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Abstract—In an increasingly visual world, people with blind-
ness and low vision (pBLYV) face substantial challenges in navigat-
ing their surroundings and interpreting visual information. From
our previous work, VIS4ION is a smart wearable that helps pBLV
in their daily challenges. It enables multiple microservices based
on artificial intelligence (AI), such as visual scene processing,
navigation, and vision-language inference. These microservices
require powerful computational resources and, in some cases,
stringent inference times, hence the need to offload computation
to edge servers. This paper introduces a novel video streaming
platform that improves the capabilities of VIS*ION by providing
real-time support of the microservices at the network edge.
When video is offloaded wirelessly to the edge, the time-varying
nature of the wireless network requires adaptation strategies
for a seamless video service. We demonstrate the performance
of our adaptive real-time video streaming platform through
experimentation with an open-source SG deployment based on
open air interface (OAI). The experiments demonstrate the
ability to provide microservices robustly in time-varying network
conditions.

Index Terms—S5G, testbed, Al, assistive technology, e-health,
wearable, edge computing, video streaming.

1. INTRODUCTION

There are 39 million blind and 246 million people with
low vision worldwide, according to the world health orga-
nization (WHO) [1]. While therapeutic advances are being
developed for a handful of conditions, there are a multitude
of etiologies that result in severe visual disability [2], and the
prevalence of many of these conditions is increasing. Impaired
vision constrains mobility, inevitably leading to problems with
unemployment and quality of life [3], both of which limit
psychosocial well-being.

To address the challenges of people with blindness and
low vision (pBLV), we have developed VIS4ION (visually
impaired smart service system for spatial intelligence and
onboard navigation) [4], [5] — a discreet and ergonomic
wearable equipped with miniaturized sensors, including cam-
eras, microphones, global navigation satellite system (GNSS)
receivers, and inertial measurement units (IMUs). A binaural
bone conduction headset and an optional reconfigurable waist
strap turned haptic interface provide real-time feedback, as
depicted on the left of Fig. 1.

VIS4ION offers multiple microservices based on artificial
intelligence (AI) for pBLV with visual data as input. These
include object detection for obstacle avoidance, large language
model (LLM)-based audio assistance with visual data, and
vision-based localization and navigation. Ideally, these mi-
croservices run on the edge, where powerful computational
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Fig. 1: The proposed VIS*ION platform for people with blindness and low vision
provides several powerful edge-based AI microservices. These services all use video
captured on a strap mounted camera on the wearable.

resources enable faster inference and deployment of larger
models for optimal performance. However, edge offloading
requires seamless wireless connectivity to upload and process
video and audio data continuously.

A critical challenge in developing VIS4ION with edge
offloading — and the focus of this work — is wireless con-
nectivity. Wireless deployment of vision-based edge services
suffers from the time-varying nature of network conditions
[6]. Wireless connectivity will vary with the user’s location
relative to the access point or base station, as well as with
the network load. Therefore, the bitrate and processing fre-
quency of the video frames will need to be adjusted based
on such conditions. Most previous work on video adaption
for edge-based services has focused on object detection [7].
In contrast, the VIS4ION system requires adapting video that
caters to multiple services with different quality of service
(QoS) requirements.

The paper presents several important contributions to ad-
dress these challenges and advancing the set of features
supported by VIS4ION:

We develop a complete video streaming platform to
support the real-time fruition of the envisioned microser-
vices for pBLV. The implementation supports concurrent
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execution of the Al-based microservices over a pool of
available graphics processing unit (GPU) resources.

- We implement a method to estimate the available link
rate using our REBERA algorithm [8]. Based on the link
rate estimate, a heuristic algorithm is proposed to adapt
the video across different services.

- We evaluate the proposed adaptive video streaming plat-
form using an open-source 5G testbed based on open
air interface (OAI) in an indoor lab environment. 5G
link conditions are manipulated by changing the available
bandwidth to emulate a network under time-varying load.

II. VIS4ION WITH 5G CONNECTIVITY AND VIDEO
ADAPTATION

VIS4ION microservices architecture

VIS4ION wearable is wirelessly connected to a set of
powerful edge microservices based on Al, including visual
scene processing, real-time localization and navigation, and
audio assistance through vision-language models (VLMs). The
architecture for these services is schematically depicted in
Fig. 1. The primary input for all services is the video captured
from the wearable strap-mounted cameras for image stability.
The captured video is compressed and uploaded wirelessly to
the edge. In this work, we explore 5G connectivity, although
any wireless connectivity can be used, including Wi-Fi. As we
explain below, the uplink rate can vary, and adaptation of the
video compression is critical.

Several edge microservices use the uploaded video data.
The first service is object detection using YoLo. Building on
our previous work in [6], our video streaming platform allows
for real-time high frame rate object detection using one of
the most recent YoLo models, YoLoV7 [9]. In particular, we
use YoLoV7-w6, which supports inference on higher-resolution
images compared to the basic YoLoV7 model. In order to
support fast responses to immediate and dangerous obstacles,
the object detection results are generally reported at a fast
frame rate and then rendered to the user via haptic or audio
feedback. Our analysis in [6] suggested that object detection
should be as fast as 30 fps to allow a response time of 100 ms
when including video upload, inference, and feedback time.

The second microservice offered is UNav [10]. UNav is
an Al-based software that creates infrastructure-free, camera-
based digital twins or 3D maps of complex indoor and outdoor
environments, supporting wayfinding to close or far-range des-
tinations through audio and haptic user commands. Note that
the commonly used global positioning system (GPS) would
not work indoors and has a relatively low accuracy. UNav
relies on visual place recognition [11], where the features of
the query image are compared against a library of pre-stored
features to locate the user. The location information can then
be used to provide navigation instructions. For example, as
shown in Fig. 1, the user could verbally request a destination
such as a kitchen, and UNav first finds the user’s current
location from the current video frame and then provides a text-
based navigation suggestion such as “go forward” a certain
distance. The navigation suggestions are then converted to

audio using text-to-speech tools and delivered to the user
through the headset.

Lastly, our platform supports real-time audio assistance
using a VLM called InstructBLIP [12]. InstructBLIP is an
LLM-based VLM for comprehensive scene understanding and
textual descriptions. It can generate descriptive output text
based on the input prompt and image. Specifically, Instruct-
BLIP begins by capturing high-level visual representations of
the image. Then, the input prompt and visual features are
used to generate contextualized information through an LLM.
Specifically, InstructBLIP works in association with an LLM
known as Vicuna-13B [13] to generate the final output text.

Each service has different computational and feedback
frequency requirements. As described above, object detection
inference must support a high frame rate to capture suddenly
appearing objects that could pose a risk to pBLV. Therefore,
feedback must be received within a strict delay budget. On
the other hand, navigation and audio assistance require com-
plex models and can often be executed with lower inference
frequency. For example, localization and navigation may be
sufficient at one feedback per second. The same applies to
audio assistive on the general scene composition and relatively
far obstacles.

Adaptive video streaming platform

The real-time video streaming platform consists of a client
and a server. The client runs on an NVIDIA Jetson board,
which connects to a 5G-enabled smartphone for cellular
connectivity, as shown in Fig. 2. Primarily, the client ini-
tiates an uplink video stream to the server using real-time
transport protocol (RTP) and receives a sequence of outputs
from the microservices introduced above. The reception of
such information is essential to unleash the full potential of
VIS4ION and assist pBLV through haptic and audio feedback.
Importantly, to ensure the seamless performance of these
assistive microservices, video streaming must consider link
rate fluctuations that are related but not limited to network
congestion, poor wireless channel quality, and the number of
users simultaneously accessing the same wireless resources.
As such, our video streaming client implements an adaptive
mechanism that enables video encoder adjustments based on
channel quality. Specifically, the client periodically receives
link rate estimates from the server and then uses the REBERA
algorithm [8] to predict the link rate in the next time step based
on previous observations and accordingly set the appropriate
encoder rate. In addition, the client adapts the video streaming
resolution according to the set video rate. As we found in
[6], lowering the video resolution when the target video
rate is below a certain threshold improves object detection
performance.

Navigation and VLM-based scene description do not need
to run at high frame rates due to their high computational load
and relaxed latency requirements. A single high-quality video
frame per second should suffice. Hence, we support multiple
video-based services at different frame rates and spatial res-
olutions. In particular, when the predicted link rate is high,
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Fig. 2: End-to-end 5G real-time adaptive video streaming platform.

we send a single video stream with a high frame rate (30 fps)
and high spatial resolution (1920 x1080). In this case, object
detection will be performed for every frame, but navigation
and VLM will be performed only once every second, hence
every 30 frames are received. When the predicted link quality
degrades, we reduce the video resolution but keep the same
frame rate so that object detection can still be performed
frequently but with reduced accuracy. We further enable a
secondary video stream with a low frame rate (e.g., 1 fps)
but high spatial resolution to perform navigation and VLM
inference on high-quality and resolution images. As outlined in
[6], high-resolution images enable the detection of objects far
away (which would occupy a small region in an image and are
more difficult to detect from low-resolution images). Sending
high-resolution video when the network connectivity is robust
allows the user to “see” objects far away and plan their
trajectory properly. When the network link is weak, despite the
reduced image resolution, we can still accurately detect nearby
objects (which have relatively larger image size and can still be
easily detected in low-resolution images) that could threaten
pBLV. We choose to perform navigation and VLM services
only in high-resolution frames because our separate studies
have found that increasing spatial resolution can significantly
improve navigation accuracy [14]. Effectively, the presence of
a secondary video stream adds a second layer of adaptation
based on the QoS requirement for a given microservice.

As depicted in Fig. 2, the server runs on any computer
system equipped with GPUs. It receives the uplink video
stream from the client and performs a series of services
instrumental in supporting the full set of features expected for
VIS4ION. Similarly to [8], the server periodically computes
an estimate of the link rate based on the incoming stream
of video packets. As previously discussed, each estimate
is sent back to the client for video adaptation. The server
implements a pipeline to support real-time, high-frame rate
object detection on the received video frames. In addition, the
server hosts microservices for navigation and localization, as
well as vision-language inference on high-resolution frames
at a low frame rate. All these services run on parallel threads
to distribute their computational requirements over different
resources on the same machine. Furthermore, when enabled

by the client, the server supports the reception of a secondary
low-frame rate, high-resolution video stream. If this stream
is present, microservices with a lower frame rate requirement
(i.e., navigation and localization, and VLM instruction) enjoy
high-quality video frames. If this stream is not running, the
mentioned microservices use frames from the primary high-
frame-rate video stream.

Finally, the client and server have been developed us-
ing GStreamer libraries [15] to stream real-time video, and
DeepStream [16] for real-time object detection with YoLo
running on NVIDIA’s GPUs. Socket and thread programming
in Python have been used to enable parallel execution of
microservices and link rate estimation.

III. 5G EXPERIMENTAL PLATFORM

5G cellular stack

A programmable 5G network was deployed using the widely
adopted OALI stack [17]. OAI is an open-source project that im-
plements the 3rd generation partnership project (3GPP) tech-
nology on general-purpose x86 computing hardware and com-
mercial off-the-shelf (COTS) software-defined radio (SDR)
cards such as universal software radio peripherals (USRPs).
Notably, the OAI framework includes both radio access net-
work (RAN) and 5G core (5GC), enabling end-to-end 5G cel-
lular functionalities. As shown in Fig. 2, a commercial phone
gets programmable 5G connectivity using an OAI subscriber
identity module (SIM) card. The 5G RAN components are
compiled on the host machine, whereas the 5GC is loaded on
the same machine by launching several docker images that will
jointly verify, authenticate, and subscribe each preregistered
OAI device. Once connected to 5G, the user will be able
to communicate with any accessible servers on the external
data network. In our case, as discussed in further detail in
the next section, we deployed a powerful inference server
on the same dedicated network as 5GC, thus mimicking the
performance of an edge server. Finally, a significant benefit of
using open-source cellular software is that critical parameters
can be logged and tracked at any network layer, allowing us to
accurately profile the overall performance of our experiments.
OAI code modification — variable BWPs: Critically, to assess
the advantages of our adaptive video streaming technology, we
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Fig. 3: Results for the video streaming experiment on our platform. The blue box in the box plots represents the interquartile range between the 25th and 75th percentiles. The blue

line represents the median.

modified to the OAI next-generation node base (gNB) sched-
uler code to trigger specific variations in channel capacity.
To do so, we leverage a new feature in 5G, bandwidth part
(BWP), introduced in 3GPP Release 15, to dynamically adapt
each user’s carrier bandwidth and associated numerology [18].
We programmed the scheduler so that gNB will modify the
allocated BWP configuration at specific time intervals.

Hardware

5G Network: As shown in Fig. 2, the 5G network infras-
tructure comprises the following hardware: the gNB Radio
Unit runs on the USRP N310, which connects to the Proxicast
4G/5G Aerial Antennas; the gNB Baseband Unit and the 5GC
run on the Nautilus machine, which is a high-performance
computing (HPC) server equipped with Xilinx T1 and T2
boards for L1 acceleration.

Client: The client includes a Jetson Orin NX 16 GB that
connects to a wide-angle camera. This device has 5G OAI
connectivity through USB tethering via a Google Pixel 5A.

Server: We use a powerful Dell Precision 7920 Rack
Workstation with 3x NVIDIA RTX A6000 (48GB each) to
host the video streaming server with Al edge services for our
platform. This machine shares the same rack as the Nautilus
server to mimic a realistic edge computing environment.

IV. RESULTS

This section discusses the experimental results obtained
using the 5G platform introduced above. Our goal is to
test our adaptive video streaming platform along with the
microservices enabled for pBLV and to measure its overall

performance. Critically, we compared the results of each mi-
croservice with and without video adaptation enabled. Without
video adaptation, we fix the encoder bitrate at 20 Mbps, the
frame rate to 30 fps, and the video resolution to 1920%1080.

We recorded a high-bitrate and resolution video where we
walked from our wireless lab to the kitchen on the same floor.
We placed a set of potentially hazardous obstacles, such as
office chairs, along the route. Then, we walked from the lab
room to the kitchen, recording approximately 60 seconds of
video. We then emulated the streaming of this video under
time-varying network conditions and invoked the three Al
services on the decoded video on the inference edge server.
A pre-recorded video allowed us to compare the performance
of the multiple Al services with video adaptation vs. without
video adaptation under the same controlled network conditions
and using the exact same video frames. We tethered the Jetson
board to the Google Pixel to gain 5G OAI connectivity. The
Google Pixel, which was wirelessly connected to gNB, did
not move due to coverage constraints in our 5G frontend and,
therefore, experienced stable channel quality throughout the
duration of the experiment. To mimic 5G link rate fluctuations,
we modified BWP every = 10 seconds, as reported in Table I,
and as shown in Fig. 3d by the dashed yellow line representing
the maximum link rate.!

A collection of experimental results is illustrated in Fig. 3.
In particular, Fig. 3a shows box plots of the round-trip 5G
network latency. With adaptation, the average and median
are approximately 40 ms, while the interquartile range is =
30 ms. On the other hand, without adaptation, the network
latency is consistently higher, with an average of 80 ms and a
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Fig. 4: Object detection results for the video streaming experiment on our platform.

TABLE I: Main parameters for the 5G OAI experiments. Relatively to the TDD
configuration, D indicates a downlink slot, U stands for uplink, and S is a special slot
with a mixture of 6 downlink symbols and 4 uplink symbols.

Parameter Value Parameter Value

S;fggf“cy 2593350 MHz | BWP 1 channel bw | 40 MHz
gvglgguration DSUUU BWP 2 channel bw 20 MHz
haax encoder 150 fpps BWP 3 channel bw | 10 MHz
Video . 1920x1080 BWP 1,2,3SCS | 30 KHz

median of ® 70 ms. Besides, the interquartile range and the
maximum round-trip are higher. This indicates that without
adaptation, latency becomes unpredictable, leading to higher
jitter values and worse video quality. Fig. 3b suggests that the
object detection inference time does not vary significantly in
the two cases, as both average values are close (i.e., roughly
20 ms). The average inference time is slightly lower without
adaptation because fewer candidates are detected given the
lower average video quality. Fig. 3¢ shows the cumulative
distribution function (CDF) of the end-to-end inference latency
computed as the sum of the round-trip network latency and the
average object detection inference time. As we can see, with
adaptation, we can clearly satisfy the 100 ms QoS requirement
(as in [6]) for object detection all the time. Instead, without
adaptation, 40% of the time, we cannot meet the requirement.
The results show that our adaptive video streaming platform
can provide better object detection performance compared to
an implementation without adaptation.

Fig. 3d shows the predicted channel link rate and the
adapted encoder bitrate during the video adaptation experi-
ment. Note that the encoder rate without adaptation would
be fixed to the maximum value of 20 Mbps. We could
transmit the video at a lower bitrate (i.e., underestimating the
channel condition); nonetheless, this will result in consistently
degraded performance for all the microservices due to poor
image quality. The figure shows that the encoder bitrate closely
follows the predicted link rate. In addition, the proximity
between the prediction and the actual channel link rate depends

"Note: the maximum link rate is lower than the capacity expected for each
BWP because the uplink performance is limited by the computational re-
sources of our Nautilus server. To overcome this limitation, we are integrating
FPGA-based LDPC acceleration enabled by the Xilinx T1 card.

on the amount of data sent on the uplink. As such, when the
encoder bitrate is capped at its maximum value of 20 Mbps,
the predicted link rate is consistently lower compared to the
actual maximum channel link rate.

YoLoV7 [9] can track objects from 80 classes; however,
in this experiment, we considered a subset of eight typical
objects that can be found in an office environment. From
the probability mass function (PMF) of Fig. 4a, we can
see that a higher number of objects per frame is detected
with adaptation. Moreover, from Fig. 4b, more chairs can be
detected with adaptation. Without adaptation, there is a non-
negligible probability that no objects or chairs are detected.
Therefore, video adaptation helps to increase our VIS4ION
wearable object detection capabilities.

We mapped the entire 9th floor at 370 Jay Street for
navigation and localization. We deployed InstructBLIP as in
[12] for vision-language processing based on VLM. Table 11
shows the importance of video adaptation to allow for precise
inference in each microservice. In the case of adaptation, the
video frame depicted is received from the low-frame rate, high-
resolution secondary video stream, which is activated when the
predicted link rate falls to 5 Mbps. Highlighted in yellow in the
table, we have the output of UNav with and without adaptation
based on the corresponding video frame as input. As can be
seen, with adaptation, the output corresponds precisely to the
correct navigation information to reach the destination; without
adaptation, due to poor image quality, UNav cannot localize
the user, thus not finding any path to the destination.

Highlighted in cyan in Table II, we show the results of the
VLM inference. In the case of adaptation, YoLo recognizes the
chair in the frame; hence, we can use object detection results
to create a specific prompt to input into the model, as reported
in the table. With adaptation, InstructBLIP can assess the risks
associated with the detected object along the path of pBLV.
However, without adaptation, we are forced to ask a more
generic question to the model since the chair is not detected,
which ultimately cannot capture the risk associated with the
obstacle along the route. This is just one possible usage of the
VLM assistance microservice (assessing environmental risks
and complementing object detection). Other possible usages
include, as an example, scene description.
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TABLE II: Navigation and localization and VLM inference results.

Computational flow at edge

Item

Adaptation

No Adaptation

¢

Object
detection

Al
Detected
objects

alert

Navigatation

Prompt
construction

Visual
language
moael

Requested destination

“Kitchen room of 9th floor at 370 Jay St.”

Requested Unav
destination
P Stored map
Received image at the edge
along with detected objects
Received by Yolo running at the edge
image .
,Visual place
recognition &
¢ navigation
Navigation Detected objects Chair None
response:

Navigation response to user

“Go straight to 12 o’clock and walk 15 feet.
Then turn right.”

“No path to destination”

Engineered prompt (auto-
matically generated, not
provided by the user)

”There appears to be a chair in the scene.
Is the chair a threat to a user with blindness
who wants to walk forward? If yes, in which
direction should the user go to avoid it? (avoid
mentioning blindness in your answer)”

”Is there any object that can be a threat to
a user with blindness who wants to walk
forward? If yes, in which direction should
the user go to avoid it?” (avoid mentioning
blindness in your answer)

Alert given to user

”Yes, the chair is a threat to a user who wants
to walk forward. To avoid the chair, the user
should go to the left side of the hallway. The
chair is located on the right side of the hallway.”

”No, there is no object that can be a threat to a
user who wants to walk forward in this image.
The user can simply walk forward without
any obstacles.”

V. CONCLUSIONS

The adaptive video streaming platform presented in this
paper aims to increase the performance of an ensemble of
microservices based on Al offered to VIS4ION, a smart
wearable that helps pBLV in their daily challenges. To achieve
that, we propose to (1) leverage edge computing resources
to increase performance and minimize latency along with
battery consumption, and (2) utilize adaptive video streaming
strategies that maximize the quality of the video frames fed
into the Al-based microservices. This framework has been
validated using real-world experiments. To do so, we built a
testbed using OAI, which is an open-source implementation of

5G.

This platform allowed us to derive real-world performance

metrics such as end-to-end latency and visual processing ac-
curacy. Overall, our results show the benefits of our proposed
architecture both in terms of accuracy and aggregate latency —
network plus inference—, which are particularly critical in the
context of assistive technology.
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