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geodesics. While L∞-bounds of this type where obtained in 
[7], our bounds here do not depend on the injectivity radius 
of the boundary.
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1. Introduction

Given a complete, hyperbolic 3-manifold M and a collection C of disjoint simple closed 
geodesics in M , the manifold M −C also supports a complete hyperbolic structure M̂ . If 
we insist that M and M̂ have the same ending data then M̂ is unique. If M is closed, or 
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more generally finite volume, and the elements of C are sufficiently short then Hodgson-
Kerckhoff [14] developed a theory of a hyperbolic cone-manifolds that allows one to 
continuously interpolate between M and M̂ through cone-manifolds. These methods 
were extended to conformally compact manifolds in [8]. By controlling the derivative of 
this family of cone-manifolds one can obtain comparisons between the geometry of M
and M̂ .

One can give precise meaning to comparing the geometry of M and M̂ . For example, 
one can compare the length of curves in M to those in M̂ . In this paper we will be 
interested in measuring the change in the projective boundary between the two manifolds. 
This change is described by a holomorphic quadratic differential given by taking the 
Schwarzian derivative. The size of this quadratic differential can be measured by taking 
an Lp-norm. In [7], the second author bounded the L∞-norm and these bounds played an 
important role in resolving the Bers density conjecture. While L∞-bounds always imply 
Lp-bounds for all p, the bounds in [7] depended on both the length of the curves being 
drilled and the injectivity radius of the hyperbolic metric on the boundary. In this paper, 
we obtain L2-bounds on the change in the projective structure that are proportional to 
the square-root of the total length of the geodesics to be drilled but are independent 
of the injectivity radius. In particular, this gives uniform control on the L2 change for 
drilling short geodesics.

One application is to the study of the volume of convex cores of hyperbolic mani-
folds. In [3], we apply Theorem 1.3 to obtain lower bounds on convex core volume for 
acylindrical manifolds in terms of the Weil-Petersson distance between the conformal 
boundary and the boundary of the manifold with minimum convex core volume. This is 
proved by studying the Weil-Petersson gradient flow of renormalized volume. Renormal-
ized volume was introduced by Graham and Witten (see [13]) in physics in the study 
of conformally compact Einstein manifolds and for hyperbolic manifolds, is closely re-
lated to the convex core volume. In the hyperbolic setting, this was developed in the 
papers [18,19] of Takhtajan-Teo and Takhtajan-Zograf on the Liouville action and later 
in papers [16,17] by Krasnov-Schlenker. Considered as a function on the space CC(N) of 
convex cocompact hyperbolic structures on a 3-manifold N , renormalized volume gives 
an analytic function VR : CC(N) → R. Identifying CC(N) with the Teichmüller space 
of its boundary Teich(∂N), we studied the Weil-Petersson gradient flow on CC(N) (see 
[2,3]). Along a flowline Mt we show that the flow produces short curves and by drilling 
these curves and applying Theorem 1.3 we obtain nearby manifolds M̂t with rank-1 
cusps whose projective structure on ∂M̂t is close to the projective structure on ∂Mt in 
the Weil-Petersson completion on Teich(∂N). This is a key ingredient in the proof of the 
lower bound on convex core volume in terms of the Weil-Petersson distance.

We now describe the basic setup required to state the main results: N̄ will be a 
compact, hyperbolizable 3-manifold with boundary with interior N and C will be a 
collection of disjoint simple closed curves in N . Then M̄ is a complete, conformally 
compact hyperbolic structure on N̄ where the curves in C are geodesics and M̄t is a one 
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parameter family of hyperbolic cone-manifolds with cone locus C and cone angles t. We 
also assume the conformal boundary ∂cMt is fixed throughout the definition.

Theorem 1.1 ([7, Theorem 1.2]). There exists an L0 > 0 such that if all geodesics in C
have length ≤ L0 in M then the cone deformation exists for t ∈ [0, 2π] where M0 is a 
complete, hyperbolic structure on N − C.

While the conformal boundary will be a fixed conformal structure X the deformation, 
the complex projective structure on X will change. We denote this one parameter family 
of projective structures by Σt. The derivative of a path of projective structures on X is 
naturally a holomorphic, quadratic differential. We denote the tangent vectors to Σt by 
the holomorphic quadratic differentials Φt. Our main results is the following bound on 
the L2-norm of Φt.

Theorem 1.2. If LC is the sum of the length the geodesics in C in M = M2π then

∥Φt∥2 ≤ cdrill
√

LC .

As an immediate application we obtain the following L2-bounds on the change in 
projective structure.

Theorem 1.3. There exists an L0 > 0 and cdrill > 0 such that the following holds. Let 
M be a conformally compact hyperbolic 3-manifold and C a collection of simple closed 
geodesics in M each of length ≤ L0. Let M̂ be the unique complete hyperbolic structure 
on M − C such that the inclusion M̂ ↪→ M̂ is an isomorphism of conformal boundaries. 
If Σ and Σ̂ are the projective structures on the conformal boundaries of M and M̂ and 
the holomorphic quadratic differential Φ = Φ(Σ, Σ̂) is the Schwarzian derivative between 
them then

∥Φ∥2 ≤ 2πcdrill
√
LC

where LC is the sum of the lengths of the components of C in M .

We note that the L2-bounds have universal constants compared to the L∞-bound 
in Theorem 1.3 in [7] which depended on injectivity radius of the boundary hyperbolic 
structure. In [5], L∞-bounds on quadratic differentials are obtained from L2-bounds. 
These bounds again depend on the injectivity radius but they produce stronger bounds 
than those obtained in [7]. However, in [7] cone angles > 2π where allowed which was 
important for the application to the Bers density conjecture.

We briefly sketch our argument. Following the classical construction of Calabi [9] and 
Weil [20] the derivative of the deformation Mt can be represented by a cohomology class 
in a certain flat bundle. This bundle has a metric and, in our setting, each cohomology 
class has a harmonic representative whose L2-norm can be bounded by the length of the 
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curves in the cone locus. We would like to use the bound on the L2-norm in the 3-manifold 
to bound the L2-norm of the quadratic differentials Φt representing the derivative of the 
projective structures.

To do this we first represent the cohomology class in the ends of the manifold by 
a certain model deformation which we describe explicitly. This model deformation will 
differ from the actual deformation by a trivial deformation. For the model deformation 
we can explicitly calculate the L2-norm on the end in terms of the L2-norm of the 
quadratic differential. To calculate the L2-norm of the actual harmonic deformation 
we would like the model deformation to be orthogonal (in the L2-inner product) to 
the trivial deformation. Unfortunately, this is not true, essentially because the model 
deformation itself is not harmonic. However, we will show that the model deformation 
is asymptotically harmonic. Using the infinitesimal inflexibility theorem from [6] we use 
this asymptotic control to bound the L2-norm of the quadratic differential in terms of 
the L2-norm of the deformation of the end.

This would seem to be enough however there is one final complication. Our bounds will 
depend on how large of an end we can embed in the cone-manifold. This size is controlled 
by the Schwarzian derivative of the projective structure. For smooth hyperbolic manifolds 
with incompressible boundary the Schwarzian derivative of the projective boundary is 
bounded by a classical theorem of Nehari. In the cone-manifold setting we will not be 
able to apply Nehari’s theorem. Instead we control the Schwarzian by first controlling 
the average bending of the boundary of the convex core of the cone manifold. This notion 
was defined by the first author in [1] where it was shown that for smooth hyperbolic 3-
manifolds with incompressible boundary the average bending of the boundary of convex 
core is uniformly (and explicitly) bounded. We see that the argument in [1] extends to 
cone-manifolds (with some restrictions) and then we derive bounds on the Schwarzian 
via a compactness argument.

Acknowledgments

The work in this paper was motivated by a joint project with the authors and Jeff Brock. 
We thank Jeff for many interesting discussions related to this paper. We would also like 
to thank the referee for their comments and suggestions.

2. Background

The proof relies on an analysis of L2-bounds for cohomology classes associated to 
infinitesimal deformations of hyperbolic cone-manifolds. We now quickly review this 
theory with an emphasis and what is need for our computations. The original analysis 
can be found in [8] and [7] which generalized work of [14] on the finite volume hyperbolic 
cone-manifolds to the geometrically finite hyperbolic cone-manifolds.

Let H̄3 = H3 ∪ Ĉ be the usual compactification of H3 by Ĉ. Note that isometries of 
H3 extend to projective automorphisms of Ĉ and that the group of isometries/projective 
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transformations is PSL2(C). If M̄ is a 3-manifold with boundary a (PSL2(C), H̄3)-
structure on M̄ is an atlas of charts to H̄3 with transition maps restrictions of elements 
of PSL2(C). On M , the interior of M̄ , this a hyperbolic structure. On the boundary ∂M̄
this is a complex projective structure. In this paper we will be interested in a special class 
of 

(
PSL2(C), H̄3)-structures, conformally compact hyperbolic cone-manifolds.

Let N̄ be a compact 3-manifold with boundary with interior N and let C be a collection 
of simple closed curves in the interior of N . Let M = N − C. A hyperbolic cone metric
on N with cone angle α along C is a hyperbolic metric on the interior of M whose 
metric completion is homeomorphic to the interior of N and in a neighborhood of each 
component of C the metric is that of a singular hyperbolic metric with cone angle α. 
That is, in cylindrical coordinates (r, θ, z), the metric will locally have the form

dr2 + sinh2(r)dθ2 + cosh2(r)dz2,

where θ is measured modulo the cone angle α and the singular locus is identified with 
the z-axis. The collection of simple closed curves C is called the singular locus C and 
C has tube radius ≥ R if the R neighborhoods of the elements of C are embedded and 
disjoint.

The hyperbolic metric is conformally compact if the hyperbolic structure on M extends 
to a 

(
PSL2(C), H̄3)-structure on M̄ = N̄ − C. We then have:

Theorem 2.1 ([14,8]). Given a cone angle α > 0 there exists a length ℓ > 0 such that the 
following holds. Let (N, g) be a conformally compact hyperbolic cone-manifold with all 
cone angles α and assume that the tube radius about the singular locus is ≥ sinh−1 √2. 
If each component of the singular locus has length ≤ ℓ then for t ∈ [0, α] there is a 
one parameter family of conformally compact hyperbolic cone-manifolds (N, gt) with the 
conformally boundary fixed and cone angle t.

This one parameter family of cone-manifolds will induce a one parameter family of 
projective structures Σt on the boundary where the conformal structure of Σt is fixed. We 
will be interested in controlling the change in this projective structure as the parameter 
varies.

2.1. Flat sl2(C)-bundles

The Lie algebra sl2(C) can be interpreted geometrically as the space of infinitesimal 
automorphisms of H̄3. These are vector fields on H̄3 whose flow are elements in PSL2(C)
so that on H3, the flow will be isometries of the hyperbolic metric, while on Ĉ the flow 
will be projective automorphisms. A 

(
PSL2(C), H̄3)-structure on M̄ determines a flat 

sl2(C)-bundle Ē = E(M̄) over M̄ . We examine this bundle when it is restricted to the 
hyperbolic structure and when it is restricted to the projective boundary.
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Hyperbolic structures Let M be the interior of M̄ and E the restriction of Ē over M . 
Then a 

(
PSL2(C), H̄3)-structure is a hyperbolic structure on M and the bundle E has 

a natural decomposition and metric structure that we now describe. Each fiber Ep is 
the space of germs of infinitesimal isometries. In particular, s ∈ Ep is a vector field in a 
neighborhood of p so s(p) is a vector in TpM . As E is a complex bundle we can multiply s
by i and then (is)(p) is another vector in TpM . Then the map from E to TM⊕TM given 
by s *→ (s(p), (is)(p)) is bundle isomorphism. In fact, the map s *→ s(p) + i(is)(p) is a 
complex vector bundle isomorphism from E to the complexification TCM of the tangent 
bundle. This isomorphism from E to TM ⊕ TM gives a decomposition of sections of E
into real and imaginary parts.

If v is a vector in TpM , we define v̂ ∈ Ep such that under our isomorphism from Ep to 
TpM⊕TpM we have v̂ *→ (v, 0). Then v̂ is the infinitesimal translation with axis through 
v and iv̂ is an infinitesimal rotation about v. Note that v̂ is real and iv̂ is imaginary, as 
one would expect.

As E is isomorphic to TM ⊕ TM , the dual bundle E∗ is isomorphic to T ∗M ⊕ T ∗M . 
The hyperbolic metric on M determines an isomorphism from TM to T ∗M and therefore 
an isomorphism from E to E∗. Note that this isomorphism is R-linear but is C-anti-linear 
with respect to the complex structures on E and E∗. For sections s of E we let s♯ be 
the dual section of E∗. When going from E∗ to E we replace the ♯ with a ♭.

As Ep is a complex vector space, tensoring over C, we have Ep = Ep ⊗ C and more 
generally for alternating tensors with values in Ep we have

Λk(TpM ;Ep) = Ep ⊗ Λk(TpM) = Ep ⊗ Λk
(
TC
p M

)
.

In particular, every E-valued form is locally the sum of terms φsω where φ is a complex 
valued function, s is a section of E, and ω is a R-valued form. The ♯ (and ♭) operators 
extend to E-valued forms and we have (φsω)♯ = φ̄s♯ω. We also linearly extend the Hodge 
star operator from real forms to E-valued forms so that ⋆(φsω) = φs(⋆ω). This extends 
to a linear map from Ωk(M ; E) to Ω3−k(M ; E). We then define the inner product

(α,β) =
∫

M

α ∧ (⋆β)♯.

Note that the wedge product of an E-valued form and an E∗-valued form is real form 
so this is a real inner product. We also let ∥α∥2 = (α, α) be the L2-norm of an E-valued 
form.

If α is either an E-valued or C-valued form we define the pointwise norm |α| by 
|α|2 = ⋆(α ∧ (⋆α)♯). Then ∥α∥ is the usual L2-norm of the function |α|.

If d∗ is the flat connection for E∗ then define the operator ∂ on E by

∂ω =
(
d∗(ω♯)

)β
.

Then the formal adjoint δ for d satisfies the formula
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δ = ⋆∂ ⋆ .

Note that if s is a flat section (ds = 0) then the real and imaginary parts, Re s and Im s, 
will not be flat. That is d will not preserve our bundle decomposition. Instead we define 
operators D and T such that d = D + T where D preserves the bundle decomposition 
and T permutes it. That is for a real section s we have that Ds is a real E-valued 1-form 
while Ts is imaginary. We have formulas for both D and T . If v is a vector field then

Dv̂(w) = ∇̂wv

where ∇ is the Riemannian connection for the hyperbolic metric and

T v̂(w) = [v̂, ŵ]

where [, ] is the Lie bracket. Note that the operator T is purely algebraic.
We also have

∂ = D − T.

This is a manifestation of the fact that the ♯-operator is C-anti-linear.
The Laplacian for E-valued 1-forms is ∆ = dδ + δd and ω ∈ Ωk(E) is harmonic if 

∆ω = 0. If M is compact then this is equivalent ω be closed and co-closed. However, 
our manifolds will be non-compact so we will define ω to be a Hodge form if it is closed, 
co-closed and the real and imaginary parts are symmetric and traceless.

A computation in E We now make a few computations that will be very useful later 
and will also serve as an example of how to do computations in the bundle. We will work 
in the upper half space model of H3 = C × R+ with 

{
∂
∂x ,

∂
∂y ,

∂
∂t

}
and {dx, dy, dt} the 

usual basis and dual basis at each TpH3. We also let

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
and ∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)

be tangent vectors in the complexified tangent space with dual 1-forms dz = dx + idy

and dz = dx − idy. We can then write any E-valued 1-form on H3 as a sum of dz, dz
and dt terms.

The Lie algebra sl2(C) can be identified with traceless 2-by-2 matrices in C, pro-
jective vector fields on Ĉ and infinitesimal isometries of H3. The reader can check the 
correspondence given in the following lemma:

Lemma 2.2. An element of sl2(C) given by the matrix
[
a b
c −a

]
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is equivalent to the projective vector field

2
(
−cz2 + 2az + b

) ∂

∂z
.

Along the axis (0, t) in the upper half space model of H3 they are both equivalent to the 
constant section

2
(
ct2

∂̂

∂z
+ at

∂̂

∂t
+ b

∂̂

∂z

)
.

At (0, t) we also have

∣∣∣∣∣2
(
ct2

∂̂

∂z
+ at

∂̂

∂t
+ b

∂̂

∂z

)∣∣∣∣∣

2

= 4|a|2 + 2|b|2
t2

+ 2t2|c|2.

To calculate Ts we note that

Ts =
[
s,

∂̂

∂z

]
dz +

[
s,

∂̂

∂z

]
dz +

[
s,

∂̂

∂t

]
dt.

A projective vector field p is parabolic if it has a single zero. Its flow is a family of 
parabolic elements in PSL2(C) whose fixed point is the zero of the vector field.

Lemma 2.3. Let p be a parabolic vector field on a neighborhood of a point p in a hyperbolic 
manifold M . Let en ∈ TpM be a unit vector orthogonal to the horosphere tangent to p, 
pointing away from the zero of p and ωn the dual R-valued 1-form. Then

Tp = ên ⊗ ω + p ⊗ ωn

where ω is a C-linear 1-form with ω(en) = 0. Furthermore |ω| = |p|.

Proof. We can assume that p = λz2 ∂
∂z and p = (0, 1) in the upper half space model. 

Then en = ∂
∂t and ωn = dt. To calculate Tp we use Lemma 2.2 to write p, ∂̂∂z , 

∂̂
∂z and ∂̂

∂t

as matrices and calculate the Lie brackets using matrix multiplication and get

Tp = λ

2
∂̂

∂t
⊗ dz + p ⊗ dt

so ω = λ
2 dz. We can then compute to see that |ω| = |p| = |λ|/

√
2. !
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Complex projective structures We will be interested in complex projective structures Σ
that have a fixed underlying conformal structure X. The space P (X) of such projective 
structures has a natural affine structure as the space Q(X) of holomorphic quadratic 
differentials on X. That is, the difference of Σ0 and Σ1 is a quadratic differential in 
Q(X) defined as follows. Let (U, ψ0) and (U, ψ1) be charts for Σ0 and Σ1. Then ψ1 ◦ψ−1

0
is a conformal map for an open neighborhood in Ĉ to Ĉ. The Schwarzian derivative is 
a holomorphic function φ(Σ0, Σ1) on ψ0(U) and it determines a holomorphic quadratic 
differential Φ(Σ0, Σ1). Properties of the Schwarzian derivative imply that if Σ2 ∈ P (X)
is a third projective structure then

Φ(Σ0,Σ2) = Φ(Σ0,Σ1) + Φ(Σ1,Σ2).

This gives a canonical identification of the tangent space TΣP (X) with Q(X).
If ĝ is a conformal metric on X and Φ ∈ Q(X) then the ratio |Φ|/ĝ is a positive 

function on S. More concretely in a local chart Φ can be written as φdz2 and the 
conformal metric can be written as ĝ = ρgeuc, where ρ is a positive function and geuc is 
the Euclidean metric. Then the ratio |φ|/ρ, defined in the chart, is a well defined function 
on the surface. We denote this function by ∥Φ(z)∥ĝ and let ∥Φ∥ĝ,p be the Lp-norm of 
this function with respect to the ĝ metric. We will mostly be interested in the hyperbolic 
metric but much of what we do will work in a more general setting. When we are using 
the hyperbolic metric we will drop the metric ĝ from our notation.

For every conformal structure X there is unique Fuchsian projective structure ΣF ∈
P (X). We let ∥Σ∥ĝ,∞ = ∥Φ(Σ, ΣF )∥ĝ,∞.

If Σt is a smooth path in P (X) then its tangent vectors Φt lie in Q(X) = TΣtP (X). 
To prove our main result, Theorem 1.3, we bound the distances between the endpoints 
of a path Σt by bounding the norms of the derivative Φt.

We also describe how a quadratic differential Φ ∈ Q(X) = TΣP (X) determines a 
cohomology class in H1(Σ; E(Σ)). This was originally introduced by the second author 
in [8].

Define a section p of E(C) by

p(z) = (w − z)2 ∂

∂w
= 1

2

[
−z z2

−1 z

]
.

Then if Φ is represented in a projective chart by φdz2 we defined an E-valued 1-form in 
the chart by

p(z)φ(z)dz.

One can then check that this gives a well defined E-valued 1-form ωΦ on Σ. As both 
p and φ are holomorphic, ωΦ is closed and therefore determines a cohomology class in 
H1(Σ; E(Σ)).



10 M. Bridgeman, K. Bromberg / Advances in Mathematics 451 (2024) 109804

Deformations of 
(
PSL2(C), H̄3)-structures Let v be a vector field on an open neighbor-

hood U in H̄3 that is conformal on U∩Ĉ. We then define a section s of E(U) = U×sl2(C)
as follows. For x ∈ U ∩H3 let s(x) be the unique infinitesimal isometry that agrees with 
v at x and whose curl agrees with the curl of v at x. On U ∩ Ĉ, the vector field is (the 
real part) of the product of a holomorphic function f and ∂

∂z . For each z ∈ U ∩ Ĉ let fz
be the complex quadratic polynomial whose 2-jet agrees with f at z. Then s(z) = fz

∂
∂z .

Let {(Uα,ψα
t )} be a 1-parameter family of 

(
PSL2(C), H̄3)-structures on a 3-manifold 

with boundary M̄ with the conformal boundary fixed. For each x ∈ Uα, the time zero 
derivative of the path ψα

t (x) is vector field vα on ψα
0 (Uα) that is conformal on ψα

0 (Uα) ∩Ĉ. 
This determines a section sα of Ē(ψα

0 (Uα)) and ωα = dsα is an E-valued 1-form on 
ψα

0 (Uα). While the sections sα will not necessarily agree on overlapping charts, the E-
valued 1-forms ωα will agree and determine an E-valued 1-form ω on M̄ . As locally ω is 
d of a section, ω is closed and therefore represents an element of H1(M̄ ; Ē).

Since the conformal boundary is some fixed conformal structure X, the 
(
PSL2(C), H̄3)-

structures on M̄ determine a family of projective structures Σt ∈ P (X). The time zero 
derivative of Σt will be a holomorphic quadratic differential Φ ∈ Q(X) = TΣ0P (X).

Proposition 2.4 ([7, Theorem 2.3]). The restriction of ω to the projective boundary is 
ωΦ.

2.2. Hyperbolic metrics on ends

Let M̄ have a 
(
PSL2(C), H̄3)-structure. A convex surface S in M = int M̄ cuts off a 

conformally compact end E if M̄ − S has two components and the outward component 
is homeomorphic to S × [0, 1) with S × {0} ⊂ ∂M̄ . Then E is the metric closure of 
the restriction of the outward component to M and it is homeomorphic to S × (0, 1]
with S = S × {1} the original convex surface. We also let Ē be the union of E with the 
projective boundary Σ so that Ē = S × [0, 1].

The unit tangent vectors to the geodesic rays in E orthogonal to S define a vector field 
on E . We can choose this product structure such that (z, s) is the time s flow of this vector 
field. If Ss is the time s image of S under this normal flow, then the hyperbolic metric 
for E can be written as a product of the induced metrics gs on Ss and ds2. However, it 
will be convenient to parameterize the surfaces in the parameter t = e−s rather than in 
the time parameter s and we will see there is a nice formula for the hyperbolic metric 
in this product structure. The result is essentially due to Epstein. However, as it is not 
given in the exact form we need we derive it here.

Theorem 2.5 (C. Epstein, [10]). Let S be a convex surface cutting off a conformally 
compact end E with conformal boundary X. Then there exists a conformal metric ĝ on 
X and a bundle endomorphism B̂ of TX such that the hyperbolic metric on E = S×(0, 1]
is given by

gt × dt2/t2
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where

gt = 1
4t2

(
Id + t2B̂

)∗
ĝ

Proof. Let g be the induced metric on S and B the shape operator and let St be the 
distance − log t normal flow of S in E . We also let

At = (1 + t2) · Id + (1 − t2) ·B = (Id + B) + t2 · (Id −B).

Then the induced metric gt on St is given by

gt = 1
4t2A

∗
t g

(see [16, Lemma 2.2]). To get our representation of the hyperbolic metric in E we need 
to rewrite gt in terms of a conformal metric on X.

The conformal structure on the boundary is induced from the conformal structure on 
E . If we multiply our metric n E by 4t2 the conformal structure doesn’t change but the 
new metric will extend continuously to

ĝ = (A0)∗g

on S × {0} so ĝ is a conformal metric on X and A0 = Id + B. As S is convex, the 
eigenvalues of B are non-negative. Therefore we define B̂ = (Id + B)−1(Id − B). It 
follows that

gt = 1
4t2A

∗
t g = 1

4t2
(
A−1

0 At

)∗
ĝ = 1

4t2
(
Id + t2B̂

)∗
ĝ

as claimed. !

In Theorem 2.5 the conformal metric on the boundary is determined by the convex 
surfaces in the hyperbolic end. In [10], Epstein has a construction that starts with a 
metric at infinity and produces the convex surfaces. We only will use his construction 
for the hyperbolic metric. In particular, we have:

Theorem 2.6 ([7, Propositions 6.4 and 6.5]). Let X be a component of the conformal 
boundary of a conformally compact hyperbolic cone manifold and ĝx is the hyperbolic 
metric on X. Then for all t > log

(√
1 + 2∥Σ∥ĝX ,∞

)
there is a convex surface S that 

cuts of an end E such that e2tĝX is the metric at infinity for S.

The metric in a chart If (U, ψ) is a projective chart for Σ then we can extend it to a 
chart (U × [0, 1], Ψ) where Ψ is the continuous extension of ψ to a map to H̄3 that is 
an isometry on U × (0, 1]. We say that the chart is adapted to z0 ∈ U if Ψ(z0, t) = (0, t)
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where the coordinates on the right are in the upper half space model for H3. We can 
always construct a chart adapted to z0 by taking any projective chart (U, ψ) with z0 ∈ U

and post-composing with an element of PSL2(C).
In a projective chart the metric at infinity ĝ is scalar function times the Euclidean 

metric geuc. If the chart is adapted to z0 then we can calculate the value of this function.

Lemma 2.7. If (U × [0, 1], Ψ) is a chart adapted to z0 ∈ Σ then on ψ(U) the metric ĝ is 
of the form ρgeuc where ρ : ψ(U) → R+ is smooth and ρ(0) = 4.

Proof. Define a function ρ : Ψ(U × [1, 0)) → R+ with ρ ◦ Ψ(z, t) = 4t2. If gH3 is the 
metric for the upper half space model of H3 then ρ · gH3 extends continuously to the 
metric ĝ on ψ(U). Since Ψ(z0, t) = (0, t) we have that ρ(0, t) = 4t2 and therefore ρgH3

extends continuously to 4geuc at 0. !

On a chart (U, ψ) for Σ we have the usual coordinate vector fields ∂
∂x and ∂

∂y along 
with the vector fields in ∂

∂z and ∂
∂z in the complexified tangent bundle. On a chart 

(U × [0, 1], Ψ) for the end E these coordinate vector fields, along with ∂
∂t are a basis 

but, unlike in the upper half space model for H3, the vector fields ∂
∂x and ∂

∂y may not 
be orthogonal or of the same length as the operators (Id + t2B̂) are not conformal. In 
particular, the complex 1-form dz will not be C-linear on the complex structure on S
induced by the metric gt. However, we can write down C-linear and C-anti-linear forms 
in terms of the Beltrami differential of the endomorphisms that define gt.

We begin with a computation on a single vector space. The usual Euclidean metric 
geuc on R2 has a unique C-linear extension to R2⊗C. Then dz and dz are the usual dual 
basis for R2 ⊗C. While they are both C-linear on R2 ⊗C, when restricted to R2, with 
the complex structure induced by geuc, dz is C-linear while dz is C-anti-linear. A linear 
isomorphism A : R2 → R2 has a unique C-linear extension to R2 ⊗ C. The Beltrami 
differential for A is

µ = Az/Az

where Az and Az are complex numbers with

A∗(dz) = Azdz + Azdz.

We have the following:

Lemma 2.8. Let A : R2 → R2 be a linear isomorphism and let g = A∗geuc and µ the 
Beltrami differential for A. Then

[
dz
dz

]
= 1

1 − |µ|2

[
1 −µ
−µ̄ 1

] [
dw
dw̄

]
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where dw and dw̄ are C-linear and C-anti-linear on R2 with respect to g. If ⋆g is the 
Hodge star operator for g then

⋆g

[
dz
dz̄

]
= −i

1 − |µ|2

[
1 µ
−µ̄ −1

] [
dw
dw̄

]
= −i

1 − |µ|2

[
1 + |µ|2 2µ
−2µ̄ −1 − |µ|2

] [
dz
dz̄

]
.

Furthermore

|dw|g = |dz|geuc

|Az|
.

Proof. As dz and dz are C-linear and C-anti-linear for the complex structure on R2

induced by geuc, A∗(dz) and A∗(dz) are C-linear and C-anti-linear for the complex 
structure induced by g. As A is C-linear on R2 ⊗C and

A∗(dz) = Azdz + Azdz

for complex numbers Az and Az we have

A∗(dz) = Āzdz + Āzdz.

Dividing A∗(dz) by Az and A∗(dz) by Āz we define dw and dw̄ by
[
dw
dw̄

]
=

[
1 µ
µ̄ 1

] [
dz
dz

]

so that dw is C-linear and dw̄ is C-anti-linear on the complex structure induced by g. 
Inverting gives our formula for dz and dz in terms of dw and dw̄.

As dw and dw̄ are C-linear and C-anti-linear with respect to g we have

⋆gdw = −idw, ⋆gdw = idw

or

⋆g

[
dw
dw̄

]
=

[
−i 0
0 i

] [
dw
dw̄

]
.

We then have

⋆g

[
dz
dz̄

]
=

( 1
1 − |µ|2

[
1 −µ
−µ̄ 1

])[
−i 0
0 i

] [
1 µ
µ̄ 1

] [
dz
dz̄

]
.

Multiplying, we obtain the stated formulas. For the norm |dw|g we note that define 
dW = A∗dz = Azdw. Then

|Azdw|g = |dW |g = |dz|geuc . !
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We can apply the above to the metrics gt. The Beltrami differential for endomorphisms 
1
2t (Id + t2B̂) can be written as t2µt where

µt = B̂z

1 + t2B̂z

.

We obtain the following immediate corollary.

Corollary 2.9. Let (U, ψ) be a projective chart for Σ = ∂E with corresponding chart 
(U × [0, 1], Ψ) for E. Then

⋆dz = −idz ∧ dt

t
− 2it2

(
t2β0dz + β1dz

)
∧ dt

t
,

where the βi are the smooth functions on U × [0, 1] given by

β0(z, t) = |µt|2

1 − t4|µt|2
β1(z, t) = µt

1 − t4|µt|2
.

Further for dwt = dz + t2µtdz,

⋆dz = −idwt ∧
dt

t
− it2

(
t2β0dwt + β1dw̄t

)
∧ dt

t

and

|dwt|gt = 2t|dz|ĝ
|1 + t2Bz|

.

2.3. Model deformations

If S is a convex surface cutting of a conformally compact end E with projective 
boundary Σ we can use Theorem 2.5 to extend ωΦ to E . Let

Π : S × (0, 1] → Σ = S × {0}

be given by Π(z, t) = z. We would like to extend Π to a bundle map between E(E) and 
E(Σ). For this we note that for any flat bundle a path between two points in the base 
determines an isomorphism between their fibers as a flat bundle restricted to a path has 
a canonical product structure.

In our case the geodesic rays {z} × [0, 1] are paths in Ē between (z, t) and (z, 0) and 
determine isomorphisms between the fiber E(z,t) of E(E) over (z, t) and the fiber Ez of 
E(Σ) over z. Using this isomorphism we can extend Π to a bundle map

Π∗ : E(E) → E(Σ).

We then extend ωΦ to a 1-form in Ω1(E , E(E)) by pulling back ωΦ via Π∗.
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Lemma 2.10.

ωΦ ∧ ⋆
(
ω♯

Φ

)
= t2

16∥Φ∥2
ĝ

(
1 + 2t4|µt|2

1 − t4|µt|2

)
dAĝ ∧ dt/t

Proof. We calculate at a point (z, t) ∈ S × (0, 1] by taking a chart (U, ψ) adapted to z. 
In this chart ωΦ is written as

φ(z)p(z)dz.

While this expression does not depend on t, the Hodge star operator and the dual map 
will. In particular the expression

⋆(φ(z)p(z)dz)♯ = φ̄(z)p(z)♯ ⋆ dz

depends on t as both p♯ and ⋆dz depend on t.
By taking the conjugate of ⋆dz in Corollary 2.9 we have

dz ∧ ⋆dz = i

(
1 + 2t4|µt|2

1 − t4|µt|2

)
dz ∧ dz ∧ dt/t.

We also need to find p(z)♯(p(z)) = |p|2(z). As we are working in a chart adapted to 
z, we have Ψ(z, t) = (0, t). Since p(0) = w2 ∂

∂w , by Lemma 2.3 at (0, t) we have

|p(0)|2 =
∣∣∣∣∣−t2

∂̂

∂z

∣∣∣∣∣

2

= t2/2.

By Lemma 2.7 we have ∥Φ(z)∥2
ĝ = 4|φ(0)|2 and dAĝ = 4dx ∧ dy = 2idz ∧ dz and 

combining our calculations we have the result. !

Let Et = S × (0, t] be portion of the end cutoff by St and let (, )t be inner product on 
Et. For an E-valued form ω on E we then define ∥ω∥2

t = (ω, ω)t. Integrating the prior 
lemma we immediately get:

Corollary 2.11. We have ∥ωΦ∥2
t ≥ 8t2∥Φ∥2

ĝ,2 and

lim
t→0

1
t2
∥ωΦ∥2

t = 8∥Φ∥2
ĝ,2.

The form ωΦ is not harmonic as δωΦ ̸= 0. However, we will show that ∥δωΦ∥2 decays 
rapidly in t.

We’ll break the estimate into small calculations.
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Lemma 2.12. Let U be a neighborhood of 0 ∈ C and let s be a smooth section of E(U ×
[0, 1]) such that the function |s| on U×(0, 1] ⊂ H3 extends continuously to U×[0, 1] ⊂ H̄3. 
Then the projective vector field s(0, 0) has a zero at 0 ∈ U . If |s|(0, 0) = 0 then s(0, 0) is 
a multiple of p(0) and

|s|(0, t) = O(t).

Proof. We write

s(z, t) =
(
f0(z, t) + f1(z, t)w + f2(z, t)w2) ∂

∂w

where the functions fi are smooth, complex valued functions on U× [0, 1]. By Lemma 2.2
we have

|s|2(0, t) = |f0(0, t)|2
2t2 + |f1(0, t)|2

4 + t2|f2(0, t)|2
2 ,

for t ∈ (0, 1). If |s| extends continuously to (0, 0) then we must have f0(0, 0) = 0 so, as 
a projective vector field, s(0, 0) is zero at 0.

If |s|(0, 0) = 0 then we must further have that f1(0, 0) = 0 and ∂f0
∂t (0, 0) = 0. Since 

∂f1
∂t (0, 0) also exists it follows that

|fi(0, t)| = O
(
t2−i

)

and therefore

|s|(0, t) = O(t). !

Lemma 2.13. Let U be a neighborhood of 0 ∈ C and let s be a smooth section of E(U ×
[0, 1]) such that the function |s| on U×(0, 1] ⊂ H3 extends continuously to U×[0, 1] ⊂ H̄3. 
Then

|ds ∧ dz ∧ dt|(0, t) = O
(
t3
)

and |ds ∧ dz ∧ dt|(0, t) = O
(
t4
)
.

Proof. By Lemma 2.12 the condition that the norm |s| extends to zero on U×{0} implies 
that s(z, 0) = f(z)p(z) for some smooth complex valued function f on U . We have that

ds ∧ dz ∧ dt = szdz ∧ dz ∧ dt = −2it3szdV

where sz is z-derivative of s and dV = idz∧dz∧dt
2t3 is the volume form for H3. Therefore

|ds ∧ dz ∧ dt|(0, t) = 2t3|sz|.

Note that the z-derivative of the section p is
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pz(z) = −2(w − z) ∂

∂w

and has bounded norm on H3. Therefore, on {0} × (0, 1], the norm of sz = fzp + fpz is 
bounded and if we let c be bound of 2|sz| we have

|ds ∧ dz ∧ dt|(0, t) ≤ ct3.

The bound of the norm of ds ∧ dz ∧ dt is similar once we note that the z-derivative of 
p is zero so the norm of the z-derivative sz of s is also zero at (0.0). !

We now prove our bounds on δωΦ.

Lemma 2.14.

lim
t→0

1
t2
∥δωΦ∥t = 0.

Proof. We have δ = ⋆∂⋆ with ∂ = D− T = d − 2T . Therefore to bound ∥δωΦ∥t we need 
to bound the norm of d(⋆ωΦ) and T (⋆ωΦ).

In a chart (U × [0, 1], Ψ) by Corollary 2.9 we have

⋆dz = −idz ∧ dt

t
− 2it2(t2β0dz + β1dz) ∧

dt

t

where the βi are smooth, complex valued functions on U × [0, 1]. Therefore

⋆ωΦ = φp ⋆ dz = −iφpdz ∧ dt

t
− 2it2φp(t2β0dz + β1dz) ∧

dt

t

As φ and p are holomorphic in the dz-coordinate we have that d(−iφpdz ∧ dt/t) = 0. 
Therefore

d(⋆ωΦ) = −2it(t2d(φβ0p) ∧ dz + d(φβ1p) ∧ dz) ∧ dt

and, as the sections φβip have norm limiting to zero on ∂E , by Lemma 2.13

|d(⋆ωΦ)|(0, t) = O
(
t4
)
.

Next we calculate T (⋆ωΦ). We will work in a chart adapted to z and a conformal 
coordinate wt at (0, t). Again applying Corollary 2.9 we have

⋆ωΦ = φp ⋆ dz = −iφp
(
(1 + t4β0)dwt + t2β1dw̄t

)
∧ dt

t

where the βi are as above. We use Lemma 2.3 to calculate Tp. At the point (z, t) we 
have en = t ∂

∂t , ωn = dt
t and ω = λdwt for some scalar λ with |ω| = |p| and
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Tp = λt
∂̂

∂t
⊗ dwt + p ⊗ dt

t
.

Then as the volume form dV satisfies dwt ∧ dw̄t ∧ dt = −it|dwt|2dV , we have

T (⋆ωΦ) = −iφλt2β1
∂̂

∂t
⊗ dwt ∧ dw̄t ∧ dt = −φt3λβ1|dwt|2

∂̂

∂t
⊗ dV

As 
∣∣t ∂

∂t

∣∣ = 1 and |λ||dwt| = |ω| = |p| = t/
√

2,

|T (⋆ωΦ)| = t3|φ||β1||dwt|/
√

2.

By Corollary 2.9 |dwt| = O(t), giving

|T (⋆ωΦ)| = O
(
t4
)
.

As the ⋆-operator is an isometry and S is compact this implies that there exists a c > 0
such that

|δωΦ|(z, t) ≤ ct4.

We then have
∫

Et0

δωΦ ∧ ⋆δω♯
Φ =

∫

Et0

|δωΦ|2dV

≤
t0∫

0

∫

S

ct8dAtdt/t

≤
t0∫

0

Kct5dt = Kct0
6/6.

Here dAt is the area form for the surface St and we are using the fact that the area of 
these surfaces is bounded by K/t2 for some K > 0. Therefore

∥δωΦ∥2
t ≤ Kct6/6

and the lemma follows. !

We now prove the main result of this section.

Theorem 2.15. Let ω = ωΦ +dτ where the section τ of E(E) has finite L2-norm. The for 
all t0 ≤ 1

||Φ||2ĝ,2 ≤ 1
8t20

||ω||2t0
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Proof. We have

(ω,ω)t = (ωΦ + dτ,ωΦ + dτ)t = (ωΦ,ωΦ)t + 2 Re(dτ,ωΦ)t + (dτ, dτ)t.

By Corollary 2.11 we have

∥Φ∥2
ĝ,2 ≤ 1

8t2 (ωΦ,ωΦ)t.

For the middle term we can integrate ωΦ∧ ⋆dτ ♯ over the compact manifold S× [s, t] and 
let s → 0. We have

∫

S×[s,t]

dτ ∧ ⋆ω♯
Φ =

∫

S×[s,t]

τ ∧ δωΦ +
∫

St

τ ∧ ⋆ω♯
Φ −

∫

Ss

τ ∧ ⋆ω♯
Φ

=
∫

S×[s,t]

τ ∧ δωΦ → (τ, δωφ)t

where the integrals over St and Ss are both zero since ⋆ωΦ restricted to these surfaces 
is zero as it contains a dt-term.

As ∥τ∥ < ∞, applying Lemma 2.14 we get

lim sup
t→0

1
t2
|(dτ,ωΦ)t| = lim sup

t→0

1
t2
|(τ, δωΦ)t| ≤ lim sup

t→0

1
t2
∥τ∥t · ∥δωΦ∥t = 0.

By the infinitesimal inflexibility theorem [6, Theorem 3.6] we have for t < t0

1
t2

(ω,ω)t ≤
1
t20

(ω,ω)t0 .

Therefore as (dτ, dτ)t ≥ 0,

∥Φ∥2
ĝ,2 ≤ lim inf

t→0

1
8t2 (ωΦ,ωΦ)t ≤ lim inf

t→0

1
8t2 (ω,ω)t ≤

1
8t20

(ω,ω)t0 !

If ω is a Hodge form on a conformally compact hyperbolic cone-manifold that is 
cohomologous to some ωΦ on an end E then, by definition, ω = ωΦ + dτ for some E-
valued section τ on E . To apply this theorem we need the extra property that τ has finite 
L2-norm. We call such a Hodge form a model Hodge form.

3. Nehari type bounds for cone-manifolds

For a smooth, hyperbolic 3-manifold with incompressible boundary the classical Ne-
hari bound on the Schwarzian derivative of univalent maps gives that ∥Σ∥∞ ≤ 3/2 for 
every component Σ of the projective boundary. We are interested in obtaining similar 
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bounds for a hyperbolic cone-manifolds. To do so we need to make some technical as-
sumptions, that will always be satisfied in our applications, but do make the statement 
somewhat cumbersome.

One of the difficulties is that the usual Margulis lemma does not hold for cone-
manifolds. The following theorem is a replacement.

Theorem 3.1 ([7, Theorem 3.5]). There exists an L0 > 0 such that the following holds. 
Let M be a hyperbolic cone-manifold with singular locus C such that if c ∈ C then c has 
cone angle θc ≤ 2π, length Lc ≤ L0 and C has tube radius ≥ sinh−1(

√
2). Then c ∈ C

has a tubular neighborhood of radius Rc where

θcLc sinh(2Rc) = 1.

Furthermore these tubes are disjoint.

Now we state our version of the Nehari bound. When the cone angle is small it will be 
important that the cone locus has a large tubular neighborhood where the radius grows 
as the cone angle decreases. The necessary lower bounds will come from the previous 
result and to use it we will need to assume that the length of the cone locus is bounded 
above by a linear function of the cone angle.

Theorem 3.2. There exists K, L0 > 0 such that the following holds. Let M be a confor-
mally compact hyperbolic cone-manifold with singular locus C such that all cone angles 
≤ 2π and C has tube radius ≥ sinh−1 √2. Further assume that if c is a component of the 
singular locus with cone angle θc and length Lc then

Lc ≤ θcL0.

Then for every component Σ of the projective boundary of M we have

∥Σ∥∞ ≤ K.

In order to prove this, we will need to consider the Thurston parametrization of 
projective structures via measured laminations and use the notion of average bending of 
a measured lamination. We show that the result follows from a compactness argument.

3.1. The Thurston parameterization

The space P (∆) of projective structures on the hyperbolic disk is equivalent to the 
space of locally univalent maps f : ∆ → Ĉ with the equivalence f ∼ g if f = φ ◦ g for 
some φ ∈ PSL2(C). We can identify P (∆) with the space of quadratic differentials Q(∆)
by mapping [f ] ∈ P (∆) to its Schwarzian derivative S(f) ∈ Q(∆). Then the topology 
on P (∆) is the compact-open topology on Q(∆).
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Thurston described a natural parameterization of P (∆) by ML(H2) the space of 
measure geodesic laminations on H2. We briefly review this construction.

A round disk D ⊂ Ĉ shares a boundary with a hyperbolic plane H2
D ⊆ H3. Let 

rD : D → H3 be the nearest point projection to H2
D and r̃D : D → T 1H3 be the normal 

vector to H2
D at rD(z) pointing towards D. We can use these maps to define a version of 

the Epstein map for ρf . In particular define Ẽpρf
: ∆ → T 1H3 by Ẽpρf

(z) = r̃f(D)(f(z))
where D is the unique round disk with respect to f such that ρD(z) = ρf (z) and let 
Epρf

(z) = π ◦ Ẽpρf
(z) = rf(D)(f(z)). (For the existence of this disk see [15, Theorem 

1.2.7].) We also define Ẽpetρf
= gt ◦ Ẽpρf

and Epetρf
= π ◦ Ẽpetρf

.
The image of Epρf

is a locally convex pleated plane. More precisely, let ML(H2)
be measured geodesic laminations on H2 and ML0(H2) ⊆ ML(H2) the subspace of 
laminations with finite support. That is λ ∈ ML0(H2) if it is the union of a finite 
collection of disjoint geodesics ℓi with positive weights θi. Then λ determines a continuous 
map pλ : H2 → H3, unique up to post-composition with isometries of H3, that is an 
isometry on the complement of the support of λ and is “bent” with angle θi at ℓi. By 
continuity we can extend this construction to a general λ ∈ ML(H2). An exposition of 
the following theorem of Thurston can be found in [15].

Theorem 3.3. Given f ∈ P (∆) there exists maps cf : ∆ → H2 and pf : H2 → H3 and a 
lamination λf such that pf is a locally, convex pleated surface pleated along λf , Epρf

=
pf ◦ cf and the map f *→ λf is a homeomorphism from P (∆) → ML(H2). Furthermore 
the maps cf : (∆, ρf ) → H2 and Epρf

: (∆, ρf ) → H3 are 1-Lipschitz.

3.2. Average bending bound

Average bending was introduced by the first author in the study of convex hulls of 
quasifuchsian groups (see [1] and [4]). This had applications in the work of Epstein, 
Marden and Markovic in their paper [11]. The idea of average bending is to relate the in-
jectivity radius of the convex hull to the amount of bending per unit length along geodesic 
arcs. In their work, Epstein, Marden and Markovic, used an equivalent formulation of 
average bending, called roundedness.

Given λ ∈ ML(∆) and α a transverse arc, we let λ(α) be the λ-measure of α. We 
then define the average bending norm to be

||λ||L = sup{λ(α) | α an open geodesic arc of length L}.

If λ is a lift of a measured lamination on a closed hyperbolic surface, then ||λ||L is 
bounded but in general ||µ||L may be infinite. For simplicity, we will let ∥µ∥1 = ∥µ∥.

We have the following compactness result;

Lemma 3.4. Given L, M > 0 then the set C(L, M) = {λ | ||λ||L ≤ M} is precompact.
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Proof. Let G(∆) be the space of (unoriented) geodesics in the hyperbolic plane. We 
define the space of geodesic currents C(∆) to be the space of non-negative Borel measures 
on G(∆) with the weak∗ topology. The topology on ML(∆) is that of a closed subspace 
of C(∆). Given an open geodesic arc α, we let Uα ⊆ G(∆) be the set of all geodesics 
transverse to α. We define

U = {Uα | α an open geodesic arc of length L}.

Then U is an open cover of G(∆).
We let K be the set of continuous functions on G(∆) with support subordinate to the 

cover U . Then for each φ ∈ K there exists a U ∈ U with supp(φ) ⊂ U . We have the map 
I : ML(∆) → R|K| given by I(λ) = (λ(φ))φ∈K. This map is a homeomorphism onto its 
image.

If φ ∈ K then there is a U ∈ U with supp(φ) ⊂ U ∈ U . Therefore for λ ∈ C(M, L)

λ(φ) ≤ λ(U) ≤ M.

Therefore C(M, L) is homeomorphic to a subset of [0, M ]|K| which is compact by 
Tychanoff’s theorem. Therefore C(M, L) is precompact. !

Corollary 3.5. Given L, M > 0 there exists an R such that if f is a locally univalent map 
with ∥λf∥L ≤ M then

∥φf∥∞ < R.

Proof. We consider the family F (M, L) of φf = S(f) ∈ Q(∆) with λf ∈ C(M, L). Then 
by Thurston, F (M, L) is the image of C(M, L) under a homeomorphism. Therefore 
F (M, L) is precompact and has compact closure K(M, L). Therefore there is an R > 0
such that for all λf ∈ C(M, L) then

|φf (0)| ≤ R/4.

Therefore ||φf (0)|| ≤ R for all λf ∈ C(M, L). As the set K(M, L) is invariant under 
isometries of H2 it follows that ||φf ||∞ ≤ R for all λf ∈ C(M, L). !

3.3. Convex hull of cone manifold

In this section M will be a conformally compact hyperbolic cone-manifold with in-
compressible boundary and all cone angles ≤ 2π. We let φ be the quadratic differential 
on the conformal boundary given by uniformization. In [7], the second author studied the 
convex core boundary of M . This is given by taking the Epstein surface for the projec-
tive metric which we denote by S. By [7, Proposition 6.5] the surface S is an embedded 
locally convex surface in M bounding an end E of M homeomorphic to S × [0, ∞). Also 



M. Bridgeman, K. Bromberg / Advances in Mathematics 451 (2024) 109804 23

E does not contain any cone axes in its interior. The surface S has intrinsic hyperbolic 
metric and has a bending lamination βφ. We identify the universal cover S̃ with the 
hyperbolic disk ∆ and obtain a lamination β̃φ.

First some elementary lemmas about balls in hyperbolic cone-manifolds.

Lemma 3.6. Let S be the unit sphere in R3. Let (θ, z) be cylindrical coordinates on S and 
for 0 < t ≤ 2π define the spherical cone-surface

St = {(θ, z) ∈ S | 0 ≤ θ ≤ t}/(0, z) ∼ (t, z).

If p1, p2, p3 ∈ St then d(pi, pj) ≤ 2π/3 for some i, j, i ̸= j.

Proof. Assume not. We first take the case of t = 2π. Then St = S the unit sphere. Then 
letting B(p, r) be an open disk of radius r about p ∈ S, we have

p2, p3 ∈ B(p1, 2π/3)c = B(−p1,π/3).

It follows that dS(p2, p3) ≤ 2π/3 giving our contradiction.
For t < 2π we take a fundamental wedge domain Wt for St in S above, and can 

assume the pi are in the interior. Then by the spherical case two of the points have 
dS(pi, pj) ≤ 2π/3. As dSt(pi, pj) ≤ dS(pi, pj) we obtain our contradiction. !

We have the following elementary calculation on half-spaces in H3;

Lemma 3.7. Let f : R+ → R+ be given by

f(R) = cosh−1

⎛

⎝ 2 cosh(R)√
1 + 3 cosh2(R)

⎞

⎠ .

Let H1, H2, H3 be half-spaces in H3 such that Hi ∩ B(x, R) are disjoint. If each Hi

intersects B(x, r) then r ≥ f(R).

Proof. Let ri be the distance from Hi to x and let Di = Hi ∩ ∂B(x, R) have spherical 
radius θi. Then we have ri ≤ r and θi ≥ θ where θ is the spherical radius of D =
H ∩∂B(x, R) where H is a half-space a distance r from x. Therefore as each Di contains 
a disk or radius θ, if the Di are disjoint, then there are 3 disks of radius θ which are 
disjoint.

We show that θ ≤ π/3. We let S = ∂B(x, R) have the spherical metric given by angle 
subtended at x. If θ > π/3 then the centers pi of Di satisfy d(pi, pj) > 2π/3, i ̸= j

contradicting Lemma 3.6.
We have a right-angled hyperbolic triangle with sides r, R and angle θ between. Let l

be the length of the other side. Then solving we have
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sinh(l) = sinh(R). sin(θ) ≤
√

3 sinh(R)
2 ,

and by the hyperbolic Pythagorean formula

cosh(r) = cosh(R)
cosh(l) = cosh(R)√

1 + sinh2(l)
≥ cosh(R)√

1 + 3
4 sinh2(R)

= 2 cosh(R)√
1 + 3 cosh2(R)

. !

We now consider balls in our cone manifold M . We let M̃ be the universal cover with 
convex hull C(M̃). The end E lifts to Ẽ a component of the complement of C(M̃) with 
boundary S̃. As M has incompressible boundary, then π1(Ẽ) is trivial.

The space M̃ is a hyperbolic cone manifold and the cone axes C lift to C̃. For p ∈ M̃

we define balls in the usual way, i.e. B(p, r) = {q ∈ M̃ | d(p, q) ≤ r}. We note that 
B(p, r) may not be topologically a ball or isometric to a hyperbolic ball. For a point p, 
we define r(p) to be the maximum radius such that B(x, r) is embedded and isometric 
to a hyperbolic ball of radius r for all r < r(p). Note for p ∈ C̃, r(p) = 0 and otherwise 
r(p) > 0 and r(p) equals is the injectivity radius of p in M̃ − C̃. For p ∈ M̃ we further 
define d(p) to be the minimum distance to the cone axes C̃.

We first bound the average bending for points with r(p) bounded below.

Lemma 3.8. Let M be a conformally compact hyperbolic cone-manifold with incompress-
ible boundary and all cone angles ≤ 2π. Let p ∈ S̃ and α a closed geodesic arc on S̃ with 
midpoint p and length less than 2f(r(p)). Then

β̃φ(α) < 2π

Proof. We let Hs be the 1-parameter family of support half-spaces from α(0) to α(1). 
We consider S = ∂B(p, r(p)) and disks Ds = Hs ∩ S. We let s1 be the smallest s such 
that D0, Ds have disjoint interiors. Then we have β̃(α([0, s1])) < π. If there is no such 
s1 then we have β̃(α) < π and we’re done.

We now let s2 be the smallest t such that Ds1 , Ds have disjoint interiors. Again it 
follows that β̃(α[s1, s2]) < π giving β̃(α([0, s2])) < 2π. If no such t2 exists then β̃(α) < 2π
and we are also done.

We first show that D0, Ds2 do not intersect. If D0, Ds2 do intersect, we extend α([0, s2])
to a closed curve α′ by joining α(0), α(s2) by a piecewise geodesics on ∂H0 ∪ ∂Hs2 . We 
note that Ẽ is simply connected. We get our contradiction by showing that curve α′ in 
Ẽ is homotopically non-trivial. The curve α′ is homotopic to a simple closed curve α′′

in D0 ∪Ds1 ∪Ds2 ⊂ ∂B via a homotopy in B ∩ (H0 ∪Hs1 ∪Hs2) ⊂ Ẽ . But as arc α is 
transverse to a bending line b then α′′ separates the points b ∩∂B in ∂B. Therefore α′′ is 
non-trivial in M̃−b. As M has incompressible boundary, α′′ is trivial M̃−C(M̃) ⊂ M̃−b

and we obtain our contradiction. Thus if s2 exists, then D0, Ds2 do not intersect. We then 
obtain a contradiction from the above lemma as H0, Hs1 , Hs2 are disjoint in B(p, r(p))
and intersect B(p, f(r(p)). !
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We use the same argument as above to bound average bending for points close to the 
cone axes.

Lemma 3.9. Let M be a conformally compact hyperbolic cone-manifold with incompress-
ible boundary and all cone angles ≤ 2π. Let c̃ ∈ C̃ have an embedded tube Uc̃ of radius 
R and p ∈ Uc̃ with d(p, c) ≤ f(R)/2. If α is a closed geodesic arc on S̃ with midpoint p
and length less than f(R) then

β̃φ(α) < 2π

Proof. We let q ∈ C̃ be the nearest point of to p on C̃ and consider B = B(q, R0). If 
α is a geodesic arc of length f(R0) centered about p, then α is in B(q, f(R0)). We let 
S = ∂B, then S is a sphere with two cone points. We again consider Hs the 1-parameter 
family of support planes from α(0) to α(1) and let Ds = Hs ∩ S. Then Ds are disks in 
S whose interior are disjoint from the cone points. Then analyzing as in Lemma 3.7, we 
obtain 3 disks with disjoint interiors on S. By Lemma 3.6 the disks cannot be disjoint 
which gives a contradiction. Thus we have β̃(α) < 2π. !

To bound our average bending uniformly for a given length, reduces now to showing 
that r(p) is bounded away from zero for points far from the cone axes. This is the purpose 
of the following two lemmas.

Lemma 3.10. Let M be a conformally compact hyperbolic cone-manifold with incom-
pressible boundary and all cone angles ≤ 2π. Let C be the singular locus and for c̃ ∈ C̃ let 
Uc̃ be the R neighborhood of c̃ in M̃ . Let R be such that Uc̃ are embedded and disjoint.

• If p ∈ M̃ − ∪c̃∈C̃Uc̃ then r(p) ≥ r(q) for some q ∈ ∂Uc̃ and c̃ ∈ C̃.
• if p ∈ Uc̃ then d(p) = d(p, ̃c) and

r(p) = d(p) θc ≥ π,

sinh(r(p)) = sinh(d(p)) sin(θc/2) θc < π.

Proof. Let p ∈ M̃ . We note that r(p) ≤ R and d(p) = d(p, ̃c) for p ∈ Uc̃. We consider the 
ball B(p, r(p)) for a general point p. Then the boundary of B(p, r(p)) is either tangent 
to a cone axis or it is tangent to itself. We consider these two cases.

If the boundary of B(p, r(p)) is tangent to c̃ ∈ C̃ then r(p) = d(p) = d(p, ̃c). It 
follows that θc̃ ≥ π as otherwise B(p, r(p)) would not be embedded. In particular if also 
p ∈ M̃ − ∪c̃∈C̃Uc̃ then as d(p) ≥ R we have r(p) ≥ R and therefore r(p) ≥ r(q) for any 
q ∈ ∪c̃∈C̃∂Uc̃. If p ∈ Uc̃ then r(p) = d(p, ̃c) = d(p).

If the boundary of B(p, r(p)) is tangent to itself then B(p, r(p)) contains a non-trivial 
piecewise geodesic γ of length 2r(p) in M̃ with vertex p. Therefore γ must link a finite 
collection of axes of elements C̃. If γ links more than one axis then γ is greater than 
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Fig. 1. θc ≥ π.

Fig. 2. θc ≤ π.

the length of the shortest closed geodesic joining the axes. As this is at least 2R, then 
r(p) ≥ R. In particular p ∈ M̃ − ∪c̃∈C̃Uc̃ and again r(p) ≥ r(q) for any q ∈ ∪c̃∈C̃∂Uc̃.

If γ links a single axis c̃ ∈ C̃ then we can reduce to considering the case of a single cone 
axis c̃ of angle θc. We consider a rotation of angle θc about a geodesic in H3 and let W
be a wedge of angle θc about the geodesic giving a fundamental domain for the action. 
Taking the largest ball about p, it follows that for θc ≥ π then r(p) = d(p, ̃c) = d(p) and 
the boundary of B(p, r(p)) is tangent to cone axis c̃, reducing to the first case (see Fig. 1). 
Thus we can assume θc ≤ π and 2r(p) is the length of the unique shortest geodesic arc 
with both endpoints p. Thus r(p), d(p, ̃c) are sides of a hyperbolic right angled triangle, 
with hypothenuse d(p, ̃c) and side of length r(p) facing angle θc/2 (see Fig. 2). Therefore 
for θc ≤ π by the hyperbolic sine formula

sinh(r(p)) = sinh(d(p, c̃)) sin(θc/2).
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If p ∈ Uc̃ then as d(p) = d(p, ̃c) the stated formula for r(p) holds. Otherwise d(p, ̃c) ≥ R

and again by the monotonicity of the formula above in d(p, ̃c) we have r(p) ≥ r(q) for 
all q ∈ ∂Uc̃. !

We now bound r(p) for points on the boundary of the convex hull in terms of the 
distance to the cone axes (independent of angle).

Lemma 3.11. There is an explicit monotonic increasing function g : R+ → R+ such 
that the following holds. Let M be a conformally compact hyperbolic cone-manifold 
with incompressible boundary satisfying the conditions of Theorem 3.2. Then for r ≤
1
2 sinh−1(

√
2), if p ∈ ∂C(M̃) with d(p) ≥ r then r(p) ≥ g(r).

Proof. By assumption for c ∈ C, c has embedded tubular neighborhood Uc of radius Rc

such that Rc ≥ sinh−1(
√

2). We let R0 = sinh−1(
√

2). We lift the tubular neighborhoods 
to M̃ and denote by Uc̃ the lift for c̃ ∈ C̃.

By the Lemma 3.10, we need only consider points in the neighborhoods Uc̃. Thus we 
let p ∈ Uc̃. Again by Lemma 3.10 if θc ≥ π then r(p) ≥ d(p) giving r(p) ≥ r. Similarly 
for π/2 ≤ θc ≤ π, we have

sinh(r(p)) = sin(θc/2) sinh(d(p)) ≥ 1√
2

sinh(r).

This gives a bound on r(p) for θc ≥ π/2.
We now consider θc ≤ π/2. By [7, Lemma 3.3] all support half-spaces are embedded 

in E . Let H be a half space intersecting Uc̃ with distance d from the cone axis. We take 
a wedge fundamental domain for the meridian of the cone axis with the nearest point 
of H being centered. Then in order for H to be embedded in Uc̃, it cannot intersect the 
radial sides of the wedge (see Fig. 3). Therefore we must have d > dc where dc, Rc form 
a right-angled triangle with hypothenuse Rc and angle between the sides θc/2. Labeling 
the other side of the triangle l we have by hyperbolic geometry (see [12, formulas III.5, 
III.6])

sinh(l) = sinh(Rc) sin(θc/2) tanh(l) = sinh(dc) tan(θc/2).

Thus for p ∈ Uc̃ we have d(p) ≥ dc. Therefore applying Lemma 3.10 above we have

sinh(r(p)) ≥ sinh(dc) sin(θc/2) = tanh(l) cos(θc/2) ≥ 1√
2

sinh(Rc) sin(θc/2)√
1 + sinh2(Rc) sin2(θc/2)

To obtain a bound, we use our assumptions in Theorem 3.2 and applying Theorem 3.1
we have

θcLc sinh(2Rc) = 1 and Lc ≤ L0θc.
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Fig. 3. Embedded plane H intersecting Uc̃.

Therefore

θc ≥
1√

sinh(2Rc)L0
.

It follows that

sinh(Rc) sin(θc/2) ≥ 1√
L0

sinh(Rc)√
sinh(2Rc)

sin(θc/2)
θc

≥ 1√
L0

√
tanh(Rc)

2

√
2
π

≥

√
tanh(R0)
π2L0

.

As tanh(R0) =
√

2/3 and x/
√

1 + x2 = sin(tan−1(x)) is monotonic, then

sinh(r(p)) ≥ 1√
2

√
tanh(R0)
π2L0√

1 + tanh(R0)
π2L0

= 1√
2 + 2π2 cotanh(R0)L0

≥ 1√
2 + 25L0

.

Thus for p ∈ Uc̃ we have r(p) ≥ g(r) with

sinh g(r) = min
( 1√

2 + 25L0
,

1√
2

sinh(r)
)

Thus combining the bounds, we have r(p) ≥ g(r) with

sinh g(r) = min
( 1√

2 + 25L0
,

1√
2

sinh(r)
)

!

In [4], the first author and Canary proved the following.

Theorem 3.12 ([4, Theorem 3]). Let f : H2 → H3 be an embedded convex pleated plane 
then its bending lamination βf satisfies

∥βf∥L < 2π

for L ≤ 2 sinh−1(1).
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We now use the Lemmas 3.9 and 3.11 above to generalize Theorem 3.12 for cone-
deformations.

Proposition 3.13. Let M be a conformally compact hyperbolic cone-manifold with incom-
pressible boundary and all cone angles ≤ 2π satisfying the conditions of Theorem 3.2. 
Then

||βφ||L < 2π

for any L ≤ 2f(g(f(sinh−1(
√

2))/2)) ≃ 0.152958.

Proof. We let r = f(R0)/2 where R0 = sinh−1(
√

2).
If d(p) ≥ r. Then as f(x) ≤ x we have

r = f(R0)
2 ≤ R0

2 = 1
2 sinh−1(

√
2).

Therefore we can apply Lemma 3.11 to p to get r(p) ≥ g(r). Therefore for L = 2f(g(r))
then β̃(α) ≤ 2π for any geodesic arc α of length less than L centered at p.

If d(p) ≤ r = f(R0)/2, as c ∈ C has an embedded tubes of radius Rc > R0 then by 
Lemma 3.9 if α is an arc of length L ≤ f(R0) then β̃(α) ≤ 2π.

Combining the bounds we have

∥β∥L < 2π

For L ≤ min(2r, 2f(g(r))). As both f(x) ≤ x and g(x) ≤ x then

min(2r, 2f(g(r))) = 2f(g(r)) ≃ 0.152958. !

We now prove the main result of this section.

Proof of Theorem 3.2. By the above, there exists an L such that

∥βφ∥L < 2π.

Therefore by Corollary 3.5

∥Σ∥∞ ≤ K

for some K universal. !
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4. Proof of Theorems 1.2 and 1.3

We now bring our work together to prove the main results of the paper. Before doing 
so we will need to summarize the necessary results about deformations of cone-manifolds. 
As in the introduction we have a compact 3-manifold N̄ with a collection C of disjoint, 
simple closed curves in the interior. We will examine a family of conformally compact 
hyperbolic cone-manifold structures on N̄ with cone locus C.

Theorem 4.1 ([7]). Let Mt be a one parameter family of cone-manifolds given by Theo-
rem 1.1 and let Lc(t) be the length of a component c of C in Mt and LC the sum of the 
Lc.
•

Lc(t) ≤
tLc(2π)

π

• In each Mt there is a union Ut of embedded, disjoint tubular neighborhoods of the 
components of C of radius ≥ sinh−1 √2.

• The time t derivative of Mt is represented by a model Hodge form ωt with
∫

Mt\Ut

||ωt||2 ≤ 3
14 · LC(t)

t
≤ 3LC(2π)

14π .

Note that the statement in the final bullet is not the actual statement of Proposition 
4.2 in [7] but rather a direct application of the first inequality of the proof where we 
assume that the radius of the tubular neighborhoods is sinh−1 √2 rather than the larger 
radii assumed in that proposition.

We are now ready to prove our main theorem bounding the L2-norm of the derivative 
of the path of complex projective structures.

Proof of Theorem 1.2. We assume t has been fixed throughout the proof.
For the path Σt of complex projective structures on the boundary of Mt, by Theo-

rem 3.2 we have that ∥Σt∥∞ ≤ K. Therefore by Theorem 2.6 there is a convex surface 
S in Mt cutting of an end E such that (1 + 2K)ĝX is the metric at infinity for S. Note 
that while E will be disjoint from the cone locus in Mt it may intersect the tubular 
neighborhood Ut of the cone locus. To correct this we need to remove the collar of width 
sinh−1 √2 from E . This is the end Eη where η = e− sinh−1 √

2.
By Theorem 4.1 we have that

∫

Mt\Ut

||ωt||2 ≤ 3LC
14π

and since Eη ⊂ Mt\Ut this implies that
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∫

Eη

∥ωt∥2 ≤ 3LC
14π .

As ωt is a model Hodge form Theorem 4.1 implies that

∥Φt∥2
(1+2K)ĝX ,2 ≤ 1

8η2
3LC
14π .

As

∥Φ̂t∥2
ĝX ,2 = (1 + 2K)∥Φt∥2

(1+2K)ĝX ,2

this gives

∥Φt∥ĝX ,2 ≤ cdrill
√
LC

where

cdrill = 1
4η

√
3(1 + 2K)

7π . !

Our main results now follows immediately.

Proof of Theorem 1.3. Integrating the above, we get the L2-bound

||Φ(Σ0,Σ2π)||2 ≤
2π∫

0

||Φt||2dt ≤ 2πcdrill
√

LC . !
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