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Abstract—Machine Learning models are widely employed to
drive many modern data systems. While they are undeniably
powerful tools, ML models often demonstrate imbalanced per-
formance and unfair behaviors. The root of this problem often lies
in the fact that different subpopulations commonly display diver-
gent trends: as a learning algorithm tries to identify trends in the
data, it naturally favors the trends of the majority groups, leading
to a model that performs poorly and unfairly for minority pop-
ulations. Our goal is to improve the fairness and trustworthiness
of ML models by applying only non-invasive interventions, which
don’t alter the data or the learning algorithm. We use a simple
but key insight: the divergence of trends between different popu-
lations, and, consecutively, between a learned model and minority
populations, is analogous to data drift, which indicates poor
conformance between parts of the data and the trained model.

We explore two strategies (model-splitting and reweighing) to
resolve this drift, aiming to improve the overall conformance of
models to the underlying data. Both our methods introduce novel
ways to employ the recently-proposed data profiling primitive
of Conformance Constraints. Our splitting approach is based
on a simple data drift strategy: training separate models for
different populations. Our DIFFAIR algorithm enhances this
simple strategy by employing conformance constraints, learned
over the data partitions, to select the appropriate model to use
for predictions on each serving tuple. However, the performance
of such a multi-model strategy can degrade severely under poor
representation of some groups in the data. We thus propose a
single-model, reweighing strategy, CONFAIR, to overcome this
limitation. CONFAIR employs conformance constraints in a novel
way to derive weights for training data, which are then used to
build a single model. Our experimental evaluation over 7 real-
world datasets shows that both DIFFAIR and CONFAIR improve
the fairness of ML models. We demonstrate scenarios where
DIFFAIR has an edge, though CONFAIR has the greatest practical
impact and outperforms other baselines. Moreover, as a model-
agnostic technique, CONFAIR stays robust when used against
different models than the ones on which the weights have been
learned, which is not the case for other states of the art.

Index Terms—data management, fairness, data profiling

I. INTRODUCTION

While Machine Learning (ML) models are widely employed

in many modern data systems for their undeniable predicting

power, they often demonstrate imbalanced performance and

unfair behaviors (e.g., different model performance across

subpopulations). Such fairness issues have been extensively

studied within the machine learning and data management

communities, among others, in the past decade [1]–[19].

In this paper, we recast these fairness issues as a problem of
data drift, and we address it with solutions that directly aim to

improve the conformance between data and model. Although

fairness issues may be caused by a breadth of factors, they

often manifest as data imbalances (e.g., skewed representation

in populations or positive labels, or subpopulations exhibiting

differing patterns in the distribution of their attributes and

labels). Such imbalances can be modeled as a type of internal

drift between subpopulations (or groups for brevity), which

can cause a model to perform poorly over minority groups in

its deployment. Specifically, as a learning algorithm attempts

to identify a pattern within a given population, it tends to

prioritize the pattern of the majority group1 due to their

prevalence. The produced model thus does not conform to the

minority group, and, as a result, its predictions for members

of that group are unfair and less reliable.

Example 1. The dataset in Fig.1 contains two groups, which
are color-coded in blue and orange. The attributes X1 and
X2 of these groups show dissimilar distributions, as can be
observed from the x and y-axis, respectively, indicating a data
drift over groups. The positive and negative ground truth labels
for a classification model are marked by circles and triangles,
respectively. A model trained on this dataset (black line) tends
to conform to the majority group (blue points). As a result, a
significant number of minority records (orange points) receive
incorrect predictions (orange points with red outline).

We view unfair model behavior (regardless of cause) as drift

between groups and we use drift quantification techniques to

characterize and resolve it. Our solutions are non-invasive i.e.,

they do not alter the data or the learning algorithm. Instead,

we aim to improve fairness by improving the conformance
between minority data and models. We resolve drift between

groups w.r.t. the model’s conformity through two strategies:

Strategy 1: Our model-splitting approach, DIFFAIR, is de-

signed around a simple strategy to address data drift over

groups: training separate models for different groups, such that

each produced model conforms to its training data better.

Example 2. For the dataset in Fig.1, DIFFAIR produces a
separate model (orange dashed line) for the minority group
(orange points), which is significantly different from the overall
model (black line). DIFFAIR also produces a model for the ma-
jority group, closely aligned with the black line (not displayed

1We use majority and minority groups to refer to the populations that are
over- and under-represented, respectively, in the data or in the preferred labels.
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Fig. 1: An example of input data containing two groups: major-

ity and minority color-coded in blue and orange, respectively.

The attributes X1 and X2 of these groups show dissimilar

distributions, indicating a drift over groups. An unfair model

(black line) prioritizes the pattern of the majority group (blue

points), and predicts poorly (with fewer positive outputs) for

minorities (e.g., orange points with red outline). DIFFAIR im-

proves the conformance between data and model by building

separate models for different groups (e.g., orange dashed line

for minorities). CONFAIR improves the conformance by deriv-

ing a single model (green dash-dot line) that emphasizes the

densest areas (green squares) of the input data for both groups.

to avoid visual clutter). By building models that conform to
different groups, DIFFAIR reduces the number of incorrect
predictions for the minority, leading to a fair outcome, i.e., the
ratio of positive model outcomes is similar for both groups.

Similar strategies of developing and deploying multiple

models to address drift in unseen data have also been em-

ployed in production settings of ML models [20]–[25]. For

example, ensemble learning directly combines the output of

several models according to some aggregation rules or explicit

fairness objectives to derive predictions. Within the family of

model-splitting strategies, DIFFAIR differs from these methods

by deriving predictions based on models’ conformity with

training data. The novelty of our approach lies in the use of

Conformance Constraints (CCs) to quantify such conformance.

DIFFAIR is unique in the way that it uses CC-based data

profiling to assign classifiers, i.e., a point is assigned with the

classifier trained on the subset of data it most resembles. DIF-

FAIR does not aggregate predictions, though one could design

a hybrid method that uses CC violations to appropriately weigh

different predictions. CCs automatically learn from a given

dataset numerical constraints that summarize the distribution

of data points in terms of their distance to the densest areas

in the input data [26]. We use CCs as an off-the-shelf tool to

derive these summary descriptors for each subgroup, and to

quantify the degree of drift of a serving tuple from each group.

Example 3. Profiling the four subsets of the data in Fig.1
(blue circles, blue triangles, orange circles, and orange trian-

gles) using CCs, results in four sets of constraints (depicted as
green rectangles). Each set of constraints describes the densest
areas in the corresponding subset of the data by some distribu-
tive patterns of the attributes. For example, the constraints
for the minority positive group (orange circles) specify the
rectangular region 1.38 ≤ X1 ≤ 1.5∧ 0.68 ≤ X2 ≤ 0.8. The
distance of a point from this region positively corresponds to
the point’s violation of these constraints, while points inside
the region get zero violations.

During the deployment of group-dependent models, DIF-

FAIR selects for each tuple the model that the tuple best

conforms to, i.e., the model that results in the minimum CC

violation for the serving tuple. DIFFAIR has three advantages

over the naive approach of using group membership to separate

models: (1) it does not need group membership information,

which may be unavailable due to legal and discrimination

considerations (e.g., protected attributes such as gender, race,

and disability status); (2) it similarly avoids quality issues com-

monly observed with demographic attributes due to privacy

and discrimination considerations, which disproportionately

affect minority groups [27]; (3) it assigns the best model to

individuals, who may deviate from their own group’s pattern

and be served better by another group’s model. The alternative

approach of learning a separate model to determine model

selection is prone to mistakes due to drift between groups,

while DIFFAIR is robust to data drift by design (i.e., explicitly

quantifying drift through CCs).

A general limitation of model-splitting approaches, how-

ever, is that their performance can degrade significantly when

a group’s representation is particularly poor in the data. For

example, if the population of a group is very small, or if

its labels are severely skewed (e.g., mostly negative labels),

the model trained on such data will likely be of low quality.

Suppose a minority group has 90% negative and 10% positive

labels; a model that always assigns a negative prediction may

achieve high accuracy over this data, but it is clearly unreliable.

This limitation is hard to address with a model-splitting ap-

proach, as small data size and skewed representation offer little

opportunity for improving the models. Instead, we propose a

single-model reweighing approach that naturally avoids these

pitfalls, which we describe next.

Strategy 2: Collecting more data to address skewed repre-

sentation is often an expensive proposition. Our reweighing
approach, CONFAIR, is a single-model strategy designed to

overcome this limitation by appropriately adjusting the weights

of existing data. CONFAIR profiles the data using CCs to

identify the densest areas of the input, and assigns higher

weights to tuples that best conform to the identified CCs.

These weights are then used in model training. Models that

do not support weights directly can still employ a weighted

sampling strategy to preprocess the training data accordingly.

Example 4. For the dataset in Fig.1, CONFAIR assigns high
weights to tuples located within the constraint areas (e.g.,
points inside green squares). The produced model (green dash-
dot line) corrects several erroneous predictions of the original
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DRO [28] LAH [29] CAP [18] KAM [2] OMN [30] CONFAIR

non-invasive wrt data � � × � � �
non-invasive wrt model × × � � � �
flexible intervention × × × × � �
intra-group variability � � × × × �

Fig. 2: CONFAIR provides non-invasive and flexible interven-

tions; by allowing for variable weights within the same group,

CONFAIR can better balance the fairness-accuracy tradeoff.

model (black line), i.e., most of the red-outlined orange points
are now correctly classified. The two groups also get similar
ratios of positive predictions, indicating a fair outcome.

Reweighing strategies have been used in prior art to improve

the fairness of ML models [2], [18], [28]–[30]. The intuition

of such strategies is that balancing the weighted representation

of groups can amplify the loss of the minority group during

training, thus leading to models that better optimize for this

loss. Much of the prior work focuses on adjusting the weights

during iterative training of a model [28], [29], [31]. Such

interventions learn the weights through a black-box training

process, which cannot be audited or adjusted. In contrast,

CONFAIR supports flexible intervention: by allowing users to

control the reweighing impact, they can adjust the tradeoff

between fairness and accuracy. Moreover, CONFAIR follows

a non-invasive strategy that does not alter the data or model.

Among other non-invasive techniques [2], [30], CONFAIR

stands out by allowing variability in the weights assigned to

the members of a subpopulation. Instead of assigning identical

weights to all tuples within a minority group, CONFAIR only

increases the weights of those individuals that conform to

the densest part of the group’s data. This way, CONFAIR

avoids amplifying outliers and noise, which could mislead

the training and harm model accuracy. Figure 2 summarizes

these points of comparison between CONFAIR and prior art.

Model-splitting vs reweighing. CONFAIR and DIFFAIR

are designed to support different scenarios of data drift over

groups. In cases of significant drift, DIFFAIR is generally

better, as it may not be possible to build a single well-

conforming model (see evaluation in Section IV-B).

Example 5. For the dataset in Fig.1, CONFAIR does not re-
solve all erroneous predictions for the minority group, i.e., red-
outlined points still fall on the wrong side of the green dash-
dot line. In contrast, DIFFAIR can produce a model (orange
dashed line) that better conforms to the minority group.

When drift over groups is less stark, CONFAIR can be more

effective than DIFFAIR as it applies an early-stage intervention

(focusing on the training data), while avoiding the loss of

predicting power in splitting input and developing multiple

group-dependent models.

Scope. In this paper, we aim to improve the fairness of ML

models by increasing the conformance between the model and

data. Our work focuses on group fairness, which characterizes

if any group, collectively, is discriminated against. In this

paper, we focus on group fairness measured by disparate

impact [1], [5], [32], but our approach also supports other

fairness metrics (e.g., Equalized Odds), discussed in the full

version [33]. These groups are often defined by demographic

attributes, such as gender, race, disability status, etc., but this

is not a requirement for our methods.

In relation to methods in the fairness literature, our

approach focuses on data-oriented interventions but requires

no invasive changes to the data itself. Compared to those

methods that alter the data directly (known as pre-processing

interventions) [2], [5], [7], [8], [18], our approach may be

less powerful due to the non-invasive setting, while the former

allows arbitrary changes to the data such that one can achieve

greater flexibility in obtaining desired fairness improvement.

However, by being non-invasive, our approach poses a lower

risk of introducing unintended drift between the training and

serving data. Furthermore, we take into account the distribu-

tion of numerical attributes, providing a rich space for fine-

tuning the balance between fairness and utility, and enabling

our approach to be easily combined with others that operate

in the categorical domain. Our approach is also different

from the methods that alter the learning algorithms or the

outcomes directly [3], [4], [6], [10], [13]–[15], [17], [34]–

[36], known as in- or post-processing interventions. These

methods often require access to models or learning algorithms

to fine-tune (or reassign) the loss for each data point during the

development (or deployment) of fair models, making them less

interpretable and difficult to audit due to technical complexity.

In contrast, our approach is explicit and easy to interpret and

audit. Our techniques rebalance fairness for specified minority

and majority groups. This process may lead to imbalances in

the treatment of other unidentified subpopulations, which is a

common effect in fairness repairs (e.g., repairing fairness w.r.t.

gender may lead to imbalances w.r.t. race) [37], [38].

In relation to clustering, our approach is designed for

supervised learning tasks rather than unsupervised settings

such as clustering tasks. Fair clustering tasks may differ based

on their definitions of fairness (we refer the reader to a

survey [39] for more detail). The employment of conformance

constraints in our approach resembles clustering, but the two

have different objectives (identifying clusters vs determining

dense areas of the input data). Clustering may be repurposed

to perform the same task, but it is not an effective alternative

to the use of numerical constraints as in CCs. This is because

most clustering techniques are sensitive to the separation of

clusters in input data, requiring that clusters are well separated

from each other. This assumption is not valid in much of our

experimental data, where drift over groups (or clusters) exists

but the groups are not clearly separated in the input space.

Moreover, clustering methods are less useful in scenarios

where individuals may deviate from their own cluster and

would receive better outcomes if they were assigned to another

cluster (e.g., assigned to the model for another group in

DIFFAIR). By analyzing the distribution of attributes, CCs are

more robust towards data drift than clustering.

Considering other data profiling primitives, CCs offer

two important advantages. (1) Numerical attributes provide

rich data context and great flexibility in achieving desired
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fairness balance, and have not been exploited in deriving

fairness interventions. The focus on a continuous domain

makes our approach orthogonal to methods that work in

categorical domains to derive interventions, thus presenting the

potential for hybrid methods. (2) Constraints can be derived

efficiently over large datasets (i.e., linear in the number of

tuples and cubic in the number of attributes), which makes

our methodology practical for real-world data. Ultimately, our

approach can integrate with other profiling tools that produce

similar quantitative descriptions of input data.

Contributions. We make the following contributions:

• We recast the problem of fairness in ML models as an issue

of drift over groups in input data, and, consecutively, as a

problem of conformance of the model to its underlying data.

(Section II)

• We present DIFFAIR, a model-splitting strategy that im-

proves conformance between model and data by deriving

group-dependent models and deploying these models based

on the similarity of serving tuples to the training data of each

model. Experiments show that DIFFAIR is a better solution

to improve the fairness of ML models for scenarios, where

a single model is impossible to conform to all groups of

input data. (Section III-A)

• We present CONFAIR, a single-model strategy that reweighs

the training tuples based on the densest areas of input data,

thus producing a single model with balanced predictive

accuracy across groups. Experiments show that CONFAIR

outperforms existing reweighing techniques, and remains

robust when its weights are used by different learning

algorithms, in contrast with other prior art. (Section III-B)

• We augment our techniques with density estimation to

improve the tightness of derived conformance constraints.

(Section III-C)

• We evaluate our methods against 7 real-world datasets and 4

alternative approaches. We demonstrate gains against these

baselines and show that our methods improve fairness in ML

models, while maintaining utility on par with that before

interventions. (Section IV)

II. FRAMING FAIRNESS AS DATA DRIFT

In this section, we formalize our notation and problem, we

then provide a high-level description of our model-splitting

and reweighing strategies, and, finally, we review some nec-

essary background on Conformance Constraints (CCs), a

recently-proposed profiling primitive that we use as an off-

the-shelf tool in our methods.

A. Notations and problem statement

We first discuss the notations used in the paper. We denote

variables with upper-case letters, e.g., X and Y ; values with

lower-case letters, e.g., n,m, c, i, and j; sets of variables or

values with boldface symbols, e.g., X or t; and bags of

variables with calligraphic symbols, e.g., D.

Data. We assume data D that consists of n = |D| tuples. Each

tuple is described by a set of attributes X with cardinality m =
|X| and a target attribute Y with c distinct classes (or labels).

Groups. For ease of exposition, and without loss of gener-

ality, we assume that D can be partitioned into a majority

group W and a minority group U.2 For the purposes of

our work, we use the term minority to refer to a group U
that is under-represented in the data, either with respect to

the overall population, i.e., |U| is small, or with respect to

the target attribute Y within U, i.e., there exists i ∈ [1, c],
with Ui = {t|t ∈ U ∧ t.Y = i}, such that |Ui| is small.

We further assume a user-specified binary mapping function

g : Rn×m �→ [0, 1] that takes as input a tuple t and maps it to

W or U. Typically, g is a simple function over one or more

attributes in X. For example, based on the color of the data

points in Fig. 1, a tuple can be assigned to the “blue” majority

group or the “orange” minority group.

Model. We assume a model f : Rn×m �→ R
n×c, which takes

as input a tuple t ∈ D and outputs a prediction as one of the

c classes of the target attribute Y . We denote the predictions

of f on D by Ŷ . We use the following standard process to

develop a model f . We partition the input D into three disjoint

sets: training Dt, validation Dv , and deploy Dd. We train f
on Dt, optimize for its hyperparameters on Dv , and deploy

and evaluate it on Dd. Tuples are assigned into these three

sets independently at random (i.i.d.).

Metrics. A fairness metric Δ(W,U) quantifies the difference

in predictions Ŷ between the majority W and minority U. A

lower value of Δ(W,U) indicates less bias in the predictions

of f . A utility function Σ(Y, Ŷ ) quantifies the similarity

between the target attribute Y and the output Ŷ of f . A higher

value of Σ(Y, Ŷ ) indicates higher utility for the model f .

Definition 1 (Non-invasive fair learning). Given a dataset
D, a mapping function g, and a learning algorithm f , non-
invasive fair learning seeks a learning framework that, without
altering the data in D or the learner f , it trains a model f ′

using learner f , such that the fairness difference Δ(W,U) is
minimized, while the utility Σ(Y, Ŷ ) is maximized.

B. Strategy overview: improving conformance

We described how data drift (across groups) leads to unfair-

ness in ML models. As a result, the produced model may not

conform to the minority group, whose predictions are, thus, not

reliable. To improve the conformance between the model and

data, we propose two strategies: a model-splitting approach

(DIFFAIR) and a reweighing approach (CONFAIR).

DIFFAIR follows a simple strategy: train separate models for

different groups and deploy these group-dependent models

collectively to improve the conformance between model and

data. A naive version of this strategy, which we will simply

refer to as MULTIMODEL, may split the input data based on

group membership (e.g., blue and orange points in Fig. 1),

train multiple models (one for each group), and choose a

model to use for a serving tuple based on its group membership

during deployment. In contrast to the naive MULTIMODEL

2Our approach can be easily extended to the general case, where the input
data contains multiple majority and minority groups.
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method, DIFFAIR does not use group membership in assigning

models for serving tuples. Instead, it learns constraints to de-

scribe each group’s training data using CCs. For each serving

tuple, DIFFAIR chooses the model that minimizes the tuple’s

violation score against the CCs of the model’s training data.

This strategy has two important advantages compared to

simply relying on group membership:

• DIFFAIR affords compliance with legal considerations re-

garding discrimination when it does not rely on group

membership during deployment. Such membership infor-

mation can be sensitive and protected (e.g., gender, race,

disability status, etc.). Additionally, DIFFAIR is robust to

erroneous membership during deployment, i.e., individuals

with wrong membership information (e.g., auto-filled or

misclassified) still receive correct predictions.

• DIFFAIR is flexible at handling individuality. Instead of

deploying a model based on group membership, DIFFAIR

chooses a model for each serving tuple considering the

distribution of its attributes, i.e., assigning a model to which

a tuple conforms better, regardless of which group the tuple

formally belongs to.

The novelty of DIFFAIR lies in its use of CCs to model drift

and separate data based on this drift. DIFFAIR builds a simple

mechanism around this intuition: it serves each tuple using the

model that results in the minimum CC violation score. One

can easily augment this with more sophisticated mechanisms

(e.g., ensemble learning), where conformance constraints can

be used as an explicit heuristic for aggregating predictions

from involved models.

CONFAIR aims to achieve better conformance between the

model and data through a reweighing strategy. It assigns

weights to tuples in the training data, and an ML model then

takes the new weighted data as input. CONFAIR determines

these weights based on the conformance constraints that are

learned over each group’s data. It increases the weights of

the tuples that best conform to the produced constraints (e.g.,

points located inside the green rectangles in Fig. 1). Training

a single model makes CONFAIR more robust against the poor

representation of groups, whereas model-splitting approaches,

such as MULTIMODEL and DIFFAIR, are limited by the need

for adequate group representation to train a reasonable model.

C. Background on Conformance Constraints

We proceed with a brief overview of conformance con-

straints [26]. We generally follow the formalism and notations

of the original paper, but we omit or simplify some details in

the summary we provide here; we refer the reader to Fariha

et al. [26] for more detail.

A conformance constraint is a constraint over arithmetic

relationships involving multiple numerical attributes. More

formally, a constraint φ is an expression of the form φ :=
εlb ≤ F (X) ≤ εub, where εlb and εub are the lower and

upper bounds of the projection F (X). F (X) is a linear

combination of numerical attributes X in data D. We use Φ
to denote a set of conjunctive constraints. For a tuple t, Φ(t)
is computed as follows: Φ(t) := φ1(t) ∧ φ2(t) · · · ∧ φr(t),

and φi(t) := εlbi ≤ Fi(t) ≤ εubi , ∀i ∈ {1, 2, . . . , r}. Fi(t)
is simplified from Fi(t.X) for readability. In this Boolean

semantics, a tuple t satisfies the constraints Φ when Φ(t) = 1.

Otherwise, t violates the constraints Φ.

Fariha et al. [26] also propose quantitative semantics to

measure the violation of a tuple t for constraints Φ, denoted

as �Φ�(t). We compute the violation �Φ�(t) as follows:

�Φ�(t) =
r∑

i=1

qi · �φi�(t)

�φi�(t) = η(
dist(Fi, t)

σ(Fi(t))
), ∀i ∈ {1, 2, . . . , r}

dist(Fi, t) = max(0, Fi(t)− εlbi , ε
ub
i − Fi(t))

η(x) = 1− e−x

Where qi ∈ R
+, ∀i ∈ {1, 2, . . . , r} is the coefficient of the

expression φi ∈ Φ and
∑r

i=1 qi = 1. This factor represents the

importance of the expression φi and is computed as qi = 1−
σ(Fi)

max(σ(F))−min(σ(F)) , where F = {F1, . . . , Fr} consists of all

the projections involved in expressions Φ. It is saying that the

lower the standard deviation σ(Fi) of the projection Fi is, the

more important the expression φi is in computing the violation

of the tuple t. In other words, the set of constraints, whose

projections have low standard deviations, is more effective at

characterizing tuples in D.

In this quantitative semantic, a tuple t satisfies the con-

straints Φ (i.e., Φ(t) = 1) when the violation �Φ�(t) = 0.

Otherwise, the lower the violation �Φ�(t) is, the more t
conforms to Φ. We employ these quantitative semantics in

our approach to profile groups’ data. In this paper, we use

Φw and Φu to denote the sets of constraints derived over the

majority and minority groups W and U, respectively.

III. FAIRNESS THROUGH CONFORMANCE

In this section, we present two methods that aim to im-

prove fairness in learning, by improving the conformance

of models to underlying data. We first describe DIFFAIR,

which enhances the naive method MULTIMODEL by using

conformance constraints to deploy the appropriate model for

serving tuples (Section III-A). Next, we introduce CONFAIR,

which uses conformance constraints to assign weights to the

training data and then build a single model over weighted

data (Section III-B). Finally, we present an optimization that

improves the effectiveness of the derived CCs: we use density

estimation to preprocess the input and filter high-variance data,

leading to tighter constraints.

A. DIFFAIR

Our model-splitting approach is designed around a simple

strategy: train separate models for different groups, such that

each produced model better conforms to its underlying data.

DIFFAIR augments this simple strategy with conformance

constraints: Roughly, DIFFAIR derives CCs from the training

data of each model, and calculates the violation of each serving

tuple against each set of constraints; it then selects the model

that corresponds to the lowest violation to serve the tuple.
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Algorithm 1 DIFFAIR

Require: Dataset D with attributes X, a target attribute Y , and a
mapping function g.

Ensure: A fair model f ′ over D
1: Partition(D) → {Dt,Dv,Dd}

�Identify majority and minority groups W and U in Dt and Dv

2: Wt = {t|g(t) = 0, t ∈ Dt}, Ut = {t|g(t) = 1, t ∈ Dt}
3: Wv = {t|g(t) = 0, t ∈ Dv}, Uv = {t|g(t) = 1, t ∈ Dv}
4: Cw = ∅, Cu = ∅
5: for i ← 1, . . . c do
6: Wt

i = {t|t.Y = i, t ∈ Wt}; Ut
i = {t|t.Y = i, t ∈ Ut}

7: Φw
i = GetCCs(Wt

i); Φ
u
i = GetCCs(Ut

i)

8: Cw ← Cw ∪Φw
i , Cu ← Cu ∪Φu

i

9: Train fw on Wt; Train fu on Ut;
10: Validate fw on Wv; Validate fu on Uv;
11: for t ∈ Dd do

�Produce predictions for all serving tuples
12: PREDICT(t, Cw, Cu)

13: return f ′ ← (fw, fu,Cw,Cu)

14: procedure PREDICT(t, Cw, Cu)

15: vw(t) = minΦw∈Cw �Φw�(t)

16: vu(t) = minΦu∈Cu�Φu�(t)

17: if vw(t) < vu(t) then
18: return fw(t)

19: else
20: return fu(t)

Algorithm 1 presents this strategy in more detail. The

algorithm takes as input a dataset D and a mapping function

g to define groups. While the pseudo-code assumes a binary

function g, it can easily generalize to more than two groups.

The algorithm first splits D into three disjoint sets: training

Dt, validation Dv , and deployment Dd (line 1). Then it

proceeds to identify groups within the first two sets using the

mapping function g (lines 2–3). The algorithm proceeds to

derive constraints for groups within the training set Dt, and

DIFFAIR does so within each set of labels (lines 4–8). This

is because, in practice, individuals with positive and negative

labels may display distinct patterns in their attributes (e.g.,

triangles and circles in Fig. 1). DIFFAIR, therefore, leads to a

tighter and higher-quality set of constraints.

DIFFAIR proceeds to train two group-dependent models

fw and fu for the majority and minority, respectively, and

optimizes their parameters over the corresponding validation

sets (lines 9–10). The PREDICT procedure (lines 14–20)

outputs predictions for each serving tuple t in Dd solely by

the constraints Cw and Cu without referring to the mapping

function g. The goal of PREDICT is to identify the best model

to deploy. First, we determine the label group within the

majority and the label group within the minority that tuple

t is closest to (has minimal violation (lines 15–16). Then,

comparing the majority and minority violation scores, we

select the appropriate model (lines 17–20). Note that DIFFAIR

picks the model with the best conformance, even if a tuple does

not actually belong to that group. By prioritizing conformance,

DIFFAIR achieves better accuracy, especially for members of

the minority group, leading to improved model fairness.

Algorithm 2 CONFAIR

Require: Dataset D with attributes X, a target attribute Y , a
mapping function g, and intervention factors αw and αu for the
majority and minority groups, respectively.

Ensure: Dataset D, augmented with a weight attribute.
1: t.S = 0, ∀t ∈ D �add weight attribute S with initial value 1
2: for all c do �partition D according to target Y and function g

3: Wc = {t|g(t)=0, t.Y=c, t∈D}
4: Uc = {t|g(t)=1, t.Y=c, t∈D}
5: Φw

c = GetCCs(Wc); Φ
u
c = GetCCs(Uc) �get constraints

�Update weights for population and label skew
6: t.S ← t.S + |{t|t.Y =c,t∈D}|

|D| ∗ ( g(t)∗|U|
|Uc| + (1−g(t))∗|W|

|Wc| )
�Find conforming tuples

7: Tw
c = {t|t ∈ Wc, �Φ

w
c �(t) == 0}

8: Tu
c = {t|t ∈ Uc, �Φ

u
c �(t) == 0}

�Increase the weight of tuples conforming with minority positive labels
9: for t ∈ Tu

1 do
10: t.S ← t.S + αu

�Increase the weight of tuples conforming with majority negative labels
11: for t ∈ Tw

0 do
12: t.S ← t.S + αw

return D

The run-time complexity of Algorithm 1 is bounded by the

derivation of conformance constraints—O(q3) with q numer-

ical attributes for computing projections and O(nm2) with n
tuples and m attributes for producing the constraints [26]. The

training of models takes O(nm) with n tuples and m attributes

using classification algorithms such as Logistic Regression.

B. CONFAIR

Multi-model approaches are more susceptible to groups’

poor representation in the input. Splitting the dataset to

produce multiple models weakens the predictive power over

the input with small and often skewed group representation.

We explore a single-model strategy that boosts conformance

between the model and data (especially of minority groups),

without diluting learning power as in multi-model approaches.

In this section, we present CONFAIR in Algorithm 2, a

single-model approach that uses CCs in a novel way to derive

weights for the training data. For ease of exposition, the

pseudo-code assumes binary labels (i.e., c = 2). It further

assumes that the positive labels are over-represented in the

majority group, while the opposite holds for the minority.

These assumptions are simply for ease of presentation, and not

true restrictions of the framework. The intervention degrees αw

and αu are adjustable weight parameters to control the level of

intervention that users may wish to apply to the majority and

minority groups, respectively. By default, CONFAIR optimizes

for disparate impact by applying these weights to appropriate

labels; our technical report discusses support for other fairness

metrics through adjusting αw and αu [33]. CONFAIR only

augments the weights of tuples that conform to the identified

CCs, resulting in a monotonic behavior of improvement in

fairness with respect to the intervention degree; this facilitates

tuning the parameter to each application’s fairness require-

ments. In contrast, prior art [30] augments the weights of all

tuples in a group; as data is inevitably noisy, this lead to a non-
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monotonic relationship between the level of intervention and

the achieved fairness (see details in our technical report [33]).

CONFAIR adds a weight attribute S to input D initialized

in line 1. It then partitions D based on a mapping function

g and target attribute Y . For example, the dataset in Fig. 1

would be separated into four parts: the majority group with

positive labels (blue circles), the majority group with negative

labels (blue triangles), the minority group with positive labels

(orange circles), and the minority group with negative labels

(orange triangles). CONFAIR proceeds to derive constraints

on each part (line 5). It then balances the weights of tuples

in each part according to the skew in the groups’ population

and labels, i.e., increase weights for the minority and decrease

values for the majority (line 6). Next, CONFAIR focuses on

the tuples that conform to each part (lines 7 and 8). Based

on the intervention factors αw and αu, CONFAIR adjusts the

weights of these conforming tuples (lines 9–12). Recall that

the presented pseudo-code makes the assumption that the ma-

jority part of the data skews toward positive labels and that the

minority part of the data skews toward negative labels. Thus, to

achieve balanced predictive accuracy across groups, CONFAIR

increases the weights of majority-negative-conforming tuples

by αw, and the weights of minority-positive-conforming tuples

by αu. Note that this assumption is made here for readability.

The approach can easily generalize to the labels with multiple

classes. And the skew of groups toward the labels can be easily

estimated from the data, which can guide the tuning of the

intervention factors (e.g., increase weights for the minority

group with positive labels or vice-versa). Finally, CONFAIR

returns the weight-augmented data to build an ML model.

Similar to Algorithm 1, the run-time complexity of Algo-

rithm 2 is also bounded by the derivation of conformance

constraints, which takes O(q3) with q numerical attributes

for computing projections and O(nm2) with n tuples and m
attributes for deriving the constraints [26].

C. Optimizing the derivation of CCs

The effectiveness of conformance constraints is affected by

the variance of attributes in the input. A set of constraints

learned from data with high variance has low discriminative

power: most tuples will have high conformance with broad,

permissive constraints. Such weak constraints can critically

impact the effectiveness of our methods. In this section, we

propose a pre-processing optimization step that filters the

input data D using density estimation, leading to stronger

sets of conformance constraints, and by implication, increased

effectiveness for DIFFAIR and CONFAIR.

We present our optimization in Algorithm 3. The algorithm

processes each target class separately (lines 2–4), and uses

density estimation on the majority and minority sets within

the target class (lines 5–6). In our implementation, we employ

a state-of-art, tree-based, non-parametric kernel density esti-

mator [40], implemented in the scikit-learn library [41].Other

kernel density estimators can also work for this step [42]–[44].

Algorithm 3 proceeds to sort the sets Wi and Ui based on

density and selects the first k tuples to add to D′ (lines 7–8).

Algorithm 3 Optimization for stronger CCs

Require: Dataset D with attributes X, a target attribute Y , a
mapping function g, and a density threshold k.

Ensure: Dataset D′ ⊂ D
1: D′ = ∅
2: for i ← 1, . . . c do �process each class in target attribute Y .
3: Wi = {t|t.Y = i, g(t) = 0, t ∈ D}
4: Ui = {t|t.Y = i, g(t) = 1, t ∈ D}
5: dw ← EstimateDensity(Wi)

6: du ← EstimateDensity(Ui)

7: Sort Wi, Ui in descending order of dw, du, respectively

8: D′ ← D′ ∪ { first k tuples in Wi} ∪ { first k tuples in Ui}
return D′

The run-time complexity of Algorithm 3 is bounded by the

density estimation, which takes O(mn2) with n tuples and

m attributes. This run-time can be improved to O(m log(n))
using optimized data structures such as KD-Tree [40] or Ball

Tree [45] for input data in higher dimensions (e.g., m > 20).

IV. EXPERIMENTAL EVALUATION

We evaluate DIFFAIR and CONFAIR against a breadth

of datasets and methods. Our experiments demonstrate that:

(1) CONFAIR outperforms prior art in improving the fairness

of models, while maintaining high accuracy (Section IV-A);

(2) DIFFAIR can be a better solution compared to CONFAIR

for scenarios, where it is difficult to derive a single conform-

ing model (Section IV-B); (3) our optimization for deriving

stronger conformance constraints is essential (Section IV-C);

(4) our approach shows a reasonable run-time compared to

prior art (tech report [33]). We describe each experimental

component below.

Datasets. We experiment with 7 real-world datasets used

frequently in fairness literature. They include people’s demo-

graphics and information collected from various domains such

as financial and health-related services. We provide a summary

description of the major aspects and statistics of each dataset

in Figure 3. For more detail, we refer the reader to Bellamy

et al. [46] for the MEPS and LSAC datasets, Kaggle [47]

for the Credit dataset, and Ding et al. [48] for the American

Community Survey (ACS) datasets. We employ four predictive

tasks using the ACS datasets, which pertain to people’s health

insurance (ACSP and ACSH), employment (ACSE), and in-

come (ACSI). We choose to skip other frequently-used datasets

such as Adult Income [49] and COMPAS [50] because these

datasets include very few numerical attributes (e.g., no more

than 2) for deriving conformance constraints.

Models. As our methods do not depend on nor intervene with

the learners, one could apply them in combination with any

learning algorithm. We experiment with two types of learners:

Logistic Regression (LR) and XGBoost tree (XGB) from the

scikit-learn library [41].

Methods. We briefly describe each approach in our evaluation.

� NO-INTERVENTION. This baseline trains a model over the in-

put without applying any fairness intervention. The goal of all
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dataset MEPS LSAC Credit ACSP ACSH ACSE ACSI

size 15,675 24,479 120,269 86, 600 250, 847 250, 847 250, 847

# of attributes
numerical / categorical 6

/
34 6

/
4 6

/
0 4

/
14 4

/
21 4

/
11 6

/
13

minority group U non-White African-American age < 35 African-American African-American African-American African-American

population of U 61.6% 7.7% 13.7% 9.2% 7.3% 7.3% 7.3%

% positive labels in U 11.4% 56.6% 10.7% 48.3% 9.3% 39.3% 40.2%

% positive labels in W 25.3% 82.5% 6.4% 64.3% 15.1% 45.9% 31.4%

predictive task high hospital

utilization
passing bar exam

serious delay

in 2 years

covered by private

insurance companies
having health insurance employment

income poverty

rate < 250

Fig. 3: Summary statistics and main aspects of the 7 real-world datasets used in our experiments.

other methods is to achieve improvement in the fairness met-

rics against this baseline, while maintaining comparable utility.

� MULTIMODEL is a simple model-splitting baseline. It par-

titions the input data into groups by a mapping function g,

builds separate models for different groups, and deploys these

group-dependent models based on the function g.

� DIFFAIR (Section III-A) augments MULTIMODEL, by using

conformance constraints in the model deployment, rather than

rely on group membership (or the mapping function g), and is

thus more flexible and robust to inaccuracies in membership.

� CONFAIR (Section III-B) is a single-model reweighing

strategy, which derives weights for training tuples, based on

their conformance to the CCs in each subgroup.

� KAM-CAL (KAM) [2] is a reweighing method (like CON-

FAIR). It assigns weights to achieve statistical independence

between the demographic attributes (defining the groups) and

labels. Relying on groups’ statistics in the input, KAM does

not support adjusting the level of interventions.

� OMNIFAIR (OMN) [30] is another reweighing method that

aims to achieve fairness for a given metric. We use a variant

of OMN that optimizes for Disparate Impact, as this is the

metric that CONFAIR inherently optimizes as well (discussed

in more detail in the evaluation metrics below).

� CAPUCHIN (CAP) [18] is an invasive fairness intervention

that modifies the input data to ensure that certain constraints

hold over its outputs. Since CAP is designed for categorical

data, we evaluate this method using the XGB models, which

are a better fit for categorical input.

Metrics. We evaluate all methods concerning the fairness and

utility of the produced models. We use balanced accuracy

(BalAcc) as the utility metric, which has been used extensively

in the literature to evaluate fairness interventions [46]. It

is computed as TPR+TNR
2 , where TPR and TNR are the

True Positive Rate (or sensitivity) and True Negative Rate (or

specificity), respectively. BalAcc is similar to the Area Under

the ROC curve (AUC); both utility metrics are sensitive to the

poor representation of minority groups. BalAcc is in the range

of [0, 1], with higher values corresponding to greater utility.

We report two fairness metrics that are frequently used in the

literature: Disparate Impact (DI) [5] and Average Odds Dif-

ference (AOD) [6]. In our implementation, CONFAIR targets

DI, but our results show that it performs well for both metrics.

DI is computed as SRU

SRW
where SRU = |{t|t.Ŷ=1,t∈U}|

|U| and

SRW = |{t|t.Ŷ=1,t∈W}|
|W| are the selection rates for the minor-

ity U and majority W, respectively. DI takes values from 0

to ∞ with 1 being the optimum, i.e., the two groups have the

same rate in receiving a positive prediction. Values greater than

1 indicate bias favoring the minority group, which may in fact

be reasonable or even desirable in some applications where mi-

norities have suffered from historical disadvantages. CONFAIR

implicitly optimizes DI, as it increases the weights of tuples

with positive labels within the minority group, thus leading to

an improvement of the selection rate for the minority.

AOD is a generalized version of Equalized Odds [6],

which is computed as
(FPRU−FPRW)+(TPRU−TPRW)

2 where

FPRU and FPRW are the False Positive Rates for the

minority U and majority W, respectively, and TPRU and

TPRW are the TPRs for these two groups. AOD ranges from

0 to 1, with 0 indicating an optimal case where there is no

difference in how a model makes positive predictions for the

two groups. AOD captures a different aspect of model behavior

compared to DI; even though CONFAIR is not designed to

optimize AOD, our experiments will show that its fairness

remains robust under this metric.

For ease of interpretation, we report simple transformations

of these metrics, so that higher values correspond to better

outcomes. Specifically, we report DI ∗ = min(DI , 1
DI ), where

unfairness (DI → 0 or DI → ∞) is mapped to a low value

of DI ∗. We report AOD∗ = 1 − abs(AOD) such that higher

values of AOD represent improved fairness. For the remainder

of this section, we simply use DI and AOD to refer to DI ∗

and AOD∗, respectively.

Experimental steps. We first prepare our data for training. For

the datasets MEPS and LSAC, we use the same preprocessing

steps as in the IBM AI Fairness 360 toolkit [46]. Similarly,

we preprocess the other data by removing null values, normal-

izing numerical attributes, and one-hot encoding categorical

attributes. We split the processed data into training (70%),

validation (15%), and test (15%) sets. For both multi-model

and single-model settings, we tune hyperparameters on the

validation set and evaluate model performance on the test set.

To eliminate the effect of randomness, we repeat the process

20 times and report the average results in our evaluation.

Algorithm parameters. We automatically search for the

optimal value of αu (i.e., the intervention degree for the

minority group) over the validation set of each real-world

dataset and set αw = αu/2 (i.e., the intervention degree for

the majority group). The tuning of intervention degrees in

CONFAIR implicitly optimizes DI (i.e., brings it closer to 1).

We set the density threshold k = 0.2 ∗ n for all the datasets.
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Implementation. We implemented DIFFAIR and CONFAIR in

Python 3.7.0, and ran experiments on a computing cluster with

9 nodes (2.40 GHz processor and 256 GB RAM). We open-

source our code at https://github.com/DataProfilor/ConFair.

A. Evaluation of CONFAIR

We start with the evaluation of CONFAIR, which is our

primary fairness-improvement strategy. (As we will see in

Section IV-B, DIFFAIR is strong in cases of significant drift,

but loses to CONFAIR in most practical settings.) We compare

CONFAIR against three state-of-the-art methods: reweighing

strategies, KAM and OMN, and a data-invasive intervention,

CAP. We do not compare against in-processing methods [28],

[29], [31], [51], which alter the learners, or post-processing

methods [3], [6], [34], which alter predictions. A broad evalu-

ation against the existing extensive landscape of fairness inter-

ventions is in itself an independent research contribution [52].

CONFAIR vs KAM. As we noted, prior methods have

employed weighing strategies as a fairness intervention, but

the novelty of CONFAIR lies in the use of CCs to identify

and increase the weights of tuples that conform to the densest

areas of the input. In contrast, prior art like KAM increases

the weights of all tuples within a group, which may end up

amplifying outliers and noise.

Figure 4 demonstrates a comparison between CONFAIR and

KAM across 7 datasets and two learning strategies. The white

bars in the graphs show the performance of the LR (Figures 4a,

4b, and 4c) and XGB models (Figures 4d, 4e, and 4f) before

any fairness interventions are applied (NO-INTERVENTION).

We note that many of these results indicate significant bias

(low fairness measures). CONFAIR and KAM both succeed at

improving the fairness of predictions, without notable drops

in accuracy (Figures 4c and 4f).

We note that CONFAIR robustly outperforms KAM for the

DI metric over the MEPS, LSAC, ACSP, and ACSE datasets,

in the case of XGB models (Fig. 4d); its gains are clear, yet

more modest, in the case of LR models (Fig. 4a). Even though

CONFAIR does not directly target the AOD metric, it still

achieves significant improvements over NO-INTERVENTION,

and comparable performance to KAM (Figures 4b and 4e).

It is important also to highlight that, while the AOD values

are similar between CONFAIR and KAM, CONFAIR more

reliably favors the minority group (striped bars ).

For the datasets Credit and ACSI, CONFAIR performs better

against the LR models, concerning both DI and AOD, and

is closer to KAM against the XGB models. For the ACSH
dataset, CONFAIR outperforms KAM in improving the fair-

ness (for DI) of the LR models but behaves worse than KAM

with the XGB models. This is because the ACSH dataset is

very sensitive to the intervention factors of CONFAIR, which

are used to determine the increment of tuples’ weights. We

found that the fine-tuning of these factors for this dataset

specifies that αu = 0.028, while the optimum value of αu

for this dataset is 0.03. Overall, CONFAIR gains an edge over

KAM as it can fine-tune weights for tuples within groups,

which is not possible in KAM.

CONFAIR vs OMN. Figure 5 repeats the experiment against

an alternative state-of-the-art. Similar to CONFAIR, OMN

reweighs input data with an adjustable degree of intervention,

but its performance is much less reliable across different

datasets. We observe that CONFAIR significantly outperforms

OMN in terms of DI across all datasets using the XGB models

(Fig. 5d). Note that OMN is unable to return a model for the

Credit and ACSI datasets in this setting (the corresponding bars

are missing in Figures 5d–5f as XGB fails to converge with

the weights produced by OMN). Under the LR models, OMN

does particularly poorly for the Credit, ACSH, ACSE, and

ACSI datasets (Figures 5a and 5b), while CONFAIR demon-

strates significant improvement over the fairness metrics.

Another important observation is that OMN interventions

result in significant loss of accuracy, while CONFAIR produces

models with utility that remain on par with that before

interventions (Figures 5c and 5f). In particular, even cases

with apparent improvements in fairness for OMN, come at

a problematic utility loss. For example, in the case of LR

models over the LSAC and ACSP datasets, OMN shows high

improvements in DI and AOD (Figures 5a and 5b); however,

the resulting models in these cases only predict one class

(BalAcc =0.5 with TPR=1 or TNR=1), which renders the

models useless. We indicate these cases with crisscross bars

( ) in the utility graphs (e.g., Figure 5c).

We highlight that, despite both being reweighing strategies,

CONFAIR and OMN demonstrate vastly different perfor-

mances. This is due to their distinct weighing methodologies:

OMN adjusts its weights according to the model output, while

CONFAIR uses tuple conformance to fine-tune the weights,

thus achieving a much more robust fairness-utility balance.

CONFAIR and OMN are both practically model-agnostic,

in the sense that the weights they derive can be used by

any learning algorithm. However, both methods assume a

particular model to calibrate their weights. In the experiment

of Fig. 5, this calibration was done using the same learner (LR

or XGB) as the corresponding experiment. Figure 6 repeats the

experiment, but this time each method calibrates its weights

assuming a different model than the one eventually trained.

For example, in Figures 6a–6c, we calibrate the weights of

CONFAIR and OMN over each dataset assuming an XGB

model, but we subsequently use the weights to train a LR

model. Conversely, in Figures 6d–6f we assume a LR model

for weight calibration, but then train XGB models.

CONFAIR’s performance naturally drops compared to

the previous experiments, however, it still maintains robust

improvements in fairness across most datasets, while

maintaining high utility. In contrast, OMN becomes less

reliable, with inconsistent performance across datasets, and

more severe loss of accuracy. For example, OMN is not able to

improve the fairness at all for the XGB models (Fig. 6e) over

the Credit, ACSH, ACSE, and ACSI datasets (corresponding

yellow bars have zero height, indicating the maximum

difference between groups). This is because the model is not

well trained under the input weights (e.g., only outputting

one type of prediction), resulting in BalAcc lower than 0.5
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(a) Disparate Impact (DI), LR models (b) Average Odds Difference (AOD), LR models (c) Balanced Accuracy (BalAcc), LR models

(d) Disparate Impact (DI), XGB models (e) Average Odds Difference (AOD), XGB models (f) Balanced Accuracy (BalAcc), XGB models

Fig. 4: Comparing CONFAIR to KAM over fairness (measured by DI and AOD) and utility (measured by BalAcc). Striped

bars ( ) represent bias favoring minorities.

(a) Disparate Impact (DI), LR models (b) Average Odds Difference (AOD), LR models (c) Balanced Accuracy (BalAcc), LR models

(d) Disparate Impact (DI), XGB models (e) Average Odds Difference (AOD), XGB models (f) Balanced Accuracy (BalAcc), XGB models

Fig. 5: Comparing CONFAIR to OMN and CAP over fairness (measured by DI and AOD) and utility (measured by BalAcc).

Crisscross bars ( ) indicate models that have devolved to useless predictions (e.g., predicting only one class).

(a) Disparate Impact (DI), LR models (b) Average Odds Difference (AOD), LR models (c) Balanced Accuracy (BalAcc), LR models

(d) Disparate Impact (DI), XGB models (e) Average Odds Difference (AOD), XGB models (f) Balanced Accuracy (BalAcc), XGB models

Fig. 6: Comparing CONFAIR to OMN when models are derived using weights that are not tuned for them. In Fig. 6a, 6b,

and 6c, both methods train an LR model using weights tuned for an XGB model. In Fig. 6d, 6e, and 6f, the setting is reversed.
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(Fig. 6f). Notably, cases that appear to demonstrate fairness

gains for OMN (e.g., the LSAC dataset under LR models)

come with unacceptable utility loss, producing a model that

outputs only one class of predictions (BalAcc =0.5 in Fig. 6c).

In summary, despite its model-agnostic premise, OMN

demonstrates high model dependence, as its ability to im-

prove fairness is severely hindered when its weights are not

calibrated using the “right” model. In contrast, CONFAIR

demonstrates robustness, as its weights are primarily driven by

conformance over the training data and not the model output.

CONFAIR vs CAP. CAP is an invasive intervention that

alters the input data to improve the fairness of ML models.

Figures 5d–5f demonstrate the performance of CAP across all

7 datasets over XGB models. We see that CONFAIR signif-

icantly outperforms CAP in improving DI over the MEPS,

LSAC, and ACSP datasets. These gains remain present but are

more modest concerning AOD. The two methods have similar

performance across the rest of the datasets, and maintain

similar high utility. We need to highlight that CONFAIR

achieves performance on par with and often better than CAP,

while remaining non-invasive. This distinction is significant,

as invasive methods are naturally poised to achieve greater

fairness improvements, simply due to the flexibility that data

changes can afford them. Nevertheless, CONFAIR outperforms

CAP, while also avoiding the potential issues of invasive

approaches, such as introducing unintended drift in the data.

Key takeaways: CONFAIR outperforms prior art in improv-

ing the fairness of ML models, while maintaining high util-

ity. It shows clear and consistent gains compared to other

reweighing methods, and achieves on-par or better perfor-

mance compared to invasive alternatives. It further stays

robust when using learners different from those used to

calibrate its weights, thus being effectively model-agnostic.

B. Evaluation of DIFFAIR

In this section, we contrast DIFFAIR and CONFAIR, high-

lighting scenarios where DIFFAIR is the preferable strategy.

Intuitively, as a single-model approach, CONFAIR is more

generally applicable, and, as we showed in Section IV-A,

performs well across our real-world datasets. By design, it can

effectively address inter-group drift that may not be obvious

in the data. In contrast, DIFFAIR can more effectively address

cases of significant drift across groups, where a single-model

strategy is unlikely to be able to derive an effective single

model. We simulate these scenarios with synthetic data to

highlight this strength of DIFFAIR. We proceed to describe

the synthetic data generation next.

We generate synthetic data with N = 11, 000, with 8, 000
majority and 3, 000 minority elements, and 50% positive and

50% negative labels within each group. We generate five

synthetic datasets using the make classification function from

the scikit-learn library [41]. In the synthetic datasets, the

majority and minority groups are distributed over similar areas

of the space, with their positive and negative labels following

dissimilar distributions, making the generation of a single

(a) synthetic data, LR models

(b) real-world data, LR models

Fig. 7: DIFFAIR can produce stronger fairness outcomes

compared to CONFAIR in cases of significant drift (a), and

is comparable to CONFAIR in most real-world settings (b).

model extremely challenging. Our technical report describes

the synthetic data generation in further detail [33].

Figure 7 presents results over the synthetic data (Figure 7a)

and the real-world data (Figure 7b) over LR models.3 While

CONFAIR is generally the better choice over the real-world

datasets, DIFFAIR results in stronger fairness outcomes over

the synthetic data. These improvements have an impact on

accuracy, which can be unavoidable in some cases, but the

models remain reasonable. For comparison, we also display

the results of MULTIMODEL, which uses the group mapping

function g to select which model to deploy for each tuple.

We observe that the use of CCs in DIFFAIR results in starkly

different behavior among the split-model strategies.

In the real-world datasets (Figure 7b), DIFFAIR performs

comparably to CONFAIR in most cases, but the latter is a

better choice for two out of the five datasets. The results

considering AOD as the fairness metric display similar trends,

as do the XGB models over the real-world data (see details in

our technical report [33]).

Key takeaways: DIFFAIR can be a better approach to

improving fairness in learning, in scenarios where there

is significant drift across groups and it is difficult to derive

a single conforming model.

C. Evaluation of CC optimization

Next, we examine the impact of the optimization in Al-

gorithm 3 on the performance of DIFFAIR and CONFAIR.

Figure 8 compares DIFFAIR andCONFAIR with variants DIF-

FAIR0 and CONFAIR0, which do not incorporate the density-

based optimization, over the real-world datasets. In both cases

of LR (Figure 8a) and XGB models (Figure 8b), the density-

based optimization of CCs leads to significant gains in the

DI metric. DIFFAIR0, in particular, fails in most datasets,

so this optimization is critical for DIFFAIR. The reason this

optimization is so effective is that it significantly increases the

discriminative power of the derived conformance constraints,

3XGB models are not a good fit for the synthetic data due to the low
separability of the minority group.
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(a) real-world data, LR models

(b) real-world data, XGB models

Fig. 8: The density-based optimization is essential in the per-

formance of DIFFAIR and CONFAIR. Variants DIFFAIR0 and

CONFAIR0 that don’t optimize CCs have lower effectiveness.

thus rendering DIFFAIR and CONFAIR more effective. The

results follow similar trends for the AOD metric, and the

utility of the models is not affected by the optimization.

Due to space limitations, we omit those plots, as well as

additional experiments on the impact of the intervention degree

and runtime evaluation; we refer the interested reader to our

technical report for additional details and results [33].

V. RELATED WORK

Fair ML. Algorithmic fairness has been studied extensively

by the machine learning and data management communities,

among others. Several technical reviews survey the topic from

different perspectives in recent years [19], [52]–[57]. Our

method is similar to approaches that target group fairness or

statistical parity to reduce ML bias, which requires equal deci-

sion rates across groups [1]–[18]. Another line of work focuses

on individual fairness, motivated by the work of Dwork et

al. [32], which requires that models assign predictions con-

sistently for similar individuals. Methods are classified as

pre-processing, where fairness interventions are applied on

the training data [2], [5], [7], [8], [18], in-processing, where

interventions are applied on the models [4], [10], [13]–[15],

[17], [35], [36], and post-processing, where interventions are

applied on predictions [3], [6], [34]. CONFAIR is a pre-

processing method, as it operates before deriving ML models.

DIFFAIR would also be classified as a pre-processing tech-

nique, as it is based on splitting the data before model training.

While its primary insight lies in choosing which model to

deploy based on conformance, it does not alter model outputs

and thus does not fit in the post-processing category as most

ensemble learning methods [20]–[25]. Data acquisition [58]–

[62] focuses on estimating the cost, benefit, and optimal strate-

gies for collecting additional data; this setting is orthogonal to

our case, where we only focus on the data that is available.

The fairness literature has explored reweighing strategies as

a method to improve model fairness [2], [28]–[31]. CONFAIR

and others [2], [30] adjust the weights of tuples without mod-

ifying a learner, whereas many other approaches estimate the

weights during the training of a model [28], [29], [31], [51]. Li

and Liu [63] estimate the weights for tuples considering how

they contribute to multiple fairness metrics and model loss by

solving linear programs. CONFAIR adjust weights based on

the conformance of tuples to groups’ data rather than merely

on groups’ representation [2] and on model outputs [30]. This

also allows CONFAIR to work with user-specified weights for

designing fairness interventions tailored to specific tasks.

Data Drift. ML researchers study data drift [64] to identify the

drift between different datasets such as training and serving

data [25] or identifying drift tuples such as out-of-distribution

or misclassified records inside the input data [65]–[67]. Exam-

ples of data drift include label [22], [68], [69] and covariate

shift [20], [70], [71]. Lahoti [72] et al. focus on data shift

between development and deployment stages by identifying

different erroneous cases of a produced model on deploying

data and advising actions (e.g., collecting more training data)

to mitigate the corresponding erroneous cases. Instead of drift

between multiple datasets, we focus on the drift over groups

within an input, assuming that both label and covariate shifts

might appear between groups.

Data Profiling. Many data profiling techniques have been

developed in data management to formalize different con-

straints that characterize the input data [73], such as functional

dependencies [74], their variants [75]–[77], [77]–[82], and

the more general denial constraints [83]–[86]. Compared to

these, conformance constraints [26] describe a dataset with

arithmetic expressions of the relations among numerical at-

tributes. Our methods can support other profiling techniques

that provide quantitative measures of violations for the profil-

ing constraints.

VI. SUMMARY AND FUTURE WORK

In this paper, we recast the problem of fairness in ML mod-

els as a problem of data drift, and, consecutively, as an issue

of conformance between data and models. We proposed two

intervention strategies that employ conformance constraints

(CCs) in novel ways to achieve these conformance goals. Our

model-splitting strategy, DIFFAIR, trains separate models for

different groups and uses CCs to determine the proper model

to derive predictions. Our reweighing strategy, CONFAIR,

introduces a novel use of CCs to adjust the weights of tuples in

the training data before feeding into an ML model. Our eval-

uation over seven real-world datasets showed that CONFAIR

outperforms prior art and is effectively model-agnostic, and

DIFFAIR can be a better option in cases of significant drift,

where a single conforming model is unlikely. Future work

can explore the integration of other data profiling techniques,

which could potentially leverage a combination of attribute

types to derive fairness interventions. An overarching goal is

to automate fairness repairs and contribute to an end-to-end

drift-driven repair system using techniques that detect internal

drift and identify the relevant impacted subpopulations.
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