

In Situ Oxidation of Reduced Graphene Oxide Membranes by Peracetic Acid for Dye Desalination

Erda Deng¹, Kai Chen¹, Aubrey E. Quigley², Mengqi Yuan¹, Lingxiang Zhu^{3,4}, Zachary T.

Kralles⁵, Benny D. Freeman², Ning Dai^{*5}, and Haiqing Lin^{*1}

¹ Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

² John J. McKetta Jr. Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA

³ U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, 15236, USA

⁴ NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

⁵ Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

* Corresponding authors. Tel: 716-645-4015, Email: ningdai@buffalo.edu (N. Dai); Tel: +1-716-645-1856, Email: haiqingl@buffalo.edu (H. Lin)

19

21 **Abstract**

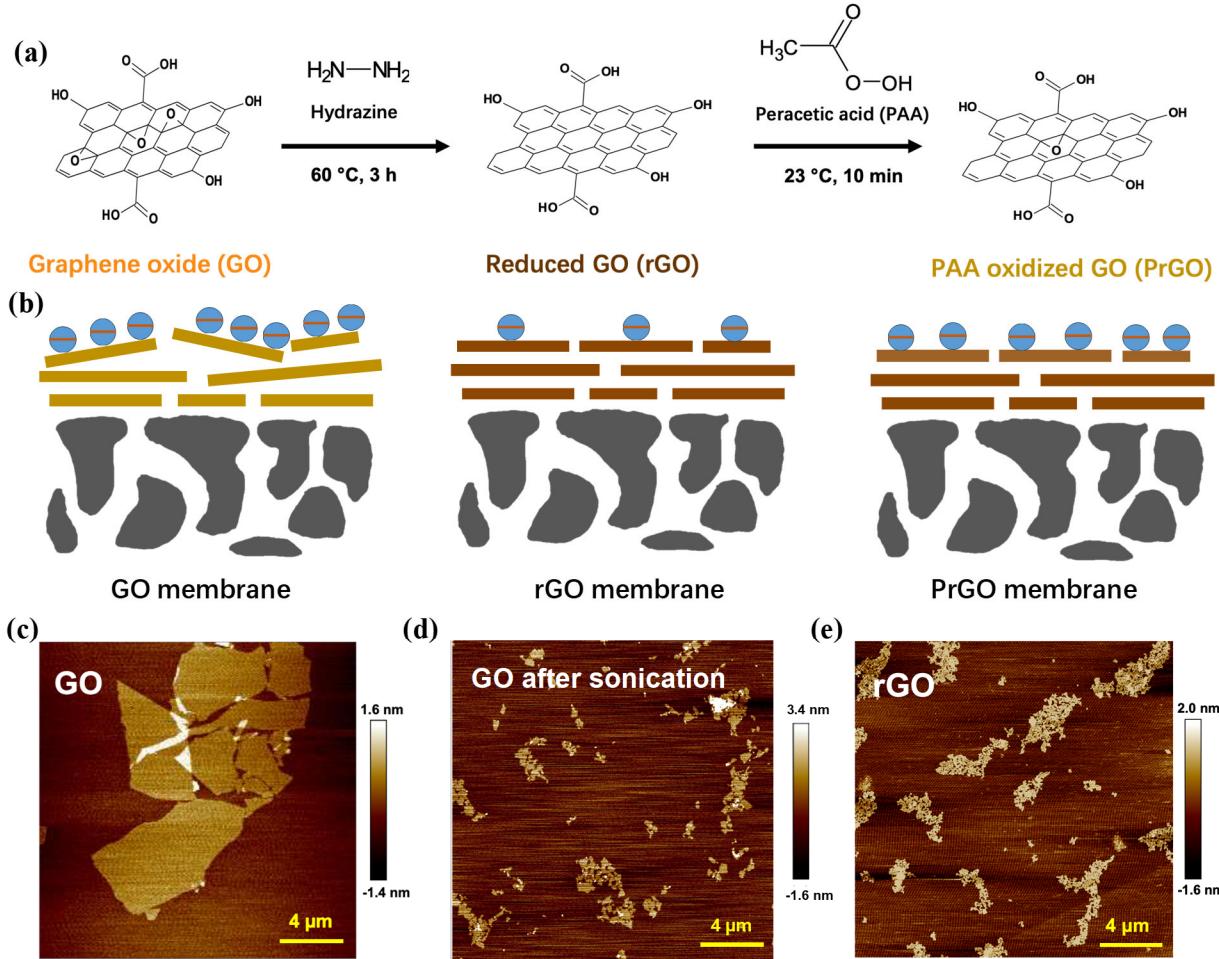
22 Graphene oxide (GO) membranes with tunable interlayer spacings are of interest for dye removal
23 from salty textile wastewater, and the membranes are often reduced to improve their stability,
24 which inevitably lowers water permeance. Herein, we demonstrate that reduced GO (rGO)
25 membranes can be facilely modified using peracetic acid (PAA) *in situ* to dramatically enhance
26 water permeance while retaining dye rejection. Specifically, PAA-modified membranes (PrGO)
27 are synthesized by vacuum-filtering hydrazine-reduced rGO nanosheets onto Nylon substrate and
28 then exposing them to PAA solutions. The effects of the rGO layer thickness, PAA content, and
29 PAA exposure time on the membrane chemistry, nanostructures, and salt/dye separation properties
30 are thoroughly examined. For example, the PAA oxidation of a 100 nm-thick rGO membrane for
31 10 min increases water permeance by 180%, from 35 to 93 liter m⁻² h⁻¹ bar⁻¹, and decreases Na₂SO₄
32 rejection from 10% to 3.3% while retaining the rejection of Congo red at \approx 99.7%. The PrGO
33 membranes exhibit stable water permeance and > 99% dye rejection in multi-cycle tests in a
34 crossflow system, surpassing state-of-the-art GO membranes and showcasing their potential for
35 practical applications.

36

37 **Keywords:** Reduced graphene oxide membrane; Peracetic acid; *In situ* oxidation; Dye
38 desalination

39

40 **1. Introduction**


41 Textile industries release significant quantities of wastewater containing various dyes and
42 salts (such as NaCl or Na₂SO₄) that are used to improve dyeing efficiency [1, 2]. Membrane
43 technology, with high energy efficiency, low cost, and excellent scalability, has attracted
44 substantial interest in recovering water and salts and mitigating dye release into the environment
45 [3-5]. Membranes should have high permeance for water and salts and great dye rejection.
46 However, existing commercial membranes optimized for other applications are not suitable for
47 treating textile wastewater. For example, polyamide-based nanofiltration (NF) membranes show
48 high rejection of both Na₂SO₄ and dyes [6]; ultrafiltration (UF) membranes can achieve high water
49 and salt permeance but have low dye rejection [7]. Ideal membranes should have pore sizes larger
50 than hydrated ions (6 - 8 Å) to attain high water and salt permeance but smaller than dye aggregates
51 (10 - 100 nm) in aqueous solutions to reject dyes [6, 8].

52 Two-dimensional (2D) graphene oxide (GO) nanosheets have emerged as an appealing
53 platform for designing membranes with desirable size-sieving channels [9-11]. The interlayer
54 spacing is governed by the π - π interactions between adjacent nanosheets [8, 10, 12], and
55 importantly, it can be manipulated by rich functional groups on GO nanosheets (including
56 hydroxyl, carboxy, and epoxy groups). As GO nanosheets are hydrophilic and can be dispersed in
57 aqueous solutions, directly deposited GO layers can be easily peeled off from the substrate during
58 underwater operation. To overcome their underwater instability, the GO sheets are often cross-
59 linked using polyamines [4, 13-16] or reduced thermally [10, 13] to improve their hydrophobicity
60 and stability in water [17, 18]. Particularly, GO nanosheets can be chemically reduced using
61 hydrazine [19], hydriodic acid [20], and vitamin C [21]. Regardless of the methods used to improve
62 GO stability, the interlayer spacing of nanosheets is often decreased [22], decreasing water and

63 salt permeance. There is a delicate balance between the degree of GO reduction and the associated
64 trade-off between water and salt permeance and dye rejection because the degree of reduction may
65 not be easily manipulated during the one-step modification [23]. On the other hand, reduced GO
66 (rGO) nanosheets can be reversibly oxidized to optimize various properties [23, 24], such as
67 thermoelectric properties [25].

68 Herein, we demonstrate a facile approach to modify rGO membranes *in situ* with a model
69 oxidant to fine-tune interlayer spacings and improve salt/dye separation properties (Fig. 1). The
70 oxidant used in this study, peracetic acid (PAA, CH₃COOOH), is an organic peroxide that has
71 been used for disinfecting municipal wastewater and food washing water [26, 27]. PAA can
72 hydrolyze to produce hydrogen peroxide (H₂O₂) and acetic acid [28, 29], and it can react with C=C
73 bonds in rGO to reform epoxy groups [30-32]. Specifically, rGO membranes were prepared by
74 vacuum filtration of hydrazine-reduced GO nanosheets onto Nylon support and then treated with
75 PAA (100 - 500 ppm) *in situ* at \approx 23 °C for 10 min to form PrGO membranes with enhanced surface
76 negative charge and improved water and salt permeance while retaining great dye rejection. For
77 instance, exposure to 250 ppm PAA doubles water permeance while maintaining < 5% rejection
78 for NaCl and Na₂SO₄ and >99% rejection for various dyes, including Congo red (CR), direct red
79 80 (DR 80), and methyl blue (MB) with molecular weight ranging from 697 to 1373 g/mol. Overall,
80 the PrGO membranes exhibit excellent dye removal performance for continuous crossflow
81 operation, demonstrating their potential for practical applications.

82

83
84 **Fig. 1.** Preparation of PrGO_x/y membranes, where x and y represent the estimated rGO layer
85 thickness (nm) and PAA concentration (ppm). (a) Chemical synthesis of PrGO, including
86 hydrazine reduction of GO nanosheets and PAA oxidation. (b) Schematic of GO, rGO, and PrGO
87 membranes. Atomic force microscope (AFM) images of (c) GO nanosheets, (d) GO nanosheets
88 after ultra-sonication, and (e) rGO nanosheets.

89

90 **2. Experimental**

91 **2.1. Materials**

92 Natural graphite flakes (99%, 325 mesh), H₂O₂ (30 wt% in H₂O), H₂SO₄ (99%), KMnO₄
93 (\geq 99.0%), CR (697 Da), DR 80 (1373 Da), PAA (32% in acetic acid, containing 5.4% H₂O₂ in
94 the equilibrium mixture), NaCl (\geq 99.0%), Na₂SO₄ (\geq 99.0%), and poly(ethylene glycol) (PEG, 2,
95 5, 10, 20, 35, and 100 kDa) were purchased from Sigma-Aldrich Corporation (St. Louis, MO).
96 HCl (1.0 M) was obtained from Supelco (Bellefonte, PA). MB (800 Da) and isopropanol (IPA,

97 99%) were acquired from Fisher Scientific International (Pittsburgh, PA). Nylon support (a
98 microfiltration (MF) membrane with a pore size of ~200 nm) was supplied by Cytiva
99 (Marlborough, MA). The physical properties of the dyes are also recorded in Table S1.

100 **2.2. Preparation of GO, rGO, and PrGO membranes**

101 GO nanosheets were prepared from graphite flakes using a modified Hummer's method
102 [4], and then they were reduced by hydrazine at 60 °C and pH = 10 after a probe ultrasonication
103 [19, 33]. The obtained rGO nanosheets were fabricated into membranes (9.1 cm²) on Nylon
104 supports by vacuum filtration, and the amount of rGO deposited on the support can be used to
105 estimate its theoretical thickness (x, nm) [19, 20]. The rGOx membranes were then exposed to
106 PAA aqueous solutions (100 - 500 ppm) for 10 min before washing with deionized (DI) water
107 (Fig. S1). The membranes were masked with impermeable plastic films to leave an active area of
108 2.9 cm² before being immersed in water prior to use.

109 **2.3. Characterization of nanosheets and membranes**

110 The chemical structures of rGO and PrGO membranes were characterized by a Vertex 70
111 FTIR spectrometer (Bruker, Billerica, MA) and a Raman spectrometer (Renishaw InVia, U.K.).
112 The elemental composition of selective layers was analyzed using a PHI5000 VersaProbe II X-ray
113 photoelectron spectroscopy (XPS, Physical Electronics Inc., Chanhassen, MN). Zeta potential was
114 determined using a SurPASS 3 Surface Zeta Potential Analyzer (Anton Paar, Austria) with
115 Ag/AgCl electrodes and a 0.01 M KCl electrolyte solution. The pH of the electrolyte solution was
116 adjusted to 11 by adding a 0.05 M NaOH solution. Zeta potential measurements were taken in pH
117 increments of ~0.5 from 11 to 3 through auto-titration with a 0.05 M HCl solution. The membrane
118 surface was characterized for hydrophilicity using a Rame-Hart 190 contact angle goniometer
119 (Succasunna, NJ).

120 Membrane surface roughness was obtained using an AFM (Bruker Dimension Icon with
121 ScanAsyst, Bruker, Germany) in air tapping mode. Surface and cross-sectional images were taken
122 by a focused ion beam (FIB) scanning electron microscope (SEM, Carl Zeiss, Germany). The d -
123 spacing of selective layers was characterized using an X-ray diffractometer (XRD, Ultima IV
124 diffractometer, Rigaku, Japan) with Cu K α radiation ($\lambda = 1.54 \text{ \AA}$).

125 The sizes of dye aggregates in the aqueous solutions were determined using dynamic light
126 scattering (DLS, Zetasizer Lab, Malvern, UK). Dye concentrations were determined by a Vernier
127 UV-vis spectrophotometer (Vernier Software & Technology, Beaverton, OR).

128 Water permeance (A_W , liter $\text{m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$ or LMH/bar) was determined using a dead-end
129 filtration cell (HP4750, Sterlitech, Kent, WA) at a feed pressure of 1 bar. The A_W is calculated
130 using Eq. 1 [34]:

$$131 A_W = \frac{J_W}{\Delta p} = \frac{1}{A_m \cdot \Delta p} \frac{dV}{dt} \quad (1)$$

132 where J_W is steady-state water flux (LMH), Δp is transmembrane pressure (bar), A_m is active
133 membrane area (cm^2), and dV/dt is permeate flow rate (L h^{-1}).

134 The rejection (R , %) of dyes, salts, and PEGs can be calculated using Eq. 2:

$$135 R_i = \left(1 - \frac{C_{P,i}}{C_{F,i}}\right) \times 100\% \quad (2)$$

136 where C_F and C_P are the solute concentrations in the feed and permeate, respectively. The subscript
137 i represents D for dyes, S for salts, and PEG for PEGs. The salt and PEG concentrations were
138 determined using a conductivity meter and a total organic carbon (TOC) analyzer (Shimadzu,
139 Japan), respectively.

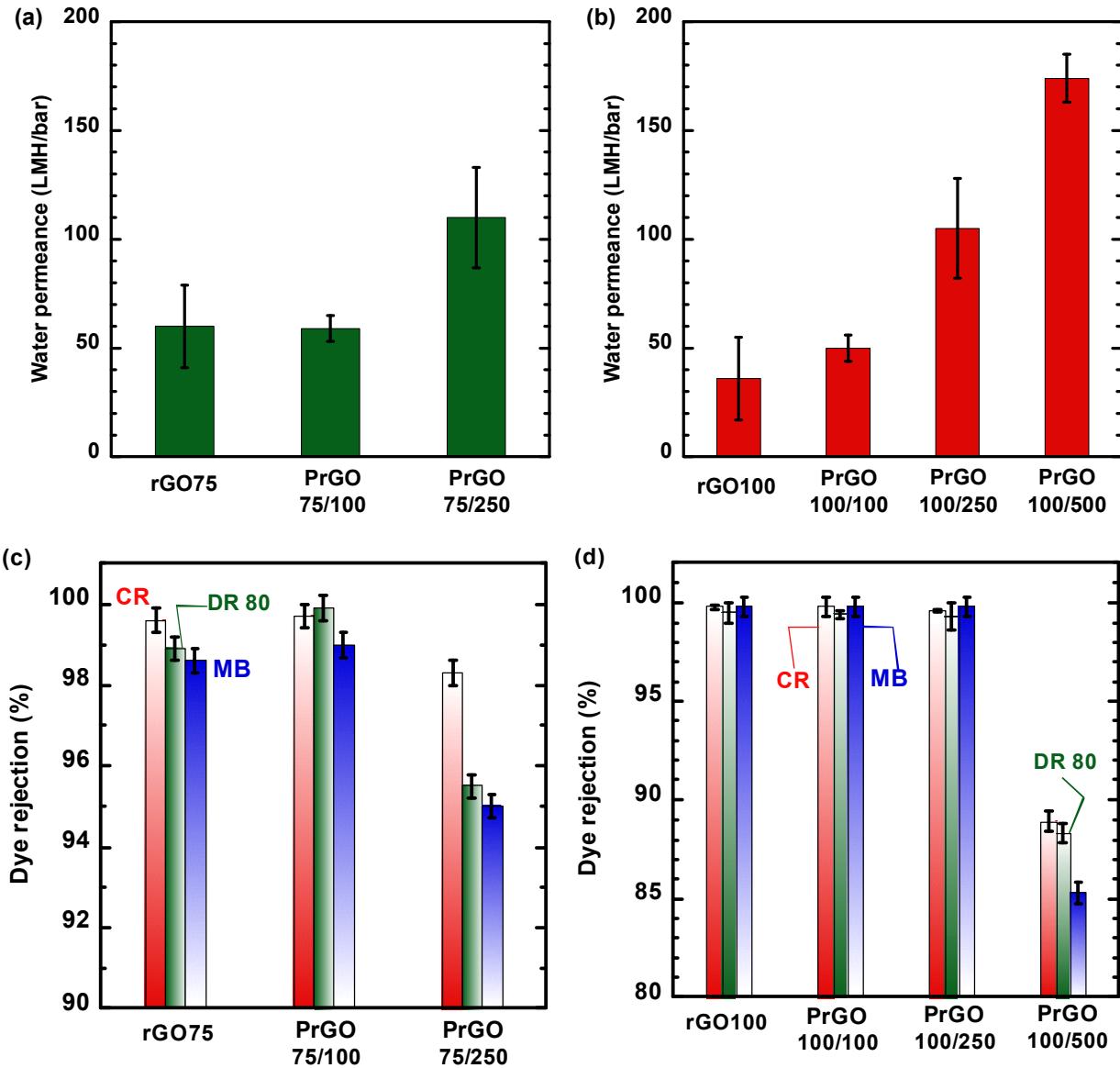
140 The molecular weight cut-off (MWCO) of membranes was evaluated using 1 g/L PEG
141 solutions, and it is defined as the molecular mass (M , Da) of PEG with 90% rejection. The

142 membrane pore size (a , nm) equals the Stokes radius of the PEG with 90% rejection and is given
143 by [34, 35]:

144
$$a = 16.73 \times 10^{-3} M^{0.557} \quad (3)$$

145 The salt/dye separation factor (α) is calculated using Eq. 4:

146
$$\alpha = \frac{C_{P,S}/C_{F,S}}{C_{P,D}/C_{F,D}} = \frac{1-R_S}{1-R_D} \quad (4)$$

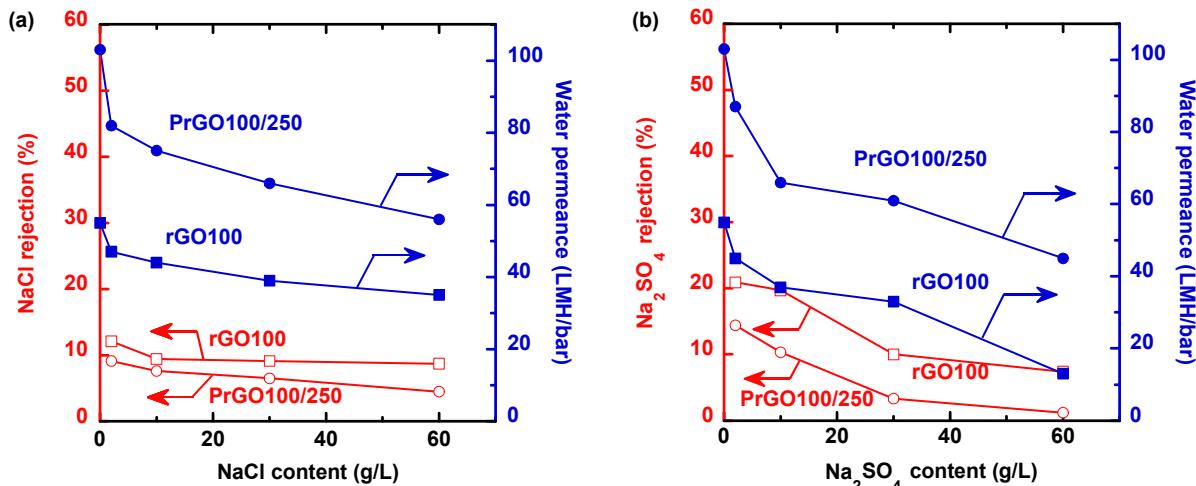

147

148 **3. Results and discussion**

149 **3.1. Enhanced water permeance by PAA exposure**

150 We wish to first highlight the unexpected increase in water permeance by PAA exposure.
151 Fig. 2a,b shows the impact of PAA treatment conditions on membrane performance. Treatment by
152 100 ppm PAA does not substantially alter the water permeance or dye rejection for the membranes
153 with 75 or 100 nm rGO layers; however, 250 ppm PAA treatment roughly doubles and triples the
154 water permeance for these membranes, respectively. The PrGO100/250 exhibits water permeance
155 of 105 ± 13 LMH/bar and rejections of CR, DR 80, and MB greater than 99.5% (Fig. 2d). However,
156 the PrGO75/250 membrane shows CR rejection of ~98% and DR 80 and MB rejection of < 96%
157 (Fig. 2c) likely attributed to the formation of defects. Fig. S2 also confirms that increasing the rGO
158 layer thickness decreases pure water permeance and increases dye and salt rejection, partially
159 because of eliminated defects.

160 For rGO100, 100 or 250 ppm PAA treatment has no impact on dye rejection; >99.5%
161 rejection is maintained for CR, DR 80, and MB (Fig. 2d). Further increasing PAA concentration
162 to 500 ppm (PrGO100/500) leads to <90% rejection for all dyes because of defect formation as
163 evidenced in the SEM image in Fig. 5e. Overall, the PrGO100/250 membrane exhibits the best
164 performance, achieving both high water permeance and high dye rejection.



165 **Fig. 2.** Enhanced salt/dye desalination properties in PrGO membranes by PAA treatment. Pure
166 water permeance for (a) rGO75 and (b) rGO100 membranes. CR, DR 80, and MB (0.2 g/L)
167 rejection of (c) rGO75 and (d) rGO100 membranes. The error bar is the standard deviation for at
168 least 3 membrane samples.
169

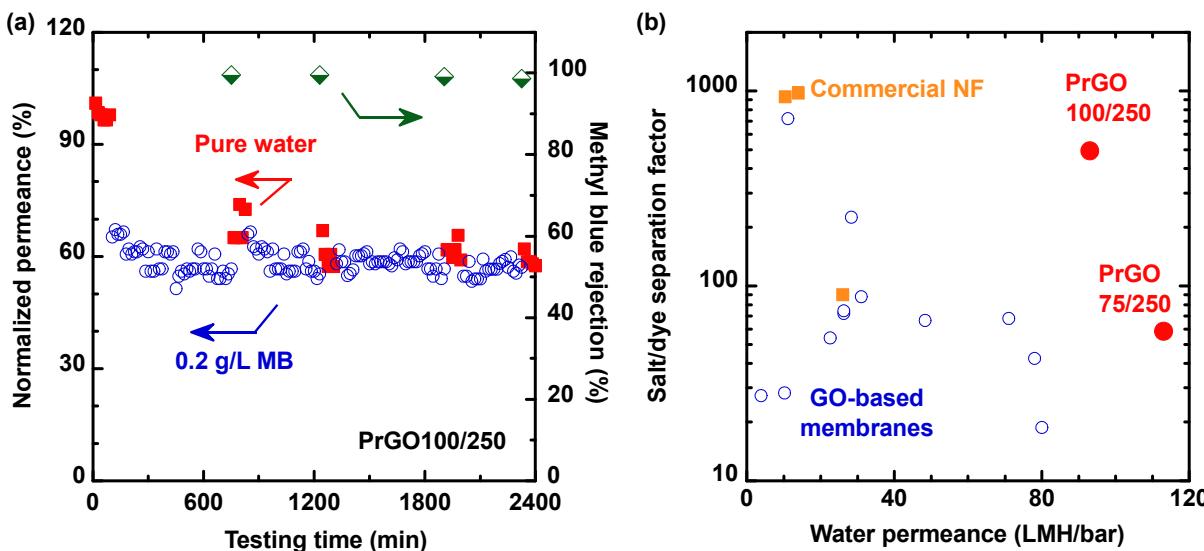
170 Fig. 3 compares the desalination performance of rGO100 and PrGO100/250 membranes as
171 a function of the salt type and concentration. For both NaCl and Na₂SO₄ across concentrations
172 ranging from 2 to 60 g/L [2], PrGO100/250 consistently exhibits lower salt rejection and higher
173 water permeance than rGO100. At high salinity (60 g/L), PrGO100/250 also exhibits more

174 consistent water permeance (45 LMH/bar for Na_2SO_4 and 56 LMH/bar for NaCl) than rGO100
 175 (13 LMH/bar for Na_2SO_4 and 35 LMH/bar for NaCl). For both membranes, increasing the NaCl
 176 and Na_2SO_4 content decreases their rejection and the associated water permeance, and the change
 177 is more significant for Na_2SO_4 than NaCl . For example, as the Na_2SO_4 content increases from 2 to
 178 60 g/L, its rejection decreases from 14.4% to 1.2% for PrGO100/250 and from 20.9% to 7.4% for
 179 rGO100. Both membranes are negatively charged at $\text{pH} = 7$, and the high salinity decreases the
 180 Donnan potential and thus increases the SO_4^{2-} sorption, enhancing salt permeance [19, 36].

181

182 **Fig. 3.** Effect of the salt content on their rejection and water permeance in rGO100 and
 183 PrGO100/250 membranes for (a) NaCl and (b) Na_2SO_4 .

184


185 Because PAA is an organic peroxide and its stock solution contains H_2O_2 as a stabilizer,
 186 we also synthesized an H_2O_2 -treated rGO100 membrane (prepared by exposure to a 30% H_2O_2
 187 solution at 23 °C for 10 min; HrGO100) and compared its performance with rGO100. A negligible
 188 difference in separation properties between HrGO100 and rGO100 membranes is observed (Fig.
 189 S3), suggesting an absence of reactions between the rGO and H_2O_2 . Therefore, the difference
 190 between rGO and PrGO is caused by the direct reaction between the rGO and PAA.

191

192 **3.2. Stability and dye desalination performance of PrGO membranes**

193 The PrGO100/250 membrane, exhibiting both high water/salt permeance and high dye
 194 rejection, was challenged in a continuous four-cycle filtration test over 40 h in a crossflow system
 195 with 0.2 g/L MB in the feed. Fig. 4a shows that the membrane retains high water permeance and
 196 high MB rejection (> 99%), demonstrating its stability. Notably, when 0.2 g/L MB is used as the
 197 feed solution, the water permeance is 40% lower than its pure water permeance; using pure water
 198 feed after a cycle only slightly recovers water permeance, suggesting that dye adhesion within the
 199 PrGO layers is responsible for most of the water permeance loss. Nevertheless, the dye water
 200 permeance is very stable over the 40-hour test at ~ 45 LMH/bar.

201

202 **Fig. 4.** Superior dye desalination in PrGO100/250 membranes. (a) Long-term stability test with
 203 0.2 g/L MB for four cycles. (b) Comparison with state-of-the-art GO membranes [11, 37-45] and
 204 commercial NF membranes [46, 47]. Details are summarized in Table S2.

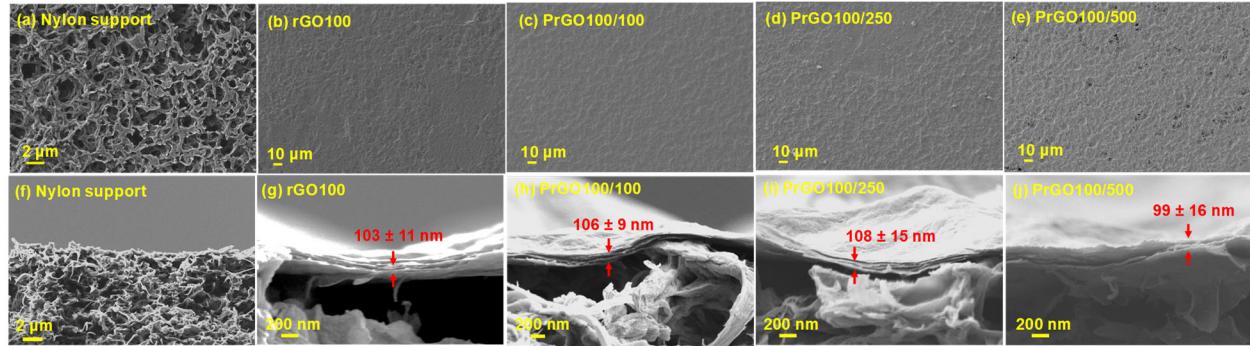
205

206 Fig. 4b compares the dye desalination performance, as indicated by the salt/dye separation
 207 factor and pure water permeance, between two PrGO membranes and the state-of-the-art GO-
 208 based membranes reported in the literature [11, 37-45] and commercial polyamide-based NF
 209 membranes [46, 47]. Compared with the GO membranes, our PrGO membranes exhibit much

210 higher water permeance and comparable or greater salt/dye separation factor. For example,
211 PrGO100/250 exhibits a salt/dye separation factor roughly 50% lower than commercial Sepro NF6
212 membrane (which has the highest salt/dye separation factor among all membranes shown here),
213 but its water permeance was 6.6 times greater.

214

215 **3.3. Chemical and morphological structure of PrGO membranes**

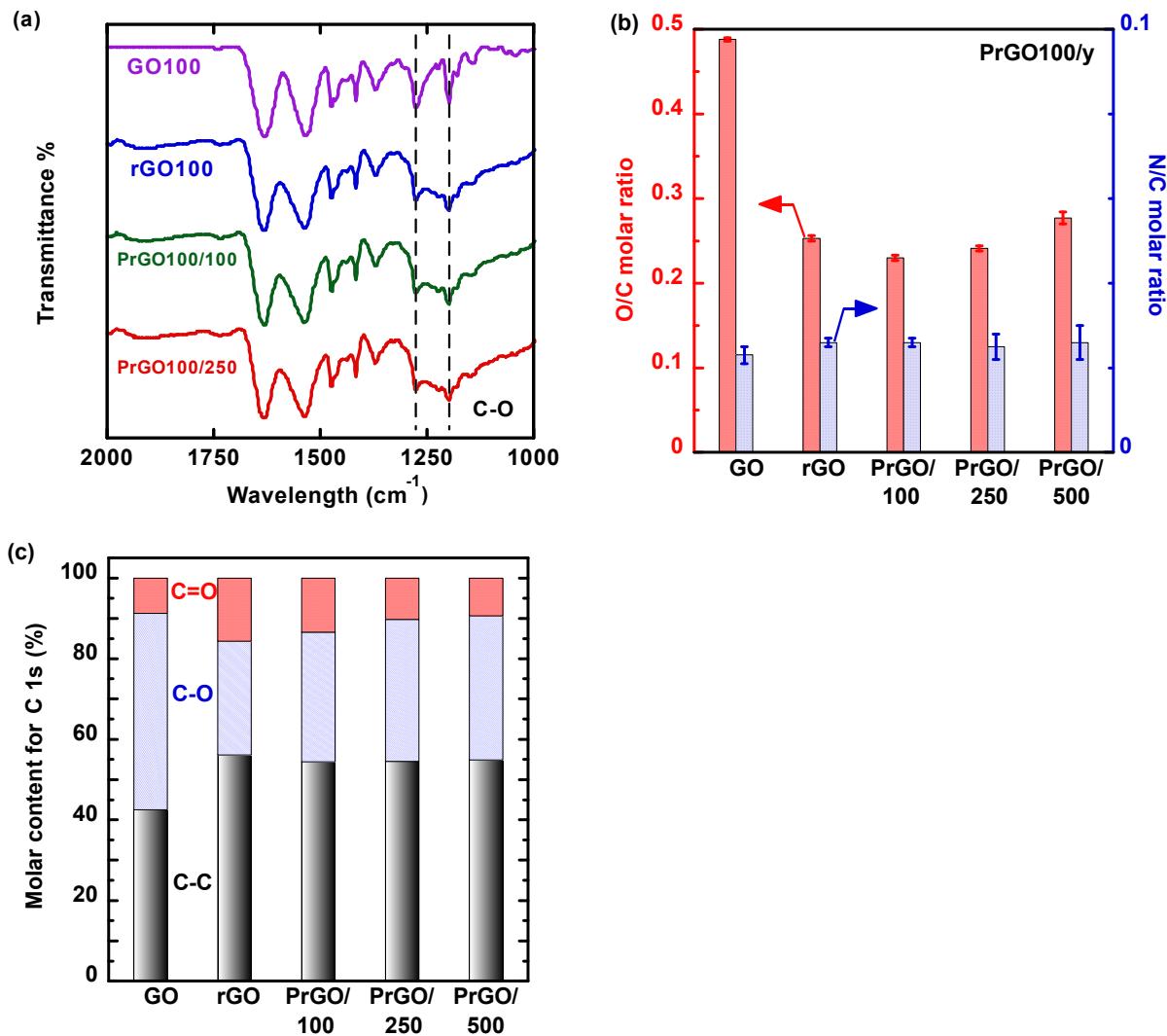

216 To explore the mechanism of PAA treatment for improving membrane performance, PrGO
217 membranes were characterized by a suite of analytical tools and compared with the rGO
218 membranes. Overall, PAA treatment does not create obvious changes in the apparent
219 characteristics of the rGO membranes, such as thickness and morphology; its effects on the
220 substantial improvement in membrane performance can be attributed to the fine-tuned surface
221 chemistries of the rGO layer, including the O content and zeta potential.

222 The prepared GO nanosheets have a thickness of ~1 nm and lateral size of about 10 μm
223 (Fig. 1c). Probe-ultrasonication and hydrazine reduction reduce the nanosheet sizes to <4 μm (Fig.
224 1d,e). Unfortunately, the size of isolated PrGO nanosheets cannot be measured by AFM due to
225 detachment from the mica substrate upon PAA treatment. Fig. S4a compares the UV-vis spectra
226 of GO and rGO dispersion, and the peak shifts from 230 to 260 nm, validating the newly formed
227 graphitic domains after reduction [19].

228 Fig. 5a,b displays that the deposition of rGO layers (\approx 100 nm thick) fully covers the pores
229 of the Nylon support (\sim 200 nm) and leads to wrinkle structures. Varying the PAA concentration
230 between 100 and 250 ppm has no effect on the rGO surface morphology (Fig. 5c,d), but a further
231 increase to 500 ppm generates small defects on the surface (Fig. 5e). Fig. 5f-j also compares the
232 cross-sectional SEM images of Nylon, rGO100, and PrGO100. Both rGO and PrGO layers show

233 layered structures (which is typical for GO nanosheets), and their thicknesses are very close to the
 234 estimated thickness (≈ 100 nm), indicating that PAA treatment does not influence the selective
 235 layer thickness. Consistent with the results from SEM images, the AFM photos of the rGO/PrGO
 236 membranes show that PAA treatment does not have a major effect on local surface roughness (Fig.
 237 S4b-e).

238


239
 240 **Fig. 5.** Surface SEM images of (a) Nylon support, (b) rGO100 membrane, (c) PrGO100/100
 241 membrane, (d) PrGO100/250 membrane, and (e) PrGO100/500 membrane. Cross-sectional SEM
 242 images of (f) Nylon support, (g) rGO100 membrane, (h) PrGO100/100 membrane, (i)
 243 PrGO100/250 membrane, and (j) PrGO100/500 membrane. The thickness uncertainty is the
 244 standard deviation for at least 3 membrane samples.
 245

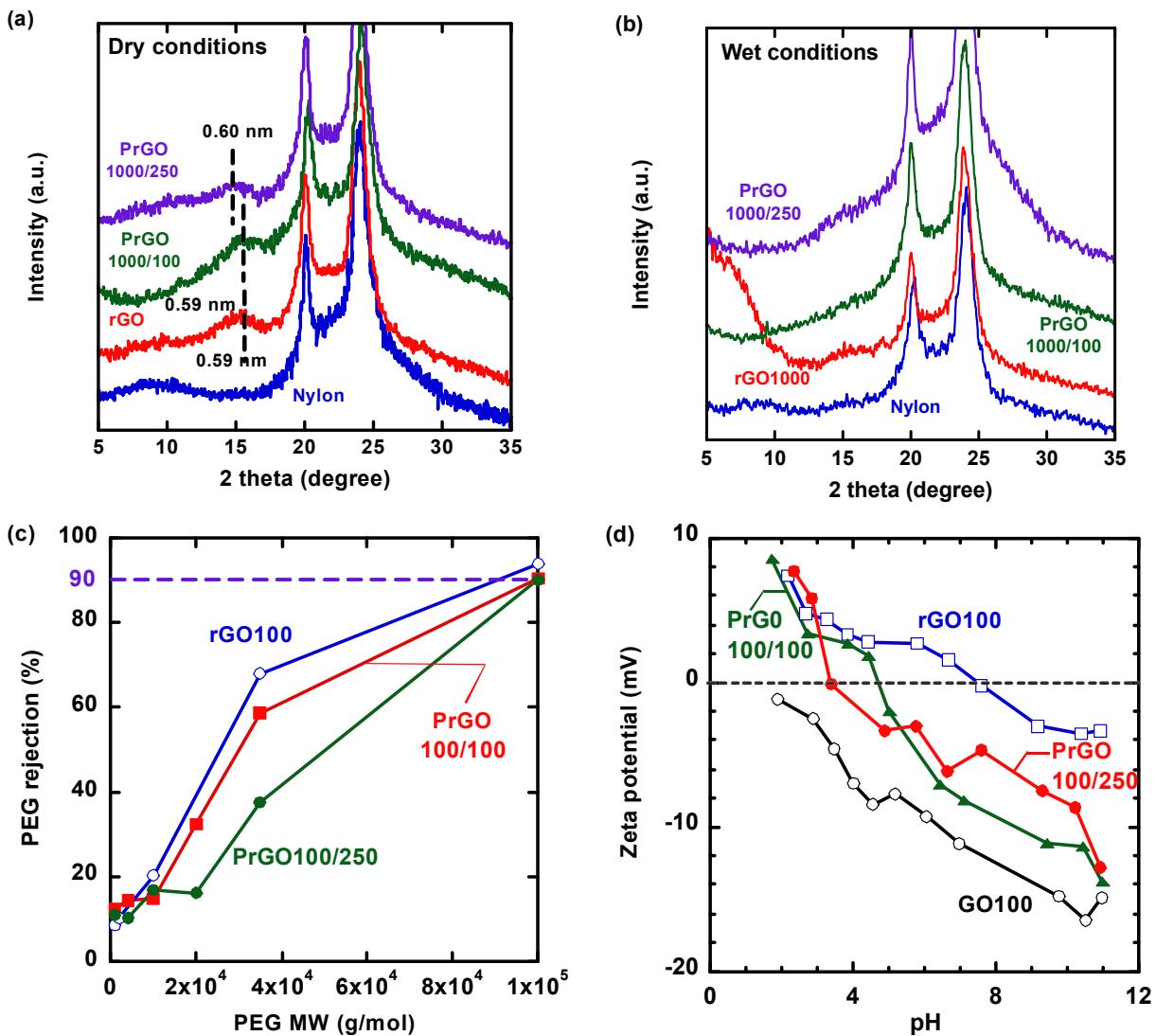
246 Raman spectroscopy analysis further shows that PAA exposure has a negligible effect on
 247 the crystalline structures of rGO (Fig. S5a): the rGO and PrGO membranes exhibit similar values
 248 of I_D/I_G , the ratio of peak intensity at 1350 and 1595 cm^{-1} , corresponding to the D band (disordered
 249 carbon structures) and G band (ordered graphitic structures), respectively [48]. Fig. S5b also shows
 250 that the PAA treatment does not significantly influence the water contact angle.

251 Fig. 6a compares the FTIR spectra of the GO100, rGO100, PrGO100/100, and
 252 PrGO100/250 membranes. All membranes exhibit the characteristic peaks of C-O stretching at
 253 1350 and 1150 cm^{-1} ; the signals were weaker for the rGO and PrGO membranes than GO100,
 254 consistent with the removal of epoxide groups by hydrazine reduction [49]. The subsequent PAA
 255 oxidation of rGO membrane does not significantly increase the C-O stretching peak, indicating

256 that the formation of new C-O moieties (e.g., epoxide or hydroxyl groups), if occurring, is
 257 relatively minor relative to the detection sensitivity of FTIR.

258

259 **Fig. 6.** Comparison of chemical structures of GO, rGO, and PrGO membranes. (a) FTIR spectra,
 260 (b) surface molar ratios of O/C and N/C, and (c) molar concentration of C-O, C=O, and C-C for C
 261 1s from XPS. The uncertainty in b is the standard deviation for more than 3 membrane samples.
 262


263 Compared with FTIR, XPS is more surface-sensitive and provides information for the top
 264 few nanometers of the materials. Fig. 6b and Table S3 compare the surface elemental composition
 265 of the GO, rGO, and PrGO membranes obtained from XPS analyses. The N/C ratios for GO and

266 rGO were similar [33, 50] and consistent with the proposed GO reduction pathways by hydrazine.
267 As expected, the treatment with the PAA does not affect the N/C ratio either.

268 The hydrazine reduction significantly decreases the O/C ratio to 0.253 ± 0.003 , consistent
269 with the removal of oxygen-containing functional groups as reported in the literature [50].
270 Surprisingly, the treatment of rGO with 100 ppm PAA further decreases the O/C molar ratio to
271 0.230 ± 0.003 . Exposure to higher concentrations of PAA solutions (250 and 500 ppm) gradually
272 recovers and eventually increases the O/C ratios, such that the O/C ratio of PrGO100/500 was
273 0.277 ± 0.007 , exceeding that of rGO100, suggesting an epoxidation reaction [30]. To provide
274 further mechanistic insight, attempts were made to deconvolute the C 1s peaks, as shown in Fig.
275 S6 and Table S3. The C 1s peak is deconvoluted into three peaks [51] corresponding to C-C (284.6
276 eV), C-OH/C-O-C (286.5 eV), and C=O (287.8 eV) [52]; the O=C-O (289.0 eV) [53, 54] signal
277 is not apparent. The mol% of C-O and C=O peaks can be used to infer the relative change of the
278 oxygen-containing functional groups they each represent (Fig. 6c). As GO100 is reduced to
279 rGO100, epoxide/hydroxyl groups are removed; with the overall decrease in O/C ratio, the increase
280 in C=O mol% can be explained by the preferential removal of epoxide/hydroxyl groups over
281 ketone groups by hydrazine. Between rGO100 and PrGO100/500, the latter has a higher O/C ratio
282 but a lower C=O mol%, indicating that PAA treatment formed more epoxide/hydroxyl groups than
283 ketone groups, consistent with the ability of PAA as an epoxidation agent [55, 56], the formation
284 of epoxide/hydroxyl groups in 100 and 250 ppm PAA-treated rGO membranes is also supported
285 by the data in Table S3.

286 Fig. 7a,b presents the XRD patterns of the rGO and PrGO membranes under dry and wet
287 conditions (samples were prepared with 1 μm rGO/PrGO thickness for better resolution). Under
288 dry conditions, the rGO100 membrane exhibits a peak at $2\theta = 15^\circ$, corresponding to a d -spacing

289 of 0.59 nm, and the peaks for the 100 and 250 ppm PAA-treated PrGO membranes indicate very
 290 similar *d*-spacing (0.59 - 0.60 nm). Under wet conditions, a greater difference between rGO and
 291 PrGO is observed: the 15° peak for the rGO100 membrane shifts to < 5°, indicating an enhanced
 292 *d*-spacing of > 1.7 nm [19]. On the other hand, no corresponding peak is detected for PrGO100/100
 293 and PrGO100/250, presumably because of even higher *d*-spacing values, which would be
 294 consistent with the greater water permeance of PrGO membranes [19].

295 **Fig. 7.** Comparison of the XRD patterns of the Nylon support, rGO1000, PrGO1000/100, and
 296 PrGO1000/250 under (a) dry conditions and (b) wet conditions. (c) MWCO for the rGO100,
 297 PrGO100/100, and PrGO100/250 membranes. (d) Surface zeta potential for the membranes.
 298

299 Fig. 7c shows the MWCO of the rGO100 and PrGO100 membranes determined using the
300 PEGs (2 - 100 kDa). Both PrGO100/100 and PrGO100/250 membranes exhibit an MWCO of \approx 99
301 kDa (corresponding to a nominal pore radius of 10 nm estimated using Eq. 3), similar to rGO100
302 (with an MWCO of 90 kDa and a nominal pore radius of 9.0 nm). Interestingly, considering that
303 the membranes have a nominal pore radius larger than the size of individual dye molecules (2.4 -
304 4.5 nm; Table S1), the high rejection of dyes can be attributed to the formation of dye aggregates
305 (\geq 300 nm) in aqueous solutions at textile wastewater-relevant concentrations (0.2 g/L) and salinity
306 [57]. Indeed, DLS results suggest that CR, DR 80, and MR show particle hydrometers of $490 \pm$
307 270, 390 ± 250 , and 360 ± 150 nm, respectively.

308 The surface zeta potential of the rGO membranes exhibits significant change after PAA
309 treatment (Fig. 7d). The GO100 membrane surface is negatively charged at all testing pH (3 - 11),
310 attributable to the abundance of carboxylic acid (-COOH) and hydroxyl (-OH) groups [58-60].
311 The rGO100 has an isoelectric point (IEP, defined as the pH value where the zeta potential is 0)
312 of 7.7, and the PAA treatment at 100 and 250 ppm decreases the IEP to 5.1 and 3.6, respectively.
313 At typical textile wastewater pH (\sim 7) [2], the zeta potential of rGO is 2 mV; PAA treatment reduces
314 the zeta potential to -7 mV for PrGO100/100 and -5 mV for PrGO100/250, closer to that of the
315 GO membrane (-11 mV), as illustrated in Fig. 1b. Overall, these results suggest that PAA treatment
316 increases the electronegativity on the rGO surface, which may be attributed to the formation of
317 hydroxyl/carboxylic acid groups and/or an increase in these functional groups at the edge sites [60,
318 61]. Organic peracids (e.g., PAA) are known to oxidize ketone/aldehyde to ester/carboxylic acid
319 (i.e., the Baeyer–Villiger reaction) or oxidize aromatic ring to form benzoquinone [62, 63]. The
320 defects in PrGO100/500's SEM image suggest that PAA treatment can interrupt the nanosheets

321 and thereby create more edge sites; it is reasonable to expect a similar phenomenon to occur in
322 PrGO100/100 and PrGO100/250 membranes.

323 Overall, the characterization results show that the enhanced performance of PrGO
324 membranes is attributed to the small changes from the PAA treatment of rGO membranes. PrGO
325 membranes exhibit similar surface morphology and crystallinity as rGO membranes, but PrGO
326 membrane has a lower zeta potential. The observations that FTIR does not detect a change in the
327 C-O signal and that XPS suggests the formation of epoxide/hydroxyl group indicate that the PAA
328 modification of rGO chemistries is limited to the top few layers of nanosheets on the membrane
329 surface. Although PAA can react with aromatic compounds to form benzoquinones, evidence is
330 not strong in forming ketone groups on the PrGO surface.

331

332 **4. Conclusions and perspectives**

333 We demonstrate that the degree of oxidation and reduction of GO nanosheets can be fine-
334 tuned to design thin rGO membranes with high permeance and excellent salt/dye separation
335 properties. GO nanosheets are reduced by hydrazine and then fabricated into rGO membranes,
336 which are then oxidized using PAA at 23 °C for only 10 min, as validated by XPS. The PAA
337 exposure remarkably increases water permeance, slightly decreases salt rejection, and retains great
338 dye rejection, which can be ascribed to the enhanced negative charges on the surface. Importantly,
339 exposure to PAA solution at 250 ppm or lower has a negligible effect on the rGO thickness or
340 hydrophilicity, and the mild fabrication conditions make it easy to scale up membrane fabrication.
341 PrGO100/250 shows water permeance of over 100 LMH/bar and CR rejection of 99.7% with
342 Na₂SO₄/dye separation factor as high as 490, surpassing the state-of-the-art NF membranes and
343 GO membranes reported in the literature.

344 We expect that in situ oxidation with PAA can be a versatile approach to improving other
345 reduced or cross-linked GO membranes developed, as PAA facilely imparts oxygen-containing
346 groups on the GO nanosheets and improves water permeance. The PAA exposure may also be
347 seamlessly combined with periodic membrane cleaning for fouling control in GO/rGO membrane
348 systems. This approach could be adopted to improve separation performance for other 2D
349 materials-based membranes.

350

351 **Declaration of competing interest**

352 The authors declare no conflict of interest.

353

354 **Acknowledgment**

355 We gratefully acknowledge the financial support from the U.S. National Science
356 Foundation (2230728) and the Department of Energy Office of Energy Efficiency and Renewable
357 Energy (DE-EE0009500). Work at The University of Texas at Austin (A.E.Q. and B.D.F.) was
358 supported as part of the Center for Materials for Water and Energy Systems (M-WET), an Energy
359 Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic
360 Energy Sciences under Award #DE-SC0019272.

361

362 **Appendix A. Supplementary data**

363 Supplementary data to this article can be found online at

364

365 **References**

366 [1] K. Paździor, L. Bilińska, S. Ledakowicz. A review of the existing and emerging
367 technologies in the combination of AOPs and biological processes in industrial textile
368 wastewater treatment. *Chem. Eng. J.* 376 (2019) 120597, 10.1016/j.cej.2018.12.057.

369 [2] D. A. Yaseen, M. Scholz. Textile dye wastewater characteristics and constituents of
370 synthetic effluents: a critical review. *Int. J. Environ. Sci. Technol.* 16 (2018) 1193-1226,
371 10.1007/s13762-018-2130-z.

372 [3] W. Zhang, H. Xu, F. Xie, X. Ma, B. Niu, M. Chen, H. Zhang, Y. Zhang, D. Long. General
373 synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-
374 flux nanofiltration membrane. *Nat. Commun.* 13 (2022) 471, 10.1038/s41467-022-28180-
375 4.

376 [4] X. Chen, E. Deng, X. Lin, A. M. Tandel, D. Rub, L. Zhu, L. Huang, H. Lin. Engineering
377 hierarchical nanochannels in graphene oxide membranes by etching and polydopamine
378 intercalation for highly efficient dye recovery. *Chem. Eng. J.* 433 (2022) 133593,
379 10.1016/j.cej.2021.133593.

380 [5] N. Li, T. Lou, W. Wang, M. Li, L. Jing, Z. Yang, R. Chang, J. Li, H. Geng. MXene-
381 PANI/PES composite ultrafiltration membranes with conductive properties for anti-fouling
382 and dye removal. *J. Membr. Sci.* 668 (2023) 121271, 10.1016/j.memsci.2022.121271.

383 [6] Y. Feng, X. Meng, Z. Zhang, L. Zhang. Dye retention and desalination behavior of MoS₂
384 doped high-flux β -CD/TDI polyurethane nanofiltration membrane. *J. Membr. Sci.* 656
385 (2022) 120643, 10.1016/j.memsci.2022.120643.

386 [7] Y. Wu, C. Fu, Q. Huang, P. Zhang, P. Cui, J. Ran, J. Yang, T. Xu. 2D Heterostructured
387 Nanofluidic Channels for Enhanced Desalination Performance of Graphene Oxide
388 Membranes. *ACS Nano.* 15 (2021) 7586-7595, 10.1021/acsnano.1c01105.

389 [8] A. R. Esfahani, C. Ma, U. A. Flewellen, S. Nair, T. A. L. Harris. Scalable aqueous-phase
390 fabrication of reduced graphene oxide nanofiltration membranes by an integrated roll-to-
391 roll (R2R) process. *J. Membr. Sci.* 678 (2023) 121669, 10.1016/j.memsci.2023.121669.

392 [9] X. Yan, S. Cheng, C. Ma, J. Li, G. Wang, C. Yang. D-spacing controllable GO membrane
393 intercalated by sodium tetraborate pentahydrate for dye contamination wastewater
394 treatment. *J. Hazard. Mater.* 422 (2022) 126939, 10.1016/j.jhazmat.2021.126939.

395 [10] Y. Li, W. Zhao, M. Weyland, S. Yuan, Y. Xia, H. Liu, J. Yang, C. Easton, C. Selomulya,
396 X. Zhang. Thermally Reduced Nanoporous Graphene Oxide Membrane for Desalination.
397 *Environ. Sci. Technol.* 53 (2019) 8314-8323, 10.1021/acs.est.9b01914.

398 [11] X. Zhang, H. Li, J. Wang, D. Peng, J. Liu, Y. Zhang. In-situ grown covalent organic
399 framework nanosheets on graphene for membrane-based dye/salt separation. *J. Membr.*
400 *Sci.* 581 (2019) 321-330, 10.1016/j.memsci.2019.03.070.

401 [12] H. Ma, X. Chen, S. Mohammed, Y. Hu, J. Lu, G. P. Simon, H. Hou, H. Wang. A thermally
402 reduced graphene oxide membrane interlayered with an in situ synthesized nanospacer for
403 water desalination. *J. Mater. Chem. A.* 8 (2020) 25951-25958, 10.1039/D0TA05790H.

404 [13] L. Cheng, K. Guan, G. Liu, W. Jin. Cysteamine-crosslinked graphene oxide membrane
405 with enhanced hydrogen separation property. *J. Membr. Sci.* 595 (2020) 117568,
406 10.1016/j.memsci.2019.117568.

407 [14] F. Kong, Q. Liu, L. Dong, T. Zhang, Y. Wei, J. Chen, Y. Wang, C. Guo. Rejection of
408 pharmaceuticals by graphene oxide membranes: Role of crosslinker and rejection
409 mechanism. *J. Membr. Sci.* 612 (2020) 118338, 10.1016/j.memsci.2020.118338.

410 [15] M. Kumar, N. Sreedhar, N. Thomas, M. Mavukkandy, R. A. Ismail, T. M. Aminabhavi, H.
411 A. Arafat. Polydopamine-coated graphene oxide nanosheets embedded in sulfonated
412 poly(ether sulfone) hybrid UF membranes with superior antifouling properties for water
413 treatment. *Chem. Eng. J.* 433 (2022) 133526, 10.1016/j.cej.2021.133526.

414 [16] Y. Liu, M. Zhu, M. Chen, L. Ma, B. Yang, L. Li, W. Tu. A polydopamine-modified reduced
415 graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye.
416 *Chem. Eng. J.* 359 (2019) 47-57, 10.1016/j.cej.2018.11.105.

417 [17] J. Kang, Y. Choi, J. P. Kim, J. Kim, O. Kwon, D. I. Kim, D. Kim. Thermally-
418 induced pore size tuning of multilayer nanoporous graphene for organic solvent
419 nanofiltration. *J. Membr. Sci.* 637 (2021) 119620, 10.1016/j.memsci.2021.119620.

420 [18] J. Li, M. Hu, H. Pei, X. Ma, F. Yan, D. S. Dlamini, Z. Cui, B. He, J. Li, H. Matsuyama.
421 Improved water permeability and structural stability in a polysulfone-grafted graphene
422 oxide composite membrane used for dye separation. *J. Membr. Sci.* 595 (2020) 117547,
423 10.1016/j.memsci.2019.117547.

424 [19] L. Huang, S. Huang, S. R. Venna, H. Lin. Rightsizing Nanochannels in Reduced Graphene
425 Oxide Membranes by Solvating for Dye Desalination. *Environ. Sci. Technol.* 52 (2018)
426 12649-12655, 10.1021/acs.est.8b03661.

427 [20] X. Chen, Z. Feng, J. Gohil, C. M. Stafford, N. Dai, L. Huang, H. Lin. Reduced Holey
428 Graphene Oxide Membranes for Desalination with Improved Water Permeance. *ACS*
429 *Appl. Mater. Interfaces.* 12 (2020) 1387-1394, 10.1021/acsami.9b19255.

430 [21] A. Jabbari, H. Ghanbari, R. Naghizadeh. Partial reduction of graphene oxide toward the
431 facile fabrication of desalination membrane. *Int. J. Environ. Sci. Technol.* 20 (2023) 831-
432 842, 10.1007/s13762-022-04592-z.

433 [22] E. L. Subtil, J. Gonçalves, H. G. Lemos, E. C. Venancio, J. C. Mierzwa, J. dos Santos de
434 Souza, W. Alves, P. Le-Clech. Preparation and characterization of a new composite
435 conductive polyethersulfone membrane using polyaniline (PANI) and reduced graphene
436 oxide (rGO). *Chem. Eng. J.* 390 (2020) 124612, 10.1016/j.cej.2020.124612.

437 [23] Y. Hu, S. Song, A. Lopez-Valdivieso. Effects of oxidation on the defect of reduced
438 graphene oxides in graphene preparation. *J. Colloid Interface Sci.* 450 (2015) 68-73,
439 10.1016/j.jcis.2015.02.059.

440 [24] O. Ö. Ekiz, M. Ürel, H. Güner, A. K. Mizrak, A. Dâna. Reversible Electrical Reduction
441 and Oxidation of Graphene Oxide. *ACS Nano.* 5 (2011) 2475-2482, 10.1021/nn1014215.

442 [25] J. Choi, N. D. K. Tu, S.-S. Lee, H. Lee, J. S. Kim, H. Kim. Controlled oxidation level of
443 reduced graphene oxides and its effect on thermoelectric properties. *Macromol. Res.* 22
444 (2014) 1104-1108, 10.1007/s13233-014-2160-4.

445 [26] C. Zoellner, A. Aguayo-Acosta, M. W. Siddiqui, J. E. Dávila-Aviña. Chapter 2 - Peracetic
446 Acid in Disinfection of Fruits and Vegetables. In: Siddiqui MW, editor. *Postharvest*
447 *Disinfection of Fruits and Vegetables*: Academic Press; 2018. p. 53-66.

448 [27] A. H. Hassaballah, J. Nyitrai, C. H. Hart, N. Dai, L. M. Sassoubre. A pilot-scale study of
449 peracetic acid and ultraviolet light for wastewater disinfection. *Environ. Sci. Water Res.*
450 *Technol.* 5 (2019) 1453-1463, 10.1039/c9ew00341j.

451 [28] M. Ghafari, T. M. Mohona, L. Su, H. Lin, D. L. Plata, B. Xiong, N. Dai. Effects of peracetic
452 acid on aromatic polyamide nanofiltration membranes: a comparative study with chlorine.
453 *Environ. Sci. Water Res. Technol.* 7 (2021) 306-320, 10.1039/d0ew01007c.

454 [29] A. H. Hassaballah, T. Bhatt, J. Nyitrai, N. Dai, L. Sassoubre. Inactivation of *E. coli*,
455 *Enterococcus* spp., somatic coliphage, and *Cryptosporidium parvum* in wastewater by

456 peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection.
457 Environ. Sci. Water Res. Technol. 6 (2020) 197-209, 10.1039/c9ew00837c.

458 [30] S. Murahashi, T. Saito, H. Hanaoka, Y. Murakami, T. Naota, H. Kumobayashi, S.
459 Akutagawa. Ruthenium-catalyzed oxidative transformation of alkenes to α -ketols with
460 peracetic acid. Simple synthesis of cortisone acetate. J. Org. Chem. 58 (1993) 2929-2930,
461 10.1021/jo00063a002.

462 [31] R. D. Bach, C. Canepa, J. E. Winter, P. E. Blanchette. Mechanism of acid-catalyzed
463 epoxidation of alkenes with peroxy acids. J. Org. Chem. 62 (1997) 5191-5197,
464 10.1021/jo950930e.

465 [32] S. Banfi, M. Cavazzini, G. Pozzi, S. V. Barkanova, O. L. Kaliya. Kinetic studies on the
466 interactions of manganese-porphyrins with peracetic acid. Part 1. Epoxidation of alkenes
467 and hydroxylation of aromatic rings. J. Chem. Soc., Perkin Trans. 4 (2000) 871-877,
468 10.1039/a905458h.

469 [33] X. Gao, J. Jang, S. Nagase. Hydrazine and thermal reduction of graphene oxide: Reaction
470 mechanisms, product structures, and reaction design. J. Phys. Chem. C. 114 (2010) 832-
471 842, 10.1021/jp909284g.

472 [34] E. Deng, X. Chen, D. Rub, H. Lin. Modeling and mitigating fouling of microfiltration
473 membranes for microalgae dewatering. Sep. Purif. Technol. 315 (2023) 123707,
474 10.1016/j.seppur.2023.123707.

475 [35] S. Kasemset, L. Wang, Z. He, D. J. Miller, A. Kirschner, B. D. Freeman, M. M. Sharma.
476 Influence of polydopamine deposition conditions on hydraulic permeability, sieving
477 coefficients, pore size and pore size distribution for a polysulfone ultrafiltration membrane.
478 J. Membr. Sci. 522 (2017) 100-115, 10.1016/j.memsci.2016.07.016.

479 [36] Z. H. Foo, D. Rehman, A. T. Bouma, S. Monsalvo, J. H. Lienhard. Lithium Concentration
480 from Salt-Lake Brine by Donnan-Enhanced Nanofiltration. Environ. Sci. Technol. 57
481 (2023) 6320-6330, 10.1021/acs.est.2c08584.

482 [37] P. Zhang, J. Gong, G. Zeng, B. Song, S. Fang, M. Zhang, H. Liu, S. Huan, P. Peng, Q. Niu,
483 D. Wang, J. Ye. Enhanced permeability of rGO/S-GO layered membranes with tunable
484 inter-structure for effective rejection of salts and dyes. Sep. Purif. Technol. 220 (2019)
485 309-319, 10.1016/j.seppur.2019.03.041.

486 [38] P. Zhang, J. Gong, G. Zeng, B. Song, W. Cao, H. Liu, S. Huan, P. Peng. Novel “loose”
487 GO/MoS₂ composites membranes with enhanced permeability for effective salts and dyes
488 rejection at low pressure. J. Membr. Sci. 574 (2019) 112-123,
489 10.1016/j.memsci.2018.12.046.

490 [39] A. Ali, F. Rehman, M. Ali Khan, F. H. Memon, F. Soomro, M. Iqbal, J. Yang, K. H. Thebo.
491 Functionalized Graphene Oxide-Based Lamellar Membranes with Tunable Nanochannels
492 for Ionic and Molecular Separation. ACS Omega. 7 (2022) 32410-32417,
493 10.1021/acsomega.2c03907.

494 [40] L. Chen, J. Moon, X. Ma, L. Zhang, Q. Chen, L. Chen, R. Peng, P. Si, J. Feng, Y. Li, J.
495 Lou, L. Ci. High performance graphene oxide nanofiltration membrane prepared by
496 electrospraying for wastewater purification. Carbon. 130 (2018) 487-494,
497 10.1016/j.carbon.2018.01.062.

498 [41] M. Hu, B. Mi. Enabling Graphene Oxide Nanosheets as Water Separation Membranes.
499 Environ. Sci. Technol. 47 (2013) 3715-3723, 10.1021/es400571g.

500 [42] L. Huang, Z. Li, Y. Luo, N. Zhang, W. Qi, E. Jiang, J. Bao, X. Zhang, W. Zheng, B. An,
501 G. He. Low-pressure loose GO composite membrane intercalated by CNT for effective

502 dye/salt separation. Sep. Purif. Technol. 256 (2021) 117839,
 503 10.1016/j.seppur.2020.117839.

504 [43] W. Zhang, M. Yin, C. Jin, Z. Liu, N. Wang, Q. An. Ice-crystal templating approach for
 505 tailoring mass transfer channels in graphene oxide membranes for high-performance
 506 dye/salt separation. Carbon. 183 (2021) 119-127, 10.1016/j.carbon.2021.06.077.

507 [44] J. Ma, X. Tang, Y. He, Y. Fan, J. Chen, H. Yu. Robust stable MoS₂/GO filtration membrane
 508 for effective removal of dyes and salts from water with enhanced permeability.
 509 Desalination. 480 (2020) 114328, 10.1016/j.desal.2020.114328.

510 [45] L. Dong, M. Li, S. Zhang, X. Si, Y. Bai, C. Zhang. NH₂-Fe₃O₄-regulated graphene oxide
 511 membranes with well-defined laminar nanochannels for desalination of dye solutions.
 512 Desalination. 476 (2020) 114227, 10.1016/j.desal.2019.114227.

513 [46] J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto, B. Van der
 514 Bruggen. Fractionation of direct dyes and salts in aqueous solution using loose
 515 nanofiltration membranes. J. Membr. Sci. 477 (2015) 183-193,
 516 10.1016/j.memsci.2014.12.008.

517 [47] J. Lin, W. Ye, M.-C. Baltaru, Y. P. Tang, N. J. Bernstein, P. Gao, S. Balta, M. Vlad, A.
 518 Volodin, A. Sotto, P. Luis, A. L. Zydny, B. Van der Bruggen. Tight ultrafiltration
 519 membranes for enhanced separation of dyes and Na₂SO₄ during textile wastewater
 520 treatment. J. Membr. Sci. 514 (2016) 217-228, 10.1016/j.memsci.2016.04.057.

521 [48] L. Cheng, Y. Guo, Q. Liu, G. Liu, R. Li, X. Chen, H. Zeng, G. Liu, W. Jin. Metal Confined
 522 in 2D Membranes for Molecular Recognition and Sieving towards Ethylene/Ethane
 523 Separation. Adv. Mater. 34 (2022) e2206349, 10.1002/adma.202206349.

524 [49] A. J. Page, C. P. Chou, B. Q. Pham, H. A. Witek, S. Irle, K. Morokuma. Quantum chemical
 525 investigation of epoxide and ether groups in graphene oxide and their vibrational spectra.
 526 Phys. Chem. Chem. Phys. 15 (2013) 3725-35, 10.1039/c3cp00094j.

527 [50] S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, R. S. Ruoff. Hydrazine-reduction of
 528 graphite- and graphene oxide. Carbon. 49 (2011) 3019-3023,
 529 10.1016/j.carbon.2011.02.071.

530 [51] H. Yu, P. Xu, D. W. Lee, X. Li. Porous-layered stack of functionalized AuNP-rGO (gold
 531 nanoparticles-reduced graphene oxide) nanosheets as a sensing material for the micro-
 532 gravimetric detection of chemical vapor. J. Mater. Chem. A. 1 (2013) 4444,
 533 10.1039/c3ta01401k.

534 [52] S. Liu, G. Zhou, K. Guan, X. Chen, Z. Chu, G. Liu, W. Jin. Dehydration of C₂-C₄
 535 alcohol/water mixtures via electrostatically enhanced graphene oxide laminar membranes.
 536 AlChE J. 67 (2021) aic17170, 10.1002/aiic.17170.

537 [53] C. Dai, S. Li, Y. Duan, K. H. Leong, S. Liu, Y. Zhang, L. Zhou, Y. Tu. Mechanisms and
 538 product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole:
 539 implications for groundwater remediation. Water Res. 216 (2022) 118347,
 540 10.1016/j.watres.2022.118347.

541 [54] A. Aarva, V. L. Deringer, S. Sainio, T. Laurila, M. A. Caro. Understanding X-ray
 542 Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional
 543 Theory, and Machine Learning. Part I: Fingerprint Spectra. Chem. Mater. 31 (2019) 9243-
 544 9255, 10.1021/acs.chemmater.9b02049.

545 [55] M. R. Janković, S. V. Sinadinović-Fišer, O. M. Govedarica. Kinetics of the Epoxidation of
 546 Castor Oil with Peracetic Acid Formed in Situ in the Presence of an Ion-Exchange Resin.
 547 Ind. Eng. Chem. Res. 53 (2014) 9357-9364, 10.1021/ie500876a.

548 [56] M. Musik, E. Milchert. Selective epoxidation of sesame oil with peracetic acid. *J. Mol.*
549 *Catal.* 433 (2017) 170-174, 10.1016/j.mcat.2017.02.012.

550 [57] D. Talbot, J. Queiros Campos, B. L. Checa-Fernandez, J. A. Marins, C. Lomenech, C.
551 Hurel, G. D. Godeau, M. Raboisson-Michel, G. Verger-Dubois, L. Obeid, P. Kuzhir, A.
552 Bee. Adsorption of Organic Dyes on Magnetic Iron Oxide Nanoparticles. Part I:
553 Mechanisms and Adsorption-Induced Nanoparticle Agglomeration. *ACS Omega.* 6 (2021)
554 19086-19098, 10.1021/acsomega.1c02401.

555 [58] Q. Xu, H. Xu, J. Chen, Y. Lv, C. Dong, T. S. Sreeprasad. Graphene and graphene oxide:
556 advanced membranes for gas separation and water purification. *Inorg. Chem. Front.* 2
557 (2015) 417-424, 10.1039/c4qi00230j.

558 [59] S. Guo, S. Garaj, A. Bianco, C. Ménard-Moyon. Controlling covalent chemistry on
559 graphene oxide. *Nat. Rev. Phys.* 4 (2022) 247-262, 10.1038/s42254-022-00422-w.

560 [60] M. Li, C. Liu, Y. Xie, H. Cao, H. Zhao, Y. Zhang. The evolution of surface charge on
561 graphene oxide during the reduction and its application in electroanalysis. *Carbon.* 66
562 (2014) 302-311, 10.1016/j.carbon.2013.09.004.

563 [61] B. Konkena, S. Vasudevan. Understanding Aqueous Dispersibility of Graphene Oxide and
564 Reduced Graphene Oxide through pKa Measurements. *J. Phys. Chem. Lett.* 3 (2012) 867-
565 872, 10.1021/jz300236w.

566 [62] J. Kim, C.-H. Huang. Reactivity of Peracetic Acid with Organic Compounds: A Critical
567 Review. *ACS ES&T Water.* 1 (2021) 15-33, 10.1021/acsestwater.0c00029.

568 [63] G. J. ten Brink, I. W. C. E. Arends, R. A. Sheldon. The Baeyer–Villiger Reaction: New
569 Developments toward Greener Procedures. *Chem. Rev.* 104 (2004) 4105-4124,
570 10.1021/cr0300111.

571