categorical 6 /34 6 /4 6/0 4/ 14 4 /21 4/ 11 6/13

minority group U non-White  African-American age < 35 African-American African-American African-American  African-American

population of U 61.6% 7.7% 13.7% 9.2% 7.3% 7.3% 7.3%

% positive labels in U 11.4% 56.6% 10.7% 48.3% 9.3% 39.3% 40.2%

% positive labels in W 25.3% 82.5% 6.4% 64.3% 15.1% 45.9% 31.4%

predictive task h1gt'1 4hos'p it passing bar exam serious ihlky 'covered by prwat'e having health insurance employment income poverty
utilization in 2 years insurance companies rate < 250

Fig. 3: Summary statistics and main aspects of the 7 real-world datasets used in our experiments.

other methods is to achieve improvement in the fairness met-
rics against this baseline, while maintaining comparable utility.
> MULTIMODEL is a simple model-splitting baseline. It par-
titions the input data into groups by a mapping function g,
builds separate models for different groups, and deploys these
group-dependent models based on the function g.

> DIFFAIR (Section III-A) augments MULTIMODEL, by using
conformance constraints in the model deployment, rather than
rely on group membership (or the mapping function g), and is
thus more flexible and robust to inaccuracies in membership.
> CONFAIR (Section III-B) is a single-model reweighing
strategy, which derives weights for training tuples, based on
their conformance to the CCs in each subgroup.

> KAM-CAL (KAM) [2] is a reweighing method (like CON-
FAIR). It assigns weights to achieve statistical independence
between the demographic attributes (defining the groups) and
labels. Relying on groups’ statistics in the input, KAM does
not support adjusting the level of interventions.

> OMNIFAIR (OMN) [30] is another reweighing method that
aims to achieve fairness for a given metric. We use a variant
of OMN that optimizes for Disparate Impact, as this is the
metric that CONFAIR inherently optimizes as well (discussed
in more detail in the evaluation metrics below).

> CAPUCHIN (CAP) [18] is an invasive fairness intervention
that modifies the input data to ensure that certain constraints
hold over its outputs. Since CAP is designed for categorical
data, we evaluate this method using the XGB models, which
are a better fit for categorical input.

Metrics. We evaluate all methods concerning the fairness and
utility of the produced models. We use balanced accuracy
(BalAcc) as the utility metric, which has been used extensively
in the literature to evaluate fairness interventions [46]. It
is computed as w, where TPR and TNR are the
True Positive Rate (or sensitivity) and True Negative Rate (or
specificity), respectively. BalAcc is similar to the Area Under
the ROC curve (AUC); both utility metrics are sensitive to the
poor representation of minority groups. BalAcc is in the range
of [0, 1], with higher values corresponding to greater utility.
We report two fairness metrics that are frequently used in the
literature: Disparate Impact (DI) [5] and Average Odds Dif-
ference (AOD) [6]. In our implementation, CONFAIR targets
DI, but our results show that it performs well for both metrics.

- SRy _ |{t|t.Y=1,teU}]
DI is computed as ¢ T where SRy = o and

SRw = M& are the selection rates for the minor-
ity U and majority W, respectively. DI takes values from 0
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to oo with 1 being the optimum, i.e., the two groups have the
same rate in receiving a positive prediction. Values greater than
1 indicate bias favoring the minority group, which may in fact
be reasonable or even desirable in some applications where mi-
norities have suffered from historical disadvantages. CONFAIR
implicitly optimizes DI, as it increases the weights of tuples
with positive labels within the minority group, thus leading to
an improvement of the selection rate for the minority.

AOD is a generalized version of Equalized Odds [6],
which is computed as (FPRUfFPRW);(TPRufTPRW) where
FPRy and FPRw are the False Positive Rates for the
minority U and majority W, respectively, and TP Ry and
T PRy are the TPRs for these two groups. AOD ranges from
0 to 1, with O indicating an optimal case where there is no
difference in how a model makes positive predictions for the
two groups. AOD captures a different aspect of model behavior
compared to DI; even though CONFAIR is not designed to
optimize AOD, our experiments will show that its fairness
remains robust under this metric.

For ease of interpretation, we report simple transformations
of these metrics, so that higher values correspond to better
outcomes. Specifically, we report DI* = min (DI, ﬁ), where
unfairness (DI — 0 or DI — oo) is mapped to a low value
of DI*. We report AOD™ = 1 — abs(AOD) such that higher
values of AOD represent improved fairness. For the remainder
of this section, we simply use DI and AOD to refer to DI*
and AOD”, respectively.

Experimental steps. We first prepare our data for training. For
the datasets MEPS and LSAC, we use the same preprocessing
steps as in the IBM Al Fairness 360 toolkit [46]. Similarly,
we preprocess the other data by removing null values, normal-
izing numerical attributes, and one-hot encoding categorical
attributes. We split the processed data into training (70%),
validation (15%), and test (15%) sets. For both multi-model
and single-model settings, we tune hyperparameters on the
validation set and evaluate model performance on the test set.
To eliminate the effect of randomness, we repeat the process
20 times and report the average results in our evaluation.

Algorithm parameters. We automatically search for the
optimal value of a" (i.e., the intervention degree for the
minority group) over the validation set of each real-world
dataset and set o = «“/2 (i.e., the intervention degree for
the majority group). The tuning of intervention degrees in
CONFAIR implicitly optimizes DI (i.e., brings it closer to 1).
We set the density threshold £ = 0.2 x n for all the datasets.



Implementation. We implemented DIFFAIR and CONFAIR in
Python 3.7.0, and ran experiments on a computing cluster with
9 nodes (2.40 GHz processor and 256 GB RAM). We open-
source our code at https://github.com/DataProfilor/ConFair.

A. Evaluation of CONFAIR

We start with the evaluation of CONFAIR, which is our
primary fairness-improvement strategy. (As we will see in
Section IV-B, DIFFAIR is strong in cases of significant drift,
but loses to CONFAIR in most practical settings.) We compare
CONFAIR against three state-of-the-art methods: reweighing
strategies, KAM and OMN, and a data-invasive intervention,
CAP. We do not compare against in-processing methods [28],
[29], [31], [51], which alter the learners, or post-processing
methods [3], [6], [34], which alter predictions. A broad evalu-
ation against the existing extensive landscape of fairness inter-
ventions is in itself an independent research contribution [52].

CONFAIR vs KAM. As we noted, prior methods have
employed weighing strategies as a fairness intervention, but
the novelty of CONFAIR lies in the use of CCs to identify
and increase the weights of tuples that conform to the densest
areas of the input. In contrast, prior art like KAM increases
the weights of all tuples within a group, which may end up
amplifying outliers and noise.

Figure 4 demonstrates a comparison between CONFAIR and
KAM across 7 datasets and two learning strategies. The white
bars in the graphs show the performance of the LR (Figures 4a,
4b, and 4c) and XGB models (Figures 4d, 4e, and 4f) before
any fairness interventions are applied (NO-INTERVENTION).
We note that many of these results indicate significant bias
(low fairness measures). CONFAIR and KAM both succeed at
improving the fairness of predictions, without notable drops
in accuracy (Figures 4c and 4f).

We note that CONFAIR robustly outperforms KAM for the
DI metric over the MEPS, LSAC, ACSP, and ACSE datasets,
in the case of XGB models (Fig. 4d); its gains are clear, yet
more modest, in the case of LR models (Fig. 4a). Even though
CONFAIR does not directly target the AOD metric, it still
achieves significant improvements over NO-INTERVENTION,
and comparable performance to KAM (Figures 4b and 4e).
It is important also to highlight that, while the AOD values
are similar between CONFAIR and KAM, CONFAIR more
reliably favors the minority group (striped bars []).

For the datasets Credit and ACSI, CONFAIR performs better
against the LR models, concerning both DI and AOD, and
is closer to KAM against the XGB models. For the ACSH
dataset, CONFAIR outperforms KAM in improving the fair-
ness (for DI) of the LR models but behaves worse than KAM
with the XGB models. This is because the ACSH dataset is
very sensitive to the intervention factors of CONFAIR, which
are used to determine the increment of tuples’ weights. We
found that the fine-tuning of these factors for this dataset
specifies that o = 0.028, while the optimum value of a*
for this dataset is 0.03. Overall, CONFAIR gains an edge over
KAM as it can fine-tune weights for tuples within groups,
which is not possible in KAM.
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CONFAIR vs OMN. Figure 5 repeats the experiment against
an alternative state-of-the-art. Similar to CONFAIR, OMN
reweighs input data with an adjustable degree of intervention,
but its performance is much less reliable across different
datasets. We observe that CONFAIR significantly outperforms
OMN in terms of DI across all datasets using the XGB models
(Fig. 5d). Note that OMN is unable to return a model for the
Credit and ACSI datasets in this setting (the corresponding bars
are missing in Figures 5d-5f as XGB fails to converge with
the weights produced by OMN). Under the LR models, OMN
does particularly poorly for the Credit, ACSH, ACSE, and
ACSI datasets (Figures 5a and 5b), while CONFAIR demon-
strates significant improvement over the fairness metrics.

Another important observation is that OMN interventions
result in significant loss of accuracy, while CONFAIR produces
models with utility that remain on par with that before
interventions (Figures 5c and 5f). In particular, even cases
with apparent improvements in fairness for OMN, come at
a problematic utility loss. For example, in the case of LR
models over the LSAC and ACSP datasets, OMN shows high
improvements in DI and AOD (Figures 5a and 5b); however,
the resulting models in these cases only predict one class
(BalAcc =0.5 with TPR=1 or TNR=1), which renders the
models useless. We indicate these cases with crisscross bars
(&) in the utility graphs (e.g., Figure 5c).

We highlight that, despite both being reweighing strategies,
CONFAIR and OMN demonstrate vastly different perfor-
mances. This is due to their distinct weighing methodologies:
OMN adjusts its weights according to the model output, while
CONFAIR uses tuple conformance to fine-tune the weights,
thus achieving a much more robust fairness-utility balance.

CONFAIR and OMN are both practically model-agnostic,
in the sense that the weights they derive can be used by
any learning algorithm. However, both methods assume a
particular model to calibrate their weights. In the experiment
of Fig. 5, this calibration was done using the same learner (LR
or XGB) as the corresponding experiment. Figure 6 repeats the
experiment, but this time each method calibrates its weights
assuming a different model than the one eventually trained.
For example, in Figures 6a—6¢c, we calibrate the weights of
CONFAIR and OMN over each dataset assuming an XGB
model, but we subsequently use the weights to train a LR
model. Conversely, in Figures 6d—6f we assume a LR model
for weight calibration, but then train XGB models.

CONFAIR’s performance naturally drops compared to
the previous experiments, however, it still maintains robust
improvements in fairness across most datasets, while
maintaining high utility. In contrast, OMN becomes less
reliable, with inconsistent performance across datasets, and
more severe loss of accuracy. For example, OMN is not able to
improve the fairness at all for the XGB models (Fig. 6e) over
the Credit, ACSH, ACSE, and ACSI datasets (corresponding
yellow bars have zero height, indicating the maximum
difference between groups). This is because the model is not
well trained under the input weights (e.g., only outputting
one type of prediction), resulting in BalAcc lower than 0.5
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Fig. 4: Comparing CONFAIR to KAM over fairness (measured by DI and AOD) and utility (measured by BalAcc). Striped
bars ([]) represent bias favoring minorities.
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Fig. 5: Comparing CONFAIR to OMN and CAP over fairness (measured by DI and AOD) and utility (measured by BalAcc).
Crisscross bars (X)) indicate models that have devolved to useless predictions (e.g., predicting only one class).
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Fig. 6: Comparing CONFAIR to OMN when models are derived using weights that are not tuned for them. In Fig. 6a, 6b,
and 6¢, both methods train an LR model using weights tuned for an XGB model. In Fig. 6d, 6e, and 6f, the setting is reversed.
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(Fig. 6f). Notably, cases that appear to demonstrate fairness
gains for OMN (e.g., the LSAC dataset under LR models)
come with unacceptable utility loss, producing a model that
outputs only one class of predictions (BalAcc =0.5 in Fig. 6¢).

In summary, despite its model-agnostic premise, OMN
demonstrates high model dependence, as its ability to im-
prove fairness is severely hindered when its weights are not
calibrated using the “right” model. In contrast, CONFAIR
demonstrates robustness, as its weights are primarily driven by
conformance over the training data and not the model output.
CONFAIR vs CAP. CAP is an invasive intervention that
alters the input data to improve the fairness of ML models.
Figures 5d—5f demonstrate the performance of CAP across all
7 datasets over XGB models. We see that CONFAIR signif-
icantly outperforms CAP in improving DI over the MEPS,
LSAC, and ACSP datasets. These gains remain present but are
more modest concerning AOD. The two methods have similar
performance across the rest of the datasets, and maintain
similar high utility. We need to highlight that CONFAIR
achieves performance on par with and often better than CAP,
while remaining non-invasive. This distinction is significant,
as invasive methods are naturally poised to achieve greater
fairness improvements, simply due to the flexibility that data
changes can afford them. Nevertheless, CONFAIR outperforms
CAP, while also avoiding the potential issues of invasive
approaches, such as introducing unintended drift in the data.

Key takeaways: CONFAIR outperforms prior art in improv-
ing the fairness of ML models, while maintaining high util-
ity. It shows clear and consistent gains compared to other
reweighing methods, and achieves on-par or better perfor-
mance compared to invasive alternatives. It further stays
robust when using learners different from those used to
calibrate its weights, thus being effectively model-agnostic.

B. Evaluation of DIFFAIR

In this section, we contrast DIFFAIR and CONFAIR, high-
lighting scenarios where DIFFAIR is the preferable strategy.
Intuitively, as a single-model approach, CONFAIR is more
generally applicable, and, as we showed in Section IV-A,
performs well across our real-world datasets. By design, it can
effectively address inter-group drift that may not be obvious
in the data. In contrast, DIFFAIR can more effectively address
cases of significant drift across groups, where a single-model
strategy is unlikely to be able to derive an effective single
model. We simulate these scenarios with synthetic data to
highlight this strength of DIFFAIR. We proceed to describe
the synthetic data generation next.

We generate synthetic data with N = 11,000, with 8,000
majority and 3,000 minority elements, and 50% positive and
50% negative labels within each group. We generate five
synthetic datasets using the make_classification function from
the scikit-learn library [41]. In the synthetic datasets, the
majority and minority groups are distributed over similar areas
of the space, with their positive and negative labels following
dissimilar distributions, making the generation of a single
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Fig. 7: DIFFAIR can produce stronger fairness outcomes

compared to CONFAIR in cases of significant drift (a), and

is comparable to CONFAIR in most real-world settings (b).
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model extremely challenging. Our technical report describes
the synthetic data generation in further detail [33].

Figure 7 presents results over the synthetic data (Figure 7a)
and the real-world data (Figure 7b) over LR models.® While
CONFAIR is generally the better choice over the real-world
datasets, DIFFAIR results in stronger fairness outcomes over
the synthetic data. These improvements have an impact on
accuracy, which can be unavoidable in some cases, but the
models remain reasonable. For comparison, we also display
the results of MULTIMODEL, which uses the group mapping
function g to select which model to deploy for each tuple.
We observe that the use of CCs in DIFFAIR results in starkly
different behavior among the split-model strategies.

In the real-world datasets (Figure 7b), DIFFAIR performs
comparably to CONFAIR in most cases, but the latter is a
better choice for two out of the five datasets. The results
considering AOD as the fairness metric display similar trends,
as do the XGB models over the real-world data (see details in
our technical report [33]).

Key takeaways: DIFFAIR can be a better approach to
improving fairness in learning, in scenarios where there
is significant drift across groups and it is difficult to derive
a single conforming model.

C. Evaluation of CC optimization

Next, we examine the impact of the optimization in Al-
gorithm 3 on the performance of DIFFAIR and CONFAIR.
Figure 8 compares DIFFAIR andCONFAIR with variants DIF-
FAIRy and CONFAIR(, which do not incorporate the density-
based optimization, over the real-world datasets. In both cases
of LR (Figure 8a) and XGB models (Figure 8b), the density-
based optimization of CCs leads to significant gains in the
DI metric. DIFFAIR(, in particular, fails in most datasets,
so this optimization is critical for DIFFAIR. The reason this
optimization is so effective is that it significantly increases the
discriminative power of the derived conformance constraints,

3XGB models are not a good fit for the synthetic data due to the low
separability of the minority group.
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Fig. 8: The density-based optimization is essential in the per-
formance of DIFFAIR and CONFAIR. Variants DIFFAIR( and
CONFAIR( that don’t optimize CCs have lower effectiveness.

thus rendering DIFFAIR and CONFAIR more effective. The
results follow similar trends for the AOD metric, and the
utility of the models is not affected by the optimization.
Due to space limitations, we omit those plots, as well as
additional experiments on the impact of the intervention degree
and runtime evaluation; we refer the interested reader to our
technical report for additional details and results [33].

V. RELATED WORK

Fair ML. Algorithmic fairness has been studied extensively
by the machine learning and data management communities,
among others. Several technical reviews survey the topic from
different perspectives in recent years [19], [52]-[57]. Our
method is similar to approaches that target group fairness or
statistical parity to reduce ML bias, which requires equal deci-
sion rates across groups [1]-[18]. Another line of work focuses
on individual fairness, motivated by the work of Dwork et
al. [32], which requires that models assign predictions con-
sistently for similar individuals. Methods are classified as
pre-processing, where fairness interventions are applied on
the training data [2], [5], [7], [8], [18], in-processing, where
interventions are applied on the models [4], [10], [13]-[15],
[17], [35], [36], and post-processing, where interventions are
applied on predictions [3], [6], [34]. CONFAIR is a pre-
processing method, as it operates before deriving ML models.
DIFFAIR would also be classified as a pre-processing tech-
nique, as it is based on splitting the data before model training.
While its primary insight lies in choosing which model to
deploy based on conformance, it does not alter model outputs
and thus does not fit in the post-processing category as most
ensemble learning methods [20]-[25]. Data acquisition [58]—
[62] focuses on estimating the cost, benefit, and optimal strate-
gies for collecting additional data; this setting is orthogonal to
our case, where we only focus on the data that is available.
The fairness literature has explored reweighing strategies as
a method to improve model fairness [2], [28]-[31]. CONFAIR
and others [2], [30] adjust the weights of tuples without mod-
ifying a learner, whereas many other approaches estimate the
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weights during the training of a model [28], [29], [31], [51]. Li
and Liu [63] estimate the weights for tuples considering how
they contribute to multiple fairness metrics and model loss by
solving linear programs. CONFAIR adjust weights based on
the conformance of tuples to groups’ data rather than merely
on groups’ representation [2] and on model outputs [30]. This
also allows CONFAIR to work with user-specified weights for
designing fairness interventions tailored to specific tasks.

Data Drift. ML researchers study data drift [64] to identify the
drift between different datasets such as training and serving
data [25] or identifying drift tuples such as out-of-distribution
or misclassified records inside the input data [65]-[67]. Exam-
ples of data drift include label [22], [68], [69] and covariate
shift [20], [70], [71]. Lahoti [72] et al. focus on data shift
between development and deployment stages by identifying
different erroneous cases of a produced model on deploying
data and advising actions (e.g., collecting more training data)
to mitigate the corresponding erroneous cases. Instead of drift
between multiple datasets, we focus on the drift over groups
within an input, assuming that both label and covariate shifts
might appear between groups.

Data Profiling. Many data profiling techniques have been
developed in data management to formalize different con-
straints that characterize the input data [73], such as functional
dependencies [74], their variants [75]-[77], [77]-[82], and
the more general denial constraints [83]-[86]. Compared to
these, conformance constraints [26] describe a dataset with
arithmetic expressions of the relations among numerical at-
tributes. Our methods can support other profiling techniques
that provide quantitative measures of violations for the profil-
ing constraints.

VI. SUMMARY AND FUTURE WORK

In this paper, we recast the problem of fairness in ML mod-
els as a problem of data drift, and, consecutively, as an issue
of conformance between data and models. We proposed two
intervention strategies that employ conformance constraints
(CCs) in novel ways to achieve these conformance goals. Our
model-splitting strategy, DIFFAIR, trains separate models for
different groups and uses CCs to determine the proper model
to derive predictions. Our reweighing strategy, CONFAIR,
introduces a novel use of CCs to adjust the weights of tuples in
the training data before feeding into an ML model. Our eval-
uation over seven real-world datasets showed that CONFAIR
outperforms prior art and is effectively model-agnostic, and
DIFFAIR can be a better option in cases of significant drift,
where a single conforming model is unlikely. Future work
can explore the integration of other data profiling techniques,
which could potentially leverage a combination of attribute
types to derive fairness interventions. An overarching goal is
to automate fairness repairs and contribute to an end-to-end
drift-driven repair system using techniques that detect internal
drift and identify the relevant impacted subpopulations.
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ported by the NSF under grants 1763423 and 2211918, and by
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