Mechanical Systems and Signal Processing 211 (2024) 111229

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing s

journal homepage: www.elsevier.com/locate/ymssp e

Check for

Regularized hidden Markov modeling with applications to wind e |
speed predictions in offshore wind

Anna Haensch ?, Eleonora M. Tronci ®, Bridget Moynihan , Babak Moaveni *-*

2 Data Intensive Study Center, Tufts University, Medford, USA
b Department of Civil and Environmental Engineering, Tufts University, Medford, USA

ARTICLE INFO ABSTRACT

Communicated by M. Beer Offshore wind power is rapidly becoming an essential component of the transition to clean en-
ergy. As turbine design capacities continue to increase, there is a growing interest in monitoring

K?yw ords: both individual turbines and entire wind farms to ensure their performance while also reducing
Hidden Markov models R o K X

Wind speed the levelized cost of energy. However, obtaining reliable and comprehensive data on these
Offshore wind structures can be challenging, as it often requires costly and potentially dangerous installation
Tykhonov Regularization procedures and significant computational resources. Therefore, it is critical to predict the needed
Cross-validation learning information to properly assess the performance of offshore wind turbines when not available.

To address these challenges, this paper introduces a modified Hidden Markov Model (HMM)
framework-based strategy and a companion Python library, Hela. The proposed HMM-based
framework incorporates a “smart" initialization strategy and regularization to overcome some
of the limitations of applying HMMs to experimental cases. This Python library introduced in
this paper is a highly flexible and customizable HMM library for training and inference. This
work is all carried out within the use-drive context of offshore wind.

1. Introduction

As the pursuit of climate solutions gains momentum, offshore wind power is poised to become an increasingly vital component of
the transition to cleaner energy sources [1]. The United States Offshore Wind (OSW) pipeline currently boasts a potential generating
capacity of over 40,000 MW, necessitating the construction of thousands of OSW turbines [1]. Furthermore, in order to maximize
energy production from wind, turbine designs are growing in size and capacity [2]. This trend towards larger turbines and increased
installations has created a pressing need for enhanced structural reliability to ensure safe and affordable clean energy. One area of
particular importance in wind turbine engineering is the extension of turbine lifetimes, which involves utilizing condition monitoring
techniques to detect and prevent faults and failure mechanisms [3-6]. By extending the lifespan of turbines through monitoring
campaigns, the levelized cost of energy can be reduced, further facilitating and accelerating climate solutions [7].

Instrumentation of civil infrastructures allows for continuous monitoring and analysis of the health and behavior of structural
systems starting from their acquired measurements response [8]. Known as Structural Health Monitoring (SHM), this field aims to
monitor the structural condition of infrastructures and to detect damage in order to extend the lifetimes of structures [9].

SHM applications rely on structural instrumentation to monitor and record the response of infrastructure to different loading,
operational, and environmental conditions. Wind turbine instrumentation campaigns typically include the installation of accelerom-
eters and strain gauges to measure deformation, material loads, and bending moments [10]. These instruments collect continuous

* Corresponding author.
E-mail address: babak.moaveni@tufts.edu (B. Moaveni).

https://doi.org/10.1016/j.ymssp.2024.111229

Received 4 April 2023; Received in revised form 5 December 2023; Accepted 4 February 2024
Available online 17 February 2024

0888-3270/© 2024 Elsevier Ltd. All rights reserved.

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

measurements from the turbine structure at high frequency, providing a real-time and continuous stream of information. Addi-
tionally, the wind turbine Supervisory Control and Data Acquisition (SCADA) system provides synchronous data on environmental
conditions and turbine operational conditions such as wind speed and power output. Altogether, such instrumentation can be used
in condition monitoring methods in order to track the behavior of the turbine under varying environmental loads and to detect
and prevent faults [10,11]. Both physics-based and data-driven methods rely on this monitoring information, and they have been
introduced and developed for applications to SHM of wind turbines [12,13].

The availability of various data types (dynamic quantities, environmental and operational information), as mentioned earlier,
enables robust physics-based modeling and model updating as well as system identification and performance assessment of offshore
wind turbines [14]. However, not all data channels may be readily available for use. Hence, predicting and imputing data from
certain channels becomes necessary to assess the potential lack of information and accomplish comprehensive SHM of a wind turbine.
In particular, data from the SCADA system, such as wind speed readings, sometimes contain missing periods of data. Wind speed
is a crucial parameter for the operational analysis of wind turbines as it reflects the incident loading on the turbine and is directly
linked to turbine power output and other controller settings. Thus, wind speed measurements play a vital role in describing and
predicting the performance of wind turbines. The absence of wind speed data during certain periods prevents the analysis of the
structure with respect to environmental loading conditions, disabling a detailed assessment of the structure performance.

In addition to missing data, some turbines provide only low-resolution wind speed readings, such as 10-minute average values.
Higher resolution readings would enable further understanding of the incident loading and environmental conditions experienced
by the turbine. Therefore, it is essential to define a strategy that can robustly and reliably predict wind speed information whenever
it is not directly measurable using available high-resolution measurements such as strain or acceleration quantities.

Several works have been presented in the literature for wind speed estimation at offshore sites using various data-driven methods.
Many works have focused on future prediction of wind speeds for power output forecasting [15-18]. Other works focus on farm-wide
wind estimation in order to understand the effects of turbine wakes on power and turbine health [19]. None of these works are
concerned with reconstructing periods of missing wind speed readings or predicting the wind speed incident on a single turbine
by utilizing structural response measurements in modeling. This work presents data-driven modeling of wind speed readings using
structural response measurements as input data features, with the goal of reconstructing the time-history of incident wind speed for
use in SHM applications.

The Hidden Markov Model (HMM) is a type of statistical machine learning model that relies on both spatial and temporal
variations. At its core, the HMM assumes that the system being modeled consists of a set of observable values and an underlying
sequence of latent states, which are themselves a Markov process. That is, the latent state at any time is determined only by the latent
state immediately prior. The time-based nature of HMMs makes them particularly well-suited to the task of condition monitoring
and have been used with great effect as a tool for measuring mechanical wear [20,21] and electrical faults [22] specifically in
rotation machines [23]. In the domain of wind power, algorithms based on HMMs have been used in fault detection in tandem with
onboard control and alarm systems [24,25] as well as estimating relevant structural and environmental quantities of interest, such
as power generation [26] and wind speed [27].

HMM has already shown promising results for other study cases related to wind speed tailored for forecasting applications.
In [27], the authors propose a wind speed correction framework based on an enhanced HMM strategy to correct the wind speed
forecasting results obtained using the weather research and forecasting model. In particular, the HMM is modified with the addition
of a fuzzy C-means cluster to properly divide the hidden state space (the forecasting error) of HMM into the optimal number of
discrete hidden states, and to make full use of the predicted wind speed, then the emission probability of HMM is improved as
continuous using kernel density estimation.

This work introduces a new regularized Hidden Markov Model with an informed initialization strategy that makes it suitable
for real data applications. The model is proposed in combination with a Python library, Hela [28], and presents an application
of the library to models for operational wind speed prediction from an offshore wind turbine. Specifically, this work focuses on
utilizing HMMs to predict wind speed readings using structural dynamic readings as model inputs (accelerations and strain-related
quantities). The addressed strategy uses HMMs to perform wind speed classification in which each point in time is assigned a certain
class according to wind speed magnitude. The proposed framework differs from existing methods in the literature, such as the one
proposed by [28], because it is not designed for forecasting but rather for forecast-agnostic estimation derived from dynamic and
structural quantities, and the number of hidden states is considered as a user-driven hyperparameter instead of a learned model
parameter.

Two weeks of data are available from an offshore wind turbine instrumented with accelerometers, strain gauges, and a SCADA
system, providing measurements at 25 Hz, and 10 Hz, respectively. The true wind speed readings are used to create wind speed
bins for each step in the time-history, and these states are mapped onto the learned hidden states of the HMMs in order to measure
model accuracy. This modeling is useful for time periods where the wind speed readings or SCADA system data are not available
or only available at low sampling rates. The main contributions of this paper are as follows:

1. A randomly seeded HMM is enhanced using a cross-validation strategy that results in smart seeding of the model.

2. A regularization step is added to the HMM training to deal with ill-conditioning of the covariance matrix.

3. The Hela repository for hybrid HMM modeling is introduced with a clear use-driven workflow demonstration in the domain
of offshore wind.

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

X X X X X

1 t-1 t t+1 T

Fig. 1. HMM graphical structure.

This paper is structured as follows. Sections 2.1-2.4 will describe the theoretical underpinnings of the HMM in the context
of model parametrization and proposed modified learning strategy, and Section 2.5 will describe how these tools have been
implemented in the open-source Hela library. Section 3 will focus on the application of these tools to the domain of offshore
wind, describing the datasets, experimental methodology, and results for wind speed prediction with HMMs. Finally, Section 4 will
summarize the overall findings, model meta-analysis, and potential pathways forward.

2. Hidden Markov modeling
2.1. Model parametrization

Suppose we have a set of observations related to structural dynamics recorded over a period of time from 7 =1 to t = T. Viewing
the set of T multi-dimensional observations as random variables, X,.; := X/, ..., Xy, the concrete goal of HMM training is to find
the set of model parameters, 6, that maximize the likelihood function,

LO|X,.7) =pX,.1 | 0. (€3]

Running in parallel to the set of observations, there is also a set of hidden states, Z,.; := Z,,..., Z; which encode some latent
behavior in the system. Marginalizing over the possible sequences of hidden states, this likelihood can also be written as

L(Ole:T)=/p(XI:T’Z]:T|0) dZy.r (2

where the integrand above is called the complete data likelihood.

In an HMM], the sequence of hidden states must satisfy the Markov property; that is, the hidden state at any time 7 is dependent on
the hidden state immediately prior but is independent of the hidden state evolution prior to time 7 — 1. This conditional dependence
can be viewed as a directed graph as in Fig. 1, where Z, denotes the hidden state, and the X, denotes the observed data at time .

Given the underlying Markov structure, the probability in Eq. (2) can be written as

T T
PXy Zyr 10) = po(Zy 10)-] 22, 1 Zi2i0) - [po(X, | Z,,0). 3)
=2 =2
For a discrete set of hidden states {h,, ..., hy}, the probabilities in this expression can be parameterized as
7 = py(Zy =h; | 6)
Ay = pZ=h; | Z,_y = h;.0) 4

Bi(x,) == pp(X,=x,| Z, = h;,0),
where 7 is an N-dimensional vector, A is an N X N matrix, and B is a set of N distinct parameter families dependent on the
underlying distribution of X,.,. Therefore, the full model is parameterized as

0={r,A B} 5)

where 7, A, and B give the initial state, transition, and emission probabilities of the model.

In the case of dynamic system data and environmental data, a reasonable assumption is that X,;.; consists of continuous
observations drawn from a k-dimensional, M-component Gaussian mixture model (GMM). Recall for a k-dimensional GMM, the
mth component has a prior mixture weight w,, and

x; ~ Ny Z,) (6)
where yu, and X, are the means and covariance matrices of the underlying distribution for the mth component. Therefore, the

emission probability can be expressed more precisely as

M
Bi(x) =), i - N s i))

m=1

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

where w,,; is the prior mixture weight of the mth component in the ith hidden state, 4, and X, are defined similarly.

Unfortunately, the integral in Eq. (2) is often quite difficult to compute in practice. Even in the cases where it is possible
to compute analytically, it can still be computationally intractable. Moreover, solving the maximization problem also involves
optimizing the quantity on the right-hand side, which can often involve complicated non-convex optimization. Fortunately, the
Markov property and dynamic programming allow this complicated problem to be bypassed.

Rather than directly computing the marginalized integral, it is possible to use a variant of the Baum-Welch Expectation—
Maximization (EM) algorithm to find the optimal set of model parameters [29]. This algorithm consists of an expectation step
and a maximization step whereby it is possible to iteratively reach at a locally optimal set of model parameters. The expectation
step necessitates the introduction of an auxiliary function in terms of current model parameters, ¢/, and new model parameters, 0,

0(0,0") = Ez . pix,.p0ol0gp(X .7, Zy.7 | 6)] (8

which gives the expected value of the complete data log likelihood with respect to the sequence of hidden states Z;.; given X;.;
and the current model parameters. For the maximization step, a set of new model parameters, 0, is found which maximize Q as a
function of ¢’. In what follows, we show that iteratively maximizing this auxiliary function is sufficient to find a local maximum
for the likelihood function. Since it will simplify the discussion significantly, we will work in terms of the log-likelihood function,

LOIX,.7) = logp(X .7 | 0) =10g/1’(Xl:TsZI:T |0)dZ,.p. 9

Theorem 2.1. If Z,.; is drawn from a discrete probability distribution, then

0(0.0") < LO1Xy.7) (10
for any fixed set of model parameters §'. Moreover,

0(0.0") > 060" an
implies

LOIX,.7) = LEO'|X, 7). 12)
Proof. Suppose that Z,.; is drawn from a discrete probability distribution. From Bayes’ rule, we know that

log p(Xy.7 | 0) =log p(Xy.7. Zy.7 | 0) —log p(Zy.7 | Xy.7.0) (13)

Multiplying both sides of this equation by p(Z,.; | X;.7.0’) and integrating over the space of all possible Z,.,, we get
LOIX,.7)=0(0,0") - / logp(Zy.r | X1.750) - p(Zy.7 | Xy.7,0") dZ,.7. 14

The negative term on the right-hand side above is just the entropy of the random variables X and Z, which in the case of discrete
Z is always positive, from which we obtain Eq. (10).
The equation above still holds if we replace # with ¢’, in particular,

LO'|X.7)=00",0") _/Ing(Zl:T | X170 p(Zy.p | X7, 0") dZy. . 15)
Subtracting these equations from one another we obtain
LOIX,.7) = LO'|X,.7) = 00,0") -0, 0") + - (16)

P(Zl-T|X1-T’9/) ’
et [log ———————-p(Z,.7 | X .7,0) dZ,.p.
/ p(Zy.p | Xy.7,0) BT AT nr

However, we recognize the second term on the right hand side above as the Kullback-Leibler divergence,

Dy (W(Zy.r | X7, 0) 1| P(Zy 7 | X7, 6), 17)

which is always greater than or equal to 0. In particular, this shows that if Q increases, then £ increases at least as much. []

Corollary 2.2. If Z,.; is drawn from a discrete probability distribution, then repeated iterative improvements of Q will eventually lead to
a local maximum for L.

Proof. Since Q is bounded above by 0 and since the input space of Q is compact, iteratively improving Q will eventually lead to
a critical point for Q. That is, we will reach a set of model parameters, 6*, such that

0(6.6") < 0(6",67) (18)

for any choice of 6. If we consider Q(0,0*) as a function in 6, then this is equivalent to

d o
i [06.6%)] o 0. 19

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

On the other hand, taking the derivative of £ with respect to 6 and evaluating at 0* gives

d 1 d
—LO|X|.7) = —— — P Z.7, X7 10) (20)
de FTTTLO0 X) Z;T dG[LT ST]0*

Now, combining Egs. (19) and (20) above, we obtain
d p d *
—[00.0"]| = — /IOgP(Xl:Tszl:T |Op(Zy.7 | Xy:7.07) dZy. 1 (2D
do P T o

. d
Z P(Zy.p | Xy.7,0%) - — [log p(Z.7, X7 | 0)]
Zy.r 0

0%

PZy.p | Xy.0.0%) d
-2 M'@[ﬂmxhﬂm]
Z.p 1:T>41:T

0%

1 d
= —— — [P(leraxlzr | 9)]
p(Xy.7 | 6%) le’r do o
1 d

= WXIT) T [L(G;X]:T)]L*

= % [£@1X,.7)]

o

from which it follows that 0* is a critical point for £. Therefore, we have shown that iteratively improving Q will eventually lead
to a local maximum, 6*, which will also be a critical point for £. Moreover, from Theorem 2.1 we know that this critical point will
be a local maximum. []

With successive iterations of the expectation and maximization steps, the sequence
{0067 ieZ") (22)

is bounded and monotone increasing. Since it is bounded and therefore guaranteed to converge, we will eventually reach a local
maximum for £ by Corollary 3.2. However, it still remains to be shown how to compute the expected value in the expectation step
and how to carry out the maximization described in the maximization step.

2.2. The expectation step

On its face, computing the expected value in Eq. (8) appears to be quite difficult since it should involve computing a deeply
nested integral of a joint probability. However, from the graphical model in Fig. 1, it can be verified using the d-separation criterion
that X,., and X,,,.; are conditionally independent given Z, and therefore the joint probability in question can be written as

PZ, Xyp |0 =p(Z1, X1, 160) - p(Xiy1 7 | Z,,0) (23)
allowing for the use of dynamic programming to avoid direct computation. To do so, define

@(z) 1= p(Z, =z, Xy:y = %134 |) 249
and

Bi(z) 1= pXpyror = Xpp1or | Z; = 2,.0), (25)
for a fixed set of observations x,.,. Using Eq. (3),

ay(z1) = po(z1) - pp(xy | 21) (26)
and define remaining terms recursively as

a;(z) = pyp(x; | Z,)/pa(z, [z oy (zy) dz, 27)

for 1 <7 < T. Similarly, we initialize g with

br(z) =1 (28)
and define remaining terms recursively as

Bi(z) = /pb(xt+1 | Zi41) * Pa(Zegr | 20+ B (Zi41) d 24 (29)

for 1 <t < T, taken in descending order. These recursively defined values for « and g are the core of the forward-backward
algorithm that is used to compute the expectation step [30]. The forward-backward algorithm considers the possibility of each

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

Fig. 2. This schematic shows a single step of the forward-backward algorithm in terms of the forward pass as solid orange lines and the backward pass as
dashed blue lines.

hidden state, 4;, at each time, 7, by computing the cumulative likelihood of arriving in state A; given any of the possible prior states
(this is the forward part, seen as solid orange lines in Fig. 2) and any of the possible subsequent states (this is the backward part,
seen as dashed blue lines in Fig. 2).
With values for « and f in hand, using Eq. (23), Bayes’ rule, and marginalizing over the hidden state space,
p(z,x1.7 | 0) o, (2) - B(2)
WZ, =21 x.0.0) = = = (30)
[p . x1.7 10)dz [a2 B(2) dZ’

Since the present discussion is only concerned with hidden states drawn from a discrete state space, define (Z,) as the N x 1 vector,
whose ith entry is p(Z, = h; | x;.7,0), which can be written in terms of « and g as

a,(h;) - B, (h;)
S ah) - Bk
Similarly, define the N x N vector (Z,_, Z,) whose ij'" entry is p(Z,_, = h;, Z, = h; | xy.7,6), which can be written in terms of «
and g as

(Z,); = (31)

a_i(hy) - Ajj - Hf:] Pr(x; | hj) : ﬁt(hj)
0@ (h) - A TI o L) - By

These quantities in Egs. (31) and (32) are often referred to as y and &, respectively, but here the notation of [31] is adopted. Note
that the (-) terms here are taken with respect to the ' model parameters.
Combining all of the terms above, the expected value can now be efficiently computed as

(Zi_1Zy)ij = (32)

N
Ez 1x.00 [10g1’(X1:T’ Zy.r | 9)] = 2 logz; - (Z;); + - (33)
i=1
T N N
ot Z Z Z 10g Aj; - (Z_1 Z,)yj +
1=2 i=1 j=1
T N
.+ Z Z log B;(x,) - (Z,);,

from which it becomes possible to maximize this expression by maximizing its three component parts.
2.3. The maximization step

For a fixed set of model parameters, ¢’, the goal is now to find a set of model parameters, *, which maximize the expected value
in Eq. (33). Once obtained, the current model parameters are updated, and one iteration of EM is complete. The previous section
gave a simplified expression for the expected value, separated into three components describing the contribution of the initial state,
the transition, and the emission probabilities to the conditional expected value. Because of the linearity of the expected value, each
of these terms in the expected value can be treated as a separate optimization problem.

In some cases, certain constraints must be satisfied; for example, the initial state and the transition probabilities are subject to
some additive constraints. Because it is of most interest to this work, subsequent discussion of parameter maximization will focus on
updating Gaussian emission parameters (i.e. the third term on the right-hand side of Eq. (33)). Other update equations will follow
similarly.

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

Combining Egs. (7) and (33), the third component of the maximization problem is solved by

T N M
w*, u*, I = argmax Z 2 log Z Wi NG topis Zai) - (Z 1) (34

wiE =1i=1 m=1

where w is an M x N array of GMM component weights, y is a M X k x k array of means, and ¥ is an M X N xk X k array of variance
terms. The general strategy will be to optimize these terms one by one by computing the derivative of the argument in Eq. (34)
with respect to each of the GMM parameters, W,y and X and then solving for the maximum.

For example, the optimal weight parameters, which are subject to the constraint,

M
D Wy =1 (35)
m=1

are obtained by computing the gradient of

T

N M M
Z Z log Z Wi = N O3 i Zpi) - (Zy)i = 4 <—1 + Z wmi) ’ (36)
m=1

=1 i=1 m=1

with respect to each of the w,,; and the Lagrange multiplier, 4, and solving. In this way, the optimal weight parameter is obtained,

T
W = Z;:[<ZtXt>mi

) (37)

B YR CAY

for 1 <i< N and 1 <m < M, where
<ZxXx>mi — w[r\n/ll (X, Hmi ml) < t>1 . (38)
2,,,/:1 Wi * N(X,; Him’» Zim’)
In the case of X this update equation is given by
T

;'i _ Zr:l (Z X Y - (5 = i)+ (g = Hyp)T (39)

T Z X

where -T denotes the vector transpose. For the curious reader, full details of this derivation are included in Appendix A.1, but it will
be pointed out here that in order to arrive at this update equation it is necessary not only that X, be non-singular, but that it be
well-conditioned.

In the case of numerical processes such as EM, an ill-conditioned matrix (e.g. one with large condition number of order 10") can
lead to a loss in up to n digits of numerical accuracy. This, in turn, can lead to erratic convergence behavior that appears to violate
Theorem 2.1 and Corollary 2.2. To overcome this loss of precision in a numerical context, a common approach is to use Tykhonov
regularization [32]. In this setting, Tykhonov regularization is equivalent to adding a small scalar multiple of the identity matrix to
X,,- Therefore with regularization, the covariance matrix X, is replaced by

1
= X, . (40)
1
The addition of this so-called “nugget” has the effect of increasing the noise on the observation data, so care must be taken

in choosing a small scalar term that simultaneously reduces the condition number without blowing up the noise. Some sample
regularization terms are shown in Fig. 10.

2.4. Learning with cross-validation

To recap, the goal of EM is to iteratively maximize the conditional expected value until a set of model parameters is reached
that maximizes the likelihood. A well-known shortcoming of the EM is that convergence to a locally optimal solution is all that is
guaranteed under the algorithm. In practice, this means that using a truly random seed is likely to yield a model that converges
to a locally, but not globally, optimal solution and takes longer than necessary to do so. Therefore, rather than using truly random
seeding, it is sensible to use a “smart” seed. One way to improve the eventual likelihood is to start from a well-seeded set of model
parameters. Absent any priors, suppose models 6,, ..., 0 are initialized by randomly seeding each of the parameters and are trained
on distinct observation subsets X]':T, e X IC:T (see Fig. 11). In this case, one would expect these processes to converge to a set of
C distinct optimal models, 0], ..., 07 with a range of likelihoods. By selecting the model from among this set that has the highest
complete data likelihood, say 07, a second round of EM can be carried out, this time beginning from a more well-informed set of
priors. In this way, a higher likelihood model, 6*, can eventually be reached. In principle, this process could be carried out many
times by taking iterative splits of the training data, but in practice the returns will eventually diminish. The process followed for
the proposed cross-validation strategy is described in Fig. 3, considering a 3-fold example.

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

J.M-Iwgimia&'wﬂuﬂmw{mfwﬁJW%%,A‘MME "11.:1,3,:,,4;,@,).. ~Mﬁ,i,ww,|,m
I

Initialize 6, Train 0, Validate
on fold 1. on fold 1. on test set.
Initialize 6 Train on full
—> using best trained ——» training data (i.e.
model from 64,6,,0;. Folds 1, 2 and 3).

Fig. 3. 3-fold Cross Validation Schematic.

Table 1
Model specification dictionary keys and values.
Key Value type Value description
n_hidden_states int Expected number of discrete hidden states.
observations list Feature names, types (i.e. discrete, continuous),
distributions (if continuous) , and values (if discrete).
regularization_constant int Size of regularization constant.
model_parameter_constraints dict Seed values for transition, initial state, and emission

parameters, including GMM parameters.

2.5. The Hela library

A key contribution of this work is the introduction of the open-source Hela library for hidden Markov modeling [28]. This library
provides a flexible framework for hybrid observation types (i.e. a combination of various continuous and discrete observations). This
section will briefly describe the workflow for model initialization, training, and prediction, although the curious reader is directed
to the Hela documentation for more complete details.

Initialization: Models are initialized via a specification dictionary. Models themselves are data agnostic but require a description
of the data features to be modeled. A specification dictionary consists of the keyed values described in Table 1. These values
can either be filled in with informed priors (i.e. constraints) or left blank. Using the specification, a model configuration object
is generated. This object includes a complete set of model parameters, which are instantiated using constraints where they are
given and a random seed where they are not. Using the model configuration, it is now possible to initialize a model object that is
available for training and inference tasks. The motivation for this pipeline is reproducibility. From a single configuration object, it is
possible to deterministically generate multiple instances of the same untrained model object to tune and validate training routines.

In the case that the number of GMM components is chosen to be too large, the GMM will “collapse” to one dominant component
and several mixture components that are just a single point, with zero covariance. This is perfectly acceptable from the data modeling
perspective. However, in the case of actually carrying out EM, it should be noted that the built-in probability density function solver
in Numpy allows singular covariance matrices by computing pseudo-determinants. This leads to the optimization program drifting
around, avoiding convergence. Therefore, some care must be taken in choosing the number of GMM components.

Beyond the need for a non-singular variance matrix, in order for the EM algorithm to converge, a suitable pseudoinverse for %;,,
must be computed without significant loss of numerical precision. In order to guarantee this convergence, the model can be adjusted
using Tikhonov regularization, which in the matrix case just amounts to adding a small multiple of the identity matrix (a ‘“nugget”)
to the computed covariance at the update step. Practically speaking, this addition can be interpreted as accounting for variance in
the noise of the observations [32]. An alternative and classically studied method would involve performing an eigenvalue deflation
and then computing the pseudoinverse using the singular value decomposition. However, this method is known to be susceptible
to extreme roundoff errors, and it is not clear that this would yield improved results [33] (see Fig. 4).

Training: A model is trained by first loading an HMMLearningAlgorithm class object. This class had all of the methods
necessary to train the model using exact EM, or EM with a variant on the maximization step using Gibbs sampling or variational
inference. Model training is carried out to a specified number of iterations, and sufficient statistics are stored along the way. After a
model is trained, it is possible to carry out the task of predicting hidden states on both training and testing data sets. This is carried
out using the Viterbi algorithm [34] (see Fig. 5).

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

to_config()) to_model()
spec > config > model
Dictionary specifying HMMConfiguration class object HiddenMarkovModel class
expected hidden states, with full model parameters either object deterministically
data feature attributes, from spec or generated with instantiated from config and
and model parameter random seed where no available for learning and
contraints. constraints are given. inference tasks.
Fig. 4. Multi-state model initialization for replicable, deterministic model seeding.
load_learning_interface() run(...) .
model > alg > trained_model
HiddenMarkovModel HMMLearningAlgorithm New instance of
class object with class object which contains HiddenMarkovModel class
relatively low complete the methods necessary to object with optimized
data likelihood. carry out training. complete data likelihood.

Fig. 5. Training with multiple rounds of EM guaranteeing convergence to optimal complete data likelihood.

3. Experiments
3.1. Dataset description and preprocessing

The proposed library has been tested and validated using experimental data collected from an offshore wind turbine. The
instrumented turbine is a 6 MW monopile turbine located in the North Sea in Europe. The turbine under investigation is located in the
external section of the offshore wind farm, exposed to open-sea marine conditions with wind directions on average predominantly
from the west during the fall season. The turbine consists of a monopile driven into the seabed and a transition piece allowing
access to the wind turbine. The overall height of the turbine from mudline to the nacelle is about 140 m. One system collects
dynamic data from 16 strain gauges and 12 accelerometers distributed along the tower and foundation, while the second system is
a Supervisory Control and Data Acquisition (SCADA) condition monitoring system located at the top of the turbine, which collects
operational and environmental information. Fig. 6 displays the location and distribution of the sensors along the structure. The
strain measurements provide 8 bending moment measurement channels, and the SCADA system acquires various operational and
environmental information, such as power production, rotor speed, pitch and yaw angles, and wind speed. For this study, only the
wind speed information is considered, and the data from both acquisition systems are available at a 25 Hz frequency for all channels.

While high-frequency resolution is essential for capturing the dynamics embedded in the accelerometer and strain gauge response
of the wind turbine, it is not needed to predict wind speed since this quantity does not change as fast. Consequently, instead of
using the 25 Hz resolution data, a 1-minute average value of all data channels is preferred for the present application.

The observed variables in the following HMM-based framework are represented by the dynamic quantities (moments and
accelerations), while the hidden states inferred by the model consist of two different wind speed bins. The model is built using
a selection of 13 days of continuous acquisitions, and, in detail, 80% of the data is used for training, and the remaining 20% is used
for testing. The dynamic data are normalized with respect to the mean and standard deviation.

The wind speed is separated into two bins considering as cutoff wind speed of 8 m/s. The following cutoff wind speed value is
chosen so that the two classes are equally balanced and represented in the dataset. The alternation of the two states can be observed
in Fig. 7 for the 13 days of interest.

It was observed that the use of the acceleration data did not contribute to an improvement of the observability of the hidden
states, and consequently, it did not lead to better classification performance. The moments derived by the strain sensors are the most
significant features for this study case. Therefore, the results presented in the following sections relate to the use of the moments
as the only input observed features to the model.

3.2. Model parameters definition

The parameters that the user needs to set in the definition of the methodology using the Hela library are the number of states,
the transition matrix, the number of GMM components, and the coefficient for the regularization of model parameters (see Table 1).
The first two parameters are easy to define since they directly correlate to the number of states to identify in the data and their
distribution within the analyzed dataset. The last two parameters highly depend on the features’ magnitudes and the observability
of the hidden states and can be set by an exploratory investigation of the dataset.

The number of states to identify in the present application is 2, with high and low wind speeds. For the transition matrix, it
is possible to either initialize the model with an initial random guess of the matrix or with the matrix directly derived from the

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

® Accelerometers
e Strain gauges

Foundation
TP
T — Grout ——
RS R . Zone
......... T
=
o e -——0.14H
- | /0.52H— # """""
L] — MP
I I e’ Mudline
] (=
©
T
. Mudline =
3
(o]
[

Fig. 6. Monitoring instrumentation.

Hidden States

2016-10-17 2016-10-18 2016-10-19 2016-10-20 2016-10-21 2016-10-22 2016-10-23 2016-10-24 2016-10-25 2016-10-26 2016-10-27 2016-10-28 2016-10-29

(a)

15

OI | < Ow ""“ w‘vw ‘?”‘

T T T T T T T T
2016-10-17 2016-10-18 2016-10-19 2016-10-20 2016-10-21 2016-10-22 2016-10-23 2016-10-24 2016-10-25 2016-10-26 2016-10-27 2016-10-28 2016-10-29

(b)

"
5

Wwind Speed [m/s]
w

Fig. 7. Wind speed bins (a) and separation of the wind speed values into bins (b).

training dataset. For the following study case, the true transition matrix, computed using the experimental data from the training
set, assumes the following expression.

_ [0.931,0.069
~10.053,0.947

There are three different options for choosing the number of GMM components. It is possible to have a random initialization
of the HMM model without choosing any GMM component. In this case, the number of GMM components is taken to be exactly
the number of hidden states, and GMM parameters are taken to be Gaussian mixture model parameters fit to the complete training
data. The fit is achieved by implementing scikit-learn’s sklearn.mixture.GaussianMixture.fit () [35], which provides
an estimate of model parameters with the EM algorithm. The method fits the model » times and sets the parameters with which the
model has the largest likelihood or lower bound. Within each trial, the method iterates between E-step and M-step for a maximum
number of iterations until the change of likelihood or lower bound is less than a tolerance level. In general, this will not be a

(41)

10

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

Initialize model

Fix the number of | | Use training data to compute best | | Seed initial state

! 1
! [
! 1
I 1
: hidden states. guess for transition matrix. vector at random. :
I I 1
! I
1 l 1
: Initialize Emission Parameters |
1
I
1 Find elbow value for per-sample log Fit training data to GMM with the chosen Generate a permutations of GMM :
1 likelihood score (see Fig. 9) to determine |—+] number of components to get means, |—+| parameters to get means, covariances |
I optimal number of GMM components. covariances, and weights. and weights for each hidden state I
! [
I |

Set number of EM iterations and
regularization parameter.

Fig. 8. First the model is initialized on training data, the training parameters are set, and the model is fit to the training data.

8]
..

T T T T T T T T

T T
1 2 3 4 5 6 7 8 9 10 11
gmm components

Fig. 9. Per sample log-likelihood of the observed data by number of GMM components.

particularly good initialization and will typically lead to a locally optimal convergence, which can be far from the global optimum.
A schematic of the model initialization is provided in Fig. 8.

Instead of relying on a random selection of the GMM components, it is possible to select and input this parameter in two different
ways. If the user knows a priori the preferred number of components, this can be directly specified in the specification function
definition. An alternative solution is to choose the number of GMM components by looking at likelihood-related information. A
popular method commonly used is to look for the minimum in the Akaike information criterion (AIC) and Schwarz’s Bayesian
Information Criterion (BIC) [36,37]. These are both penalized-likelihood information criteria. AIC is an estimate of a constant plus
the relative distance between the unknown true likelihood function of the data and the fitted likelihood function of the model. In
contrast, BIC is an estimate of a function of the posterior probability of a model being true under a certain Bayesian setup. An
alternative option is to rely on the per-sample log-likelihood score of the observed data provided by the Gaussian Mixture model
distribution for different possible options of GMM components. The two strategies lead to substantially similar results, but in the
present methodology, the latter is preferred since it tends to be less conservative. The derivation of the log-likelihood is done using
scikit-learns sklearn.mixture.GaussianMixture () .score function. Fig. 9 shows the value of the score obtained testing
up to 10 components. The optimal choice for the number of GMM components lies around the elbow. Given the randomness of
the Gaussian Mixture Model, the optimal value might be before or after that change is slope in the score function. In the present
application, the optimal value lies around 2 and 4. The three possible values (number of components equal to 2,3 and 4) were
all considered, but there was no substantial improvement in the final results. Therefore, to reduce the computational effort of the
model, the number of GMM components was chosen to be equal to 2.

Once the number of GMM components is set, the means, covariance matrices, and weights used to initialize the models are
obtained as estimated parameters of a Gaussian mixture distribution. It is fundamental to point out that in the case of a single GMM
component, a small amount of noise or variation needs to be introduced for the means of the different states in order to disambiguate
the clusters in advance of learning. It is common in any clustering algorithm that the initial “centroids” need to have at least a small
amount of distance between them. In the present formulation and application, the variation is introduced by changing the sign of
the mean value derived by the Gaussian Mixture model algorithm.

11

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

Negative log likelihood over 20 iterations of EM learning algorithm

°] \

—5000 A

—10000 4

—15000 4

- log likelihood

—20000 -

—25000 1

—30000 4

T
0.0 25 5.0 7.5 10.0 12.5 15.0 115
iterations of EM

Fig. 10. Log-likelihood functions for different values of the regularization term.

As previously mentioned in Section 2.5, the regularization coefficient plays a key role in guaranteeing convergence for the
EM algorithm. Fig. 10 shows the negative log-likelihood function for the different iterations of the EM algorithm considering four
different regularization coefficients: 0, 0.1, 0.01, 0.001. It is evident that when the coefficient corresponds to 0, which implies that
no Tikhonov regularization is implemented, the convergence of the likelihood function is compromised, and instead of setting on
a stable value, it assumes alternating values. On the other hand, the introduction of a small regularization coefficient removes this
unstable behavior, leading to a clearer convergence.

The positive effect of the regularization can be observed in the performance accuracy of the HMM model. When no regularization
term is considered (» = 0 in Fig. 10), only a 77.21% accuracy is reached for the training dataset; the model also shows a
poor generalization capability for the testing set where the classification accuracy goes down to 64.52%. On the other hand, the
introduction of a small regularization term equal to 0.001 or 0.01 causes a substantial increase in the model performance, with
accuracies respectively equal to 84.25% and 83.44% for the training dataset and 77.31% and 76.71% for the testing dataset. The
coefficient needs to be properly tuned since a higher regularization coefficient (» = 0.1) could lead, like in this case, to moderately
worse results in comparison with those obtained for smaller regularization terms (80.63% accuracy for the training and 69.24%
accuracy for the testing). Despite this, including regularization terms still resulted in better outcomes compared to not using them.
However, setting the regularization Tykhonov constant too high can lead to underfitting and increased bias. This happens because it
can excessively shrink the model coefficients, causing the model to be less responsive to changes in the data. As a result, the model
may become too simplistic and not accurately fit the data.

For the present application, the regularization term is chosen equal to 0.001.

3.3. Results with or without the initialization by cross-validation

In the first step of the study, an HMM is trained on the training dataset considering the one GMM component and regularization
constant of 0.001. Fig. 10 shows the negative log-likelihood function and shows the convergence of the EM algorithm in 20 iterations.
The accuracy reached on the training dataset is 84.25% and 77.31% on the testing set. The model has a good performance on the
training dataset and seems to generalize fairly well on the testing.

In order to improve the generalization of the model further, the cross-validation strategy presented in Section 2.4 is implemented
for the initialization of the model. The dataset used for the training is split into a number of folds, and independent HMM models
are trained using the single folds, adopting the previously mentioned strategy. For each fold, the number of GMM components and
the regularization term are kept the same, while the transition matrix is computed on the specific subset of the training set. Then,

12

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

Negative Log Likehood of Models Trained on Individual Folds

—5000 -

—10000 +
—— Model 6; Trained on Fold 1
—15000 - —— Model 6; Trained on Fold 2
—— Model 63 Trained on Fold 3

—20000 A

—25000 | \

Complete Data Negative Log Likelihood

_30000 T
1 2 3 - 5 6 T 8 9 10 1 12 13 14 15 16 17 18 19 20
Iterations of EM
Fig. 11. Log-likelihood function for the three subset models 6,, 6,, 6; (regularization term 0.001).
Log Likehood of Models Initialized with Pre-Trained Model Parameters
0
—5000 -

—10000 A \

—15000 \\

Complete Data Negative Log Likelihood

—20000 -
—— Model Initialized with 6; parameters
—25000 1 —— Model Initialized with 82 parameters
—— Model Initialized with 83 parameters
—30000 T T T T T T T T T T T T T T T T T T T

|
1 2 3 - 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations of EM

Fig. 12. Log-likelihood function for the final model initializing with the parameters from the three models (regularization term 0.001).

the model with the better performance and that maximizes the log-likelihood is used to seed and initialize the training of the final
model. The initialization is performed by using the means, covariance matrices, weights, and transition matrix obtained at the end of
the recursive updating training of the most performative model. These quantities are used as initial guesses for the model, bypassing
their derivation from the Gaussian Mixture model distribution.

In the present study case, given the data amount and distribution, the training set is split into three folds. There is no data
overlap between the folds and no influence between the different models. The performance of each independent model is later
validated on the testing dataset, which consists of unseen observations. The log-likelihood function for the three subset models is
presented in Fig. 11 while Fig. 12 shows the log-likelihood function obtained by the initialization of the entire model using the
model parameters derived from the first fold-based model. The performance of the single models and the log-likelihood values are
presented in Table 2.

Looking at Fig. 11, it is possible to compare the learning experience in the training of the three models. The log-likelihood
function for the first model suggests a better and faster learning experience. This is also reflected in the training and testing accuracy
values presented in Table 2 that are highest among the three, and it is also reflected in the training log-likelihood that is properly
maximized. The remaining two models present, on the one hand (model 2), a very insignificant learning experience or a convergence
affected by precision errors that arise from computing pseudo-inverses (model 3) not solved by the regularization term.

For this application, model 1 is used to initialize the training on the entire training dataset using the means, covariances, weights,
and transition matrix obtained at the end of the EM iterations for model 1. In Fig. 12, it can be noticed how the convergence of the
model initialized with 6, parameters is smoother and faster with respect to the one obtained by training the entire model without
initialization (Fig. 10) or training it on the remaining two subsets (Fig. 12). The log-likelihood functions for the model initialized

13

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

Table 2

Subset models results in terms of log-likelihood and performance accuracy for the training
and testing datasets.

Subset model Log-Likelihood Accuracy
Training Testing Training Testing
1 250.04 —26068.86 81.08% 74.79%
2 3.95 —7810.89 53.05% 51.08%
3 77.40 —29851.40 50.75% 45.58%
Train

True

kel

[0}

=

L

°

[}

el

o

m hidden state 0 m hidden state 1
2016-10-20 2016-10-21 2016-10-22 2016-10-23 2016-10-24 2016-10-25 2016-10-26 2016-10-27 2016-10-28 2016-10-29
(a)
Test

o -

3

s
[

Predicted

m hidden state 0 m hidden state 1

2016-10-17 2016-10-18 2016-10-19 2016-10-20

Fig. 13. True and predicted hidden states for the training dataset (a) and for the testing dataset (b) using the proposed Hidden Markov Model strategy.

using the remaining two folds both show a static initial branch of the function or a “pre asymptotic region” (up to the 8th and 11th
iteration respectively). This is commonly due to a different order of magnitude of the updated parameters; the mean values might
be moving in different magnitude steps with respect to the covariance terms. This option in a variable step size is allowed by the
use of the lagrangian multipliers in the constrained optimization problem, which removes the assumption on the classical gradient
descent of having a fixed step size.

Fig. 13 presents the true hidden states and the corresponding prediction of the optimized model for the training and testing sets.
While the overall performance of the model stays the same for the training set (85.43%), there is a substantial improvement in the
prediction of the testing set (84.17%), moving it closer to the ability prediction shown in the training set. The model is able to
properly differentiate between the low and high wind states in the majority of the cases, also for frequent and close variations.

The trained HMM model performance is compared with the classification ability of two established and commonly used
unsupervised classification algorithms, k-Means [38] and Gaussian Mixture Model [39]. k-Means tries to partition the dataset into
k pre-defined distinct non-overlapping clusters where each data point belongs to only one group. It tries to make the intra-cluster
data points as similar as possible while also keeping the clusters as different and distant as possible. The Gaussian mixture model is
a probabilistic model that assumes all the data points are generated from a mix of Gaussian distributions with unknown parameters.
It is a probabilistic model where Gaussian distributions are assumed for each cluster, with means and covariances defining their
parameters.

For k-Means, the number of clusters was set equal to two, and for Gaussian Mixture Models, the number of components was
defined as equal to two. The k-Means algorithm performs poorly, with an accuracy of 47.26% and 69.33% for the training and
testing sets, respectively. The discrepancy between the training and testing dataset also highlights a strong underfitting tendency of

14

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

Train

True

kel

[0}

=

L

°

[}

el

o

m hidden state 0 m hidden state 1
2016-10-20 2016-10-21 2016-10-22 2016-10-23 2016-10-24 2016-10-25 2016-10-26 2016-10-27 2016-10-28 2016-10-29
(a)
Test

o -

3

s

[

Predicted

m hidden state 0 m hidden state 1

2016-10-17 2016-10-18 2016-10-19 2016-10-20

Fig. 14. True and predicted hidden states for the training dataset (a) and for the testing dataset (b) using Gaussian Mixture Model.

the k-Means algorithm. On the other hand, the Gaussian Mixture Model provides results that are closer to those obtained with HMM.
The Gaussian Mixture Model performs better on the training dataset with a classification score of 82.28%. However, the model does
not generalize as well on the testing set, where it reaches an accuracy of 43.48%, showing a dominant overfitting behavior. The
graphical representation of the results for the Gaussian Mixture model is presented in Fig. 14.

The comparison between the different models’ results shows how Hidden Markov Models have several advantages over Gaussian
Mixture Models and k-Means in certain applications. Firstly, both Gaussian Mixture Models and k-Means fail to properly identify
the two classes within the data distribution, which, in this study case, happen to show a concentric structure. These two models
are unable to separate the clusters properly, given this cluster distribution. On the other hand, HMMs succeed in the task of adding
additional dimensions through the covariance distribution and the temporal dependency. The latter is one of the biggest strengths of
HMMs, which can model temporal dependencies between observations, something not possible with GMMs and k-Means. This makes
HMMs particularly useful for the present application, which involves modeling time series data where the order of observations
matters. Then, HMMs can model unobserved states, which is not possible with GMMs and k-Means. This makes HMMs useful for
applications where there are hidden variables that affect the observations. HMMs can model flexible output distributions, which is
not possible with k-Means. This makes HMMs useful for applications where the output distribution could be a mixture of Gaussians.
HMMs are parameter-efficient compared to GMMs. Since HMMs model temporal dependencies, they can use fewer parameters than
GMMs to model the same data. This makes HMMs more efficient for applications with large amounts of data.

4. Conclusion

The present work describes a regularized Hidden Markov Model strategy with informed initialization to predict wind speed in
an experimental application of an offshore wind turbine.

Hidden Markov Models are unsupervised stochastic models that can capture hidden temporal dependencies between observations,
making them useful for time series data modeling in various engineering applications. However, the implementation of HMMs in
real experimental studies may result in unstable model convergence.

The proposed strategy introduces an updated version of the Hidden Markov Model algorithm that uses the Tykhonov regu-
larization technique to overcome the possible loss of precision and the erratic convergence behavior in the learning model due
to the presence of an ill-conditioned matrix in the EM stage. Additionally, to avoid random model initialization, the proposed

15

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

strategy introduces an informed cross-validation method to initialize the model training using data-tailored parameters. The proposed
methodology is implemented using the Python open-access library Hela, which can be utilized for various applications.

This paper presents the results of applying the Hela library to train a model that predicts wind speed information for an offshore
wind turbine. The Tykhonov regularization technique improved the convergence of the model, eliminating unstable and erratic
behavior during the learning phase due to ill-conditioned information. Furthermore, the informed cross-validation method produced
more robust and accurate predictions of wind speed information than random initialization. HMMs outperformed two commonly
used unsupervised methodologies, k-Means and Gaussian Mixture Models, and led to substantially better results.

CRediT authorship contribution statement

Anna Haensch: Conceptualization, Formal analysis, Investigation, Methodology, Software, Writing — original draft, Writing —
review & editing. Eleonora M. Tronci: Formal analysis, Validation, Visualization, Writing — original draft, Writing — review &
editing. Bridget Moynihan: Formal analysis, Software, Validation, Visualization, Writing — original draft, Writing — review & editing.
Babak Moaveni: Funding acquisition, Supervision, Validation, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

While the wind turbine data is protected and cannot be shared, the HMM code is available on GitHub.
Acknowledgments

The authors acknowledge partial support of this study by the National Science Foundation grant 2230630. The team is grateful
to Dr. Finn Riidinger and Dr. Ross McAdam at Orsted for their help in accessing and processing of the experimental data. The team
also extends thanks to Dr. Will Vega-Brown and Isabel Ljungberg at Tagup, Inc. for contributions to the Hela library. Opinions,
findings, and conclusions expressed in this paper are those of the authors and do not necessarily represent the views of the sponsors

and organizations involved in this project.

Appendix A

A.1. Derivation of variance update equation

Computing the derivative of the argument in Eq. (34) with respect to the X,; and solving for 0, yields

J
Wi Kmr ['A/(xt;ﬂmi’ Zml)] ! <Z’>i

T
M=

M (42)
t=1 Zm’:] I/Vim’ : N(Xt; Him! » Z"im’)
forall 1 <i< N and 1 <m < M. Consider
_62;,.1 (43)
0,
as a matrix of partial derivatives with respect to the entries of X,,;, where the jk'* entry is given by
<0Zm} > oz,)
0%, w0 (zm,.)/.k
Since
Zp =1, (45)
where I is the identity matrix, it follows from the product rule that
0%, 0x-1
$~Z,;‘.1+Zmi~—”“:0 (46)
O (Zmi) ji 9 (Zi)
and therefore
0x-]
[S L N S . (47)
DTy

16

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

where e; and e, are elementary row vector (i.e. e; is equal to 0 in all but the jth component, at which it is equal to 1). Using
Eq. (47), compute the partial derivative

d
g (ZMi)jk
= = =) Z) el e Zpl e Oe =)
=~ <ek . Z‘,;,’1 : (X, - ”mi)) : ((X, - .Mmi)T . Z,;il . e;)

—1 -1 T
= ek Z‘mi 00 =) - (5 = ﬂmi)T) Z‘mi €

[(x; L 2,;,-1 (= ﬂmi)] (48)

where the penultimate step works by splitting the expression into two scalars which necessarily commute. From here, it follows that
the full matrix of partial derivatives with respect to %, is
9 -1 -1 -1
SN (O =)T+ 20 Ot =)] = =200 (5 =) - (X =)T - 201 (49)
mi

Before fully computing the partial derivative in Eq. (42) one additional fact from matrix algebra will be necessary, namely

d |Zmi| -1
a5 = |Zl - =, (50)
mi
which is a consequence of Jacobi’s formula, and from which it can be deduced
9 _1 1 _3) 1 L
ot [BT H R LM R T MR 6D
mi

Now the partial derivative in the numerator of Eq. (42), can be easily computed using the product rule and the equations above to
obtain

_K -1 1 .
6;,,”- [(275) 2 - |Zm1| 2. exp {_E(xt - ."4mi)T . Z‘mll ' (X, - ”mj)}:| (52)

1 - _
= =3 NG i Z) Zf (1= O =) - G =)T+ 1)
Substituting this into Eq. (42) and dividing out the unnecessary terms to get

& Wi+ N3 i Zpi) - (1= Oy =) - (5 =)T - Z01) (2,

0=>) (53)
t=1 Z%:] I/Vim’ : N(xt; Him! » Z‘im')
T
= Y2 X (1= Oy = H) (5 =)T+)
=1
which implies
T T
Z(ZtXt>mi X = Z(ZtXt>mi e =) - (= ”mi)T' 54)
t=1 t=1
This can now be solved to obtain the optimal covariance parameter
T
w 2=t {2 X i+ O =) - O =)T (55)

mi

T
Z;:](ZrXt>m[
foralll<i<Nand1<m<M.

References

[1] Walt Musial, Paul Spitsen, Patrick Duffy, Philipp Beiter, Melinda Marquis, Rob Hammond, Matt Shields, Offshore Wind Market Report: 2022 Edition,
Technical report, Department of Energy, 2022.

[2] Vestas Wind Systems, V236-15.0 MW™ at a glance. Vestas. https://www.vestas.com/en/products/offshore/V236-15MW.

[3] T. Rubert, G. Zorzi, G. Fusiek, P. Niewczas, D. McMillan, J. McAlorum, M. Perry, Wind turbine lifetime extension decision-making based on structural
health monitoring, Renew. Energy 143 (2019) 611-621.

[4] J.H. Piel, C. Stetter, M. Heumann, M. Westbomke, M.H. Breitner, Lifetime extension, repowering or decommissioning? decision support for operators of
ageing wind turbines, J. Phys. Conf. Ser. 1222 (1) (2019) 012033.

[5] T. Rubert, D. McMillan, P. Niewczas, A decision support tool to assist with lifetime extension of wind turbines, Renew. Energy 120 (2018) 423-433.

[6] A. Kazemi Amiri, R. Kazacoks, D. McMillan, J. Feuchtwang, W. Leithead, Farm-wide assessment of wind turbine lifetime extension using detailed tower
model and actual operational history, J. Phys. Conf. Ser. 1222 (1) (2019) 012034.

[7]1 M.L. Hossain, A. Abu-Siada, S.M. Muyeen, Methods for advanced wind turbine condition monitoring and early diagnosis: A literature review, Energies 11
(5) (2018) 1309.

[8] Alejandro Moreno-Gomez, Carlos A. Perez-Ramirez, Aurelio Dominguez-Gonzalez, Martin Valtierra-Rodriguez, Omar Chavez-Alegria, Juan P.
Amezquita-Sanchez, Sensors used in structural health monitoring, Arch. Comput. Methods Eng. 25 (2018) 901-918.

[9] Yuequan Bao, Zhicheng Chen, Shiyin Wei, Yang Xu, Zhiyi Tang, Hui Li, The state of the art of data science and engineering in structural health monitoring,
Engineering 5 (2) (2019) 234-242.

17

A. Haensch et al. Mechanical Systems and Signal Processing 211 (2024) 111229

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]
[34]

[35]

[36]
[37]

[38]
[39]

Eric M. Hines, Christopher D.P. Baxter, David Ciochetto, Mingming Song, Per Sparrevik, Henrik J. Meland, James M. Strout, Aaron Bradshaw, Sau-Lon
Hu, Jorge R. Basurto, Babak Moaveni, Structural instrumentation and monitoring of the block island offshore wind farm, Renew. Energy 202 (2023)
1032-1045.

R. Rolfes, S. Tsiapoki, M.W. Héckell, 19 - Sensing solutions for assessing and monitoring wind turbines, in: M.L. Wang, J.P. Lynch, H. Sohn (Eds.),
Sensor Technologies for Civil Infrastructures, in: Woodhead Publishing Series in Electronic and Optical Materials, vol. 56, Woodhead Publishing, 2014,
Pp. 565-604.

Maria Martinez-Luengo, Athanasios Kolios, Lin Wang, Structural health monitoring of offshore wind turbines: A review through the statistical pattern
recognition paradigm, Renew. Sustain. Energy Rev. 64 (2016) 91-105.

Mathew L. Wymore, Jeremy E. Van Dam, Halil Ceylan, Daji Qiao, A survey of health monitoring systems for wind turbines, Renew. Sustain. Energy Rev.
52 (2015) 976-990.

Christof Devriendt, Filipe Magalhdes, Wout Weijtjens, Gert De Sitter, Alvaro Cunha, Patrick Guillaume, Structural health monitoring of offshore wind
turbines using automated operational modal analysis, Struct. Health Monit. 13 (6) (2014) 644-659.

Zi Lin, Xiaolei Liu, Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network, Energy
201 (2020) 117693.

Mehdi Neshat, Meysam Majidi Nezhad, Ehsan Abbasnejad, Seyedali Mirjalili, Lina Bertling Tjernberg, Davide Astiaso Garcia, Bradley Alexander, Markus
Wagner, A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm, Energy
Convers. Manage. 236 (2021) 114002.

Xiaolei Liu, Zi Lin, Ziming Feng, Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM, Energy 227 (2021)
120492.

P. Flores, A. Tapia, G. Tapia, Application of a control algorithm for wind speed prediction and active power generation, Renew. Energy 30 (4) (2005)
523-536.

Torben Knudsen, Thomas Bak, Mohsen Soltani, Prediction models for wind speed at turbine locations in a wind farm, Wind Energy 14 (7) (2011) 877-894.
Larry P. Heck, James H. McClellan, Mechanical system monitoring using hidden Markov models, in: [Proceedings] ICASSP 91: 1991 International Conference
on Acoustics, Speech, and Signal Processing, IEEE, 1991, pp. 1697-1700.

Hasan Ocak, Kenneth A. Loparo, Fred M. Discenzo, Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A
method for bearing prognostics, J. Sound Vib. 302 (4-5) (2007) 951-961.

Syed Sajjad H. Zaidi, Wesley G. Zanardelli, Selin Aviyente, Elias G. Strangas, Prognosis of electrical faults in permanent magnet AC machines using the
hidden Markov model, in: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, IEEE, 2010, pp. 2634-2640.

Carey Bunks, Dan McCarthy, Tarik Al-Ani, Condition-based maintenance of machines using hidden Markov models, Mech. Syst. Signal Process. 14 (4)
(2000) 597-612.

Sung-Hwan Shin, SangRyul Kim, Yun-Ho Seo, Development of a fault monitoring technique for wind turbines using a hidden Markov model, Sensors 18
(6) (2018).

Jie Ying, T. Kirubarajan K.R., Pattipati, A. Patterson-Hine, A hidden Markov model-based algorithm for fault diagnosis with partial and imperfect tests,
IEEE Trans. Syst., Man, Cybern., C (Appl. Rev.) 30 (4) (2000) 463-473.

Debarati Bhaumik, Daan Crommelin, Stella Kapodistria, Bert Zwart, Hidden Markov models for wind farm power output, IEEE Trans. Sustain. Energy PP
(2018) 1.

Menglin Li, Ming Yang, Yixiao Yu, Wei-Jen Lee, A wind speed correction method based on modified hidden Markov model for enhancing wind power
forecast, IEEE Trans. Ind. Appl. 58 (1) (2022) 656-666.

Anna Haensch, Hela HMM toolkit - beta, 2022, https://github.com/annahaensch/hela.

Todd K. Moon, The expectation-maximization algorithm, IEEE Signal Process. Mag. 13 (6) (1996) 47-60.

Lawrence R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (2) (1989) 257-286.

Zoubin Ghahramani, Michael Jordan, Factorial hidden Markov models, Adv. Neural Inf. Process. Syst. 8 (1995).

Hossein Mohammadi, Rodolphe Le Riche, Nicolas Durrande, Eric Touboul, Xavier Bay, An analytic comparison of regularization methods for Gaussian
processes, 2016, arXiv preprint arXiv:1602.00853.

Stanley C. Eisenstat, Ilse C.F. Ipsen, Relative perturbation techniques for singular value problems, SIAM J. Numer. Anal. 32 (6) (1995) 1972-1988.
Andrew Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inform. Theory 13 (2) (1967)
260-269.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825-2830.

Shuhua Hu, Akaike information criterion, Cent. Res. Sci. Comput. 93 (2007) 42.

Harish S. Bhat, Nitesh Kumar, On the Derivation of the Bayesian Information Criterion, Vol. 99, School of Natural Sciences, University of California, 2010,
Citeseer.

Stuart Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (2) (1982) 129-137.

Douglas A. Reynolds, et al., Gaussian mixture models, Encycl. Biometr. 741 (659-663) (2009).

18

