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1. Introduction

Given a complete, hyperbolic 3-manifold M and a collection C of disjoint simple closed
geodesics in M, the manifold M — C also supports a complete hyperbolic structure M. 1If
we insist that M and M have the same ending data then M is unique. If M is closed, or
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more generally finite volume, and the elements of C are sufficiently short then Hodgson-
Kerckhoff [14] developed a theory of a hyperbolic cone-manifolds that allows one to
continuously interpolate between M and M through cone-manifolds. These methods
were extended to conformally compact manifolds in [8]. By controlling the derivative of
this family of cone-manifolds one can obtain comparisons between the geometry of M
and M.

One can give precise meaning to comparing the geometry of M and M. For example,
one can compare the length of curves in M to those in M. In this paper we will be
interested in measuring the change in the projective boundary between the two manifolds.
This change is described by a holomorphic quadratic differential given by taking the
Schwarzian derivative. The size of this quadratic differential can be measured by taking
an LP-norm. In [7], the second author bounded the L*-norm and these bounds played an
important role in resolving the Bers density conjecture. While L°°-bounds always imply
LP-bounds for all p, the bounds in [7] depended on both the length of the curves being
drilled and the injectivity radius of the hyperbolic metric on the boundary. In this paper,
we obtain L2-bounds on the change in the projective structure that are proportional to
the square-root of the total length of the geodesics to be drilled but are independent
of the injectivity radius. In particular, this gives uniform control on the L? change for
drilling short geodesics.

One application is to the study of the volume of convex cores of hyperbolic mani-
folds. In [3], we apply Theorem 1.3 to obtain lower bounds on convex core volume for
acylindrical manifolds in terms of the Weil-Petersson distance between the conformal
boundary and the boundary of the manifold with minimum convex core volume. This is
proved by studying the Weil-Petersson gradient flow of renormalized volume. Renormal-
ized volume was introduced by Graham and Witten (see [13]) in physics in the study
of conformally compact Einstein manifolds and for hyperbolic manifolds, is closely re-
lated to the convex core volume. In the hyperbolic setting, this was developed in the
papers [18,19] of Takhtajan-Teo and Takhtajan-Zograf on the Liouville action and later
in papers [16,17] by Krasnov-Schlenker. Considered as a function on the space CC(N) of
convex cocompact hyperbolic structures on a 3-manifold N, renormalized volume gives
an analytic function Vi : CC(N) — R. Identifying CC(N) with the Teichmiiller space
of its boundary Teich(ON), we studied the Weil-Petersson gradient flow on CC(N) (see
[2,3]). Along a flowline M; we show that the flow produces short curves and by drilling
these curves and applying Theorem 1.3 we obtain nearby manifolds M, with rank-1
cusps whose projective structure on OM, is close to the projective structure on dM; in
the Weil-Petersson completion on Teich(0N). This is a key ingredient in the proof of the
lower bound on convex core volume in terms of the Weil-Petersson distance.

We now describe the basic setup required to state the main results: N will be a
compact, hyperbolizable 3-manifold with boundary with interior N and C will be a
collection of disjoint simple closed curves in N. Then M is a complete, conformally
compact hyperbolic structure on N where the curves in C are geodesics and M is a one
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parameter family of hyperbolic cone-manifolds with cone locus C and cone angles t. We
also assume the conformal boundary 0.M; is fixed throughout the definition.

Theorem 1.1 ([7, Theorem 1.2]). There exists an Ly > 0 such that if all geodesics in C
have length < Lg in M then the cone deformation exists for t € [0,2n] where My is a
complete, hyperbolic structure on N — C.

While the conformal boundary will be a fixed conformal structure X the deformation,
the complex projective structure on X will change. We denote this one parameter family
of projective structures by X;. The derivative of a path of projective structures on X is
naturally a holomorphic, quadratic differential. We denote the tangent vectors to ¥; by
the holomorphic quadratic differentials ®;. Our main results is the following bound on
the L2-norm of ;.

Theorem 1.2. If L¢ is the sum of the length the geodesics in C in M = My, then

[@¢]l2 < cariny/ Le-

As an immediate application we obtain the following L2?-bounds on the change in
projective structure.

Theorem 1.3. There exists an Ly > 0 and cqrn > 0 such that the following holds. Let
M be a conformally compact hyperbolic 3-manifold and C a collection of simple closed
geodesics in M each of length < Lq. Let M be the unique complete hyperbolic structure
on M — C such that the inclusion M < M is an isomorphism of conformal boundaries.
If ¥ and S are the projective structures on the conformal boundaries of M and M and
the holomorphic quadratic differential ® = ®(X, fl) is the Schwarzian derivative between
them then

@]l < 2meariny/ Le
where L¢ is the sum of the lengths of the components of C in M.

We note that the L?-bounds have universal constants compared to the L>-bound
in Theorem 1.3 in [7] which depended on injectivity radius of the boundary hyperbolic
structure. In [5], L°-bounds on quadratic differentials are obtained from L2-bounds.
These bounds again depend on the injectivity radius but they produce stronger bounds
than those obtained in [7]. However, in [7] cone angles > 27 where allowed which was
important for the application to the Bers density conjecture.

We briefly sketch our argument. Following the classical construction of Calabi [9] and
Weil [20] the derivative of the deformation M; can be represented by a cohomology class
in a certain flat bundle. This bundle has a metric and, in our setting, each cohomology
class has a harmonic representative whose L?-norm can be bounded by the length of the
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curves in the cone locus. We would like to use the bound on the L?-norm in the 3-manifold
to bound the L2-norm of the quadratic differentials ®; representing the derivative of the
projective structures.

To do this we first represent the cohomology class in the ends of the manifold by
a certain model deformation which we describe explicitly. This model deformation will
differ from the actual deformation by a trivial deformation. For the model deformation
we can explicitly calculate the L?-norm on the end in terms of the L?-norm of the
quadratic differential. To calculate the L?-norm of the actual harmonic deformation
we would like the model deformation to be orthogonal (in the L2-inner product) to
the trivial deformation. Unfortunately, this is not true, essentially because the model
deformation itself is not harmonic. However, we will show that the model deformation
is asymptotically harmonic. Using the infinitesimal inflexibility theorem from [6] we use
this asymptotic control to bound the L?-norm of the quadratic differential in terms of
the L?-norm of the deformation of the end.

This would seem to be enough however there is one final complication. Our bounds will
depend on how large of an end we can embed in the cone-manifold. This size is controlled
by the Schwarzian derivative of the projective structure. For smooth hyperbolic manifolds
with incompressible boundary the Schwarzian derivative of the projective boundary is
bounded by a classical theorem of Nehari. In the cone-manifold setting we will not be
able to apply Nehari’s theorem. Instead we control the Schwarzian by first controlling
the average bending of the boundary of the convex core of the cone manifold. This notion
was defined by the first author in [1] where it was shown that for smooth hyperbolic 3-
manifolds with incompressible boundary the average bending of the boundary of convex
core is uniformly (and explicitly) bounded. We see that the argument in [1] extends to
cone-manifolds (with some restrictions) and then we derive bounds on the Schwarzian
via a compactness argument.

Acknowledgments

The work in this paper was motivated by a joint project with the authors and Jeff Brock.
We thank Jeff for many interesting discussions related to this paper. We would also like
to thank the referee for their comments and suggestions.

2. Background

The proof relies on an analysis of L2-bounds for cohomology classes associated to
infinitesimal deformations of hyperbolic cone-manifolds. We now quickly review this
theory with an emphasis and what is need for our computations. The original analysis
can be found in [8] and [7] which generalized work of [14] on the finite volume hyperbolic
cone-manifolds to the geometrically finite hyperbolic cone-manifolds.

Let H3 = H3 UC be the usual compactification of H® by C. Note that isometries of
H? extend to projective automorphisms of C and that the group of isometries/projective
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transformations is PSLy(C). If M is a 3-manifold with boundary a (PSLy(C),H?)-
structure on M is an atlas of charts to H?® with transition maps restrictions of elements
of PSLy(C). On M, the interior of M, this a hyperbolic structure. On the boundary M
this is a complex projective structure. In this paper we will be interested in a special class
of (PSLQ((C), H3)—structures, conformally compact hyperbolic cone-manifolds.

Let N be a compact 3-manifold with boundary with interior N and let C be a collection
of simple closed curves in the interior of N. Let M = N — C. A hyperbolic cone metric
on N with cone angle « along C is a hyperbolic metric on the interior of M whose
metric completion is homeomorphic to the interior of N and in a neighborhood of each
component of C the metric is that of a singular hyperbolic metric with cone angle «.
That is, in cylindrical coordinates (r, 0, z), the metric will locally have the form

dr? + sinh?(r)d#?* 4 cosh?(r)dz?,

where 6 is measured modulo the cone angle « and the singular locus is identified with
the z-axis. The collection of simple closed curves C is called the singular locus C and
C has tube radius > R if the R neighborhoods of the elements of C are embedded and
disjoint.

The hyperbolic metric is conformally compact if the hyperbolic structure on M extends
to a (PSLy(C), H?)-structure on M = N — C. We then have:

Theorem 2.1 (/14,8]). Given a cone angle a > 0 there exists a length £ > 0 such that the
following holds. Let (N,g) be a conformally compact hyperbolic cone-manifold with all
cone angles o and assume that the tube radius about the singular locus is > sinh™! V2.
If each component of the singular locus has length < ¢ then for t € [0,a] there is a
one parameter family of conformally compact hyperbolic cone-manifolds (N, g;) with the
conformally boundary fized and cone angle t.

This one parameter family of cone-manifolds will induce a one parameter family of
projective structures Xy on the boundary where the conformal structure of ¥ is fixed. We
will be interested in controlling the change in this projective structure as the parameter
varies.

2.1. Flat sly(C)-bundles

The Lie algebra sl3(C) can be interpreted geometrically as the space of infinitesimal
automorphisms of H3. These are vector fields on H? whose flow are elements in PSL2(C)
so that on H?, the flow will be isometries of the hyperbolic metric, while on C the flow
will be projective automorphisms. A (PSLy(C), H?)-structure on M determines a flat
slo(C)-bundle E = E(M) over M. We examine this bundle when it is restricted to the
hyperbolic structure and when it is restricted to the projective boundary.
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Hyperbolic structures Let M be the interior of M and E the restriction of E over M.
Then a (PSL2 (C), H?’)—structure is a hyperbolic structure on M and the bundle F has
a natural decomposition and metric structure that we now describe. Each fiber E, is
the space of germs of infinitesimal isometries. In particular, s € E, is a vector field in a
neighborhood of p so s(p) is a vector in T, M. As E is a complex bundle we can multiply s
by i and then (is)(p) is another vector in T, M. Then the map from E to TM &T M given
by s — (s(p), (is)(p)) is bundle isomorphism. In fact, the map s — s(p) + i(is)(p) is a
complex vector bundle isomorphism from E to the complexification TC M of the tangent
bundle. This isomorphism from E to TM & T M gives a decomposition of sections of F
into real and imaginary parts.

If v is a vector in T, M, we define 0 € E}, such that under our isomorphism from E,, to
T,M&T,M we have ¢ — (v,0). Then ¢ is the infinitesimal translation with axis through
v and 0 is an infinitesimal rotation about v. Note that © is real and 40 is imaginary, as
one would expect.

As FE is isomorphic to TM & TM, the dual bundle E* is isomorphic to T*M & T* M.
The hyperbolic metric on M determines an isomorphism from T'M to T*M and therefore
an isomorphism from E to E*. Note that this isomorphism is R-linear but is C-anti-linear
with respect to the complex structures on E and E*. For sections s of E we let sf be
the dual section of E*. When going from E* to E we replace the f with a b.

As E, is a complex vector space, tensoring over C, we have £, = E, ® C and more
generally for alternating tensors with values in F, we have

NNT,M; E,) = By @ N(T,M) = B, @ A* (TEM).

In particular, every E-valued form is locally the sum of terms ¢sw where ¢ is a complex
valued function, s is a section of F, and w is a R-valued form. The # (and b) operators
extend to E-valued forms and we have (¢sw)? = pstw. We also linearly extend the Hodge
star operator from real forms to E-valued forms so that *(¢sw) = ¢s(*w). This extends
to a linear map from QF(M; E) to Q3~%(M; E). We then define the inner product

(@8) = [an.

M

Note that the wedge product of an E-valued form and an E*-valued form is real form
so this is a real inner product. We also let ||a||? = (o, @) be the L?-norm of an E-valued
form.

If « is either an FE-valued or C-valued form we define the pointwise norm |«| by
|a|? = «(a A (*a)*). Then ||| is the usual L2-norm of the function |a|.

If d* is the flat connection for E* then define the operator 0 on E by

ow = (d*(wﬂ))ﬁ .

Then the formal adjoint § for d satisfies the formula
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0 = %0 *.

Note that if s is a flat section (ds = 0) then the real and imaginary parts, Re s and Im s,
will not be flat. That is d will not preserve our bundle decomposition. Instead we define
operators D and T such that d = D 4+ T where D preserves the bundle decomposition
and T permutes it. That is for a real section s we have that Ds is a real E-valued 1-form
while T's is imaginary. We have formulas for both D and T If v is a vector field then

—

Do(w) = Vv

where V is the Riemannian connection for the hyperbolic metric and

where [,] is the Lie bracket. Note that the operator T is purely algebraic.
We also have

o=D-T.

This is a manifestation of the fact that the f-operator is C-anti-linear.

The Laplacian for E-valued 1-forms is A = dd + dd and w € QF(E) is harmonic if
Aw = 0. If M is compact then this is equivalent w be closed and co-closed. However,
our manifolds will be non-compact so we will define w to be a Hodge form if it is closed,
co-closed and the real and imaginary parts are symmetric and traceless.

A computation in E  We now make a few computations that will be very useful later
and will also serve as an example of how to do computations in the bundle. We will work
in the upper half space model of H? = C x Rt with {%, 8%’ %} and {dz,dy,dt} the
usual basis and dual basis at each T, p]HI3 . We also let

0 170 .0 0 170 .0
2 =3 (6_x_28_y) and 7%~ 2 (8—x+za—y)
be tangent vectors in the complexified tangent space with dual 1-forms dz = dx + idy
and dz = dx — idy. We can then write any E-valued 1-form on H? as a sum of dz,dz
and dt terms.
The Lie algebra sl3(C) can be identified with traceless 2-by-2 matrices in C, pro-

jective vector fields on C and infinitesimal isometries of H3. The reader can check the
correspondence given in the following lemma;:

Lemma 2.2. An element of slo(C) given by the matriz
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is equivalent to the projective vector field
2 (—022 + 2az + b) 2
0z

Along the azis (0,t) in the upper half space model of H? they are both equivalent to the

2 é + até + bé
az ot 0z

constant section

At (0,t) we also have

A ~ 2
2|2
2 (czt?a2 + at% + b§> | = 4lal® + % + 2t%|¢|?.

To calculate T's we note that

PN

dz +

0
s S 0z

s 9
"0z

9
9.
5 8t]

A projective vector field p is parabolic if it has a single zero. Its flow is a family of
parabolic elements in PSLy(C) whose fixed point is the zero of the vector field.

Lemma 2.3. Let p be a parabolic vector field on a neighborhood of a point p in a hyperbolic
manifold M. Let e, € T,M be a unit vector orthogonal to the horosphere tangent to p,
pointing away from the zero of p and w, the dual R-valued 1-form. Then

Tp=e,Qw+pQuwn
where w is a C-linear 1-form with w(e,) = 0. Furthermore |w| = |p|.

Proof. We can assume that p = \z2 8Z and p = (0,1) in the upper half Space model.

Then e, = a and w,, = dt. To calculate Tp we use Lemma 2.2 to write p, Bz’ ('?z and %
as matrices and calculate the Lie brackets using matrix multiplication and get

Tp = at®dz+p®dt

20

so w = $dz. We can then compute to see that |w| = |p| = [A|/v2. O
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Complex projective structures We will be interested in complex projective structures
that have a fixed underlying conformal structure X. The space P(X) of such projective
structures has a natural affine structure as the space Q(X) of holomorphic quadratic
differentials on X. That is, the difference of ¥y and ¥; is a quadratic differential in
Q(X) defined as follows. Let (U, o) and (U, 1) be charts for ¥ and ;. Then ongl
is a conformal map for an open neighborhood in C to C. The Schwarzian derivative is
a holomorphic function ¢(Xg, X1) on (V) and it determines a holomorphic quadratic
differential ®(Xg, X1). Properties of the Schwarzian derivative imply that if 35 € P(X)
is a third projective structure then

D (X, X) = (2o, X1) + P(X1, E2).

This gives a canonical identification of the tangent space TxP(X) with Q(X).

If g is a conformal metric on X and ® € Q(X) then the ratio |®|/g§ is a positive
function on S. More concretely in a local chart ® can be written as ¢dz? and the
conformal metric can be written as § = pgeuc, Where p is a positive function and geyc is
the Euclidean metric. Then the ratio |¢|/p, defined in the chart, is a well defined function
on the surface. We denote this function by [|®(2)||; and let ||®||;, be the LP-norm of
this function with respect to the § metric. We will mostly be interested in the hyperbolic

metric but much of what we do will work in a more general setting. When we are using
the hyperbolic metric we will drop the metric § from our notation.

For every conformal structure X there is unique Fuchsian projective structure Xp €
P(X). We let [[S]lg.00 = [9(Z, B5)lg oo

If ¥, is a smooth path in P(X) then its tangent vectors @, lie in Q(X) = T%, P(X).
To prove our main result, Theorem 1.3, we bound the distances between the endpoints

of a path ¥; by bounding the norms of the derivative ®;.

We also describe how a quadratic differential ® € Q(X) = TxP(X) determines a
cohomology class in H*(3; E(X)). This was originally introduced by the second author
in [8].

Define a section p of E(C) by

Then if ® is represented in a projective chart by ¢dz? we defined an E-valued 1-form in
the chart by

p(2)¢(2)dz.

One can then check that this gives a well defined E-valued 1-form wg on 3. As both
p and ¢ are holomorphic, wg is closed and therefore determines a cohomology class in
HY(Z; E(R)).
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Deformations of (PS L2(C), H?’) -structures Let v be a vector field on an open neighbor-
hood U in H® that is conformal on UNC. We then define a section s of E(U) = U xsl5(C)
as follows. For x € UNH? let s(z) be the unique infinitesimal isometry that agrees with
v at # and whose curl agrees with the curl of v at 2. On U N C, the vector field is (the
real part) of the product of a holomorphic function f and %. For each z € UNC let I
be the complex quadratic polynomial whose 2-jet agrees with f at z. Then s(z) = fza%'

Let {(U®, 1)} be a 1-parameter family of (PSLy(C), H?)-structures on a 3-manifold
with boundary M with the conformal boundary fixed. For each x € U, the time zero
derivative of the path ¢ (x) is vector field v® on ¥§ (U®) that is conformal on ¢8‘(U“)ﬂ(§.
This determines a section s* of E(y§(U®)) and w® = ds is an E-valued 1-form on
P§(U®). While the sections s* will not necessarily agree on overlapping charts, the E-
valued 1-forms w® will agree and determine an E-valued 1-form w on M. As locally w is
d of a section, w is closed and therefore represents an element of H'(M; E).

Since the conformal boundary is some fixed conformal structure X, the (PS Lo (C), ]I:]I?’)—
structures on M determine a family of projective structures ¥, € P(X). The time zero
derivative of ¥; will be a holomorphic quadratic differential ® € Q(X) = Ty, P(X).

Proposition 2.4 ([7, Theorem 2.3]). The restriction of w to the projective boundary is
Wo -

2.2. Hyperbolic metrics on ends

Let M have a (PSLy(C), H?)-structure. A convex surface S in M = int M cuts off a
conformally compact end £ if M — S has two components and the outward component
is homeomorphic to S x [0,1) with S x {0} € OM. Then £ is the metric closure of
the restriction of the outward component to M and it is homeomorphic to S x (0, 1]
with § = S x {1} the original convex surface. We also let £ be the union of £ with the
projective boundary ¥ so that €& = S x [0, 1].

The unit tangent vectors to the geodesic rays in £ orthogonal to S define a vector field
on £. We can choose this product structure such that (z, s) is the time s flow of this vector
field. If S, is the time s image of .S under this normal flow, then the hyperbolic metric
for £ can be written as a product of the induced metrics g, on Sy and ds2. However, it

—% rather than in

will be convenient to parameterize the surfaces in the parameter t = e
the time parameter s and we will see there is a nice formula for the hyperbolic metric
in this product structure. The result is essentially due to Epstein. However, as it is not

given in the exact form we need we derive it here.

Theorem 2.5 (C. Epstein, [10]). Let S be a convex surface cutting off a conformally
compact end € with conformal boundary X. Then there exists a conformal metric § on
X and a bundle endomorphism B of TX such that the hyperbolic metric on € = S x (0, 1]
is given by

g x dt*/t?
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where

]_ A\ ¥
— 5 (10+£B) g
9= g ( + g
Proof. Let g be the induced metric on S and B the shape operator and let S; be the

distance —log¢ normal flow of S in £. We also let

Ay=1+t*)-1d+(1—-t*)-B=(Id+B) +t*-(Id - B).
Then the induced metric g; on St is given by

*

gt = @Atg

(see [16, Lemma 2.2]). To get our representation of the hyperbolic metric in £ we need
to rewrite g; in terms of a conformal metric on X.

The conformal structure on the boundary is induced from the conformal structure on
£. If we multiply our metric n € by 4¢? the conformal structure doesn’t change but the
new metric will extend continuously to

g=(40)"g

on S x {0} so g is a conformal metric on X and Ay = Id + B. As S is convex, the
cigenvalues of B are non-negative. Therefore we define B = (Id + B)~*(Id — B). It
follows that

1 1

* 1 A\ *
* —1 ~ 2 ~
9= gl = g (474 5 = g5 (104 £B) g

as claimed. O

In Theorem 2.5 the conformal metric on the boundary is determined by the convex
surfaces in the hyperbolic end. In [10], Epstein has a construction that starts with a
metric at infinity and produces the convex surfaces. We only will use his construction
for the hyperbolic metric. In particular, we have:

Theorem 2.6 ([7, Propositions 6.4 and 6.5]). Let X be a component of the conformal
boundary of a conformally compact hyperbolic cone manifold and g, is the hyperbolic
metric on X. Then for all t > log <\/1 + 2||Z||gx,oo) there is a convexr surface S that

cuts of an end £ such that e*'§x is the metric at infinity for S.

The metric in a chart If (U 1) is a projective chart for 3 then we can extend it to a
chart (U x [0,1],¥) where ¥ is the continuous extension of ¢ to a map to H? that is
an isometry on U x (0, 1]. We say that the chart is adapted to zo € U if ¥(zg,t) = (0,1)
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where the coordinates on the right are in the upper half space model for H3. We can
always construct a chart adapted to zg by taking any projective chart (U, ) with zg € U
and post-composing with an element of PSLy(C).

In a projective chart the metric at infinity § is scalar function times the Euclidean
metric geue. If the chart is adapted to zg then we can calculate the value of this function.

Lemma 2.7. If (U x [0,1], %) is a chart adapted to zg € ¥ then on (U) the metric § is
of the form pgeuwc where p: Y(U) — R* is smooth and p(0) = 4.

Proof. Define a function p: W(U x [1,0)) — RT with po ¥(z,t) = 4t2. If gys is the
metric for the upper half space model of H? then p - ggs extends continuously to the
metric § on 1 (U). Since ¥(zp,t) = (0,t) we have that p(0,t) = 4¢> and therefore pgps
extends continuously to 4geyc at 0. O

On a chart (U, ) for ¥ we have the usual coordinate vector fields % and a% along
with the vector fields in % and % in the complexified tangent bundle. On a chart

(U x [0,1],¥) for the end £ these coordinate vector fields, along with % are a basis
but, unlike in the upper half space model for H?, the vector fields % and 8% may not
be orthogonal or of the same length as the operators (Id + t2B) are not conformal. In
particular, the complex 1-form dz will not be C-linear on the complex structure on S
induced by the metric g;. However, we can write down C-linear and C-anti-linear forms
in terms of the Beltrami differential of the endomorphisms that define g;.

We begin with a computation on a single vector space. The usual Euclidean metric
Geuec 011 R? has a unique C-linear extension to R2® C. Then dz and dZ are the usual dual
basis for R? ® C. While they are both C-linear on R? ® C, when restricted to R2, with
the complex structure induced by geuc, dz is C-linear while dz is C-anti-linear. A linear
isomorphism A: R?2 — R? has a unique C-linear extension to R? ® C. The Beltrami
differential for A is

H = AE/ A,
where A, and A are complex numbers with
A*(dz) = A.dz + Azdz.
We have the following:

Lemma 2.8. Let A: R2 — R? be a linear isomorphism and let ¢ = A*gouc and u the
Beltrami differential for A. Then

] = = e ][]
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where dw and dw are C-linear and C-anti-linear on R? with respect to g. If %4 is the
Hodge star operator for g then

o ldz] —i 1L op | |dw| _ _ —i 1+ |pf? 24 dz
9 1dz 1—|uP? |- —1| |dw 1—|pl2 | —20  —1—|uf*]| [dz]"

Furthermore

|dzlg
|dw|, = —2=<.
I | Az

Proof. As dz and dz are C-linear and C-anti-linear for the complex structure on R2
induced by geue, A*(dz) and A*(dz) are C-linear and C-anti-linear for the complex
structure induced by g. As A is C-linear on R? ® C and

A*(dz) = Aydz + Azdz
for complex numbers A, and A we have
A*(dZ) = Azdz + A, dz.

Dividing A*(dz) by A, and A*(dz) by A, we define dw and dw by

dw| |1 up| |dz

dw| ~ |p 1| |dz
so that dw is C-linear and dw is C-anti-linear on the complex structure induced by g.
Inverting gives our formula for dz and dz in terms of dw and dw.

As dw and dw are C-linear and C-anti-linear with respect to g we have
*gdw = —idw, *gdW = idw

or

dw| |—i 0] |dw

“oldwo| T |0 di|dw]|

We then have

sl = (e s D 3L 8] L]

Multiplying, we obtain the stated formulas. For the norm |dw|, we note that define
dW = A*dz = A,dw. Then

|Azdw|g = |dW|g = |dZ|geuc' |
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We can apply the above to the metrics g;. The Beltrami differential for endomorphisms
5 (Id + t2B) can be written as t2j; where

STy

We obtain the following immediate corollary.

Corollary 2.9. Let (U,v) be a projective chart for ¥ = OE with corresponding chart
(U x [0,1], %) for £. Then

*xdz = —idz A % — 2it? (t*Bodz + Brdz) A %

where the B; are the smooth functions on U x [0,1] given by

|2 51 (Zﬂf) _ Mt

|t
) = =t
oz 1) 1 — 4 ]?

1— 14 ?

Further for dwy = dz + t?p,.dz,

dt dt
*dz = —idwt N ? - it2 (tQﬂodU}t + Bldwt) AN ?
and
2t|dz|,
d =9
| wt‘gt |1—|—tQBZ|

2.8. Model deformations

If S is a convex surface cutting of a conformally compact end £ with projective
boundary ¥ we can use Theorem 2.5 to extend wg to £. Let

IT: S x(0,1] » X =5 x{0}

be given by II(z,t) = z. We would like to extend II to a bundle map between E(E) and
E(X). For this we note that for any flat bundle a path between two points in the base
determines an isomorphism between their fibers as a flat bundle restricted to a path has
a canonical product structure.

In our case the geodesic rays {z} x [0, 1] are paths in € between (z,¢) and (z,0) and
determine isomorphisms between the fiber E(, ;) of E(£) over (2,t) and the fiber £, of
E(X) over z. Using this isomorphism we can extend II to a bundle map

IL: E(E) — E(2).

We then extend we to a 1-form in Q(&, E(£)) by pulling back we via I1,.
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Lemma 2.10.
2 4),, 12
# t 2 2t
o () = oz (10 2P Y gy
we A\ * We 16” Iq( + 1_t4|ﬂt|2 g /

Proof. We calculate at a point (z,t) € S x (0, 1] by taking a chart (U, ) adapted to z.
In this chart we is written as

¢(2)p(2)dz.

While this expression does not depend on ¢, the Hodge star operator and the dual map
will. In particular the expression

(9(2)p(2)dz)" = (2)p(2) x dz

depends on t as both p# and *dZ depend on t.
By taking the conjugate of xdz in Corollary 2.9 we have

24 e |?

) dz A dz A dt/t.

We also need to find p(2)*(p(z))

=|p As we are working in a chart adapted to
z, we have ¥(z,t) = (0,t). Since p(0) =

z).
2 by Lemma 2.3 at (0,¢) we have

o

=1?/2.

By Lemma 2.7 we have [|®(2)[|? = 4|¢(0)|* and dA; = 4dx A dy = 2idz A dZ and
combining our calculations we have the result. O

Let & = S x (0,t] be portion of the end cutoff by S; and let (,); be inner product on
&;. For an E-valued form w on € we then define ||w||? = (w,w);. Integrating the prior
lemma we immediately get:

Corollary 2.11. We have ||wa||7 > 8t?|

1
lim — =
lim
The form we is not harmonic as dwe # 0. However, we will show that ||dwe||2 decays
rapidly in t.
We'll break the estimate into small calculations.
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Lemma 2.12. Let U be a neighborhood of 0 € C and let s be a smooth section of E(U x
[0,1]) such that the function |s| on Ux(0,1] C H? extends continuously to U x[0,1] C H?3.
Then the projective vector field s(0,0) has a zero at 0 € U. If |s]|(0,0) = 0 then s(0,0) is
a multiple of p(0) and

[s](0,t) = O(t).

Proof. We write

0

s(z,t) = (fo(z, 1) + f1(z, )w + fa(z, )w?) 90

where the functions f; are smooth, complex valued functions on U x [0, 1]. By Lemma 2.2
we have
_ O AP f(0,)

2
|8| (O7t) - 2t2 + 4 + 2 9

for t € (0,1). If |s| extends continuously to (0,0) then we must have fy(0,0) = 0 so, as
a projective vector field, s(0,0) is zero at 0.

If |5|(0,0) = 0 then we must further have that f;(0,0) = 0 and %(0,0) = 0. Since
%(O, 0) also exists it follows that

£i(0,8)] = O (£77)
and therefore
[s|(0,t) = O(t). O

Lemma 2.13. Let U be a neighborhood of 0 € C and let s be a smooth section of E(U x
[0, 1]) such that the function |s| on U x(0,1] C H? extends continuously to Ux[0,1] C H?.
Then

[ds Adz Adt|(0,t) = O (£*)  and |ds AdzAdt](0,t) = O ().

Proof. By Lemma 2.12 the condition that the norm |s| extends to zero on U x {0} implies
that s(z,0) = f(2)p(z) for some smooth complex valued function f on U. We have that

ds Ndz Adt = s.dz ANdz Adt = —2it3s,dV

idzAdZAdL

T is the volume form for H?. Therefore

where s, is z-derivative of s and dV =
|ds A dZ A dt|(0,t) = 2t3|s.|.

Note that the z-derivative of the section p is
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and has bounded norm on H?. Therefore, on {0} x (0,1], the norm of s, = f.p + fp. is
bounded and if we let ¢ be bound of 2|s,| we have

|ds A dz A dt|(0,t) < ct.

The bound of the norm of ds A dz A dt is similar once we note that the z-derivative of
p is zero so the norm of the z-derivative sz of s is also zero at (0.0). O

We now prove our bounds on dwe.
Lemma 2.14.

o1
lim -5 [|dws ¢ = 0.

Proof. We have 6 = 0% with 9 = D — T = d — 2T. Therefore to bound ||dws||: we need
to bound the norm of d(xwg) and T (*wg).
In a chart (U x [0,1], ¥) by Corollary 2.9 we have

dt dt
*dz = —idz A - 2it? (t*Bodz + B1dZ) A 7

where the §; are smooth, complex valued functions on U x [0, 1]. Therefore

*we = Gp *dz = —igpdz A % — 2it2¢pp(t*Bodz + B1dZ) A %

As ¢ and p are holomorphic in the dz-coordinate we have that d(—igpdz A dt/t) = 0.
Therefore

d(xwg) = —2it(t*d(dBop) A dz + d(¢pB1p) A dZ) A dt
and, as the sections ¢f3;p have norm limiting to zero on 0, by Lemma 2.13
|d(*w3)[(0,8) = O ().

Next we calculate T'(xwg). We will work in a chart adapted to z and a conformal
coordinate w; at (0,t). Again applying Corollary 2.9 we have

dt
*WP = Qﬁp *dz = —Z¢p ((1 + t450)dwt + t2ﬂ1dwt) A ?

where the §; are as above. We use Lemma 2.3 to calculate Tp. At the point (z,t) we
have e, =t w, = % and w = Adw; for some scalar A with |w| = |p| and
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A

0 dt
Tp =M @dw +p© —.

Then as the volume form dV satisfies dw; A dw; A dt = —it|dw;|>dV, we have

T (+we) = —i(bAtQBl% ® dwy A divy A dt = —¢t3A61|dwt2% ®dV
As [t2] =1 and |Ndu| = [w] = |p| = t/v2,
T (xwa)| = £[6]]B1|duws|/v/2.
By Corollary 2.9 |dw;| = O(t), giving
T (xwa)| = O ().

As the x-operator is an isometry and S is compact this implies that there exists a ¢ > 0
such that

|dwae|(2,t) < ct?.

We then have

/(5wq> A*éw(ﬂp:/ww@\de
£ o

to
g//ct8dAtdt/t
0o s

to
< /Kct5dt = Kcty°/6.
0

Here dA; is the area form for the surface S; and we are using the fact that the area of
these surfaces is bounded by K/t* for some K > 0. Therefore

lows |7 < Kct®/6
and the lemma follows. O
We now prove the main result of this section.

Theorem 2.15. Let w = wg +d7 where the section T of E(E) has finite L?>-norm. The for
all to S 1

1
2 2
19[15,2 < %lelto
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Proof. We have
(w,w)t = (we + dr,we + d7): = (We, ws): + 2Re(dr, ws): + (d7,dT):.

By Corollary 2.11 we have

1
||‘I)||2,2 < @(Mb,w@)t-

For the middle term we can integrate wg A*d7? over the compact manifold S x [s, ] and
let s — 0. We have

/dr/\*wé: / T/\(Sw@—i-/r/\*wcﬁp—/T/\*wé

Sx[s,t] Sx[s,t] St Ss
= / T A dwe — (T, 0wy )y
Sx[s,t]

where the integrals over S; and Ss are both zero since *wg¢ restricted to these surfaces
is zero as it contains a dt-term.
As ||7|| < o0, applying Lemma 2.14 we get

. 1 . 1 . 1
lim sup t_2|(dT’ we)t| = lim sup 2 (1,0ws)¢| < limsup t—2||7'||t - [Jéws]|: = 0.
t—0 t—0 t—0

By the infinitesimal inflexibility theorem [6, Theorem 3.6] we have for ¢ < ¢,

1
7((")7 w)t S

I (W, w)t,-

o%‘ =

Therefore as (dr,dr); > 0,

=

1 1
2 .. ..
[®]]5.2 < hgli)lélf 8?((&]@,(.4)@),{ < llgélf —(w,w) < —5(w,w)y, O

82

8t

oN

If w is a Hodge form on a conformally compact hyperbolic cone-manifold that is
cohomologous to some wg on an end & then, by definition, w = wg + d7 for some F-
valued section 7 on £. To apply this theorem we need the extra property that 7 has finite
L?-norm. We call such a Hodge form a model Hodge form.

3. Nehari type bounds for cone-manifolds
For a smooth, hyperbolic 3-manifold with incompressible boundary the classical Ne-

hari bound on the Schwarzian derivative of univalent maps gives that ||X|/s < 3/2 for
every component > of the projective boundary. We are interested in obtaining similar
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bounds for a hyperbolic cone-manifolds. To do so we need to make some technical as-
sumptions, that will always be satisfied in our applications, but do make the statement
somewhat cumbersome.

One of the difficulties is that the usual Margulis lemma does not hold for cone-
manifolds. The following theorem is a replacement.

Theorem 3.1 ([7, Theorem 3.5]). There exists an Lo > 0 such that the following holds.
Let M be a hyperbolic cone-manifold with singular locus C such that if ¢ € C then ¢ has
cone angle 0, < 2w, length L. < Ly and C has tube radius > sinhfl(ﬁ). Then ¢ € C
has a tubular neighborhood of radius R, where

0.L.sinh(2R.) = 1.
Furthermore these tubes are disjoint.

Now we state our version of the Nehari bound. When the cone angle is small it will be
important that the cone locus has a large tubular neighborhood where the radius grows
as the cone angle decreases. The necessary lower bounds will come from the previous
result and to use it we will need to assume that the length of the cone locus is bounded
above by a linear function of the cone angle.

Theorem 3.2. There exists K, Ly > 0 such that the following holds. Let M be a confor-
mally compact hyperbolic cone-manifold with singular locus C such that all cone angles
< 27 and C has tube radius > sinh™' /2. Further assume that if ¢ is a component of the
singular locus with cone angle 6. and length L. then

L. <0.Lg.
Then for every component X2 of the projective boundary of M we have
2]l < K.

In order to prove this, we will need to consider the Thurston parametrization of
projective structures via measured laminations and use the notion of average bending of
a measured lamination. We show that the result follows from a compactness argument.

3.1. The Thurston parameterization

The space P(A) of projective structures on the hyperbolic disk is equivalent to the
space of locally univalent maps f: A — C with the equivalence f ~ g if f = ¢ o g for
some ¢ € PSLy(C). We can identify P(A) with the space of quadratic differentials Q(A)
by mapping [f] € P(A) to its Schwarzian derivative S(f) € Q(A). Then the topology
on P(A) is the compact-open topology on Q(A).
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Thurston described a natural parameterization of P(A) by ML(H?) the space of
measure geodesic laminations on H2. We briefly review this construction.

A round disk D C C shares a boundary with a hyperbolic plane H%, C H3. Let
rp: D — H3 be the nearest point projection to H2, and 7p: D — TTH? be the normal
vector to H%, at 7p(z) pointing towards D. We can use these maps to define a version of
the Epstein map for py. In particular define ]:]\}/)pf : A — T'H? by E\f)pf (2) =7y (f(2))
where D is the unique round disk with respect to f such that pp(z) = ps(z) and let
Ep, (z) =mo ]:jf)pf (2) = rrpy(f(2)). (For the existence of this disk see [15, Theorem
1.2.7].) We also define ],E)\f)etpf =gi0 ],E}\f)pf and Ep.:, =mo E\f)etpf.

The image of Ep, ; Is a locally convex pleated plane. More precisely, let ML(H?)
be measured geodesic laminations on H? and ML(H?) C ML(H?) the subspace of
laminations with finite support. That is A € MLy(H?) if it is the union of a finite
collection of disjoint geodesics ¢; with positive weights #;. Then A determines a continuous
map px: H? — H3, unique up to post-composition with isometries of H?, that is an
isometry on the complement of the support of A and is “bent” with angle 6; at ¢;. By
continuity we can extend this construction to a general A € ML(H?). An exposition of
the following theorem of Thurston can be found in [15].

Theorem 3.3. Given f € P(A) there exists maps cy: A — H? and py: H? — H? and a
lamination Ay such that py is a locally, convex pleated surface pleated along Ay, Ep,, =
pyocy and the map f + Ay is a homeomorphism from P(A) — ML(H?). Furthermore
the maps cy: (A, py) — H? and Ep,.: (A, pf) — H?3 are 1-Lipschitz.

3.2. Average bending bound

Average bending was introduced by the first author in the study of convex hulls of
quasifuchsian groups (see [1] and [4]). This had applications in the work of Epstein,
Marden and Markovic in their paper [11]. The idea of average bending is to relate the in-
jectivity radius of the convex hull to the amount of bending per unit length along geodesic
arcs. In their work, Epstein, Marden and Markovic, used an equivalent formulation of
average bending, called roundedness.

Given A € ML(A) and « a transverse arc, we let A(«) be the A-measure of . We
then define the average bending norm to be

[|IAll = sup{A() | @ an open geodesic arc of length L}.
If X\ is a lift of a measured lamination on a closed hyperbolic surface, then ||A|| is
bounded but in general ||u||z may be infinite. For simplicity, we will let ||u|lx = ||ul|-

We have the following compactness result;

Lemma 3.4. Given L, M > 0 then the set C(L, M) = {X | ||\||L < M} is precompact.
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Proof. Let G(A) be the space of (unoriented) geodesics in the hyperbolic plane. We
define the space of geodesic currents C(A) to be the space of non-negative Borel measures
on G(A) with the weak* topology. The topology on ML(A) is that of a closed subspace
of C(A). Given an open geodesic arc a, we let U, C G(A) be the set of all geodesics
transverse to a. We define

U = {U, | @ an open geodesic arc of length L}.

Then U is an open cover of G(A).

We let K be the set of continuous functions on G(A) with support subordinate to the
cover U. Then for each ¢ € K there exists a U € U with supp(¢) C U. We have the map
I: ML(A) — RIFl given by I(\) = (M(¢))sex. This map is a homeomorphism onto its
image.

If ¢ € K then there is a U € U with supp(¢) C U € U. Therefore for A € C'(M, L)

A¢) <A(U) < M.

Therefore C(M, L) is homeomorphic to a subset of [0, M]*l which is compact by
Tychanoff’s theorem. Therefore C'(M, L) is precompact. O

Corollary 3.5. Given L, M > O there exists an R such that if f is a locally univalent map
with || A¢||r < M then

[65lloe < R.

Proof. We consider the family F'(M, L) of ¢y = S(f) € Q(A) with Ay € C(M, L). Then
by Thurston, F'(M, L) is the image of C(M,L) under a homeomorphism. Therefore
F(M, L) is precompact and has compact closure K (M, L). Therefore there is an R > 0
such that for all Ay € C(M, L) then

[¢£(0)] < R/4.

Therefore ||¢£(0)|| < R for all A\f € C(M,L). As the set K(M, L) is invariant under
isometries of H? it follows that ||¢f||c < R for all A\ € C(M,L). O

3.8. Convex hull of cone manifold

In this section M will be a conformally compact hyperbolic cone-manifold with in-
compressible boundary and all cone angles < 27. We let ¢ be the quadratic differential
on the conformal boundary given by uniformization. In [7], the second author studied the
convex core boundary of M. This is given by taking the Epstein surface for the projec-
tive metric which we denote by S. By [7, Proposition 6.5] the surface S is an embedded
locally convex surface in M bounding an end £ of M homeomorphic to S x [0, 00). Also
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& does not contain any cone axes in its interior. The surface S has intrinsic hyperbolic
metric and has a bending lamination 8,. We identify the universal cover S with the
hyperbolic disk A and obtain a lamination 345.

First some elementary lemmas about balls in hyperbolic cone-manifolds.

Lemma 3.6. Let S be the unit sphere in R3. Let (0, z) be cylindrical coordinates on S and
for 0 <t < 2w define the spherical cone-surface

Se={(0,2) € S|0<0<t}/(0,z2) ~ (t,2).
If p1,p2,ps € Sy then d(p;,pj) < 2m/3 for some i,j,i # j.

Proof. Assume not. We first take the case of t = 27. Then Sy = S the unit sphere. Then
letting B(p,r) be an open disk of radius r about p € S, we have

p2,ps € Blp1,27/3)° = B(—p1,7/3).

It follows that dg(p2,ps) < 27/3 giving our contradiction.

For t < 27 we take a fundamental wedge domain W; for S; in S above, and can
assume the p; are in the interior. Then by the spherical case two of the points have
ds(pi,p;) < 2n/3. As dg, (pi,p;) < ds(pi,p;) we obtain our contradiction. O

We have the following elementary calculation on half-spaces in H?;

Lemma 3.7. Let f: Ry — R, be given by

2 cosh(R)
1+ 3cosh?(R)

f(R) = cosh™!

Let Hy, Hy, Hy be half-spaces in H® such that H; N B(x, R) are disjoint. If each H;
intersects B(x,r) then r > f(R).

Proof. Let r; be the distance from H; to x and let D; = H; N dB(z, R) have spherical
radius #;. Then we have r; < r and 6; > 6 where 0 is the spherical radius of D =
HNOB(x, R) where H is a half-space a distance r from x. Therefore as each D; contains
a disk or radius 6, if the D, are disjoint, then there are 3 disks of radius € which are
disjoint.

We show that 0 < 7/3. We let S = 9B(z, R) have the spherical metric given by angle
subtended at x. If § > 7/3 then the centers p;, of D, satisty d(p;,p;) > 27/3,i # j
contradicting Lemma 3.6.

We have a right-angled hyperbolic triangle with sides r, R and angle # between. Let [
be the length of the other side. Then solving we have
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inh
sinh(l) = sinh(R). sin(f) < M,
and by the hyperbolic Pythagorean formula

cosh(R) cosh(R) cosh(R) 2 cosh(R)
cosh(l) \/1 + sinh?(1) \/1 + 2 sinh®*(R) \/1 + 3 cosh?(R)

cosh(r) =

We now consider balls in our cone manifold M. We let M be the universal cover with
convex hull C(M). The end & lifts to £ a component of the complement of C(M) with
boundary S. As M has incompressible boundary, then (f:' ) is trivial.

The space M is a hyperbolic cone manifold and the cone axes C lift to C. For p € M
we define balls in the usual way, i.e. B(p,r) = {g € M | d(p,q) < r}. We note that
B(p,r) may not be topologically a ball or isometric to a hyperbolic ball. For a point p,
we define r(p) to be the maximum radius such that B(z,r) is embedded and isometric
to a hyperbolic ball of radius r for all » < r(p). Note for p € C, r(p) = 0 and otherwise
r(p) > 0 and 7(p) equals is the injectivity radius of p in M — C. For p € M we further
define d(p) to be the minimum distance to the cone axes C.

We first bound the average bending for points with r(p) bounded below.

Lemma 3.8. Let M be a conformally compact hyperbolic cone-manifold with incompress-
ible boundary and all cone angles < 2. Let p € S and o a closed geodesic arc on S with
midpoint p and length less than 2f(r(p)). Then

() < 2

Proof. We let H; be the 1-parameter family of support half-spaces from «(0) to «(1).
We consider S = 0B(p,r(p)) and disks Dy = H;NS. We let s; be the smallest s such
that Do, D, have disjoint interiors. Then we have 5(a([0,s1])) < . If there is no such
51 then we have 3(a) < m and we're done.

We now let sy be the smallest ¢ such that Ds,, D, have disjoint interiors. Again it
follows that 5(a[s1, s2]) < 7 giving B(a([0, s2])) < 2. If no such ¢, exists then f(a) < 2
and we are also done.

We first show that Dy, D, do not intersect. If Dy, D, do intersect, we extend ([0, s2])
to a closed curve o’ by joining a(0), a(s2) by a piecewise geodesics on 0Hy U 0H,,. We
note that & is simply connected. We get our contradiction by showing that curve o in
€ is homotopically non-trivial. The curve o' is homotopic to a simple closed curve o
in Do U D, U Dy, C OB via a homotopy in BN (HyU Hs, U Hs,) C E. But as arc a is
transverse to a bending line b then o’ separates the points bN9B in dB. Therefore o’ is
non-trivial in M —b. As M has incompressible boundary, o is trivial M —C(M) C M —b
and we obtain our contradiction. Thus if s exists, then Dy, D, do not intersect. We then
obtain a contradiction from the above lemma as Hy, H,, H, are disjoint in B(p, r(p))
and intersect B(p, f(r(p)). O



M. Bridgeman, K. Bromberg / Advances in Mathematics 451 (2024) 109804 25

We use the same argument as above to bound average bending for points close to the
cone axes.

Lemma 3.9. Let M be a conformally compact hyperbolic cone-manifold with incompress-
ible boundary and all cone angles < 2r. Let é € C have an embedded tube Us of radius
R and p € Uz with d(p,c) < f(R)/2. If o is a closed geodesic arc on S with midpoint p

and length less than f(R) then

Bo(a) < 2m

Proof. We let ¢ € C be the nearest point of to p on C and consider B = B(q, Ry). If
a is a geodesic arc of length f(Rg) centered about p, then « is in B(q, f(Ro)). We let
S = 0B, then S is a sphere with two cone points. We again consider Hy the 1-parameter
family of support planes from «(0) to (1) and let Dy = H; N S. Then Dy are disks in
S whose interior are disjoint from the cone points. Then analyzing as in Lemma 3.7, we
obtain 3 disks with disjoint interiors on S. By Lemma 3.6 the disks cannot be disjoint
which gives a contradiction. Thus we have f(a) < 27. O

To bound our average bending uniformly for a given length, reduces now to showing
that r(p) is bounded away from zero for points far from the cone axes. This is the purpose
of the following two lemmas.

Lemma 3.10. Let M be a conformally compact hyperbolic cone-manifold with incom-
pressible boundary and all cone angles < 2. Let C be the singular locus and for é € C let
Us be the R neighborhood of & in M. Let R be such that Us are embedded and disjoint.

o Ifpe M —U,.sUs then r(p) > r(q) for some q € OU; and ¢ € C.
o if p € Uz then d(p) = d(p,¢) and

r(p) = d(p) 0. >,
sinh(r(p)) = sinh(d(p)) sin(6./2) 0. <.

Proof. Let p € M. We note that 7(p) < R and d(p) = d(p, &) for p € Us. We consider the
ball B(p,r(p)) for a general point p. Then the boundary of B(p,r(p)) is either tangent
to a cone axis or it is tangent to itself. We consider these two cases.

If the boundary of B(p,r(p)) is tangent to & € C then r(p) = d(p) = d(p,¢). Tt
follows that 6z > 7 as otherwise B(p,r(p)) would not be embedded. In particular if also
peM— UzeeUs then as d(p) > R we have r(p) > R and therefore r(p) > r(q) for any
q € UzegOUg. If p € Uz then r(p) = d(p, ¢) = d(p).

If the boundary of B(p,r(p)) is tangent to itself then B(p,r(p)) contains a non-trivial
piecewise geodesic 7 of length 2r(p) in M with vertex p. Therefore v must link a finite
collection of axes of elements C. If 4 links more than one axis then 7 is greater than
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Fig. 1. 0. > .

Fig. 2. 0, < .

the length of the shortest closed geodesic joining the axes. As this is at least 2R, then
r(p) > R. In particular p € M — UzeeUe and again 7(p) > r(q) for any ¢ € U;s0Us.

If y links a single axis ¢ € C then we can reduce to considering the case of a single cone
axis & of angle .. We consider a rotation of angle 6, about a geodesic in H? and let W
be a wedge of angle 6. about the geodesic giving a fundamental domain for the action.
Taking the largest ball about p, it follows that for 6, > 7 then r(p) = d(p, é) = d(p) and
the boundary of B(p,r(p)) is tangent to cone axis ¢, reducing to the first case (see Fig. 1).
Thus we can assume 6. < 7 and 2r(p) is the length of the unique shortest geodesic arc
with both endpoints p. Thus r(p), d(p, ¢) are sides of a hyperbolic right angled triangle,
with hypothenuse d(p, ¢) and side of length r(p) facing angle 6./2 (see Fig. 2). Therefore
for 6. < 7 by the hyperbolic sine formula

sinh(r(p)) = sinh(d(p, é)) sin(6./2).
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If p € Uz then as d(p) = d(p, ¢) the stated formula for r(p) holds. Otherwise d(p,¢) > R
and again by the monotonicity of the formula above in d(p,¢) we have r(p) > r(q) for
all g € 0U;. O

We now bound r(p) for points on the boundary of the convex hull in terms of the
distance to the cone axes (independent of angle).

Lemma 3.11. There is an explicit monotonic increasing function g : Ry — Ry such
that the following holds. Let M be a conformally compact hyperbolic cone-manifold
with incompressible boundary satisfying the conditions of Theorem 3.2. Then for r <
%sinh_l(\/i), if p € OC(M) with d(p) > r then r(p) > g(r).

Proof. By assumption for ¢ € C, ¢ has embedded tubular neighborhood U, of radius R,
such that R, > sinh™!(y/2). We let Ry = sinh™*(1/2). We lift the tubular neighborhoods
to M and denote by U; the lift for é € C.

By the Lemma 3.10, we need only consider points in the neighborhoods Uz. Thus we
let p € Us. Again by Lemma 3.10 if 6. > & then r(p) > d(p) giving r(p) > r. Similarly
for 7/2 < 6. < m, we have

sinh(r(p)) = sin(6./2) sinh(d(p)) > sinh(r).

Sl

This gives a bound on r(p) for 6, > 7/2.

We now consider 6. < 7/2. By [7, Lemma 3.3] all support half-spaces are embedded
in €. Let H be a half space intersecting Uz with distance d from the cone axis. We take
a wedge fundamental domain for the meridian of the cone axis with the nearest point
of H being centered. Then in order for H to be embedded in Ug, it cannot intersect the
radial sides of the wedge (see Fig. 3). Therefore we must have d > d. where d., R. form
a right-angled triangle with hypothenuse R. and angle between the sides 6./2. Labeling
the other side of the triangle [ we have by hyperbolic geometry (see [12, formulas ITL.5,
I11.6])

sinh(l) = sinh(R,) sin(6./2) tanh(l) = sinh(d,) tan(6./2).

Thus for p € Uz we have d(p) > d.. Therefore applying Lemma 3.10 above we have

. . . 1 sinh(R,) sin(6./2)
sinh(r(p)) > sinh(d,.) sin(0./2) = tanh(l) cos(0./2) > —
g V2 /14 sink®(R,) sin? (6./2)

To obtain a bound, we use our assumptions in Theorem 3.2 and applying Theorem 3.1
we have

0.Lcsinh(2R.) =1 and L. < Lgf..
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Fig. 3. Embedded plane H intersecting Us;.

Therefore

1
O > ———————.
sinh(2R.)Lo

It follows that

) ) 1 sinh(R.) sin(6./2) 1 tanh(R,) v/2 tanh(Ry)
h(R. 0./2) > > — >3 .
sinh(Re) sin(Pe/2) VLo \/sinh(2R.) 0. VLo 2 m 72 Lo

As tanh(Ro) = 1/2/3 and x/v/1 + 22 = sin(tan™'(z)) is monotonic, then

tanh(R,
R 1 N 1

> Iy = .
T V2 \/1 4 tmh(Ro) /2 +2n2cotanh(Ro)Lo V2 + 25L0

72 Lo

sinh(r(p))

Thus for p € Uz we have r(p) > g(r) with

1 1
V21250 V2

Thus combining the bounds, we have r(p) > g(r) with

sinh g(r) = min ( sinh(f))

1 1
L gm 0
V2oL, V2o (7“)>

In [4], the first author and Canary proved the following.

sinh g(r) = min (

Theorem 3.12 (//, Theorem 3]). Let f : H? — H? be an embedded convex pleated plane
then its bending lamination By satisfies

1Bl < 2m

for L < 2sinh™*(1).
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We now use the Lemmas 3.9 and 3.11 above to generalize Theorem 3.12 for cone-
deformations.

Proposition 3.13. Let M be a conformally compact hyperbolic cone-manifold with incom-
pressible boundary and all cone angles < 27 satisfying the conditions of Theorem 5.2.
Then

1Bsll < 27
for any L < 2f(g(f(sinh™'(1/2))/2)) ~ 0.152958.

Proof. We let r = f(Ry)/2 where Ry = sinh™'(v/2).
If d(p) > r. Then as f(z) < x we have

f(Ro)
2

T =

o1
- 2

=3 sinh ™! (V/2).

Therefore we can apply Lemma 3.11 to p to get r(p) > g(r). Therefore for L = 2f(g(r))
then () < 27 for any geodesic arc a of length less than L centered at p.

If d(p) < r = f(Rp)/2, as ¢ € C has an embedded tubes of radius R. > Ry then by
Lemma 3.9 if a is an arc of length L < f(Ry) then 3(a) < 27.

Combining the bounds we have

18]l < 27

For L < min(2r,2f(g(r))). As both f(x) <z and g(z) < z then

min(2r,2f(g(r))) = 2f(g(r)) =~ 0.152958. O

We now prove the main result of this section.

Proof of Theorem 3.2. By the above, there exists an L such that

1Bl < 2.

Therefore by Corollary 3.5

1Z]lec < K

for some K universal. O
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4. Proof of Theorems 1.2 and 1.3

We now bring our work together to prove the main results of the paper. Before doing
so we will need to summarize the necessary results about deformations of cone-manifolds.
As in the introduction we have a compact 3-manifold N with a collection C of disjoint,
simple closed curves in the interior. We will examine a family of conformally compact
hyperbolic cone-manifold structures on N with cone locus C.

Theorem 4.1 ([7]). Let My be a one parameter family of cone-manifolds given by Theo-
rem 1.1 and let L.(t) be the length of a component ¢ of C in My and L¢ the sum of the
L.

tL.(2m)

L.(t) < -

e In each M, there is a union Uy of embedded, disjoint tubular neighborhoods of the
components of C of radius > sinh™* /2.
o The time t derivative of My is represented by a model Hodge form w; with

3 Le(t 3Lc(2
/ |Jowe |2 < = - C()S el 77).
14 t 14w
M \U:

Note that the statement in the final bullet is not the actual statement of Proposition
4.2 in [7] but rather a direct application of the first inequality of the proof where we
assume that the radius of the tubular neighborhoods is sinh ™' /2 rather than the larger
radii assumed in that proposition.

We are now ready to prove our main theorem bounding the L?-norm of the derivative
of the path of complex projective structures.

Proof of Theorem 1.2. We assume ¢ has been fixed throughout the proof.

For the path ¥; of complex projective structures on the boundary of M;, by Theo-
rem 3.2 we have that ||X;]|cc < K. Therefore by Theorem 2.6 there is a convex surface
S in M; cutting of an end &£ such that (1 4 2K)jx is the metric at infinity for S. Note
that while £ will be disjoint from the cone locus in M; it may intersect the tubular
neighborhood Uy of the cone locus. To correct this we need to remove the collar of width
sinh ™! v/2 from &. This is the end &, where n = e~ sinh™! v/2

By Theorem 4.1 we have that

5 _3L¢
[l < 38

MU,

and since &, C M;\U; this implies that
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3L

2 o 22C
/||wt|| < Ti
ST/

As w; is a model Hodge form Theorem 4.1 implies that

o2 1 3Lc
| t||(1+2K)gX,2 = 8—772E
As
[ EX,Q =1+ 2K)||‘I’t||%1+2K)gX,2
this gives
[®¢]lgx.,2 < cariny/ Le
where
1 /3(1+2K)
Cdrill = 7\ ——=—-
4n T

Our main results now follows immediately.

Proof of Theorem 1.3. Integrating the above, we get the L?-bound

2
18(Z0, So)l2 < / 1®,]|2dt < 27ecqmny/Te. O
0
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