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Abstract—In an increasingly visual world, people with blind- 
ness and low vision (pBLV) face substantial challenges in navigat- 
ing their surroundings and interpreting visual information. From 

our previous work, VIS4ION is a smart wearable that helps pBLV 
in their daily challenges. It enables multiple microservices based 
on artificial intelligence (AI), such as visual scene processing, 
navigation, and vision-language inference. These microservices 
require powerful computational resources and, in some cases, 
stringent inference times, hence the need to offload computation 
to edge servers. This paper introduces a novel video streaming 

platform that improves the capabilities of VIS4ION by providing 
real-time support of the microservices at the network edge. 
When video is offloaded wirelessly to the edge, the time-varying 
nature of the wireless network requires adaptation strategies 
for a seamless video service. We demonstrate the performance 
of our adaptive real-time video streaming platform through 
experimentation with an open-source 5G deployment based on 
open air interface (OAI). The experiments demonstrate the 
ability to provide microservices robustly in time-varying network 
conditions. 

Index Terms—5G, testbed, AI, assistive technology, e-health, 
wearable, edge computing, video streaming. 

 

I. INTRODUCTION 

There are 39 million blind and 246 million people with 

low vision worldwide, according to the world health orga- 

nization (WHO) [1]. While therapeutic advances are being 

developed for a handful of conditions, there are a multitude 

of etiologies that result in severe visual disability [2], and the 

prevalence of many of these conditions is increasing. Impaired 

vision constrains mobility, inevitably leading to problems with 

unemployment and quality of life [3], both of which limit 

psychosocial well-being. 

To address the challenges of people with blindness and 

low vision (pBLV), we have developed VIS4ION (visually 

impaired smart service system for spatial intelligence and 

onboard navigation) [4], [5] – a discreet and ergonomic 

wearable equipped with miniaturized sensors, including cam- 

eras, microphones, global navigation satellite system (GNSS) 

receivers, and inertial measurement units (IMUs). A binaural 

bone conduction headset and an optional reconfigurable waist 

strap turned haptic interface provide real-time feedback, as 

depicted on the left of Fig. 1. 

VIS4ION offers multiple microservices based on artificial 

intelligence (AI) for pBLV with visual data as input. These 

include object detection for obstacle avoidance, large language 

model (LLM)-based audio assistance with visual data, and 

vision-based localization and navigation. Ideally, these mi- 

croservices run on the edge, where powerful computational 

 

 

Fig. 1: The proposed VIS4ION platform for people with blindness and low vision 

provides several powerful edge-based AI microservices. These services all use video 
captured on a strap mounted camera on the wearable. 

 

resources enable faster inference and deployment of larger 

models for optimal performance. However, edge offloading 

requires seamless wireless connectivity to upload and process 

video and audio data continuously. 

A critical challenge in developing VIS4ION with edge 

offloading – and the focus of this work – is wireless con- 

nectivity. Wireless deployment of vision-based edge services 

suffers from the time-varying nature of network conditions 

[6]. Wireless connectivity will vary with the user’s location 

relative to the access point or base station, as well as with 

the network load. Therefore, the bitrate and processing fre- 

quency of the video frames will need to be adjusted based 

on such conditions. Most previous work on video adaption 

for edge-based services has focused on object detection [7]. 

In contrast, the VIS4ION system requires adapting video that 

caters to multiple services with different quality of service 

(QoS) requirements. 

The paper presents several important contributions to ad- 

dress these challenges and advancing the set of features 

supported by VIS4ION: 

• We develop a complete video streaming platform to 

support the real-time fruition of the envisioned microser- 

vices for pBLV. The implementation supports concurrent 
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execution of the AI-based microservices over a pool of 

available graphics processing unit (GPU) resources. 

• We implement a method to estimate the available link 

rate using our REBERA algorithm [8]. Based on the link 

rate estimate, a heuristic algorithm is proposed to adapt 

the video across different services. 

• We evaluate the proposed adaptive video streaming plat- 

form using an open-source 5G testbed based on open 

air interface (OAI) in an indoor lab environment. 5G 

link conditions are manipulated by changing the available 

bandwidth to emulate a network under time-varying load. 

II. VIS4 ION WITH 5G CONNECTIVITY AND VIDEO 

ADAPTATION 

VIS4ION microservices architecture 

VIS4ION wearable is wirelessly connected to a set of 

powerful edge microservices based on AI, including visual 

scene processing, real-time localization and navigation, and 

audio assistance through vision-language models (VLMs). The 

architecture for these services is schematically depicted in 

Fig. 1. The primary input for all services is the video captured 

from the wearable strap-mounted cameras for image stability. 

The captured video is compressed and uploaded wirelessly to 

the edge. In this work, we explore 5G connectivity, although 

any wireless connectivity can be used, including Wi-Fi. As we 

explain below, the uplink rate can vary, and adaptation of the 

video compression is critical. 

Several edge microservices use the uploaded video data. 

The first service is object detection using YoLo. Building on 

our previous work in [6], our video streaming platform allows 

for real-time high frame rate object detection using one of 

the most recent YoLo models, YoLoV7 [9]. In particular, we 

use YoLoV7-w6, which supports inference on higher-resolution 

images compared to the basic YoLoV7 model. In order to 

support fast responses to immediate and dangerous obstacles, 

the object detection results are generally reported at a fast 

frame rate and then rendered to the user via haptic or audio 

feedback. Our analysis in [6] suggested that object detection 

should be as fast as 30 fps to allow a response time of 100 ms 

when including video upload, inference, and feedback time. 

The second microservice offered is UNav [10]. UNav is 

an AI-based software that creates infrastructure-free, camera- 

based digital twins or 3D maps of complex indoor and outdoor 

environments, supporting wayfinding to close or far-range des- 

tinations through audio and haptic user commands. Note that 

the commonly used global positioning system (GPS) would 

not work indoors and has a relatively low accuracy. UNav 

relies on visual place recognition [11], where the features of 

the query image are compared against a library of pre-stored 

features to locate the user. The location information can then 

be used to provide navigation instructions. For example, as 

shown in Fig. 1, the user could verbally request a destination 

such as a kitchen, and UNav first finds the user’s current 

location from the current video frame and then provides a text- 

based navigation suggestion such as “go forward” a certain 

distance. The navigation suggestions are then converted to 

audio using text-to-speech tools and delivered to the user 

through the headset. 

Lastly, our platform supports real-time audio assistance 

using a VLM called InstructBLIP [12]. InstructBLIP is an 

LLM-based VLM for comprehensive scene understanding and 

textual descriptions. It can generate descriptive output text 

based on the input prompt and image. Specifically, Instruct- 

BLIP begins by capturing high-level visual representations of 

the image. Then, the input prompt and visual features are 

used to generate contextualized information through an LLM. 

Specifically, InstructBLIP works in association with an LLM 

known as Vicuna-13B [13] to generate the final output text. 

Each service has different computational and feedback 

frequency requirements. As described above, object detection 

inference must support a high frame rate to capture suddenly 

appearing objects that could pose a risk to pBLV. Therefore, 

feedback must be received within a strict delay budget. On 

the other hand, navigation and audio assistance require com- 

plex models and can often be executed with lower inference 

frequency. For example, localization and navigation may be 

sufficient at one feedback per second. The same applies to 

audio assistive on the general scene composition and relatively 

far obstacles. 

Adaptive video streaming platform 

The real-time video streaming platform consists of a client 

and a server. The client runs on an NVIDIA Jetson board, 

which connects to a 5G-enabled smartphone for cellular 

connectivity, as shown in Fig. 2. Primarily, the client ini- 

tiates an uplink video stream to the server using real-time 

transport protocol (RTP) and receives a sequence of outputs 

from the microservices introduced above. The reception of 

such information is essential to unleash the full potential of 

VIS4ION and assist pBLV through haptic and audio feedback. 

Importantly, to ensure the seamless performance of these 

assistive microservices, video streaming must consider link 

rate fluctuations that are related but not limited to network 

congestion, poor wireless channel quality, and the number of 

users simultaneously accessing the same wireless resources. 

As such, our video streaming client implements an adaptive 

mechanism that enables video encoder adjustments based on 

channel quality. Specifically, the client periodically receives 

link rate estimates from the server and then uses the REBERA 

algorithm [8] to predict the link rate in the next time step based 

on previous observations and accordingly set the appropriate 

encoder rate. In addition, the client adapts the video streaming 

resolution according to the set video rate. As we found in 

[6], lowering the video resolution when the target video 

rate is below a certain threshold improves object detection 

performance. 

Navigation and VLM-based scene description do not need 

to run at high frame rates due to their high computational load 

and relaxed latency requirements. A single high-quality video 

frame per second should suffice. Hence, we support multiple 

video-based services at different frame rates and spatial res- 

olutions. In particular, when the predicted link rate is high, 
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Fig. 2: End-to-end 5G real-time adaptive video streaming platform. 
 

we send a single video stream with a high frame rate (30 fps) 

and high spatial resolution (1920×1080). In this case, object 

detection will be performed for every frame, but navigation 

and VLM will be performed only once every second, hence 

every 30 frames are received. When the predicted link quality 

degrades, we reduce the video resolution but keep the same 

frame rate so that object detection can still be performed 

frequently but with reduced accuracy. We further enable a 

secondary video stream with a low frame rate (e.g., 1 fps) 

but high spatial resolution to perform navigation and VLM 

inference on high-quality and resolution images. As outlined in 

[6], high-resolution images enable the detection of objects far 

away (which would occupy a small region in an image and are 

more difficult to detect from low-resolution images). Sending 

high-resolution video when the network connectivity is robust 

allows the user to “see” objects far away and plan their 

trajectory properly. When the network link is weak, despite the 

reduced image resolution, we can still accurately detect nearby 

objects (which have relatively larger image size and can still be 

easily detected in low-resolution images) that could threaten 

pBLV. We choose to perform navigation and VLM services 

only in high-resolution frames because our separate studies 

have found that increasing spatial resolution can significantly 

improve navigation accuracy [14]. Effectively, the presence of 

a secondary video stream adds a second layer of adaptation 

based on the QoS requirement for a given microservice. 

As depicted in Fig. 2, the server runs on any computer 

system equipped with GPUs. It receives the uplink video 

stream from the client and performs a series of services 

instrumental in supporting the full set of features expected for 

VIS4ION. Similarly to [8], the server periodically computes 

an estimate of the link rate based on the incoming stream 

of video packets. As previously discussed, each estimate 

is sent back to the client for video adaptation. The server 

implements a pipeline to support real-time, high-frame rate 

object detection on the received video frames. In addition, the 

server hosts microservices for navigation and localization, as 

well as vision-language inference on high-resolution frames 

at a low frame rate. All these services run on parallel threads 

to distribute their computational requirements over different 

resources on the same machine. Furthermore, when enabled 

by the client, the server supports the reception of a secondary 

low-frame rate, high-resolution video stream. If this stream 

is present, microservices with a lower frame rate requirement 

(i.e., navigation and localization, and VLM instruction) enjoy 

high-quality video frames. If this stream is not running, the 

mentioned microservices use frames from the primary high- 

frame-rate video stream. 

Finally, the client and server have been developed us- 

ing GStreamer libraries [15] to stream real-time video, and 

DeepStream [16] for real-time object detection with YoLo 

running on NVIDIA’s GPUs. Socket and thread programming 

in Python have been used to enable parallel execution of 

microservices and link rate estimation. 

III. 5G EXPERIMENTAL PLATFORM 

5G cellular stack 

A programmable 5G network was deployed using the widely 

adopted OAI stack [17]. OAI is an open-source project that im- 

plements the 3rd generation partnership project (3GPP) tech- 

nology on general-purpose x86 computing hardware and com- 

mercial off-the-shelf (COTS) software-defined radio (SDR) 

cards such as universal software radio peripherals (USRPs). 

Notably, the OAI framework includes both radio access net- 

work (RAN) and 5G core (5GC), enabling end-to-end 5G cel- 

lular functionalities. As shown in Fig. 2, a commercial phone 

gets programmable 5G connectivity using an OAI subscriber 

identity module (SIM) card. The 5G RAN components are 

compiled on the host machine, whereas the 5GC is loaded on 

the same machine by launching several docker images that will 

jointly verify, authenticate, and subscribe each preregistered 

OAI device. Once connected to 5G, the user will be able 

to communicate with any accessible servers on the external 

data network. In our case, as discussed in further detail in 

the next section, we deployed a powerful inference server 

on the same dedicated network as 5GC, thus mimicking the 

performance of an edge server. Finally, a significant benefit of 

using open-source cellular software is that critical parameters 

can be logged and tracked at any network layer, allowing us to 

accurately profile the overall performance of our experiments. 

OAI code modification – variable BWPs: Critically, to assess 

the advantages of our adaptive video streaming technology, we 
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(a) Box-plots for the round-trip 5G network latency. 

 

 
(c) CDF of the end-to-end inference latency. It includes round-trip 

networking and object detection inference times. 

(b) Box-plots for the object detection inference time. 

 

(d) Maximum link rate, estimated link rate, and encoder bitrate over 

the duration of the experiment. 

Fig. 3: Results for the video streaming experiment on our platform. The blue box in the box plots represents the interquartile range between the 25th and 75th percentiles. The blue 

line represents the median. 

modified to the OAI next-generation node base (gNB) sched- 

uler code to trigger specific variations in channel capacity. 

To do so, we leverage a new feature in 5G, bandwidth part 

(BWP), introduced in 3GPP Release 15, to dynamically adapt 

each user’s carrier bandwidth and associated numerology [18]. 

We programmed the scheduler so that gNB will modify the 

allocated BWP configuration at specific time intervals. 

Hardware 

5G Network: As shown in Fig. 2, the 5G network infras- 

tructure comprises the following hardware: the gNB Radio 

Unit runs on the USRP N310, which connects to the Proxicast 

4G/5G Aerial Antennas; the gNB Baseband Unit and the 5GC 

run on the Nautilus machine, which is a high-performance 

computing (HPC) server equipped with Xilinx T1 and T2 

boards for L1 acceleration. 

Client: The client includes a Jetson Orin NX 16 GB that 

connects to a wide-angle camera. This device has 5G OAI 

connectivity through USB tethering via a Google Pixel 5A. 

Server: We use a powerful Dell Precision 7920 Rack 

Workstation with 3x NVIDIA RTX A6000 (48GB each) to 

host the video streaming server with AI edge services for our 

platform. This machine shares the same rack as the Nautilus 

server to mimic a realistic edge computing environment. 

IV. RESULTS 

This section discusses the experimental results obtained 

using the 5G platform introduced above. Our goal is to 

test our adaptive video streaming platform along with the 

microservices enabled for pBLV and to measure its overall 

performance. Critically, we compared the results of each mi- 

croservice with and without video adaptation enabled. Without 

video adaptation, we fix the encoder bitrate at 20 Mbps, the 

frame rate to 30 fps, and the video resolution to 1920×1080. 

We recorded a high-bitrate and resolution video where we 

walked from our wireless lab to the kitchen on the same floor. 

We placed a set of potentially hazardous obstacles, such as 

office chairs, along the route. Then, we walked from the lab 

room to the kitchen, recording approximately 60 seconds of 

video. We then emulated the streaming of this video under 

time-varying network conditions and invoked the three AI 

services on the decoded video on the inference edge server. 

A pre-recorded video allowed us to compare the performance 

of the multiple AI services with video adaptation vs. without 

video adaptation under the same controlled network conditions 

and using the exact same video frames. We tethered the Jetson 

board to the Google Pixel to gain 5G OAI connectivity. The 

Google Pixel, which was wirelessly connected to gNB, did 

not move due to coverage constraints in our 5G frontend and, 

therefore, experienced stable channel quality throughout the 

duration of the experiment. To mimic 5G link rate fluctuations, 

we modified BWP every ≈ 10 seconds, as reported in Table I, 

and as shown in Fig. 3d by the dashed yellow line representing 

the maximum link rate.1 

A collection of experimental results is illustrated in Fig. 3. 

In particular, Fig. 3a shows box plots of the round-trip 5G 

network latency. With adaptation, the average and median 

are approximately 40 ms, while the interquartile range is ≈ 
30 ms. On the other hand, without adaptation, the network 

latency is consistently higher, with an average of 80 ms and a 
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(a) Bars plot with the PMF of the total number of objects detected per frame. (b) Bars plot with the PMF of the number of chairs detected per frame. 

Fig. 4: Object detection results for the video streaming experiment on our platform. 

TABLE I: Main parameters for the 5G OAI experiments. Relatively to the TDD 

configuration, D indicates a downlink slot, U stands for uplink, and S is a special slot 

with a mixture of 6 downlink symbols and 4 uplink symbols. 
 

Parameter Value Parameter Value 
Frequency 
carrier 

2593.350 MHz BWP 1 channel bw 40 MHz 

TDD 
configuration 

DSUUU BWP 2 channel bw 20 MHz 

Max encoder 
bitrate 20 Mbps BWP 3 channel bw 10 MHz 

Video 
resolution 1920x1080 BWP 1, 2, 3 SCS 30 KHz 

 

median of ≈ 70 ms. Besides, the interquartile range and the 

maximum round-trip are higher. This indicates that without 

adaptation, latency becomes unpredictable, leading to higher 

jitter values and worse video quality. Fig. 3b suggests that the 

object detection inference time does not vary significantly in 

the two cases, as both average values are close (i.e., roughly 

20 ms). The average inference time is slightly lower without 

adaptation because fewer candidates are detected given the 

lower average video quality. Fig. 3c shows the cumulative 

distribution function (CDF) of the end-to-end inference latency 

computed as the sum of the round-trip network latency and the 

average object detection inference time. As we can see, with 

adaptation, we can clearly satisfy the 100 ms QoS requirement 

(as in [6]) for object detection all the time. Instead, without 

adaptation, 40% of the time, we cannot meet the requirement. 

The results show that our adaptive video streaming platform 

can provide better object detection performance compared to 

an implementation without adaptation. 

Fig. 3d shows the predicted channel link rate and the 

adapted encoder bitrate during the video adaptation experi- 

ment. Note that the encoder rate without adaptation would 

be fixed to the maximum value of 20 Mbps. We could 

transmit the video at a lower bitrate (i.e., underestimating the 

channel condition); nonetheless, this will result in consistently 

degraded performance for all the microservices due to poor 

image quality. The figure shows that the encoder bitrate closely 

follows the predicted link rate. In addition, the proximity 

between the prediction and the actual channel link rate depends 

 
1Note: the maximum link rate is lower than the capacity expected for each 

BWP because the uplink performance is limited by the computational re- 
sources of our Nautilus server. To overcome this limitation, we are integrating 
FPGA-based LDPC acceleration enabled by the Xilinx T1 card. 

on the amount of data sent on the uplink. As such, when the 

encoder bitrate is capped at its maximum value of 20 Mbps, 

the predicted link rate is consistently lower compared to the 

actual maximum channel link rate. 

YoLoV7 [9] can track objects from 80 classes; however, 

in this experiment, we considered a subset of eight typical 

objects that can be found in an office environment. From 

the probability mass function (PMF) of Fig. 4a, we can 

see that a higher number of objects per frame is detected 

with adaptation. Moreover, from Fig. 4b, more chairs can be 

detected with adaptation. Without adaptation, there is a non- 

negligible probability that no objects or chairs are detected. 

Therefore, video adaptation helps to increase our VIS4ION 

wearable object detection capabilities. 

We mapped the entire 9th floor at 370 Jay Street for 

navigation and localization. We deployed InstructBLIP as in 

[12] for vision-language processing based on VLM. Table II 

shows the importance of video adaptation to allow for precise 

inference in each microservice. In the case of adaptation, the 

video frame depicted is received from the low-frame rate, high- 

resolution secondary video stream, which is activated when the 

predicted link rate falls to 5 Mbps. Highlighted in yellow in the 

table, we have the output of UNav with and without adaptation 

based on the corresponding video frame as input. As can be 

seen, with adaptation, the output corresponds precisely to the 

correct navigation information to reach the destination; without 

adaptation, due to poor image quality, UNav cannot localize 

the user, thus not finding any path to the destination. 

Highlighted in cyan in Table II, we show the results of the 

VLM inference. In the case of adaptation, YoLo recognizes the 

chair in the frame; hence, we can use object detection results 

to create a specific prompt to input into the model, as reported 

in the table. With adaptation, InstructBLIP can assess the risks 

associated with the detected object along the path of pBLV. 

However, without adaptation, we are forced to ask a more 

generic question to the model since the chair is not detected, 

which ultimately cannot capture the risk associated with the 

obstacle along the route. This is just one possible usage of the 

VLM assistance microservice (assessing environmental risks 

and complementing object detection). Other possible usages 

include, as an example, scene description. 
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TABLE II: Navigation and localization and VLM inference results. 
 

Computational flow at edge Item Adaptation No Adaptation 

 

Requested 

destination 
Stored map 

Requested destination “Kitchen room of 9th floor at 370 Jay St.” 

 

 

 

 

Received image at the edge 

along with detected objects 

by Yolo running at the edge 

 

 

 

 

 

 
Received 
image 

Visual place 

recognition & 

navigation 

Navigation 

response: 

Detected objects Chair None 
   

Object 

detection 

Navigation response to user “Go straight to 12 o’clock and walk 15 feet. 

Then turn right.” 

“No path to destination” 

Detected 

objects 
Prompt 

construction 

Engineered prompt (auto- 

matically generated, not 

provided by the user) 

”There appears to be a chair in the scene. 

Is the chair a threat to a user with blindness 

who wants to walk forward? If yes, in which 

direction should the user go to avoid it? (avoid 

mentioning blindness in your answer)” 

”Is there any object that can be a threat to 

a user with blindness who wants to walk 

forward? If yes, in which direction should 

the user go to avoid it?” (avoid mentioning 

blindness in your answer)  

Visual 

language Alert given to user ”Yes, the chair is a threat to a user who wants 

to walk forward. To avoid the chair, the user 

should go to the left side of the hallway. The 

chair is located on the right side of the hallway.” 

”No, there is no object that can be a threat to a 

user who wants to walk forward in this image. 

The user can simply walk forward without 

any obstacles.” 

Navigatation 
model

 

alert 
 

 

V. CONCLUSIONS 

The adaptive video streaming platform presented in this 

paper aims to increase the performance of an ensemble of 

microservices based on AI offered to VIS4ION, a smart 

wearable that helps pBLV in their daily challenges. To achieve 

that, we propose to (1) leverage edge computing resources 

to increase performance and minimize latency along with 

battery consumption, and (2) utilize adaptive video streaming 

strategies that maximize the quality of the video frames fed 

into the AI-based microservices. This framework has been 

validated using real-world experiments. To do so, we built a 

testbed using OAI, which is an open-source implementation of 

5G. This platform allowed us to derive real-world performance 

metrics such as end-to-end latency and visual processing ac- 

curacy. Overall, our results show the benefits of our proposed 

architecture both in terms of accuracy and aggregate latency –

network plus inference–, which are particularly critical in the 

context of assistive technology. 
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