Domain Effects on Interpretations of General Conditionals:

The Case of Mathematics

David W. Braithwaite
Department of Psychology

Florida State University

Contact information:
1107 W. Call Street
Tallahassee, FL 32304
USA

850-644-3409

braithwaite@psy.fsu.edu

Keywords:
conditional reasoning; general conditionals; interpretation; theory of mental models; new

paradigm


mailto:braithwaite@psy.fsu.edu

DOMAIN EFFECTS ON INTERPRETATIONS

Abstract

Mathematics is often thought to have a unique association with certainty. The present
study investigated a possible consequence of this association, namely that general conditionals
are interpreted more deterministically in math than in other domains. To test this hypothesis, in
two studies (Ns = 146 and 117), adults were presented general conditionals involving fictional
categories in math and science and were asked to judge whether the conditionals were
compatible with various frequencies of exceptions to them. Participants indicated that even rare
exceptions (e.g., 1 exception per 99 confirming cases) would falsify a conditional (Studies 1 and
2), that a conditional could not be true and rare exceptions to it at the same time exist (Study 1),
and that the truth of a conditional precluded the existence of even rare exceptions (Study 2),
more when the conditionals involved math than science. The findings are consistent with the
hypothesis that mathematical context is particularly likely to elicit deterministic interpretations
of general conditionals. Implications of the findings for theories of conditional reasoning, and for

individual differences in conditional reasoning, are discussed.
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Domain Effects on Interpretations of General Conditionals: The Case of Mathematics

In Opus Majus, Roger Bacon claimed that “In mathematics alone is there certainty
without doubt” (Burke, 1928, p. 128). Similarly, Oaksford & Chater (2007), despite arguing that
uncertainty is central to everyday reasoning, also observed that “mathematics appears to be about
establishing certainties” (p. 51). These statements suggest that math has a strong and perhaps
unique association with certainty. If so, how might this association affect reasoning?

The present study investigated a specific aspect of the above question, namely: Does the
association of math with certainty affect how people interpret general conditionals? Conditionals
are statements that express if-then relations. General conditionals are conditionals that refer to
sets or types of things, as distinct from singular or specific conditionals, which refer to single
cases. As their name suggests, general conditionals are useful for expressing generalities, which
is critical in math (e.g., Hoyles & Kiichemann, 2002; Stylianides et al., 2004) and many other
domains, such as science. For example:

If water is frozen, then the water expands. (1)
(Forn>1) If 2" — 2 is divisible by n, then n is prime. (2)
(1) is general because it refers to water in general rather than a specific instance of water;
similarly (2) refers to the set of numbers greater than 1 rather than a specific number.

How people interpret statements like (1) and (2) has been the subject of lively debate in
psychology and other fields. One way of getting at this issue is to ask people what they would
consider to falsify such statements. On a deterministic interpretation (Cariani & Rips, 2017,
Goodwin, 2014; Johnson-Laird & Byrne, 2002; Khemlani & Johnson-Laird, 2022), such
statements are falsified by the existence of any exceptions. This interpretation would render (1)

and (2) false—water does not expand when frozen under very high pressure, and 2**! — 2 is
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divisible by 341 but 341 is not prime (341 = 11x31)!. In contrast, on a probabilistic
interpretation (Douven et al., 2020; Evans & Over, 2004; Oaksford & Chater, 2020; Skovgaard-
Olsen et al., 2016; Wang et al., 2022), a general conditional is not necessarily falsified by
exceptions, provided that they are unlikely or rare. (1) and (2) could be considered true if
interpreted in this way, because the exceptions to them are rare.

Human verbal reasoning depends on content and context as well as syntactic form
(Dieussaert et al., 2002; Klauer et al., 2010; Pollard, 1982; Stenning & van Lambalgen, 2004).
Thus, despite having the same syntactic form, conditionals may be interpreted differently in
different domains. If math is uniquely associated with certainty, then deterministic
interpretations may be more common, and probabilistic ones less common, in math than in other
domains. If so, then rare exceptions should be thought to falsify general conditionals more often
when they involve mathematical content than otherwise. The present study tested this prediction.

Below, I briefly describe prominent theoretical perspectives in the psychology of
reasoning and discuss what these theories imply about interpretations of general conditionals.
Then, I review empirical studies pertaining to deterministic and probabilistic interpretations of
general conditionals. Last, I describe the present study in more detail.

Theoretical Perspectives on Interpretations of Conditionals

One prominent theory, the theory of mental models, originally proposed that a
conditional “If p, then ¢” means that p and ¢q are both true, p and g are both false, or p is false and
q is true (Johnson-Laird, 1983; Johnson-Laird & Byrne, 2002). The theory has recently been
revised; in its newer formulation, the above conditional means that the three aforementioned

cases are possible, whereas the remaining case—that p is true and ¢ is false—is impossible

1341 is the smallest composite number for which 2" — 2 is divisible by #.
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(Johnson-Laird et al., 2015; Khemlani et al., 2018). In reference to general conditionals, cases in
which p is true and g is false would constitute exceptions. The stipulation that such cases are
impossible implies that exceptions do not exist, since if they existed, they would be possible.
Thus, in the theory of mental models, the interpretation of general conditionals is deterministic in
the sense described above.

The theory allows that content and context may modulate the meaning of conditionals.
For example, for any true conditional whose converse is also true (e.g., “If n > 0, then n+1 > 17),
it is impossible that p is false and ¢ is true. Such a conditional would not be thought to imply that
this impossible case is possible, nor would the impossibility of that case be thought to falsify the
conditional. However, even in such cases, a conditional implies that exceptions are impossible,
and the existence of exceptions would falsify a conditional.

Another group of theories, jointly referred to as “the new paradigm,” focuses more on
degrees of belief than binary truth or falsehood. These theories see “belief as inherently uncertain
and reasoning as concerned with updating our uncertain beliefs” and assume that “degrees of
belief can be captured by probabilities” (Oaksford & Chater, 2020, p. 308). Specifically, one’s
degree of belief in a conditional “If p, then g” can be captured by the probability P(If p, then g).
Many theorists (e.g., Evans & Over, 2004; Over, 2020) further assume an identity known as “the
Equation” (Edgington, 1995), according to which the probability of a conditional equals the
probability of its consequent conditional on its antecedent—that is, P(If p, then q) = P(g|p).

What do these assumptions imply about how people interpret general conditionals,
specifically whether such conditionals should be thought to tolerate exceptions? The answer
depends in part on how people convert degrees of belief into judgments of truth and falsehood. A

reasonable approach is to “set a threshold such that degrees of belief larger than the threshold are
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regarded as sufficiently high to warrant a ‘true’ judgment, and degrees lower than the threshold
result in a ‘false’ judgment” (Oberauer & Wilhelm, 2003, p. 685). Applying this approach to
general conditionals, one would judge such conditionals to be true not only if no exceptions
exist, but also if exceptions exist but are sufficiently rare that P(¢g|p), and therefore degree of
belief, exceed the threshold (Wang et al., 2022; Wang & Yao, 2018). Doing so would would
reflect a probabilistic interpretation in the sense described above.

In the above discussion, I have glossed over the distinction between asserting the truth of
a general conditional for semantic or pragmatic reasons. In general, there is ongoing debate about
whether particular phenomena in conditional reasoning should be attributed to semantics or
pragmatics (e.g., Cruz & Over, 2023; Skovgaard-Olsen, 2020). This study is concerned with the
conditions under which individuals claim that a general conditional is compatible with rare
exceptions to it, whether they do so for semantic or pragmatic reasons. However, such claims are
distinct from assertions of the truth of a conditional based on subjective belief in it when it is
uncertain whether exceptions to it exist, as in the case of a mathematician maintaining the truth
of a conjecture that has been neither proven nor disproven®. Such assertions of truth are not the
concern of the present study.

In summary, a deterministic interpretation of general conditionals, which renders them
incompatible with the existence of even rare exceptions, is suggested by the theory of mental
models. In contrast, a probabilistic interpretation, in which a general conditional can be said to be
true even when rare exceptions to it exist, is suggested by theories in the new paradigm. Several

recent empirical studies have contrasted these two views of general conditionals.

21 thank David Over for pointing out this distinction.
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Studies on Deterministic and Probabilistic Interpretations of General Conditionals

First, Goodwin (2014) found evidence that by default, adults view general conditionals as
incompatible with exceptions. When presented data in which P(g|p) was less than 100%,
participants described the data using general conditionals qualified by probabilistic language
(e.g., “If a country has the virus, then it probably [emphasis added] has an annual per person
income of less than $500"). Only when P(g|p) was 100% did participants use unqualified
language. When told that a general conditional was true and asked to guess P(¢g|p), most
participants guessed 100%. Finally, most participants indicated that for a general conditional to
be true, there must be no exceptions to it, and that even rare exceptions (e.g., P(—g|p) =4% in
Experiment 8) falsified a conditional. Goodwin (2014) interpreted these findings as consistent
with the deterministic interpretation of conditionals posited by the theory of mental models.

Similar results were obtained by Wang, Over, and Liang (2022). When presented with
descriptions of sets indicating that the sets included exceptions to a general conditional, large
majorities of participants judged that these sets falsified the conditional. Further, when instructed
to assume that a general conditional was true and asked whether, given this assumption, it was
possible that the conditional referred to a set that included exceptions, large majorities said no.

However, two other studies yielded contrasting results (Cruz & Oberauer, 2014; Wang &
Yao, 2018). First, participants in Cruz and Oberauer (2014) judged the probabilities that general
conditionals and universally quantified statements (e.g., “All the Birnei that are from A have a
bark with black lines”) were true of samples drawn from populations, based on information
about the frequencies of different cases in the populations. In all the populations, P(—g|p) was
greater than 4%—that is, they included exceptions. Participants judged the conditionals much

more likely to be true than the universally quantified statements. This result suggests that general
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conditionals were considered to tolerate exceptions more than universally quantified statements
do, consistent with a probabilistic interpretation of the general conditionals.

Second, a study of Wang and Yao (2018) addressed a limitation shared by all of the
above studies—namely, those studies did not include situations in which exceptions are specified
to exist but to be extremely rare. In the first of two experiments, when told to assume that a
general conditional (e.g., “If a card is round, then it is red”’) was true, most participants judged
that exceptions (e.g., “round blue cards”) were impossible. However, most of these participants
also asserted that it was possible that such conditionals could refer to sets containing extremely
rare exceptions (e.g., a set in which 1 out of 100 or 10 out of 1000 round cards were blue,
implying P(—g|p) = 1%, lower than the 4% rate of exceptions tested in and Cruz & Oberauer,
2014 and Goodwin, 2014). In the second experiment, most participants judged general
conditionals to be falsified by the existence of exceptions, but most of them also judged the
conditionals to be true when they referred to sets containing extremely rare exceptions.

To explain these apparently conflicting findings, Wang and Yao (2018) proposed that
individuals interpret conditionals differently depending on context. Specifically, they argued that
information about existence of exceptions, but not about their frequencies, created an abstract
context, and that abstract context elicits deterministic interpretations of conditionals. Further,
they argued that information about frequencies of exceptions constituted a concrete context, and
that concrete context elicits probabilistic interpretations.

The Present Study

General conditionals in math typically are abstract in the sense referenced by Wang and

Yao (2018). That is, such conditionals may be juxtaposed with information about the existence

or nonexistence of cases (such as exceptions) that are relevant to the truth of the conditional, but
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are rarely juxtaposed with information about the frequencies of such cases. Thus, Wang and
Yao’s (2018) findings provide one reason to hypothesize that general conditionals may be
interpreted more deterministically in math than in other domains.

Another rationale for the same hypothesis, which does not depend on whether frequency
information is provided, is pragmatic. Mathematical conditionals are often encountered in
educational settings, such as textbooks and classroom instruction. It is plausible that conditionals
in such settings are typically intended deterministically and that students are aware of this
intention. For example, if one reads in a textbook that “If m and n are even, then m+n is even,” it
seems unlikely that the textbook’s author intended “If m and n are even, then m+n is probably
even.” Lacking evidence to the contrary, students might generalize from educational settings to
assume that mathematical conditionals in other settings are also intended deterministically, and
interpret them accordingly.

A third rationale for the above hypothesis involves the types of evidence that can be
brought to bear in support of general conditionals in math. Consider how one might convince a
nonbeliever that “If m and n are even, then m+n is even.” One might appeal to types of
justification that are available in other domains, such as authority (e.g., “teacher said so0”), an
example (e.g., “2 and 4 are even, and 2+4 equals 6, which is even”), or induction from multiple
examples. However, general conditionals in math—unlike most other domains—can also be
proven deductively. Deductive proof is challenging, and most individuals are likely unable to
generate valid deductive proofs of many, or even any, mathematical conditionals. Nevertheless,
the awareness that mathematical conditionals can be proven deductively in principle could lead

individuals to interpret conditionals deterministically more in math than in other domains®.

3 This argument presumes that individuals believe that deductive proof precludes the existence of exceptions.
However, some individuals may not believe this, a point I return to in the General Discussion.
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Along similar lines, Skovgaard-Olsen (2020) recently speculated that in mathematical contexts,
the conditional is interpreted as material implication (which is deterministic) due to the value
placed on consistency and provability in such contexts.

To test the above hypothesis, in the present study, participants were presented general
conditionals together with information about the relative frequencies of confirming cases, in
which p and g were both true, and exceptions, in which p was true and g was false. Participants’
task was to indicate whether the conditional was true given that the frequency information was
true (Studies 1 and 2), whether the conditionals and the frequency information could both be true
at once (Study 1), or whether the frequency information was possible given that the conditionals
were true (Study 2). The above hypothesis implied that when the frequency of exceptions was
low but not zero, negative responses—which indicate that a conditional is incompatible with
exceptions—should be more common for mathematical than non-mathematical content.

The conditionals presented to participants involved fictional categories in math and
science. Specifically, the math conditionals were about a fictional type of numbers called “spatial
numbers,” which included sun, moon, and star numbers, and the science conditionals were about
a fictional type of fruit called “wumpa fruit,” which included spiky, rough, and squishy wumpa
fruit. These fictional categories were intended to convey the contextual distinction between math
and science while preventing participants from basing their judgments on prior knowledge
regarding the conditionals’ content.

Some recent theoretical debates have hinged on whether a positive relation between p and
q is required for “If p, then ¢” to be judged as true (Cruz & Over, 2023; Douven et al., 2018;
Skovgaard-Olsen et al., 2016). Identifying a logical or causal relation would require knowledge

about the categories involved, and identifying a statistical relation would require information
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about the frequencies of cases in which p is false. These types of information were not provided
in the present study, so participants could not determine whether p and ¢ were related and, if so,
whether the relation was positive. Thus, the study could not be directly informative regarding the
theoretical debates mentioned above. However, participants’ responses may have reflected, in
part, baseline assumptions about the likelihood of p and ¢ being related based on background
knowledge about conditionals in each domain (math and science).

Study 1

Participants in Study 1 completed a Set-Based Truth Task (Goodwin, 2014; Wang et al.,
2022; Wang & Yao, 2018), a Collective Possibility Task (Goodwin & Johnson-Laird, 2018), and
an Algebra Word Problem Task. The first two tasks were designed to test the central hypothesis
described in the Introduction. The third task was intended to test a secondary hypothesis about
individual differences, described below.

In the Set-Based Truth Task, participants were provided a general conditional followed
by information about the frequencies of confirming cases and exceptions. The task was to judge
whether the frequency information rendered the conditional true or false. It was predicted that
when exceptions were rare (P(—g|p) = 1% or 10%), they would be judged to falsify conditionals
more often when the conditionals involved math than science (H1.1).

In the Collective Possibility Task, participants were again provided with a general
conditional and a statement about the relative frequencies of confirming cases and exceptions.
Their task was to decide whether the conditional and the frequency information could both be
true at once. It was predicted that exceptions, when rare, would be judged incompatible with

conditionals more often when the conditionals involved math than science (H1.2).
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A secondary goal of Study 1 was to investigate individual differences in participants’
interpretations of general conditionals. If math is associated with deterministic interpretations
more than other domains are, then such interpretations may also be more common among
individuals who are high-achieving in math than among other individuals. To test this prediction,
participants completed an Algebra Word Problem Task, and accuracies on that task were used to
classify participants as high or low math achievers. It was predicted that high math achievers
would be more likely than low math achievers to judge that rare exceptions falsify conditionals
in the Set-Based Truth Task (H1.3) and that rare exceptions are incompatible with conditionals
in the Collective Possibility Task (H1.4).

This study was preregistered at Open Science Foundation. The preregistration was
followed unless stated otherwise, and reported analyses were preregistered unless described as

exploratory. Stimuli, data, and analysis code are available at Open Science Foundation.

Method
Participants
Participants were 146 students (43 male, 103 female) at XXX University who
participated for psychology course credit. A target sample of 135 was determined based on
power analysis conducted using G*Power 3.1 (Faul et al., 2007), which indicated that after up to
5% exclusions, this sample would yield at least 80% power to detect the effects predicted in all
preregistered analyses (see preregistration for details). Eleven additional participants had signed
up when recruitment was stopped, so these extra participants were included in the sample.
Regardless of how one interprets a general conditional, it should be perceived as
incompatible with higher frequencies of exceptions at least as much as with lower frequencies of

exceptions. Thus, as preregistered, participants were excluded from analyses of a given task if,
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for either math or science trials, they answered “false” (on the Set-Based Truth Task) or “no” (on
the Collective Possibility Task) more often on trials involving 0%, 1%, or 10% exceptions than
on trials involving 50% or 90% exceptions. The numbers of participants excluded for this reason
were 4 and 7 for the Set-Based Truth Task and Collective Possibility Task, respectively.

Tasks and Materials

Set-Based Truth Task. In the math version of the task, participants were told that a
mathematician was using a computer program to test hypotheses about three types of numbers:
sun numbers, moon numbers, and star numbers. In the science version, participants were told that
a scientist was using DNA analysis to test hypotheses about three types of wumpa fruit: spiky,
rough, and squishy. On each trial, participants would see a hypothesis followed by output of the
computer program or DNA analysis. Participants were to judge whether the hypothesis was true
or false, assuming that the program or analysis output was true with absolute certainty.

The hypotheses were general conditionals such as “If a number is a sun number, then the
number is prime” and “If a wumpa is spiky, then it has green seeds.” The program or analysis
output indicated the relative frequencies of confirming cases and exceptions in percentage form,
such as “99% of sun numbers are prime; 1% of sun numbers are not prime” or “99% of spiky
wumpas have green seeds; 1% of spiky wumpas do not have green seeds.” There were six
conditionals—three for math and three for science—and five frequencies of exceptions: 0%, 1%,
10%, 50%, or 90%. Participants completed one trial for each combination of conditional with
exception frequency, for a total of 15 trials per domain.

Collective Possibility Task. In the math version of the task, participants were told that a
mathematician was considering various hypotheses about sun numbers, moon numbers, and star

numbers. In the science version, participants were told that a scientist was considering various
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hypotheses about spiky, rough, and squishy wumpa fruit. On each trial, participants would see
two hypotheses about one type of number or wumpa fruit. Participants’ task was to decide
whether it was possible for both hypotheses to be true at once. They were to answer “no” if the
hypotheses contradicted each other and “yes” otherwise.

On each trial, the first hypothesis was a general conditional like the ones presented in the
Set-Based Truth Task, and the second hypothesis was a statement about the relative frequencies
of confirming cases and exceptions. For example, in one trial involving math content, the
hypotheses were “If a number is a moon number, then the number is positive” and “99% of
moon numbers are positive; 1% of moon numbers are not positive.” In one trial involving
science content, the hypotheses were “If a wumpa is rough, then it tastes sweet” and “99% of
rough wumpas taste sweet; 1% of rough wumpas do not taste sweet.” As in the Set-Based Truth
Task, there were three conditionals per domain and five frequencies of exceptions (0%, 1%,
10%, 50%, 90%) per conditional, yielding 15 trials per domain.

Algebra Word Problem Task. This task consisted of 16 multiple choice items released
from the math portion of the eighth grade and twelfth grade versions of the National Assessment
of Educational Progress (NAEP). The task included 2, 9, and 5 items classifed by NAEP as

9% ¢

“easy,” “medium,” and “hard,” respectively. Cronbach’s alpha in this sample was .76. Mean
accuracy was .70 (SD = .20; chance = .20).
Procedure

Participants completed the math version of the Set-Based Truth Task and Collective
Possibility Task followed by the science version of the two tasks, or vice versa. Whether the

math tasks or science tasks were presented first was counterbalanced across participants. For a

given participant, the two tasks were presented in the same order for math and science, but the
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order of the two tasks was counterbalanced across participants. Within each version of each task,
the five trials relating to a given conditional were presented in a block. The order of these blocks,
and of trials within each block, was randomized for each participant.

The Algebra Word Problem Task was presented after the above tasks. Participants were
given paper and pencil, but were not allowed to use a calculator. Items appeared in a fixed order.

All tasks were presented on a desktop computer via Qualtrics. Instructions were delivered
orally by an experimenter. The experimenter was present during the Set-Based Truth Task and
Collective Possibility Task, but left the room during the Algebra Word Problem Task.
Results
Set-Based Truth Task

“False” responses on this task indicate a belief that a conditional is falsified by a certain
frequency of exceptions to it. Percent false responses on trials involving low but nonzero rates of
exceptions—that is, 1% or 10%—were submitted to ANOVA with domain (math or science) and
percent exceptions (1% or 10%) as within-participants factors. Consistent with H1.1 and as
shown in Figure 1A, “false” responses were more common for math than science conditionals
(81% vs. 70%), F(1, 141) = 18.5, p <.001, 175 =.017. “False” responses were also more common
when there were 10% than 1% exceptions (80% vs. 72%), F(1, 141) = 18.9, p <.001, ng = .009.
Finally, the effect of domain was greater for 1% exceptions (79% vs. 65%) than 10% exceptions

(84% vs. 76%), F(1, 141)=6.8, p = .010, 77;2] =.001. Planned contrasts found that the domain

effect was significant in both cases (1% exceptions: p <.001; 10% exceptions: p =.005).
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Figure 1. (A) Percent “false” responses on the Set-Based Truth Task and (B) Percent “no”

responses on the Collective Possibility Task, by Domain and Percent Exceptions (Study 1).

To test for effects of math achievement on how participants interpreted the conditionals,
participants were classified as high or low math achievers via a median split on accuracy on the
Algebra Word Problem task. Then, math achievement group was added as a between-participants
factor to the above ANOVA. Contrary to H1.3, no effects involving this factor were found,
ps > .49,

An individual who interprets general conditionals deterministically should respond “true”
on all trials involving 0% exceptions and “false” on all other trials. Exploratory analyses were
conducted to assess the prevalence of this response pattern. Separately for math and science, the

percentage of participants displaying the above pattern was calculated and compared to 50%

4 Experience in math education might affect interpretations of conditionals in the manner originally predicted for
math achievement, because interpretations that are consistent with formal logic are often emphasized in higher-level
math courses (I thank an anonymous reviewer for this suggestion). Exploratory analyses were conducted to test this
possibility. Participants in this study and Study 2 were classified into two groups based on whether their
undergraduate major typically involves substantial coursework in math or logic (e.g., mathematics, physics,
chemistry, engineering, economics, finance, philosophy, etc.) or not. The ANOVAs reported here and in the next
subsection were rerun with the aforementioned group classification replacing math achievement as a factor, and the
ANOVAs reported in Study 2 were rerun with group classification added as a factor. No effects involving the group
classification were found in any analysis.
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using a one-sample binomial test. For math, more than half of participants (75%, 95% CI =
[67%, 829%]) displayed the above pattern, p <.001. For science, the pattern was less common,
but still accounted for over half of participants (62%, 95% CI =[53%, 70%]), p = .005.
Collective Possibility Task

“No” responses on this task indicate a belief that a conditional and a certain frequency of
exceptions to it are mutually contradictory. Percent “no” responses on trials involving 1% or
10% exceptions were submitted to ANOVA with domain and percent exceptions as within-
participants factors. The data relevant to this analysis are shown in Figure 1B. The main effect of
domain was not significant, p = .17. However, domain interacted with percent exceptions, F(1,
138) = 8.5, p =.006, nf] =.001. Planned contrasts found that “no” responses were more common
for math than science conditionals for 1% exceptions (77% vs. 70%, p = .019), consistent with
H1.2, but not for 10% exceptions (81% vs. 80%). Finally, “no” responses were more common
when there were 10% than 1% exceptions, F(1, 138) =15.1, p <.001, 775 =.007.

As for the Set-Based Truth Task, math achievement group was added as a factor to the
ANOVA to to test for effects of math achievement on interpretations of the conditionals.
However, contrary to H1.4, no effects involving this factor were found, ps > .08.

Finally, as for the Set-Based Truth Task, exploratory analyses were conducted to assess
the prevalence of deterministic response patterns. For the Collective Possibility Task, the
deterministic pattern was responding “yes” on all trials involving 0% exceptions and “no” on all
other trials. This pattern accounted for a majority of participants in both math (68%, 95% CI =

[59%, 75%], p < .001) and science (63%, 95% CI = [55%, 71%], p = .005).
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Discussion

The Set-Based Truth Task revealed more deterministic interpretations of general
conditionals in math than in science, as predicted. Study 2 attempted to replicate this finding.

A similar effect of domain appeared in the Collective Possibility Task, but the effect
appeared weaker and was statistically significant only when exceptions were specified to be
extremely rare (1%) rather than only somewhat rare (10%). A possible explanation is that the
Collective Possibility Task is a relatively imprecise measure of how individuals interpret general
conditionals. The instruction to judge whether a conditional and a statement about frequency
information could both be true at once left open whether participants should focus on the
conditional first and the frequency information second, or vice versa. This ambiguity may have
increased between-participant variability. Further, participants who focused on the frequency
information first may not have processed the conditional deeply. To address these possible
issues, a revised version of this task was developed for Study 2.

Both tasks revealed substantial individual differences in interpretations of general
conditionals, with most participants displaying deterministic interpretations but a substantial
minority displaying probabilistic interpretations. These results converge with several previous
studies that found considerable variation in how people interpret general conditionals (Goodwin,
2014, Experiments 7 and 8; Wang et al., 2022; Wang & Yao, 2018). However, no evidence was
found that the above differences were related to differences in math achievement. This null result
contrasts with findings of Evans et al. (2007), who found that individuals higher in general
cognitive ability were more likely to judge singular conditionals to be rendered true by
confirming cases and false by exceptions. Individual differences in interpretations of conditionals

may relate more to general cognitive ability than to math-specific ability.
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Study 2

Participants in Study 2 completed the same Set-Based Truth Task as in Study 1, and a
revised version of the Collective Possibility Task called the Possibility of Exceptions Task. In
this task, participants were again presented a general conditional followed by information about
the frequency of exceptions. However, rather than being asked whether both statements could be
true at once, participants were told to assume that the conditional was true and to judge whether,
given the truth of the conditional, the frequency information was possible. This change was
intended to simplify the task by encouraging participants to attend to one statement at a time and
to decrease irrelevant variability by encouraging all participants to consider the statements in the
same order—first the conditional, then the frequency information.

It was predicted that in the Set-Based Truth Task, conditionals would be perceived as
falsified by rare (1% or 10%) exceptions more for math than science, as in Study 1 (H2.1).
Further, it was predicted that the Possibility of Exceptions Task would reveal an effect analogous
to the one predicted for the Collective Possibility Task in Study 1. That is, given the truth of a
conditional, rare exceptions to it would be considered impossible more often for math than
science (H2.2).

Exploratory analyses of both tasks in Study 1 found that more than half of participants
displayed purely deterministic responses—that is, responding “true” or “yes” on trials involving
0% exceptions and “false” or “no” on all other trials. Study 2 aimed to replicate this finding for
math conditionals using preregistered analyses. Specifically, it was predicted that most
participants would display deterministic responses for math conditionals in both the Set-Based
Truth Task (H2.3) and the Possibility of Exceptions Task (H2.4). Although this pattern was also

found for science conditionals in Study 1, an analogous prediction was not made for science
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conditionals, because finding deterministic responses to be dominant for science conditionals
would neither support nor undermine the central hypothesis of this study.

Like Study 1, Study 2 was preregistered, the preregistration was followed unless stated
otherwise, reported analyses were preregistered unless described as exploratory, and stimuli,

data, and analysis code are available at Open Science Foundation.

Method
Participants

Participants were 117 adults (51 men, 61 women, 5 other) recruited through Prolific, an
online recruitment and survey platform. To increase comparability of the results to those of
Study 1, the sample was restricted to individuals currently residing in the US or UK, aged 18 to
30, and enrolled in college or university. A target sample of 116 was determined based on a
priori power analysis conducted using G*Power 3.1 (Faul et al., 2007), which indicated that this
sample, after up to 10% exclusions, would yield at least 80% power to detect all predicted effects
(see preregistration for details). One extra participant was recruited due to an administrative error
and was included in the final sample.

As in Study 1, for each task, participants were excluded from analyses of the task if, on
either math or science trials, they answered “false” or “no” more often on trials involving rare
(0%, 1%, or 10%) than frequent (50% or 90%) exceptions. The numbers of participants excluded
for this reason were 6 for the Set-Based Truth Task and 8 for the Possibility of Exceptions Task.
Tasks and Materials

Set-Based Truth Task. This task was identical to the Set-Based Truth Task in Study 1,

except for minor changes to the wording of the instructions.
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Possibility of Exceptions Task. This task was identical to the Collective Possibility Task
in Study 1 except as follows. First, the conditional presented on each trial was not described as a
hypothesis; instead, participants were instructed to suppose that the conditional was true. Second,
the statement describing frequency information was also not described as a hypothesis; instead,
participants were asked whether it was possible for that statement to be true, given that the
conditional was true. The instructions preceding the task were revised to reflect these changes.
Procedure

Participants completed the math version of the Set-Based Truth Task and Possibility of
Exceptions Task followed by the science version of the two tasks, or vice versa. The order of
tasks, and of trials within each task, was varied across participants in the same way as in Study 1.
All tasks were presented online via Qualtrics. Participants accessed the study through their own
electronic devices and completed the study without experimenter supervision.
Results
Set-Based Truth Task

As in Study 1, percent “false” responses on trials involving 1% or 10% exceptions were
submitted to ANOVA with domain and percent exceptions as within-participants factors.
Consistent with H2.1 and as shown in Figure 2A, “false” responses were more common for math
than science conditionals (72% vs. 62%), F(1, 110) = 9.8, p =.002, ng = .010. This effect was
larger for 1% than 10% exceptions (68% vs. 54% and 77% vs. 71% respectively), F(1, 110) =
5.5, p=.021, ng = .002. Contrasts performed on the ANOVA output found the effect of domain
to be significant for 1% exceptions, p <.001, but not for 10% exceptions, p = .14. Finally,
“false” responses were more common for 10% than 1% exceptions (74% vs. 61%), F(1, 110) =

26.5, p <.001, r]é =.021.
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Figure 2. (A) Percent “false” responses on the Set-Based Truth Task and (B) Percent “no”

responses on the Possibility of Exceptions Task, by Domain and Percent Exceptions (Study 2).

63% of participants (95% CI = [53%, 72%]) displayed purely deterministic responses for
math conditionals, that is, they responded “true” when the frequency of exceptions was 0% and
“false” otherwise. Consistent with H2.3, this proportion was greater than 50% by a one-sample
binomial test, p = .008. As an exploratory analysis, the analogous proportion for science
conditionals (49%, 95% CI = [39%, 58%]) was compared to 50% by a one-sample binomial test.
The result was not significant, p = .85.

Possibility of Exceptions Task

“No” responses on this task indicate a belief that, given the truth of a conditional, a
certain frequency of exceptions to it is impossible. Percent “no” responses on trials involving 1%
or 10% exceptions were submitted to ANOVA with domain and percent exceptions as within-
participants factors. Consistent with H2.2 and as shown in Figure 2B, “no” responses were more
common for math than science conditionals (76% vs. 62%), F(1, 108) = 15.7, p <.001, né
=.025. This effect was larger for 1% than 10% exceptions (72% vs. 54% and 80% vs. 71%

respectively), F(1, 108) =27.0, p <.001, 77; =.020. Planned contrasts found the effect of domain
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to be significant in both cases, p <.001 for 1% exceptions and p =.018 for 10% exceptions.
Finally, “no” responses were more common for 10% than 1% exceptions (75% vs. 63%), F(1,
108) =7.6, p =.007, ng = .003.

63% of participants (95% CI = [54%, 72%) displayed purely deterministic responses for
math conditionals, that is, they responded “yes” when the frequency of exceptions was 0% and
“false” otherwise. Consistent with H2.4, this proportion was greater than 50% by a one-sample
binomial test, p = .007. An exploratory analysis found no evidence that the analogous proportion
for science conditionals (45%, 95% CI = [35%, 55%]) differed from 50%, p = .34.

Discussion

Results from the Set-Based Truth Task replicated the Study 1 finding that rare exceptions
were considered to falsify general conditionals more in math than science. The Possibility of
Exceptions task yielded converging results indicating that the truth of a general conditional was
thought to preclude even rare exceptions to it more in math than in science. Results from the
Possibility of Exceptions Task in Study 2 seemed stronger than those from the Collective
Possibility Task in Study 1, suggesting that the former task may be a more sensitive measure of
how individuals interpret conditionals.

Both tasks in Study 2 found that over half of individuals interpreted math conditionals
strictly deterministically, thus replicating in preregistered analyses the results of analogous
exploratory analyses in Study 1. In contrast, while Study 1 similarly found that over half of
individuals interpreted science conditionals strictly deterministically, this was not the case with
either task in Study 2. This null result is consistent with the general point that general

conditionals are more likely to be interpreted deterministically in math than in science.
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General Discussion

Two studies investigated adults’ interpretations of general conditionals involving math
and science. In both studies, participants indicated that a conditional was falsified by rare
exceptions to it more often when the conditional involved math than science. Similarly,
participants claimed in Study 1 that it was impossible for a conditional to be true and at the same
time for rare exceptions to it exist, and in Study 2 that if a conditional was true it was impossible
for rare exceptions to it to exist, more often when the conditionals involved math than science.
Below, I discuss implications of these findings for how people interpret conditionals in math,
theories of conditional reasoning, and individual differences in conditional reasoning.
Implications for How People Interpret Conditionals in Math

The present findings suggest that general conditionals elicit more deterministic
interpretations in math than in other domains. Of all domains to which math might have been
compared, science is a relatively stringent benchmark for comparison. Both are domains in
which certainty, and related attributes such as precision and rigor, are highly valued.
Consequently, one might expect deterministic interpretations of conditionals to be more common
in both of these domains than in everyday life, although this expectation could not be confirmed
in the present study because everyday conditionals were not included in it. If so, the present
findings suggesting that such interpretations are even more common for mathematical than
scientific conditionals are a testament to the unique association of math with certainty.

The manipulation used to convey mathematical or scientific context was fairly minimal.
The conditionals involved fictional categories about which participants could not have relevant
prior knowledge. The tasks did not require attention to the content of the conditionals. The tasks

were performed in settings (a psychology laboratory in Study 1, an online survey in Study 2) that
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are not usually associated with either math or science. Nevertheless, the different cover stories
provided to participants (e.g., stories involving a mathematician or a scientist testing
hypotheses), differences in the types of categories that appeared in the conditionals (e.g.,
“numbers” versus “fruit”), and differences in the features attributed to these categories (e.g.,
“prime” or “sour’”’) were apparently sufficient to convey different contexts and thereby elicit
different interpretations of the conditionals.

The present study joins many others in suggesting that interpretations of conditionals
vary with context (Cariani & Rips, 2017; Dieussaert et al., 2002; Fugard et al., 2011; Johnson-
Laird & Byrne, 2002; Markovits et al., 2019; Stenning & van Lambalgen, 2004). Most pertinent,
like the present study, Wang and Yao (2018) proposed that individuals adopt either deterministic
or probabilistic interpretations of general conditionals depending on context. However, their
findings and the present ones differ in the details. For example, their Experiment 2 found that
most participants considered a conditional to be false if there were any exceptions to it, but also
to be true if there was one exception per 99 confirming cases. Wang and Yao (2018) concluded
that frequency information creates a concrete context that elicits probabilistic interpretations of
conditionals. In the present study, though, most participants consistently displayed deterministic
interpretations of math conditionals even though frequency information was presented. (Over
half also did so for science conditionals in Study 1, but not in Study 2.) Evidently, factors other
than frequency information can affect whether conditionals are interpreted deterministically or
probabilistically; domain appears to be one such factor.

What could be the source of the domain effects found in the present study? As described
in the Introduction, conditionals could be interpreted more deterministically in math than in other

domains because (1) such conditionals are rarely accompanied by frequency information; (2)
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authoritative sources of mathematical information, such as textbooks and teachers, are
understood by math learners to intend a deterministic interpretation; or (3) mathematical
conditionals are known to be provable by deduction, and deductive proof is known to preclude
the existence of any exceptions whatsoever. Explanation (1) could apply in some cases, but
cannot account for the present findings because frequency information was presented together
with all conditionals in the present study. Explanations (2) and (3) are both compatible with the
present findings (though see the section regarding individual differences below for possible
difficulties with explanation (3)).
Implications for Theories of Conditional Reasoning

The present findings show that general conditionals are interpreted differently as a
function of the domain to which they belong. Further, such domain effects can occur even when
individuals have no prior knowledge about the categories to which the conditionals refer, and
even if relevant frequency information is equally available in different domains. These results do
not necessarily support any theory of conditionals over others, but rather constitute phenomena
that each theory must explain. Theories that assume general conditionals are interpreted
deterministically by default must explain how such interpretations could be less common in
some domains than in math; theories that assume general conditionals are interpreted
probabilistically by default must explain how such interpretations could be less common in math
than in other domains. Below, I consider how several theories of conditional reasoning might
accommodate the present findings.

First, the theory of mental models assumes that the core meaning of a conditional implies
the impossibility of exceptions (Johnson-Laird, 1983; Johnson-Laird et al., 2015; Johnson-Laird

& Byrne, 2002; Khemlani et al., 2018). Context may modify this core meaning through
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modulation, which can yield interpretations that tolerate exceptions. Thus, modulation could
cause conditionals to be interpreted less deterministically in some contexts than in the core
meaning. Importantly, however, modulation depends on “general knowledge and knowledge of
context—which is represented in explicit models of what is possible” (Johnson-Laird & Byrne,
2002, p. 673). It is therefore unclear whether modulation can modify the interpretations of
conditionals regarding categories about which individuals have no prior knowledge about what is
or is not possible, as was in the case in the present study. Perhaps, the ways in which
interpretations of conditionals are typically modulated in a given domain when familiar content
is involved may be extended to conditionals in the same domain even when unfamiliar content is
involved. Future research might test this possibility.

Second, according to suppositional accounts (Evans et al., 2005; Evans & Over, 2004;
Over & Cruz, 2023), one’s degree of belief in “If p, then ¢” is equal to one’s estimate of P(g|p).
If asked whether a general conditional is true given a certain value for P(¢g|p) (as in the Set-Based
Truth Task) or whether a certain value for P(g|p) is possible given that a conditional is true (as in
the Possibility of Exceptions Task and (less directly) the Collective Possibility Task), one
presumably answers “yes” if the value given for P(g|p) exceeds some threshold and “no”
otherwise (Wang et al., 2022). This threshold could vary with context (e.g., Wang & Yao, 2018).
Thus, the present findings could be explained by assuming the threshold value to be higher in
math than other domains. A challenge in this framework is to provide a mechanism by which the
threshold value can be affected by a conditional’s domain.

Third, according to inferentialist accounts, “If p, then ¢” is considered true when there a
sufficiently strong inferential connection from p to g (Douven et al., 2018, 2020; Skovgaard-

Olsen et al., 2016). This connection can be statistical (i.e., an inductive connection), so the
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domain effects found in the present study could reflect domain-related differences in threshold
values as described above. However, the inferential connection alternatively can reflect p being
the best explanation for ¢ (i.e., an abductive connection) or p logically implying ¢ (i.e., a
deductive connection). These possibilities suggest another explanation of the present findings,
namely that domain constrains the types of inferential connection that conditionals are
considered to represent, such that conditionals in general may express inductive, abductive, or
deductive connections, but conditionals in math express deductive connections exclusively.
Because deductive connections preclude exceptions, whereas inductive and abductive
connections do not, the above assumption could explain the domain effects found in the present
study.

Finally, dual-strategy approaches (Markovits et al., 2012, 2017; Verschueren et al., 2005)
maintain that individuals evaluate conditional inferences in two ways, one heuristic and relying
on probabilistic information, the other analytic and relying on generation of concrete
counterexamples. This distinction between inference strategies is analogous to the present
study’s distinction between probabilistic and deterministic interpretations of conditionals. To
explain the present findings, we might assume that the likelihood of adopting a given
interpretation (probabilistic or deterministic) in a given domain depends on how frequently the
analogous inference strategy (heuristic or analytic) is used in that domain. More specifically, if
an analytic inference strategy is used in math more often than in other domains, individuals
might consequently adopt a deterministic interpretation of conditionals more in math than in

other domains.
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Implications for Individual Differences in Conditional Reasoning

Interpretations of conditionals seem to vary substantially not only among domains, but
also among individuals (Evans et al., 2007; Oberauer et al., 2007; Skovgaard-Olsen et al., 2019).
For example, in Goodwin’s (2014) Experiment 8, when asked to evaluate general conditionals
with respect to sets in which P(—g|p) was 10%, most participants judged the conditionals to be
false, but 9% and 31% of participants said the conditionals were true or neither true nor false,
respectively. When asked a similar question in Wang and Yao’s (2018) Experiment 2, again
most participants judged the conditionals to be false, but 10% to 18% of participants said the
conditionals were true (the “neither” option was not offered in this experiment). Thus, even in
situations that typically elicit deterministic interpretations of general conditionals, substantial
minorities of individuals still seem to adopt probabilistic interpretations thereof.

The same was true in the present study, in fact to a greater degree than in the studies just
described. When evaluating conditionals when P(—¢|p) was said to be 10%, the conditionals
were perceived as true by 20% and 26% of participants in Studies 1 and 2, respectively. These
percentages were only slightly lower—16% and 23% —for conditionals involving math content.
Consistent with these data reflecting probabilistic interpretations by some participants, both math
and science conditionals were considered falsified more when P(—¢|p) was 10% than when it
was 1%, although these two situations are equally falsifying according to a deterministic
interpretation of conditionals.

This result dovetails with findings from the math education literature, indicating that

some learners do not consider deductive proof to establish with certainty that a claim is true in all

5 In Study 1, the percentages of “false” responses on the Set-Based Truth Task for 10% and 1% exceptions were
84% and 79% for math conditionals and 76% and 65% for science conditionals. In Study 2, the corresponding
percentages were 77% and 68% for math conditionals and 71% and 54% for science conditionals.
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cases. For example, in qualitative interviews with high school students in reference to empirical
arguments for and deductive proofs of statements about geometry, Chazan (1993) identified
several students who believed that “deductive proof provides no safety from counterexamples,” a
belief exemplified by one student who claimed “there is no way to prove a statement for
everything” (p. 372). Similarly, some secondary math teachers consider that contravening
evidence may exist even for statements that have been proven deductively (Knuth, 2002), and
even doctoral students in math do not always derive certainty from deductive proof (Weber et al.,
2022). If some individuals believe that exceptions may exist even for deductively proven
statements, it is not surprising that some think so for statements that have not been proven but
merely asserted by an experimenter. An interesting question for future research is whether a
belief that exceptions are always possible constitutes a stable dimension of individual differences
and, if so, what other factors drive such differences.
Conclusion

Perfect certainty is rare in everyday life, but not in math. This distinctive characteristic of
math has consequences for how people reason, specifically for how they interpret conditionals.
Although math may be unique in its association with certainty, it is likely not unique in eliciting
interpretations of logical statements that differ from the interpretations prevalent in other
domains. Domain effects on interpretations of statements can be driven not only by individuals’
knowledge about the statements’ specific content, but also by expectations associated with the
entire domain. Future research should explore such effects for other domains as well.
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