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ARTICLE INFO ABSTRACT

Keywords: Offshore wind turbines (OWTs) can be equipped with two types of monitoring systems: (1) a Supervisory
Virtual sensing Control and Data Acquisition (SCADA) system that monitors operational data such as wind speed and power
Offshore wind

generation, and (2) vibration sensors like accelerometers and strain gauges to track structural dynamics. While
> . strain gauges enable fatigue damage calculations, not all OWTs in a wind farm have these sensors installed. This
Bending moment prediction . . . . . . .
Sparse Gaussian process paper proposes a Gaussgn process regres.smn (GPR) strategy to predl.ct the bending moment time-histories of.an
SCADA OWT. The model takes into account various SCADA data such as wind speed, power, and nacelle acceleration
as input and learns to predict the high and low-frequency dynamic response of the system. The strategy is
implemented and tested to predict the bending moment response of a 6 MW offshore wind turbine in the fore-
aft and side-side directions of the turbine. The accuracy and reliability of the proposed strategy are evaluated
and demonstrated considering different operational conditions and multiple hotspot locations along the height
of the turbine. The proposed strategy proves to be an efficient virtual sensing strategy and can be easily
transferred to other turbines in the same wind farm without the need for widespread installation of strain

Gaussian process

gauges.
1. Introduction time-histories across wind farms are crucial information for extending
the lifetime of OWTs [1-3].

Offshore wind energy continues to play a significant role in the One of the primary challenges faced by the offshore wind industry is
build-out of renewable energy infrastructure worldwide. Offshore wind the high cost associated with the installation and maintenance of strain
capacity has been able to accelerate with the growth and maturity of gauges on OWTs [4], so it is rare to find them installed on every turbine
Offshore Wind Turbines (OWTs), but the operation and maintenance in a given wind farm. On the other hand, a Supervisory Control and
of such critical structures presents numerous challenges. By improving Data Acquisition (SCADA) system is typically installed in all OWTs in a

the reliability of these turbines, it is possible to extend their operating
lifetimes, reduce costs, and ultimately assist the transition towards
renewable energy. Predictive maintenance methods are useful for an-
ticipating and preventing failure before it occurs. The approach utilizes
measurements from structural response sensors to identify deviations
in the physical condition of the OWT. Fatigue life estimations are one
of the primary methods used in a predictive maintenance strategy,
particularly for OWTs which are constantly exposed to cyclic loads
from wind and waves, leaving them susceptible to fatigue damage.
The measured time-histories of material stress and any other fatigue-
based quantity are highly informative for estimating the remaining
useful life (RUL) of a structure. Bending moments — measured by strain
gauges — can provide the necessary information to estimate a structure’s estimation techniques have been presented in various literature, in
RUL. Therefore, accurate and efficient estimates of the bending moment some cases also quantifying the uncertainty associated with the virtual

farm. The SCADA system is designed to capture and record operational
and environmental measurements such as wind speed and power out-
put, which enables operators to keep track of key metrics in real time
and keep turbines functioning at optimal levels. Given the challenging
task of directly measuring strains at many critical spots on the structure,
the indirect extrapolation of the response measurements without the
need for prior sensor installation becomes an appealing alternative
solution. This concept, known as virtual sensing [5,6], involves using a
limited set of response measurements such as accelerations, strains, or
SCADA data to reconstruct the full-field response of the structure.
Several methods for estimating stresses and strains using response
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sensing technique adopted [7]. Virtual sensing techniques can be di-
vided into five categories: model-based robust observers, Kalman filter-
based techniques, joint input-state filtering techniques, modal decom-
position and expansion techniques, and finally, data-driven method-
ologies. Gillijns and Moor first proposed the joint-state input esti-
mation [8] and further developed by Lourens et al. [9]. Later, this
algorithm was extended to be applied when accelerations are measured.
Similarly, the Kalman filter-based techniques estimate states based
on a limited number of response measurements. This approach was
first applied to structural dynamics by Papadimitriou et al. [10]. This
strategy was also implemented to develop an optimal sensor placement
approach for offshore wind turbines where the value of information
is maximized for virtual sensing purposes [11]. The Kalman filters
have proven effective in simultaneously integrating various types of
measurements such as accelerations and strains [12]. The modal expan-
sion technique assumes that structural response is a linear combination
of the modal response [13,14]. A comparison of the applicability in
offshore monopile wind turbines of the Kalman filter, joint input-state
filter and modal expansion is carried out in [15], which concludes on an
acceptable performance in the prediction of acceleration responses in
offshore wind turbine foundations. Virtual sensing formulations based
on modal expansion and a Kalman filter for a monopile-supported OWT
were compared in different literature works [16,17] which found both
methods to provide acceptable virtual sensing performance. In the con-
text of purely data-driven virtual sensing strategies, Dimitrov et al. [18]
adopted a Long Short-Term Memory neural network architecture to
numerically generate a wind turbine response time series using data
types compatible with data available from high-frequency SCADA data
combined with a blade and tower load measurement system. All of
the methods described depend on a model of the dynamical system,
commonly built thanks to available dynamic measurements collected
on the structure itself.

This work focuses on developing a purely data-driven, model-free
regression strategy to achieve virtual sensing of the strain-related quan-
tities for an offshore wind turbine. The model chosen to carry out the
regression strategy is Gaussian Processes (GPs). GP regression stands
out as a powerful and flexible approach that is useful in scenarios
where a model-free, data-driven strategy is needed. In the context of
virtual sensing across a wind farm, GPs are a strategic choice that
allows for modeling complex physical quantities without relying on
computationally expensive structural models. GPs are characterized
by their ability to provide predictions as well as estimates of predic-
tion uncertainty, which provide additional information to wind farm
operators that is crucial for decision-making. The proposed approach
illustrates the practical application of machine learning methodologies
in addressing engineering challenges alongside advanced research in
the field of artificial intelligence.

GP modeling has demonstrated impressive performance regarding
time-series regression tasks [19,20], and are highly flexible, allowing us
to incorporate our knowledge of the physical structure into the model
by selecting the kernel function. While other studies have developed
physics-informed kernel functions for fatigue assessment, what sets our
approach apart is that it utilizes real data from an OWT and relies only
on SCADA data to make high-frequency predictions of the structural
response. As noted in [21,22], a few studies have shown the potential
of GP-based strategies for offshore wind applications. In the context of
virtual sensing, Papatheou et al. [23] explored the potential of using
SCADA data from the Lillgrund offshore wind farm for constructing
the power curves for the turbines in the farm using GP and neural
networks. Avendano et al. [24] use Gaussian Processes to estimate the
fatigue damage equivalent loads of a wake-affected wind turbine based
on the wind speed and direction measurements from an upwind wind
turbine. The paper also compares the performance of the model with
different kernel functions and input features and validates the model
with experimental data from a wind farm in Denmark. Bilbao et al. [25]
implemented a Gaussian process latent force model for an onshore
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turbine to estimate both dynamic loading and strain response using the
acceleration data, comparing the predicted strains with the measured
quantities and assessing fatigue by comparing the damage equivalent
loads calculated with the predicted as opposed to the measured strains.
Zou et al. [26] proposed a Gaussian process latent force model to
estimate the strain response of the soil-foundation system of offshore
wind turbines, which is difficult to measure directly with physical
sensors. Pimenta et al. [27] proposed a bending moment estimation
strategy using the Monte Carlo Markov Chain algorithm to constrain the
parameters that best describe the covariance structure shared between
accelerations and displacements of a linear structure under stochastic
loading. Then, they incorporated that structure into a GP strategy
to convert accelerations into displacements and these into bending
moments.

This paper aims to provide a data-driven virtual sensing strategy for
reconstructing bending moments using only the SCADA information,
providing an alternative solution to direct measurement with strain
gauges. Specifically, this paper uses Gaussian process regression (GPR)
to predict bending moment time-histories of an instrumented 6 MW
OWT using measured SCADA data parameters as input features. The
probabilistic nature of GPR provides uncertainty quantification on
predicted bending moments. Future work can incorporate these levels
of uncertainty into fatigue estimations of the RUL. Successful models
could be used on other turbines in the same wind farm to understand
the RUL of each OWT without the need for widespread installation of
strain gauges.

The workflow of this paper is described in Fig. 1. Section 2 describes
the dataset used for model training and validation in this work, which
comes from an instrumented OWT with structural response measure-
ments from strain gauges and a SCADA system measuring operational
and environmental conditions. In Section 2, the basic operational re-
gions of an OWT are described, and measurements from the OWT
are classified into operational regions according to SCADA parameters.
Then, response measurements are investigated with respect to available
SCADA, defining the input and target data features in the dataset.
Section 3 describes the formulation of the GP model, which describes
both plain and sparse GP. This section describes the mean and kernel
functions created for the modeling task. Section 4 presents modeling
results for the target bending moments of interest. Conclusions are
shared in Section 5.

2. Dataset

The proposed strategy has been tested and validated using exper-
imental data collected from an operational OWT. The OWT under
investigation is a 6 MW OWT instrumented with various structural and
operational sensors which are described in this section. The turbine is
supported by a monopile driven into the seabed and a transition piece
allowing access to the wind turbine. The overall height of the turbine
from the mudline to the nacelle is about 140 m.

There are two independent data collection systems in use on the
OWT. One installed monitoring system consists of dynamic vibrational
response measurements measured by 16 strain gauges and 12 ac-
celerometers distributed along the tower and foundation. This system
collects the structural response measurements, which can be used to
understand the long-term health and reliability of the structure. Fig. 2
displays the location and distribution of the accelerometers and strain
gauges along the structure. The reader is referred to [28] for a more
detailed characterization of the structural system, its dynamic response,
and modal properties.

The second system, known as the supervisory control and data
acquisition (SCADA) system, is located inside the nacelle at the top of
the tower. The SCADA system measures operational and environmental
information for all OWTs, including power production, rotor speed,
pitch and yaw angles, and wind speed. In addition, the SCADA system
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Fig. 2. Monitoring instrumentation.

of this OWT collects readings from 2 accelerometers placed inside the
nacelle to measure tower-top deformations.

Due to the variable nature of OWT operational and environmental
conditions, a single model cannot be used to make all desired predic-
tions. Where necessary, predictive models are tailored to the unique
conditions experienced by an OWT over its lifetime. Therefore, this
section first describes the basic operational regions of an OWT and
explains how the loading conditions and structural dynamics differ in
each region. These regions of operation are the basis for independent
models that consider the unique OWT properties that vary during oper-
ation. After describing the regions of operation, we explore the target
and input variables for each region and explain how these variables
behave according to operating conditions. Finally, we describe the data
preparation for GP model testing and validation.

2.1. Regions of operation

This section describes the regions of operation and how varying
environmental conditions and controller settings drive differences in
the structural response of the OWT. During operation, wind flows over
the blades, which creates lift forces that turn the rotor and, therefore,
the electrical generator. Since operation is conditioned on incident
wind speed, OWTs experience unique loading conditions and structural
dynamics based on the wind speed and resulting power output. This
means that the relationship between the target variables of interest
in this paper and the available SCADA input variables is different
depending on the operational conditions.

In the operation of an OWT, the differences in operational condi-
tions are categorized according to 3 distinct “regions of operation”.
The regions of operation are defined by incident wind speed and corre-
sponding power production. Fig. 3 shows the power curve for the OWT

used in this work, which plots the power output as a function of wind
speed as 1-minute average values, with the regions of operation noted.
Fig. 3 also notes which data points in the power curve correspond to
the data sets used to train GP models for each region.

As seen in Fig. 3, an OWT only operates beyond a specific wind
speed, known as the “cut-in” wind speed. Region 1 considers conditions
when the wind speed is below the cut-in speed. This region is known
as idling conditions, which occur when the turbine is ready to begin
operation but the wind speed is too low to turn the rotor or produce
power sufficiently. During region 1, the blades are pitched at a small
angle, which allows lift forces to act on the blades and turn the rotor
should the wind speed increase beyond the cut-in wind speed.

Region 2 consists of operation between the cut-in and “rated” wind
speed. The rated wind speed refers to the lowest wind speed at which
the OWT reaches full power production. In this region, the blades are
at a low pitch angle to optimize the lift forces and turn the rotor. Power
output in region 2 may be any output below the rated power output of
the turbine.

Region 3 considers operation at full power production, which occurs
at wind speeds between the rated and the “cut-out” wind speed (the
highest wind speed the OWT is allowed to operate at). In this region,
the rotor and generator are held at constant rotational speeds in order
to keep the power at its rated output, avoiding power levels too high for
the generator to produce. The blades’ pitch angles are varied to manage
the lift forces and resulting torque. This results in a reduction of forces
on the turbine as wind speeds approach the cut-out speed, with the
highest forces occurring at the rated wind speed. The cut-out speed is
not noted because the data set contains no conditions where the wind
speed was high enough to stop the rotor.

The turbine may sometimes pitch the blades into the “parked”
condition to stop operation for reasons other than dangerous winds,
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Fig. 3. Power curve of instrumented OWT with regions of operation.
' rotated into the local axis of the turbine according to its yaw angle
— denoted as y in Fig. 4 — which can change to any angle between 0
N and 360 as the rotor continuously turns to face the incoming wind. The
SG#1 rotated bending moments in the local axis of the rotor are known as

SG #4 SG #2

SG#3

Turbine cross section — Top-down view

Fig. 4. Turbine cross section with locations of instrumentation, and directions of
primary bending moments shown.

such as maintenance operations. This work does not consider parked
conditions, and modeling focuses on operational or idling conditions.

2.2. Target variables

The goal of prediction is to determine the bending moments at a
specific height of the wind turbine in two distinct directions, which are
aligned with the local axis of the OWT hub. These two directions are
commonly known as fore-aft (FA) and side-side (SS). They correspond
to the primary directions of movement for an OWT, as they are parallel
and perpendicular, respectively, to the incoming wind flow. It is worth
noting that the direction of the local axes changes as the wind direction
changes. The hub and blades rotate automatically to face the incoming
wind.

The measured bending moments have been computed from installed
strain gauges at each elevation noted in Fig. 2. Fig. 4 depicts the
orientation of four strain gauges at a generic elevation of installation.
Bending moments My, and Mg, are computed from these sensors
directly and are a measure of the global North and East bending
moments at the elevation of strain gauges. My,,,, and My, can be

fore-aft and side-side moments, M, and Mgy, which are our target
variables.

The goal of the modeling task is to build predictive GP models for
each of these bending moments in all regions of operation. Example
readings of the measured bending moments in each region of operation
are presented in Fig. 5. The readings show notable differences in the
magnitude and variance of each signal, which can be attributed to the
different loading conditions experienced by the OWT in each region.
The most significant differences are observed in the FA direction, where
the OWT is subjected to more complex loading patterns due to power
and wind speed variations. Notably, the FA bending moment displays a
varying mean value in regions 2 and 3, which is not observed in region
1 nor the SS direction, as illustrated in Fig. 5.

The SS bending moment is primarily caused by the torque generated
at the nacelle as well as environmental loading due to waves, which
results in the SS bending moments behaving likewise in each region
of operation. While there are slight differences in magnitude, each
SS bending moment has a similar dynamic behavior. In particular,
the mean value of the SS bending moment does not vary like the FA
bending moments in regions 2 and 3.

2.3. Input data features

Input features for each GP model are selected from the available
SCADA system measurement channels. The SCADA channels include
five operational measurements (wind speed, power output, yaw angle,
rotor speed, and pitch angle) and two structural response measurements
(FA acceleration and SS acceleration), all measured at 10 Hz.

The relationship between available input features and target vari-
ables differs by region of operation and direction (FA or SS). This
section explores the input features for the GP models built in this work,
highlighting how input/target variable correlations vary in each region
of operation. These relationships drive GP model formulation.

2.3.1. Nacelle FA and SS accelerations

The FA and SS accelerations measure the relative deflection of
the nacelle in the FA and SS directions. Physically, these readings
are closely tied to the target bending moments we wish to predict.
The SCADA accelerometers help predict the dynamic behavior in the
bending moment readings in both the FA and SS directions.
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In the SS direction, the target bending moments are highly corre-
lated with the SS acceleration in all three regions, as shown in Fig. 6.
This is the most crucial predictive input variable needed in the SS
direction for SS bending moment prediction.

The relationship between the FA bending moment and FA ac-
celerometers from SCADA is shown in Fig. 7. FA acceleration still shows
a high correlation with target bending moments in region 1, when there
is little incident wind flow and no power production. In this region, the
FA bending moment shows behavior similar to that of the SS direction.

In regions 2 and 3, which are distinguished by higher wind speeds
and non-zero power production, the FA bending moment shows a lower
correlation with the FA accelerometers, in contrast to the behavior in
the SS direction. Notably, the FA accelerometers are not able to capture
the varying mean value of the FA bending moment in regions 2 and 3.
However, there is still a useful correlation with the FA accelerometers

in these regions, as the reading captures the fundamental frequency of
the FA bending moment’s dynamic behavior.

2.3.2. Power output

In the FA direction, additional SCADA variables, such as power
output, correlate with the target measurements’ varying mean. Fig. 8
compares the power output of the OWT to the target bending moments
in FA. The low-frequency variation of the power output through time
matches the FA bending moment in regions 2 and 3, with a particularly
good match to the region 2 FA moment. In region 1 where there is no
power production, this reading is not correlated with target bending
moments and provides no information on the target variable.

In regions 2 and 3, rotor speed and wind speed have a similar
relationship to the FA bending moments as the power output. These
are not plotted here but are considered in the GP model formulation.
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2.4. Data preparation and evaluation metrics

This modeling task focuses on the high-frequency reconstruction of
bending moments using a 100-minute dataset. We prioritize a high-
frequency prediction task because fatigue calculations rely on a high-
frequency bending moment reading in order to count the stress cycles
experienced in certain ranges of magnitude [29]. For this study, the
entire data set is down-sampled to 2.5 Hz, which reduces the number
of data instances by a factor of 10 while retaining a suitable sampling
frequency to capture the fundamental frequency of the system. The
dataset is split into training and testing sets in which the first 70% of
data points are allocated as the training set and the last 30% as the
testing set. All the target variables and input features are standardized
to have 0 mean and unit variance according to the training set, while
the same factors scale the testing set.

In the context of evaluating the predictive models, four key metrics
are used to assess their performance: the mean absolute error (MAE),
the root mean squared error (RMSE), the relative root mean squared
error (RRMSE), and the time-response assurance criterion (TRAC) [30].

MAE provides a straightforward measure of the model’s predictive
accuracy, and it is particularly useful when you want to understand
the average magnitude of errors without giving extra weight to large
errors, as squared differences do in the case of RMSE.

¥
—Z|J7i—y,'|
N3

where N is the number of data points, y; is the predicted value at time
i and y; is the true value at time i.

The RMSE is a commonly used metric to measure the accuracy of a
predictive model’s predictions. It quantifies the average magnitude of

MAE = (€8]
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errors between predicted and true values. The RMSE is calculated as the

square root of the mean of the squared differences between predicted
values () and true values (y):

@

where N is the number of data points, y; is the predicted value at time
i, and y; is the true value at time i.

The RRMSE is a variation of RMSE that expresses the error as
a relative value. It is useful for comparing models on datasets with
different scales or units. RRMSE is calculated by dividing RMSE by the
mean of the true values (y) and then multiplying by 100% to express
it as a percentage:

z,{ll(j}i - yi)z
21111 (yi)z

The TRAC is a metric used to compare time series data and assess
the fit of a predicted time series (§) to the true time series (y). A TRAC
value of 1 indicates a perfect fit. The TRAC metric is computed using
the following equation:

w2
ce U9 @
OTNGTH)

where y and j are vectors representing the true time series and pre-
dicted time series, respectively. 7 denotes the transpose of a vector.
The equation compares the inner product of the true time series and
predicted time series to the product of the inner products of each with
itself.

In summary, RMSE measures the absolute error between predicted
and true values, RRMSE normalizes the error relative to the mean of the
true values, and TRAC assesses the fit of predicted time series to true
time series data, with a value of 1 indicating a perfect match. These
metrics quantify the performance of predictive models, especially in the
context of time series data.

RRMSE = 3

3. Virtual sensing using Gaussian process
3.1. Gaussian process formulation

Gaussian processes have emerged as a powerful data-driven strat-
egy for prediction tasks based on prior knowledge [31]. Primarily
used for regression problems [32], GPs involve fitting a function to
data. However, Gaussian processes have also demonstrated utility for
classification and clustering tasks.

In a regression problem, given a set of data training observations,
X = [xy,...,x,] and a target output y, there are countless functions,
f(X), that can fit the data. In traditional regression tasks such as linear
or polynomial regression, a single function is assumed to describe the
underlying data-generating process, and the function parameters can
be estimated using different strategies (least squares method, etc.). In
these types of regression, the goal is to estimate the parameters of a
parametric function.

By contrast, Gaussian processes acknowledge the existence of count-
less solutions and offer a sophisticated strategy to infer a distribution
over possible functions f(X) that fit a set of points, modeling them
as a multivariate normal distribution and assigning them a probability
p(f1X) [31].

Before observing any data, a prior distribution represents the ex-
pected outputs of f over inputs X. GPs aim to learn this underlying
distribution and update the prior assumption based on observation
data, keeping only the functions that fit the observed data points.

Therefore, given any set of observations X and by defining the pos-
sible function outputs f(X) as a random variable, a GP is fully charac-
terized by a mean function, m(X) and covariance function k(X, X”) fol-
lowing Eq. (5). Consequently, the function values f(X), corresponding
to data points, X, have a distribution according to Eq. (6).

FX) ~ GPm(X), k(X, X") (5)
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PUIX) = N(fIm(X), K(X, X)) (6)

The mean function, m(X), is an nx 1 vector, representing the most likely
characterization of the data (where n is the size of the training set).
The covariance matrix, K(X, X), is an nxn matrix, which influences the
shape of the prediction distribution. The covariance matrix is generated
according to the kernel function, which is often also called covariance
function, pairwise on all the points as described in Eq. (7)

K;; = k(x;,x;) @)

where the kernel function, k(x;, x;), receives two points, x; and x;, as an
input and returns a similarity measure between those points in the form
of a scalar value. As long as a valid kernel function is chosen, K will
be a valid covariance matrix for a multivariate Gaussian process [33].
If points x; and x; are considered similar by the kernel, the function
values at these points, f(x;) and f(x 1), can be expected to be similar
too.

As in many applications of GPs, here we assume a zero-mean prior
for simplicity [31,33]. This should be a suitable assumption since (1)
all our data measurements are standardized before modeling, and (2)
the power of GPs largely lies in the kernel functions.

To fully perform regression via GP, the problem is treated with
Bayesian inference, where the current hypothesis—or prior—is to be
updated as new information becomes available. In the case of Gaussian
processes, this information is the training data. Then, a GP prior is
converted into a posterior by conditioning it on a set of training
input X and output y observations corresponding to noise-free or noisy
realizations of function values f.

In real-world scenarios, the assumption of noise-free or perfect
training observation points y is unrealistic since most of our data is
afflicted with measurement errors or uncertainty. Gaussian processes
offer a simple solution to this problem by modeling the error of the
measurements. That means that an error term is independently added
to each training point y = f(X) + ¢, where noise ¢ ~ N'(0, 72).

Given the observed data and a mean function f estimated by these
observed data points, it is possible to make predictions at new points X,
as f(X,). The joint distribution of f and f, can be formalized according
to Eq. (8), which represents the prior over f, and f,, the function values
at training and testing points, X, and X,.

()=~ (o] [ &) ®

It is possible to define the marginal likelihood of y by recogniz-
ing that the distribution is a sum of two independent Gaussians: the
distribution of function values plus the distribution of the noise term.

yn — OVl K)m + T2 IVl K”*
p(L’»]) =N <[0*] ' [ K., K. +721*]> ©

Then, we can transform the above joint probability into a condi-
tional probability to obtain our posterior predictive distribution for y,.
This is accomplished by applying the joint-to-conditional transforma-
tion of Gaussian variables [31].

Py = N(u,, Z,) (10)
where

#e = Koy(@ 1, + Kp) 'y, an
>, =71, +K,, - K, (1, +K,)'K,, (12)

Additional details and extensive background on the above deriva-
tions can be found at [31,33,34]. Computation of y, and X, requires
the inversion of (21, + K,,,), an n x n matrix, which becomes computa-
tionally intractable for larger n.
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To outline a solution to this problem, we note that the posterior can
also be defined as

o) = / P P f a3

where the conditioning on inputs X and X, has been made implicit.
The second term inside the integral is the posterior over the training
latent variables f conditioned on observations y; the first term is the
posterior over predictions f, conditioned on latent training variables
f. For the reasons explained above, both terms are intractable when
computing larger training datasets.

3.2. Sparse Gaussian process

Exact Gaussian processes cannot be applied to larger training
datasets because their time complexity scales with O(»n?) where n is
the size of the training set. Approximate or Sparse Gaussian Processes
(SGPs) are based on a small set of m inducing variables that reduce the
time complexity to O(nm?).

The assumption behind SPGs is that there is a small set of m inducing
variables f,, evaluated at inputs X,, that describe the function to be
modeled sufficiently well so that it is possible to use them as an
approximation to f and X and define an approximate posterior

q(f) = /P(fdf)d’(fm)dfm 14)
where ¢(f,,) is an approximation to the intractable p(f,,|y):

O(f) = N Sl ths Ayy) (15)

The goal is to find optimal values for mean u, and covariance
matrix A,. The quality of ¢(f,,) also depends on the location of the
inducing inputs X,,. Hence, the goal is to find their optimal values as
well. The mean and covariance matrix of the Gaussian approximate
posterior ¢(f,) are defined in terms of 4, A,, and X,,

4.y, = N(ul, =0 16)
where

u =K, K, 17
=K, -K,K'4,K K, (18)

For a single test input, this approximate posterior can be computed
in O(nm?) after finding optimal values for u,, A,,, and X,,. A popular
way for optimizing these parameters is a variational approach focused
on minimizing the Kullback-Leibler divergence between the approxi-
mate posterior ¢(f) and the exact posterior p(f|y) over training latent
variables f.

The two critical parameters for defining a SGP strategy are the
number of Inducing Points m and the location z of those points. The
choice of m is a trade-off. A larger m leads to a more accurate approx-
imation but increases computational complexity. A smaller m speeds
up computations but might lead to an inadequate approximation. The
strategy is often empirical, guided by experimentation and the available
computational resources. The location of inducing points should ideally
be chosen in regions representative of the data. A subset of data points
is commonly placed based on domain knowledge.

3.3. Kernel formulation

Selecting the appropriate model is essential when using Gaussian
Processes for prediction. It involves making informed decisions on vari-
ous aspects of the GP prior model based on the available measurements.
These decisions can have a significant impact on the accuracy and
performance of the regression model. Model selection is essentially a
set of decisions based on a priori knowledge to configure the regression
model, such as selecting the covariance form and its corresponding
hyperparameters.
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The kernel or covariance function is crucial in Gaussian Processes,
mainly when the mean function is kept at zero. It specifies the under-
lying data structure, including its smoothness, periodicity, and noise
characteristics. The first step in model selection is choosing the appro-
priate covariance form that accurately represents the inherent structure
of the data. The selection process typically involves domain expertise,
data exploration, and visual analysis of the data’s features.

After observing the variable relationship and correlations between
the target and the input variables in Section 2.3, it was evident that
more than one GP model may be needed. In particular, two distinct
GP model formulations have been developed to predict our target
variables. A baseline model was trained first and evaluated on all target
variables. We found that an upgraded model with a more complex
kernel function is required to capture the behavior of the region 2 and
3 FA bending moments.

3.3.1. Baseline reference model

This section describes the initial model built for each prediction
task. The baseline model has a mean function of zero, so the covariance
structure is relied on to represent the relationships between input and
target variables. The baseline kernel function is built using just two
input features from SCADA: time and acceleration. This kernel function
is chosen to simultaneously capture the dynamic periodicity of the
measurements from acceleration readings while modeling the linear
dependencies with time by including the time vector.

In detail, let k, be the periodic kernel operating on the time dimen-
sion (denoted as x,) modified via a Matérn kernel and let k;,, be the
linear kernel operating on the acceleration dimension (denoted as x,,).
The combination of the periodic kernel wrapping a Matérn kernel is
achieved by modulating the distance r in the Matérn kernel to reflect
the periodic structure.

Given the first dimension inputs x, and x/, the composite Periodic-
Matérn kernel can be expressed as:

21—v AV -
kperiodic—Matern(xr’x;) = m ( \ 2\/") Kv ( \/ 2vr> (19)

where v > 0 is the smoothness parameter of the Matérn kernel, control-
ling the smoothness of the modeled function, K, is the modified Bessel
function of the second kind of order v, I' is the gamma function, p is
the period of the periodic modulation, indicating how the periodicity is
introduced into the kernel, # is the length scale parameter, influencing
how quickly similarity (or correlation) between points decreases with
distance and 7 is the modified Euclidean distance between points,
incorporating the periodic structure to capture periodic behavior within
the Matérn kernel framework

2 sin’(z|x, — x|/p)
72

On the other hand the linear kernel can be expressed as
klin(xacc’ x:zcc) = XICCX:ZCC (21)

This kernel captures the linear relationship between the data points,
making it suitable for problems where the target variable is expected
to change linearly with the input variables.

The composite kernel tailored for the baseline model K is defined
as the sum of these kernels:

a1l
]

(20)

K(X’ xl) = kperiodichatern(xr’ x;) + klin(xacc’ x;u‘) (22)

The Matérn represents a popular kernel choice for modeling spatial
and temporal data, which captures the smooth trend underlying the
data. It models long-term behavior, which may include gradual changes
or non-periodic variations. On the other hand, the periodic kernel
captures the periodic patterns or oscillations that are superimposed on
top of the smooth trend. It models short-term, repetitive behavior with
a fixed period. By combining these two kernels, the composite kernel
can capture complex patterns in the data that may have both smooth
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and periodic components. This can be particularly useful when data
exhibits both long-term trends and periodic fluctuations.

Given the more or less pronounced linear correlation exhibited
between the target quantities (bending moments) and the acceleration
measurements along the same locations (FA and SS), a linear kernel is
used to mimic that direct linear relationship.

This kernel function can be successfully used to represent the mo-
ment in the SS direction for all the operating regions and the FA
moment in the first region of operation, given the absence of any quasi-
static influence in those scenarios. In the case of the FA and SS moments
in the first operating region, the smoothness coefficient is picked equal
to 5/2 for the Matérn kernel. This parameter determines how smooth or
rough the modeled functions can be. By looking at the moments in the
first region (Figs. 7, 8 and 6), it is clear how, in that case, a smoother
function would better fit the regression variables. Meanwhile, a Matern
kernel with a smoothness coefficient equal to 1/2 is used to represent
the SS moment in the second and third operational regions, allowing it
to capture functions with minimal smoothness. It is particularly suitable
for modeling data with non-smooth or irregular behavior, such as data
with sharp transitions or discontinuities, which tend to emerge with
higher wind speed conditions. This kernel allows for more flexibility in
capturing abrupt changes compared to kernels with higher smoothness
parameters.

3.3.2. Upgraded model

An upgraded model needs to be built to predict three of the six
target variables: FA and SS bending moments in regions 2, and FA in
region 3. These variables show increased complexity and correlations
with additional operational conditions of the turbine. In addition to
time and acceleration, SCADA parameters of wind speed, power output,
and rotor speed (rpm) are used as inputs in the upgraded models.
Including parameters like wind speed or power output is expected to
improve the prediction performance for M, in particular.

As in the baseline models, the kernel function is created by adding
sub-kernels corresponding to each selected input feature. Input pa-
rameters are selected according to physics-based knowledge of the
system. Specifically, wind speed, power, and rotor speed are each
expected to have a relatively high correlation with M. The proposed
upgrade for this model includes the addition of each of these input
parameters as additive linear kernels for the FA moment in the second
operational region, according to Eq. (23). This model also increased
accuracy in the SS direction for region 2. On the other hand, the model
built for the FA moment in the third operational region includes the
additional SCADA inputs with a Gaussian kernel function or Radial
Basis Function (RBF), as described in Eq. (24). This choice is driven
by the nonlinear correlation trends exhibited by the FA moment with
the power output and the remaining input parameters in this region.
The RBF kernel is used to capture these nonlinear relationships in data
and is characterized by its smooth, radial symmetry.

N ’ ’ ’

K(X’ X ) - kperiodic—Matern(xt’ xr) + kl[n(xacc’ xacc) + k/[n(xpower7 xpgwer)
’ ’

+klin(xrpm’ xrpm) + kiin(Xind xw[nd)

(23)

N ’ ’ ’
K(x,x") = kperiodic—Marern(xt’ xt) + kjin(Xgee» xacc) + kRBF(xpower’ xpawcr)
’ ’
+krBF (X pm> X,pm) + kreF Xwinds X ying)

24)
4. Results

This section presents the results of the proposed virtual sensing
strategy based on Gaussian Process regression. As mentioned in the
previous section, independent models were built and trained for six
target variables—the FA and SS bending moment for each of the three
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Table 1
Gaussian process vs. Sparse Gaussian process performance on a 10-minute example
dataset.

Gaussian process Sparse Gaussian process

CPU Time (s) 12.25 3.30

Execution Time (s) 10.69 5.15
Training/Testing Training/Testing

RMSE (MNm) 0.879/0.759 0.879/0.759

RRMSE (%) 14.04/12.23 14.04/12.23

TRAC 0.980/0.985 0.980/0.985

MAE (MNm) 0.493/0.476 0.493/0.476

regions of operation, as measured by strain gauges at a particular
elevation on an OWT. The elevation chosen for the presentation of the
following results is the bending moment at the elevation of 0.34H (see
Fig. 2). This elevation is of special interest because it is located in a spot
sensitive to fatigue damage. For each target variable to be predicted,
the selected GP model is trained on a selection of the data for the target
direction and region of operation. The fully trained GP model is then
evaluated on unseen measurements from the same region.

Due to the probabilistic nature of GP, the reported prediction of
target variables is the mean prediction of 2000 model generations. The
confidence interval is computed using the standard deviation of the
same 2000 model predictions. Evaluation metrics for prediction accu-
racy are computed using the mean model prediction. These metrics, as
described in Section 2.4, include the MAE, the TRAC score, the RMSE,
and the RRMSE on training and testing data sets.

The first investigation of GP modeling for the bending moment
regression task concerns usingSGP to enable efficient, high-frequency,
long-term predictions. Two GP models — one SGP and one plain GP —
were trained on a 10-minute dataset using our defined baseline kernel
and mean formulations (the latter assumed zero in this study). Results
show that the accuracy of plain and sparse GP model predictions
was equal, while the sparse GP model displays superior computational
efficiency. Table 1 reports the training computational time and model
performance of a regular GP model and a sparse GP model trained on
the same 10-minute dataset. Sparse GP models are used moving forward
to build the regression models for the six target variables (the FA and SS
bending moments for the three regions of operations). For all regression
tasks, a confidence interval of 95% was chosen.

For each target variable, either the baseline model or the upgraded
model - as defined in Section 3.3 — was trained on the data. The
upgraded model is necessary depending on the signal’s dynamics for
each task of interest. For some tasks, the baseline model — which
requires just one SCADA input variable — performs very well. Mean-
while, the upgraded model was necessary for the remaining tasks. The
baseline model formulation is applicable for the region 1 SS, region 1
FA, and region 3 SS bending moments. For these target variables, the
accelerometer measurements from SCADA are highly informative; there
is either no power production (region 1) or steady power production
(region 3), which means there is less low-frequency variation in these
signals over time. In contrast, the region 2 SS and region 2 and 3 FA
bending moments require the upgraded model, likely due to how the
variable power production can affect the bending moment in both the
FA and SS directions in region 2. In particular, the region 2 FA moment
shows a varying mean magnitude, which matches the trends of the
power output, as noted in Fig. 8. In region 3, the varying dynamic
behavior of the power output has a more relevant effect on the FA
bending moment (as compared to the SS), requiring the upgraded
model for this target, too. Model selection for each target variable is
summarized in Table 2. Model results presented in the remainder of
this paper correspond to the model formulation noted in this table.

The first results presented are the regression of the SS bending
moment in region 1. Fig. 9 shows the model training results for a 100-
minute data set, split into training and testing regions. Fig. 10 provides
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Model predictions vs ground truth
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Fig. 9. Sparse Gaussian Process predictions for the SS moment in region 1, training and testing set separated by vertical line.
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Fig. 10. Sparse Gaussian Process predictions for the SS moment in region 1, testing dataset.

Table 2
Model formulation selected for each target variable.
Side-Side Fore-Aft
Region 1 Baseline Model Baseline Model
Region 2 Upgraded Model Upgraded Model
Region 3 Baseline Model Upgraded Model
Table 3
Sparse GP results for the prediction of the side-to-side moment.
Metric Region 1 Region 2 Region 3
Training  Testing  Training  Testing  Training  Testing
RMSE (MNm)  0.843 0.754 0.835 1.186 1.805 1.654
RRMSE (%) 14.05 12.39 16.37 24.34 30.15 27.26
TRAC 0.980 0.985 0.998 0.973 0.943 0.926
MAE (MNm) 0.475 0.489 0.629 0.833 1.396 1.307

a 5-minute excerpt of model predictions on the testing data set, with
the computed confidence interval also shown. Evaluation metrics are
shown in Table 3, which show a very good match between GP model
predictions and true SS bending moment for this task.

Given the homogeneous and consistent behavior in the SS bending
moments across regions (see Fig. 5), the model result for region 1
SS bending moment is presented as a representative example of the
accuracy and model behavior for all regions of operation. The error
metrics for models trained on all regions can be found in Table 3.

In the FA direction, the baseline model is only used on region 1,
while both regions 2 and 3 require the upgraded model, as noted in
Table 2. During the idling conditions found in region 1, the FA bending

4650 4700 4750 4800
Time (s)

Table 4

Sparse GP results for the prediction of the for-aft moment.
Metric Region 1 Region 2 Region 3

Training  Testing  Training  Testing  Training  Testing

RMSE (MNm)  0.727 0.868 1.546 1.753 3.807 4.811
RRMSE (%) 4.201 4.955 6.495 6.073 7.912 9.683
TRAC 0.998 0.997 0.996 0.996 0.994 0.991
MAE (MNm) 0.432 0.5420  1.223 1.366 2.999 3.797
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moment behaves very similarly to the SS direction due to the low winds
and zero power production (see Fig. 5). As a result, the baseline model
performs well on this target because the FA accelerometer reading is
informative enough to capture the bending moment. Due to the SS
direction similarities, region 1 model results are not plotted here, but
error metrics are provided in Table 4.

Fig. 11 shows the model training and testing datasets when the
baseline model was used on region 2 FA bending moments. The model
predictions on the testing set show that the lack of additional SCADA
information in the model fails to capture the slow low-frequency be-
havior of the signal. This behavior is closely related to power output
and displays the need for an upgraded model to fit this data.

In regions 2 and 3, the upgraded model formulation can better
capture the FA bending moments. The upgraded model involves using
other SCADA input features, which increases model complexity but
is required to capture the target variable in these regions. The FA
bending moment prediction model results for regions 2 and 3 are
shown in Figs. 12-15. Table 4 summarizes the results for predicting
the FA bending moments using the described GP models in the three
operational regions.
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Model predictions vs ground truth
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Fig. 11. Sparse Gaussian Process predictions for the FA moment in region 2, training and testing set separated by vertical line considering the baseline kernel function.
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Fig. 12. Sparse Gaussian Process predictions for the FA moment in region 2, training and testing set separated by vertical line.
Model predicitons: 5-Minute Testing Subset
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Fig. 13. Sparse Gaussian Process predictions for the FA moment in region 2, testing dataset.

The final analysis conducted concerns the model behavior for the
prediction of bending moments at different elevations on the OWT. As
noted in Section 2.2, bending moments are measured at four elevations
of strain gauge installation on the OWT. The above results focus on
predicting bending moments at one chosen elevation (elevation three
at the transition piece). However, it is interesting to understand the
models’ predictive capabilities for different elevations.

Following the model design described in the previous sections,
differentiated by operational region (Table 2), individual sparse GP
models were trained and tested for the prediction of each target bend-
ing moment at the four elevations. The results presented in terms of
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mean absolute error show that the error on model predictions generally
increases with lower elevation bending moments Fig. 16.

Comparing the mean absolute error results with the mean and
standard deviation computed over the observed period used for pre-
diction reveals how small the error magnitude is. The error metric
and the bending moment statistics are presented in Tables 5 and 6.
In particular, for the SS bending moment, the values remain below
1.5 MNm for all operational regions except for region 3 at elevation
4, which is still below 2.5 MNm. Compared with the mean values,
which are very small, commonly centered, and revolving around zero
for the SS moment, it could be perceived as a high error. However, the
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Model predictions vs ground truth
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Fig. 14. Sparse Gaussian Process predictions for the FA moment in region 3, training and testing set separated by vertical line.
Model predicitons: 5-Minute Testing Subset
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Fig. 15. Sparse Gaussian Process predictions for the FA moment in region 3, testing dataset.
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Fig. 16. Testing mean absolute error obtained in the prediction of the for aft-aft and side-to-side moments for the four different measured elevations.

dispersion of the bending moment provided by the standard deviation
indicates a sufficiently wide variation around the mean, contextualizing
the MAE metric and showing the optimal predictive capabilities of the
sparse GP model. The predictive capabilities are more efficient with
respect to the FA bending moment. In operational region 1, the mean

12

absolute error remains below 1 MNm, where the mean of the bending
moment is negative and higher than 15 MNm in absolute magnitude.
Finally, in the two most challenging operational regions, regions 2 and
3, the MAE oscillates between 0.4 MNm and 2.5 MNm and 1 MNm
and 5MNm, respectively, for the four elevations. Compared with the
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Table 5
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FA bending moment (MNm): MEA metric for the sparse GP results and the mean and standard deviation values of
the bending moments computed over the observed period of time used for prediction.

Elevation Region 1 Region 2 Region 3
MAE Mean (STD) MAE Mean (STD) MAE Mean (STD)
1 0.078 —15.846 (0.827) 0.444 —6.831 (3.205) 1.059 -5.016 (1.516)
2 0.354 -17.171 (3.460) 1.240 20.706 (13.337) 2.666 33.361 (4.920)
3 0.542 -16.667 (4.678) 1.366 35.144 (16.945) 3.371 48.743 (6.482)
4 0.997 —18.487 (9.061) 2.193 47.620 (22.319) 4.836 63.212 (9.021)
Table 6

SS bending moment (MNm): MEA metric for the sparse GP results and the mean and standard deviation values of
the bending moments computed over the observed period of time used for prediction.

Elevation Region 1 Region 2 Region 3

MAE Mean (STD) MAE Mean (STD) MAE Mean (STD)
1 0.105 —0.931 (1.056) 0.187 —4.661 (1.223) 0.370 —5.890 (0.765)
2 0.364 —-0.081 (3.952) 0.753 —3.041 (3.368) 1.007 —-6.312 (3.153)
3 0.489 1.238 (5.412) 0.833 —0.848 (4.699) 1.307 —4.512 (4.265)
4 1.224 -1.603 (7.775) 1.299 —4.846 (6.444) 2.133 —2.568 (5.990)

mean values that vary between —7 MNm and 63 MNm, it proves the
outstanding performance of the GP model, considering the error in the
prediction of the bending moments is extremely small.

5. Conclusions

This work developed a virtual sensing strategy for predicting the
bending moment time histories of an offshore wind turbine using
Gaussian Process regression. The work aims to overcome the need to
install strain sensors along the tower and foundation by building and
training a virtual model. The model can reproduce the bending moment
quantities along the local primary directions of the tower using only
readily available SCADA data as model input features.

A baseline model formulation is built, which only considers the time
index and the nacelle accelerometer reading as input variables. It is
shown that this baseline model can be trained on data for the SS bend-
ing moment in the first and third regions and the FA bending moment in
region 1 and provides accurate predictions on testing datasets with high
confidence in the prediction. The modeling task considers the varying
structural dynamics of the OWT along the principal directions as the
operational conditions (wind speed, power, etc.) change over time.
Then, it is shown how the baseline model fails to predict the bending
moment in the FA direction as the wind speed and power output ramp
up in the operational region 2. Therefore, an upgraded model was
built for the region 2 and 3 FA bending moments which considered
additional SCADA data input variables — power output, wind speed, and
rotor speed — for the modeling task. The upgraded model appropriately
captures the tower’s overall high and low-frequency dynamics with a
promising level of accuracy and magnitude error.

The model can successfully predict the bending moment at different
elevations along the height of the tower. The prediction error increases
as the tower moves towards the bottom for hotspot elevations located
far away from the SCADA data acquisition location, where the detailed
dynamics tend to be different from the operational conditions measured
at the top. However, the overall behavior is accurately captured. This
work currently only predicts the bending moment response at locations
that are instrumented with strain gauges, which may be used in model
training. In order to extrapolate these predictions to non-instrumented
elevations, future work will consider a physics/data-driven hybrid ap-
proach in which bending moment readings along the structure could
be used in tandem with modal expansion techniques to simplify the
individual GP models for each elevation into a single model.

Model results show a good fit for all target variables. However, the
bending moments for which the baseline model applies perform slightly
better than the targets that required the upgraded model. The accuracy
of all models is deemed suitable for fatigue calculations. Future work

13

will focus on the sensitivity of fatigue calculations to model predictions
and developing a flexible model that can be trained and applied to all
operational regions.
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