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ABSTRACT Personalizing wearable robots by incorporating user physiological feedback can improve
energy efficiency and comfort. However, many current personalization methods are specific to a particular
device and often require reprogramming, making them less accessible. In this study, we present an open-
source, device-independent personalization framework that allows for human-in-the-loop optimization. This
modular framework includes cost functions and optimization algorithms that use a physiological response
to optimize wearable robot parameters. We tested this framework in three case studies involving diverse
subjects and wearable robots. The first case study focused on personalizing an ankle-foot prosthesis using
indirect calorimetry feedback. This resulted in a 5.3% and 18.1% reduction in metabolic cost for walking
for two individuals with transtibial amputation, compared to the weight-based assistance. The second case
study personalized a robotic ankle exoskeleton for three different walking speeds using indirect calorimetry
feedback for two subjects. The metabolic cost was reduced by 1%, 2%, and 5.8% for one subject and by
20.8%, 1.9%, and 19% for the other subject, compared to a generic assistance condition for increasing speeds.
The third case study personalized gait parameters, specifically step frequency, using an electrocardiogram
(ECG)-based cost function along with an optimization algorithm variant, resulting in a 43% reduction in
optimization time for one non-disabled subject. These case studies suggest that our personalization frame-
work can effectively personalize wearable robot parameters and potentially enhance assistance benefits.

INDEX TERMS Wearable device, personalization, human-in-the-loop optimization, exoskeleton, prosthesis,
metabolic cost, electrocardiogram.

I. INTRODUCTION [9]; however, the practical design of the device has been
A wearable robot is a promising technology for assistance [1], challenged [6], [10], [11]. One main challenge is high inter-
[2], [3], [4], [5], [6], [7] and rehabilitation [1], [2], [8], subject variability, such as biomechanics [12], [13], [14],
which results in various assistance outcomes [10]. Recent
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approving it for publication was Tao Liu . assistance methods to meet each user’s needs. One of the
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successful personalization methods is a data-driven approach
known as Human-in-the-loop (HIL) optimization [1], [4],
[15], [16], [17], [18], [19]. HIL optimization often uses a
physiological [1], [3], [16], [17] or kinematic measure [2],
[14] to increase the effectiveness of wearable robots in
decreasing user’s physical effort during walking [2], [3], [5],
[16], and various activities [1], [4], [20].

Several HIL optimization methods have been proposed
focusing on the optimization algorithm. Felt et al. [19] pre-
sented one of the early implementations of the personaliza-
tion method, called body-in-the-loop optimization. In that
study, directly minimizing energy consumption using a phys-
iological outcome, namely respiratory measure, could allow
users to converge onto an energy-efficient cadence. For the
optimization method, the authors used a gradient descent
search algorithm. Kimetal.[17] used a non-parametric,
sample-efficient, and noise-tolerant method, Bayesian opti-
mization (BO), to identify an energy-efficient step fre-
quency. Using BO, the HIL optimization identified the
optimal parameters twice as fast as the method proposed
by Felt. et al. [19]. Then, the HIL BO method was used
to identify an optimal parameter in a soft exosuit [16],
which reduced the metabolic cost of walking by 17% com-
pared to not wearing the exoskeleton. Zhang et al. [3] used
a genetic algorithm, covariance matrix adaptation evolution
strategy (CMA-ES), to personalize ankle exoskeleton assis-
tance, which reduced the metabolic cost of walking by 24%,
compared to the zero-torque condition. This HIL optimiza-
tion approach was further expanded to other activities of daily
living, such as running [4] and walking at various speeds [20].
However, the genetic algorithm-based parameter optimiza-
tion takes a substantially long time to identify the optimal
parameter [3], [20], [21]. Considering the practical need for
minimizing in-vivo experimental time, the HIL Bayesian
optimization [16], [17], [22], [23] might be applicable to
various populations and clinical groups, including individu-
als with reduced physical strength and physically intensive
activities, due to its sample efficiency and ability to quickly
identify an optimal condition.

Researchers have investigated faster cost function esti-
mation to reduce the optimization time and improve user
comfort. One of the methods is reducing the steady-state
metabolic cost using a phase plane estimation (PPE)
instead of the time domain [22] method. This data-driven
PPE method determined the steady-state metabolic cost
twice as fast than the conventional method [22] using
Gaussian mixture regression [24], [25], [26]. The effective-
ness of this PPE method in a cost function was tested by
HIL Bayesian exoskeleton parameter optimization during
a squat [1]. With the new estimation method, two opti-
mal parameters were found in 15 min, which helped to
reduce steady-state metabolic cost by 20% compared to the
no-device condition [1].

Other alternative cost functions have been developed.
Jacobson et al. [2] showed that a symmetric function in the
form of force time integral could be used as a proxy measure
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in place of the metabolic cost for the individuals with simu-
lated amputation. The new cost function was used to identify
personalized assistance in an ankle-foot prosthesis during
walking. Han et al. [27] and Jeong et al. [28] showed that
muscle activity-based measures could be used in HIL opti-
mization. Slade et al. [5] used device measurements and a
data-driven estimation process to personalize exoskeletons in
the outdoor environment. Ingraham et al. [29] demonstrated
that optimal assistance of an exoskeleton could be inferred
using subjective feedback and user preference. These differ-
ent cost functions could help optimize assistance in outdoor
and more dynamic environments.

In addition to kinematic and calorimetric measures, several
electrocardiogram (ECG) measures have shown a correlation
with exercise intensity [30], [31], [32] with a less noisy
and faster response than metabolic rate [33]. Therefore,
ECG-based optimizations may result in faster optimizations
compared to the use of the indirect calorimetric measure.
In this toolbox, we incorporated the root mean square of
successive R-R (peak in the ECG data) interval differences
(RMSSD), a widely used ECG feature, as the candidate
cost function [34]. RMSSD is a time series function that is
relatively easier to compute than the non-linear or frequency-
based cost functions [35]. This function correlates with exer-
cise intensity and could be a valid indicator of metabolic
cost [31], [35], [36], [37].

The progress in personalization has been significant; how-
ever, various optimization [1], [3], [5], [16], [20], and cost
estimation methods [5], [22], [38], [39] typically involve
custom optimization setup. In addition, a new system would
require significant tuning and reprogramming of the com-
munication system between the optimization outcomes and
wearable robots [1], [17]. This variability and tuning increase
the barrier to entry for exoskeleton (and prosthetic) per-
sonalization. We propose a HIL optimization framework
with a communication protocol - lab-streaming layer (LSL).!
LSL, is a TCP-based network communication protocol
that has been implemented in various physiological sen-
sors as it allows near-real-time access to time series infor-
mation and synchronization. This setup will be modular,
capable of configuring the cost function and optimization
methodologies.

To demonstrate the capabilities of the proposed framework,
we performed a proof-of-concept study of the framework
in three different case studies with varying cost function
(metabolic cost, ECG, foot pressure), varying subject popula-
tions (individuals with below knee amputation, Non-disabled
individuals) and varying assistance devices (ankle-foot pros-
thesis, ankle exoskeleton, and walking step frequency). The
manuscript is divided into three different sections. In the first
section, we introduce the framework in detail by explain-
ing different modules: human-machine system, cost function
estimation, and the Bayesian optimization module. We vali-
dated the framework via three case studies, (1) HIL ankle-foot

1 https://github.com/sccn/labstreaminglayer
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B. Cost function estimation

« Indirect calorimetry
« Electrocardiogram
« Foot contact forces

A.Human-machine system

+ Ankle-foot prosthesis
« Ankle-foot orthosis
+Walking cadence

Personalization
Framework

C. Bayesian Optimization

« Cost landscape
» New parameter selection

FIGURE 1. Overview of the personalization framework: The figure presents an overview of the personalization framework. The framework is
divided into three parts: (A) Human-machine system: As an example, we demonstrated three different systems: ankle-foot prosthesis - walking
with individuals with simulated amputation, persons with below knee amputation, ankle-Foot orthosis - walking and squatting with
non-disabled individuals, and auditory command - step frequency for non-disabled, (B) Cost function estimation: we predicted cost using indirect
calorimetry, electrocardiogram (ECG), and foot contact force measures to evaluate the effectiveness of the personalized assistance, and (C)
Bayesian Optimization: assistance parameters were optimized by generating the cost landscape (Gaussian process) and selecting the next

parameter (Acquisition function).

prosthesis parameter optimization with individuals with
transtibial amputation; (2) HIL robotic exoskeleton parameter
optimization for various walking speeds; (3) HIL gait param-
eter optimization using a different cost function and Bayesian
optimization variants. Finally, this framework’s potential
impact and results from the case studies are discussed. All the
data collection code and setup are provided in the following
GitHub repository: https://github.com/UICRRL/HIL_toolkit.

Il. FRAMEWORK

The framework is comprised of three components: A) human-
machine system, B) Cost function estimation - to predict user
outcomes given assistance, and C) Bayesian optimization -
to evaluate cost landscape given assistance and measured
costs, and then select the next parameter (Fig. 1). In this
section, we provide a comprehensive explanation of these
components.

A. HUMAN-MACHINE SYSTEM

The first module of this framework is the human-machine
system. In particular, we aim to optimize the machine param-
eter to meet each human’s needs. The machine can be a
wearable robot (e.g., robotic ankle-foot prosthesis or robotic
ankle-foot orthosis) or commands from a device (e.g., audi-
tory cues). The machine provides assistance, and the human
conducts an activity given assistance while interacting with
the machine. In this framework, we personalized parameters
for three human-machine systems.

1) ROBOTIC ANKLE-FOOT PROSTHESIS (AFP) EMULATOR

We used a two-degree-of-freedom robotic ankle-foot pros-
thesis with an active plantarflexion and in/eversion [40].
This AFP comprises an aluminum frame, two toes, and

VOLUME 11, 2023

a compliant heel. The compliant heel uses a heel fiber-
glass spring (Gordon Composites, Montrose, CO). The
rotation of each shaft-toe assembly resembles the natural
dorsiflexion and plantarflexion of an anatomical ankle joint.
Two encoders mounted to the frame measured the angle
for each toe’s axis, and a load cell was used to measure
the actual torque observed. This AFP provides assistance
by providing ankle torque during the stance phase of the
gait cycle. The level of assistance is determined using a
predefined ankle-torque curve parameterized with stiffness
parameters.

In our prior work, we personalized this parameter itera-
tively using a foot pressure sensor [2] or respiratory mea-
sures [23] for individuals with simulated amputation. This
study further developed a framework structure and tested it on
two individuals with transtibial amputation (Case Study 1).

2) ROBOTIC ANKLE-FOOT ORTHOSIS (AFO)

The one-degree-of-freedom robotic ankle exoskeleton (AFO)
(Humotech, Pittsburg, PA) was used as another machine
system interacting with a human [7]. The exoskeleton
provides assistance based on a predefined, parameter-
ized ankle-torque curve. The parameter was person-
alized here through a human-in-the-loop optimization
algorithm for a squatting activity using an ankle exoskele-
ton [1] similar to [7]. Based on this method, we devel-
oped a framework and tested it for walking assistance
(Case Study 2).

3) WALKING CADENCE

Walking cadence optimization has been used to evaluate
human-in-the-loop optimization methods [17], [19]. We also
used an audible metronome tone and a human system to test

81391



IEEE Access

P. Kantharaju et al.: Framework for Personalizing Wearable Devices

the personalization algorithm performance using a new cost
function based on heart rate and acquisition functions. Details
of the optimization can be found in the (Case Study 3).

B. COST FUNCTION ESTIMATION

The user outcome given assistance is recorded and used to
determine the best assistance for the user. The cost function
estimation is the module to determine the user’s physical
effort using physiological signals [41]. In this framework
example, three signals have been used to quantify the effect
of the assistance.

1) INDIRECT CALORIMETRY

This sensor information was used to estimate the conventional
metabolic cost [22], [39], [42]. We measured the breath-by-
breath VO2 and VCO?2 using a respiratory measure (KS,
Cosmed, Italy). The metabolic rate was calculated using VO2
and VCO2 based on the Brockway equation [43]. The sensor
was calibrated before every session, and respiratory data were
monitored using the COSMED Omnia (data collection appli-
cation and real-time SDK). The metabolic rate is transferred
to LSL using a custom python script. Using this real-time
metabolic rate, we estimated the steady-state metabolic cost
using Phase plane estimation (PPE) and Instantaneous Cost
Mapping (ICM).

a: PHASE PLANE ESTIMATION (PPE)

PPE is a fast, data-driven metabolic cost estimation method
proposed in our previous work [22]. This method transforms
the time-series metabolic rate to the phase plane. In this
phase plane, the forward difference of the metabolic rate
is mapped into the vertical axis, and the metabolic rate is
described in the horizontal axis (Fig. 2.A). The steady-state
metabolic cost estimate does not change over time; hence,
it can be assumed that the steady-state metabolic cost is a
point on the horizontal axis where the vertical axis value is
zero. The Bayesian Gaussian mixture clustering [26], [44]
was used to cluster the data in the phase plane and esti-
mate each cluster’s mean u and covariance 2. The Gaussian
mixture means and covariance were used to estimate the
steady state point on the X-axis, as shown in the equation
below

>k A
>k B

steady state =

where A and B are the regression coefficients for each clus-
ter k given by Xy ,/X,, and puy—A - u,. This estimation
is performed for each breath. Implementation details and
comparisons are presented in [1] and [22]. The step-by-
step algorithm is provided in the supplementary material
(section 4.1).

b: INSTANTANEOUS COST MAPPING (ICM)
ICM is a commonly used estimation method for HIL
optimization [3], [4], [16], [19], [20]. The metabolic
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rate and steady-state metabolic cost are modeled as a
mono-exponential model. A discretized version of this
method is presented as follows,

i+ 1) =

T —di(i) 0
T

dt(i
+ @@ - Z*
T

Here, z(i) is the metabolic rate measured at the time (i), and
Z* is the steady-state metabolic cost function that needs to
be estimated. The dt(i) is the time difference between the
breath i and the next breath i 4+ 1, and t is the time constant.
We have initialized 7 in this system as 42 based on the
Selinger et al. [39] recommendation. However, this parame-
ter needs to be changed based on the activity, as suggested
by [4]. A detailed algorithm is presented in the supplementary
material (section 4.2).

2) ELECTROCARDIOGRAM (ECG)

A recent study found that ECG information can be used to
predict metabolic cost [41]. In this study, ECG was measured
using a polar H10 chest strap (Kempele, Finland) and was
filtered using a real-time filter [45]. The sampling rate of the
ECG sensor was fixed at 130 Hz. Data is streamed over Blue-
tooth low-energy (BLE) protocol and captured by a custom
python script which transfers it to LSL every 1 sec.

a: R-R (PEAK IN THE ECG DATA) INTERVAL DIFFERENCES
We used the root mean square of successive R-R interval
differences (RMSSD) to estimate energy expenditure [41].
To calculate the RMSSD in real-time, we first filtered the
ECG data using a 0.5 Hz high-pass Sth-order Butterworth
filter and removed any linear drift. The R-R peaks were iden-
tified using the method proposed by Kalidas and Tamil [46].
The time intervals between R-R peaks were squared and
averaged for a time range. The square root of the aver-
age was used as the cost function. We used the neurokit2
library [47] and the custom python-based data processing
pipeline for real-time cost estimation. For this experiment,
we used a 30s interval for R-R peaks identification and for
cost calculations [48]. A detailed method is provided in the
supplementary material (section 4.5).

3) FOOT CONTACT FORCES

In our prior work, we have shown that foot contact forces can
be used to predict the energy expenditure of walking [2]. The
contact forces were measured using F-scan foot pressure sen-
sors (Tekscan, MI, USA). These sensors are placed over the
left and right insole and calibrated using the F-scan step cal-
ibration method [2]. Both sensors have 25 sensels per square
inch, and pressure information at each sensel is transferred
using the USB communication protocol and accessed through
Tekscan API at 120 Hz. In our previous implementation, the
data was obtained using MATLAB, but in this framework,
we have set up the acquisition using a custom python applica-
tion to integrate this physiological measure into the proposed
framework. This data is sent to LSL every 1 sec.
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a: FOOT FORCE TIME INTEGRAL (FFTI)

FFTI estimates the metabolic cost of steady-state walking
using gait asymmetry information [2]. For each left and right
limb, we first calculated the foot contact force applied during
walking and integrated it across the stance phase. This value
was used to calculate the symmetric index (SI) [49]. The
SI was used to determine the asymmetric cost and estimate
the approximate metabolic cost (details are described in our
previous study [2]). The detailed algorithm and step-by-step
instructions are provided in supplementary section 4.3.

Algorithm 1 Bayesian Optimization
while Not converged do
Measure cost (y;) for parameter (X;)
y;k < yi+e, €~ N0, Onoise)
D <« i, x
Posterior function

> Gaussian Noise

u(Xs) = kn - (K + O',%Oise It Yin > Mean of
Gaussian Regression
ox)? =K —ky-(K+02,, D"kl > standard

deviation of Gaussian Regression

Acquisition function

Vx, < acq(piy,, ox,)
acquisition function

Xn+1 < argmax(Vx ) > Selecting the parameter with
the large value as next parameter

Convergence criteria

if time > experiment time || X, == X, == X,
then

> Generate the value for

Converged
else
Not Converged
end if
end while

C. BAYESIAN OPTIMIZATION

In this framework, BO is a module that optimizes parameters
given various cost functions (Fig. 1B) and device param-
eters (Fig. 1A). BO is a semi-global, non-parametric, and
noise-tolerant method [50], [51]. Typically, BO involves two
sequential optimization steps; the first is the generation of the
posterior distribution [35], [36], and the second is sampling
the next optimization point using the acquisition function.

1) COST LANDSCAPE

We used the Gaussian process (GP) as the posterior function
for its sample efficiency, non-parametric, and noise tolerance
characteristics [52], [53]. This function uses the data and
kernel functions to estimate the posterior function, with mean
and covariance at each point in the sample space.

The construction of the posterior function’s mean and
covariance at each point (x,) on the sample space can be
found in Algorithm 1. Here, k, is a vector obtained by
applying the kernel function (k) on known data points x,
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and sample space x, in the form k, = k(x,, x,). K is the
matrix obtained by applying kernel function (k) on the entire
sample space (x,) in the form K = k(x, x4). The opeise
is the hyper-parameter tuned during the construction of the
Gaussian process. The hyper-parameter training is detailed
in the supplementary material (section 3).

We used the squared exponential (SE) kernel as a standard
practice [1], [16]. It is easy to switch kernels depending on
the application. Supplementary section 1 explains the kernel
options and expected behavior for each kernel.

2) NEW PARAMETER SELECTION

The new parameter was typically selected using the mean
and standard deviation of the posterior function [50] while
balancing between exploration and exploitation. In this exam-
ple, we mainly used Expectation Improvement (EI) [54],
explained in the Acquisition function section in Algorithm 1.
The wy, and the oy, are the mean and standard deviation of
the posterior function (Gaussian process) at each point x, in
the sampling space. The fpeg - best output observed with the
sampling point is used to construct a matrix (Vy, ). The matrix
calculation depends on the acquisition function (e.g., EI,
Probability of improvement (PI), Upper Confidence Bounds
(UCB) [54]). The sampling points corresponding to the max-
imum value are selected as the next points in the optimization
loop (argmax (V,) in the algorithm). Several other methods,
such as noisy EI or Monte Carlo-based functions [55], [56],
can be used depending on the application. In supplementary
section 3, we provide a detailed explanation of regularly used
acquisition functions and compare the performance of these
acquisition functions for a standard optimization procedure.

IIl. CASE STUDIES

A. (CASE STUDY 1) ANKLE-FOOT PROSTHESIS (AFO)
OPTIMIZATION

We tested the proposed HIL optimization framework to
personalize AFP assistance for individuals with transtibial
amputation (Fig. 2.1). The primary motivation of this case
study was to test the feasibility of the proposed framework
with various populations. We used the conventional metabolic
cost-based optimization and validated the personalized assis-
tance with a weight-based, generic condition and a prescribed
prosthesis condition (Fig 2.2).

1) THE PERSONALIZATION FRAMEWORK

a: HUMAN-MACHINE SYSTEM (ROBOTIC AFP EMULATOR)
We used the AFP emulator described in Section II-A.1. The
device could generate a maximum plantarflexion torque of
140Nm; however, we set the torque threshold at 120Nm,
considering the safety of the subjects and the device. The
control system was composed of two levels, low- and high-
level controllers. The low-level controller tracked the desired
torque using a proportional controller based on the torque
error between desired and measured torques. The high-level
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1. Framework
A. AFP personalization
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FIGURE 2. Ankle-foot prosthesis personalization: (1) the personalization of prosthesis using the framework, (2) the two-day protocol
used to find personalized assistance parameters using the framework and validate the experimental results, and (3) the metabolic costs
and the comfort scores for two participants during the validation conditions.

controller generated the desired ankle angle and torque curve
using the stiffness parameter from the BO module.

b: COST FUNCTION (RESPIRATORY MEASURE)

We used the metabolic cost of walking using the respiratory
measure using the PPE algorithm. We used 1.5 min data per
each optimization condition.

¢: BAYESIAN OPTIMIZATION

The BO module iteratively fitted the data to the GP landscape
and then selected the next parameter using the EI. The param-
eter scale ranged from 0.5 to 1.4 N/deg for subject 1 and
0.5 and 1.5 N/deg for subject two for the study below. The
range was selected based on the subject’s weight, age, and
height and kept constant throughout the experiment.

2) EXPERIMENTAL PROTOCOL

We tested the personalization method with two individuals
with transtibial amputation (age: 38 and 59 yrs, prosthesis
use: 17 and 23 years, weight: 95 and 60 kg, Height: 185 and
170 cm, male and female) using two days of experimen-
tal protocol (Fig. 2.2) (Protocol No: UIC IRB 2019-0087).
We collected the respiratory measures and, additionally, user
comfort with a comfort score adapted from the socket com-
fort score [57] [0-10, 10 is the most comfortable device for
walking, and O is very uncomfortable].

On Dayl, the robotic ankle-foot prosthesis end-effector
was fitted to the participant by a certified prosthetist. Then,
the subject was instructed to walk for five stiffness conditions
for 5 min, composed of the control off condition (motion posi-
tion constant) and four conditions with different assistance
profiles. 5 min rest was given in between trials.

On Day2, two-minute initial conditions were performed
to validate the attachment of the prosthesis. Then, the HIL
optimization was conducted for 14 min. Following the opti-
mization, the optimal, weight-based condition (sub 1: 0.8,
sub 2: 0.6 [10% of body weight in kg] [2]) and their prescribed
(customary) prosthesis were evaluated. 1:1 rest time was
provided for all the conditions on Day1 and Day?2.
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3) RESULTS

The personalized assistance (optimal condition) was identi-
fied for subjects 1 and 2 in 6 and 7 optimization iteration, and
optimization lasted for 620 and 720s, respectively. Personal-
ization reduced metabolic costs by 5.6% and 18.1% for the
optimal condition compared to the weight-based condition.
For the prescribed prosthesis condition, Subject 1’s steady
state metabolic cost was 4.61 W - kg’], which was 23.5%
higher than the optimal condition. Subject 2’s metabolic cost
was 1.40 W - kg~!, which was 14% lower compared to the
optimal condition. Subject 1 reported that robotic AFP was
more comfortable compared to their prescribed prosthesis,
with a comfort score of 9 and 8 for the optimal (personal-
ized) and weight-based condition and 7 for their prescribed
prosthesis. Subject 2 reported that both the weight-based and
optimal assistance had the same comfort score of 4, while
their prescribed prosthesis scored a 9. These comparisons
between the weight based and the optimal condition show
that our framework can be successfully applied to different
populations, including clinical groups.

B. (CASE STUDY 2) SPEED-SPECIFIC PERSONALIZED
ASSISTANCE

We tested the framework for various activity conditions in
non-disabled individuals (Fig 3.1), in this case, speeds (1 m/s,
1.25 m/s, and 1.5 m/s), as we hypothesized that the personal-
ized assistance would be different for different speeds; hence,
the framework should work for various activities. We tested
by comparing the user outcomes from the speed-specific,
personalized assistance condition to the generic and optimal
assistance identified at normal walking speed (Fig 3.2).

1) THE PERSONALIZATION FRAMEWORK

a: HUMAN-MACHINE SYSTEM (ROBOTIC AFO EMULATOR)
We used a 1-degree of freedom (DOF) and tethered ankle
exoskeleton (Humotech, Pittsburg, PA). We divided the gait
cycle into swing and stance phases. These stages were iden-
tified using the heel and toe switches. During the swing
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FIGURE 3. Ankle-foot exoskeleton personalization: (1) the personalization of orthosis for various speeds using the framework, (2) the
two-day protocol used to personalize assistance using the proposed framework and validate the experiment, and (3) the metabolic cost
observed during the validation condition for two subjects at 3 different speeds.

phase, we used a zero motor position controller so the sub-
ject could freely move to the next step. During the stance
phase, the low-level controller conducted the torque control to
track the desired torque. The high-level controller generated
the desired torque curve based on the ankle angle and a
shape-dorsi parameter (Fig 3.1, Torque controller) from the
BO module.

b: COST FUNCTION (RESPIRATORY MEASURE)
We estimated the metabolic cost of walking at three different
speeds using the PPE method and the respiratory measures.

c: BAYESIAN OPTIMIZATION

We performed optimization for each speed separately using
metabolic cost as the cost function. To estimate the cost land-
scape, we used the GP with SE kernel, and for the acquisition
function, we used EI. The shape-dorsi parameter range was
0-0.85 based on subject weight and device control range.

2) EXPERIMENTAL PROTOCOL

We used a two-day protocol to identify and validate the
speed-specific optimal assistance (Fig. 2.2) with two subjects
(Male, age: 27 and 19 years, weight 91 and 75 kg, Height
185 and 172 cm) (Protocol: UIC IRB 2020-0563). The walk-
ing speeds for low, medium, and high were 1 m/s, 1.25m/s,
and 1.5 m/s, respectively.
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On Dayl, we performed an exoskeleton acclimatization
trial at different speeds. During this trial, the subject walked
under three different stiffness conditions for 2 min each for
low, medium, and high-speed conditions (Order randomized
for each subject). After each speed condition, a 7 min rest
time was allocated for the subject. Following this acclimati-
zation period, we performed the HIL optimization for each
speed. Typically, the optimization process took 12 minutes,
during which the optimizer selected consecutive parameters
that indicated the best point. After each optimization, 7 min
sitting rest time was provided to the subject.

On Day?2, we validated the optimal parameters obtained
on day one by comparing them with unpowered, generic
conditions (fixed stiffness) and optimal conditions for nor-
mal speed. Each condition was further divided into three
trials of 5 min for each speed. Between each speed trial,
we provided 1 min of sitting rest time. After each condition,
we provided 7 min of rest time. The order of each condition
is randomized to reduce the learning effect.

3) RESULTS

The personalized assistance reduced steady-state metabolic
cost for speed-specific optimal conditions compared to
unpowered conditions. The metabolic costs were reduced by
5.8% and 18.8% for 1.5 m/s speed for subjects 1 and 2,
respectively. Each participant reduced the metabolic cost of
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walking by 1.8% and 2.0% for the speed-specific optimal
condition compared to the unpowered condition at 1.25 m/s.
They also reduced the cost by 0.5% and 20.8% for the 1m/s
condition, respectively. On average, personalization took
seven parameters and 820s, including the warm-up period.

Compared to generic and normal speed’s optimal condi-
tions, for each speed, we observed that speed-specific optimal
conditions reduced metabolic costs for all other conditions.
Detailed results are tabulated in the supplementary material
(Section 5) and are also presented in Figure 3.3.

C. (CASE STUDY 3) STEP FREQUENCY OPTIMIZATION
USING ECG

Step frequency optimization was conducted to demonstrate
the compatibility of the framework for various options
(Fig 4.1): a different human-machine system, a new cost
function option, in this case, a new cost function using the
physical effort estimate from ECG, and acquisition func-
tions in BO. Specifically, we optimized walking cadence,
a common practice to test a new algorithm [17], [19]. Step
frequency or walking cadence is naturally optimized for a
given walking speed to reduce energy consumption [58].
Previous studies have used this information to test different
optimization schema and cost functions [17], [19]. Since this
step frequency optimization was previously used to compare
the different optimization schema [17], [19], this study can be
used to directly compare the current optimization framework
with published results and traditional energy measures such
as metabolic cost.

1) THE PERSONALIZATION FRAMEWORK

a: HUMAN-MACHINE SYSTEM (AN AUDITORY CUE)

The subject was instructed to follow a metronome-set walk-
ing cadence, with a range set to +15% of normal [17], [19].
We used a wireless speaker to deliver the metronome sound
corresponding to the desired cadence.

For the ECG-based cost function with EI acquisition func-
tion, 0.88% difference compared to the preferred step fre-
quency was identified as optimal within 4 iterations. Total
optimization time, including a warm-up walk of 2 min, was
306s. For the ECG-based cost function with a Monte-Carlo
sampling-based cost function (q-Noisy EI - gNEI), a 2%
difference from the preferred step frequency was found to be
optimum in 5 iterations. This optimization took 383s with the
warm-up.

IV. DISCUSSION

We have developed a modular, personalization framework
composed of a human-machine system, cost function esti-
mation, and BO. The framework was tested with various A)
human-machine systems, including individuals without dis-
abilities and with transtibial amputation, robotic ankle-foot
prosthesis and orthosis, and metronome-set gait; B) cost func-
tions using respiratory measures and ECG; and C) BO with
different acquisition functions (Table 1). For all scenarios, the
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personalized assistance reduced the metabolic cost compared
to generic or control-off conditions. These results suggest that
the proposed framework can be used to personalize assistance
while accommodating diverse population-machine systems,
cost functions, and BO variants. The framework application
also presented its abilities in two different scenarios: assisted
squatting activity with non-disabled and robotic AFO sys-
tem (A), utilizing metabolic cost estimation (B) and a regular
BO (C) [1]; and assisting walking with individuals who had a
simulated amputation using robotic AFP (A), physical effort
estimation using foot contact forces (B), and regular BO (C)
[2]. In addition, our modular framework is lightweight, par-
allelized, and compatible with mobile computers, opening
opportunities to perform optimization in outdoor settings.

A. CASE STUDY 1

Ankle-foot prosthesis personalization: When the frame-
work was used to personalize assistance for individu-
als with transtibial amputation, the personalized assistance
resulted in a maximum of 5.6% and 18.1% reductions
for Subjects 1 and 2, respectively, compared to the generic
condition.

Personalizing ankle-foot prostheses has been challeng-
ing [11], perhaps in part due to reduced strength for indi-
viduals with reduced mobilities. For these individuals, the
extensive optimization time could induce fatigue and poten-
tially subsequently lead to unsuccessful optimization. Our
approach incorporates a rapid metabolic cost estimation
method coupled with a sample-efficient Bayesian Optimiza-
tion (BO) module for HIL optimization. This combination
effectively trims the total optimization time down to a mere
12 minutes, which is a threefold speed increase compared
to the conventional Human-In-The-Loop (HIL) optimization
method that relies on Covariance matrix adaptation evolution
strategy (CMA-ES) [11]. The faster optimization may have
contributed to identifying better-personalized assistance as it
could minimize long optimization-induced fatigue. To evalu-
ate the efficacy, future work can include controlled human
subject experiments with an increased number of partici-
pants to test the hypothesis that personalized assistance can
maximize assistance benefits.

The robotic prosthesis’ personalized and generic condition
had higher metabolic costs than their prescribed, customary
prosthesis for Subject 2. One possible reason could be the
relatively larger size and weight of the AFP. The AFP was
designed for a male subject with foot size 10, while the
prescribed prosthesis was smaller, with size 9 for a female
user. This difference between the prescribed prosthesis and
the robotic AFP could have affected the participants’ gait
kinematics and led to changes in metabolic cost [59]. In addi-
tion, the participants with transtibial amputation had limited
time to learn the robotic AFP use (1-2 hours), compared to
their years of experience with their own prosthesis (Subject 1:
17 years, Subject 2: 23 years). Our recent study suggests that
implementing a user training protocol can facilitate a faster
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TABLE 1. Case studies using the framework.

Case studies
Activity Walking Walking Walking Squatting [1] Walking [2]
. Ankle-foot Walking Ankle-foot Ankle-foot
Ankle-foot prosthesis k L .
. orthosis cadence orthosis prosthesis
A. Human-machine
system Individuals with Simulated
transtibial Non-disabled Non-disabled Non-disabled transtibial
amputation amputation
B. Cost esgmatlon Metabolic cost Metabolic cost ECG Metabolic cost | Foot contact forces
function
€. layesisn GP-El GP-El GP - EI, gNEI GP-El GP-EI
Optimization

learning process for device use, leading to a reduction in
metabolic cost when walking with the wearable robot [40].
Future work should consider including such user guidance
protocols in this framework to aid user adaptation to the
wearable robot.

B. CASE STUDY 2

Speed-specific personalized assistance: The personalized
assistance using this framework was found to reduce the
metabolic cost by an average of 7.8% under speed-specific
conditions compared to the generic assistance condition,
indicating that this framework can be applied to vari-
ous walking speeds. Furthermore, the optimization pro-
cess took only 12 minutes, which is one-third of the time
required by state-of-the-art methods for three different walk-
ing speeds. Recent studies have emphasized the importance
of personalized assistance in natural settings, and these fast
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and adaptable optimization results could be useful for provid-
ing personalized assistance in the outdoor environment [5],
[20].

C. CASE STUDY 3

Step frequency optimization: The personalization and mod-
ular framework successfully identified optimal frequency
through the use of different cost function modules and BO
modules. Especially when an ECG-based cost estimation
module was used, the optimal step frequency was identified
43% faster than a respiratory-based cost estimation method,
including PPE. Also, regardless of the BO module variants on
the parameter selection method, the optimal point was found
in 5 iterations. The ECG-based cost estimation also has addi-
tional advantages in terms of portability and wearer comfort,
making it a desirable alternative to indirect calorimetry, which

81397



IEEE Access

P. Kantharaju et al.: Framework for Personalizing Wearable Devices

relies on face masks, and it may help to optimize assistance
in a natural setting.

The framework described in these case examples was
developed using a BO. Although BO has been successfully
used to personalize assistance in a short time [17], [60],
it has a limitation in accounting for a time-varying response
to prolonged exoskeleton usage [61], [62]. Future versions
of this framework will include optimization algorithms to
address time-varying dynamics, such as time-dependent BO
algorithms [63]. A limitation of this proposed framework is
that the machine in a human-machine system should oper-
ate based on a pre-determined parameter set, influencing
human-machine system outcomes. For a wearable robot case,
it is typically a parameterized trajectory and a relevant con-
troller. To make this framework more accessible, an open and
primitive controller will be added.

We have not conducted compatibility tests with all com-
mercial exoskeletons and sensors. To mitigate this limitation,
we designed our framework as a modular setup featuring
customizable input and output configurations built upon an
open-source protocol. We validated this setup using our
custom-made prosthesis and exoskeletons [1], [64], [65], [66]
and commercial exoskeleton [7]. For the sensor acquisition
system, we conducted tests with three different physiologi-
cal sensors. However, the potential exists for compatibility
issues or errors with different devices. We have included an
instruction manual, available for reference, in Supplemen-
tary Material section 9 (Instruction Manual). In our future
work, we plan to broaden our framework’s compatibility to
encompass a wider range of sensors.

Another limitation associated with the proposed HIL
toolkit is the necessity for hyperparameter tuning. Our toolkit
relies on Bayesian optimization and a Gaussian process pos-
terior function, which may exhibit sensitivity to kernel hyper-
parameters such as length scale and noise range. To address
this, we have adopted stochastic gradient descent for hyperpa-
rameter optimization, employing the marginal log-likelihood
as the cost function. Still, the task of adjusting the bounds
and initial points of hyperparameters calls for a unique
approach for each cost function and activity. In future work,
we intend to use musculoskeletal simulations and existing
knowledge to refine the hyperparameter tuning process more
effectively.

The current user interface of our optimization framework
is primarily designed for experienced engineers, which could
potentially be a barrier for less experienced users or non-
researchers. Recognizing this, we aim to make it more univer-
sally accessible. Future work can include developing a more
user-friendly, perhaps even tablet-optimized, user interface.
This will make the optimization tool more approachable and
easier for a broader range of users.

V. CONCLUSION

In this study, we developed a personalization framework
for wearable devices, consisting of a human-machine sys-
tem, cost function estimation, and Bayesian optimiza-
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tion. The framework is designed to be both modular and
versatile. By keeping the optimization algorithm constant
while allowing for easy integration of different cost func-
tions, this framework could help benchmark exoskeleton
performance and personalize wearable robots for various
populations. Additionally, the modular configuration of the
framework allows for expansion and the ability to test mul-
tiple optimizations simultaneously in parallel. The results
from case studies demonstrate that the framework is appli-
cable for multiple populations, assistive devices, cost func-
tions, and optimization setups. Overall, this framework
has the potential to lower the barrier of entry for per-
sonalizing wearable robots and help further advance their
performance.
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