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Abstract: People with blindness and low vision (pBLV) encounter substantial challenges when 

it comes to comprehensive scene recognition and precise object identification in unfamiliar envi- 

ronments. Additionally, due to the vision loss, pBLV have difficulty in accessing and identifying 

potential tripping hazards independently. Previous assistive technologies for the visually impaired 

often struggle in real-world scenarios due to the need for constant training and lack of robustness, 

which limits their effectiveness, especially in dynamic and unfamiliar environments, where accurate 

and efficient perception is crucial. Therefore, we frame our research question in this paper as: How 

can we assist pBLV in recognizing scenes, identifying objects, and detecting potential tripping hazards in 

unfamiliar environments, where existing assistive technologies often falter due to their lack of robustness? We 

hypothesize that by leveraging large pretrained foundation models and prompt engineering, we can 

create a system that effectively addresses the challenges faced by pBLV in unfamiliar environments. 

Motivated by the prevalence of large pretrained foundation models, particularly in assistive robotics 

applications, due to their accurate perception and robust contextual understanding in real-world sce- 

narios induced by extensive pretraining, we present a pioneering approach that leverages foundation 

models to enhance visual perception for pBLV, offering detailed and comprehensive descriptions 

of the surrounding environment and providing warnings about potential risks. Specifically, our 

method begins by leveraging a large-image tagging model (i.e., Recognize Anything Model (RAM)) 

to identify all common objects present in the captured images. The recognition results and user 

query are then integrated into a prompt, tailored specifically for pBLV, using prompt engineering. 

By combining the prompt and input image, a vision-language foundation model (i.e., InstructBLIP) 

generates detailed and comprehensive descriptions of the environment and identifies potential risks 

in the environment by analyzing environmental objects and scenic landmarks, relevant to the prompt. 

We evaluate our approach through experiments conducted on both indoor and outdoor datasets. 

Our results demonstrate that our method can recognize objects accurately and provide insightful 

descriptions and analysis of the environment for pBLV. 

 
Keywords: assistive technology; multi-model foundation model; vision-language model 

 

 

1. Introduction 

The prevalence of visual impairment has reached alarming levels, affecting millions 
of individuals worldwide, as highlighted by recent estimates from the World Health Or- 

ganization (WHO) [1,2]. The number of people experiencing moderate to severe visual 
impairment or complete blindness continues to rise steadily, with projections indicating a 

further surge in these numbers by 2050 [3]. Visual impairment, whether partial or complete, 
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presents significant challenges that profoundly impact various aspects of daily life for 
pBLV [4]. Among the critical tasks that pose difficulties for pVLB is visual search, which 
involves actively scanning the environment and locating a specific target among distracting 

elements [5]. Even for individuals with normal vision, visual search can be demanding, 
especially in complex environments. However, for individuals with blindness or low vision, 

these challenges are further compounded [6]. Those with peripheral vision loss, central 
vision loss, or hemi-field vision loss often struggle to pinpoint a particular location or 

search for objects due to reduced fields of view. They often require assistance to accurately 
identify the environment or locate objects of interest. Similarly, individuals experiencing 
blurred vision or nearsightedness encounter difficulties in identifying objects at varying 

distances. Color-deficient vision and low-contrast vision further exacerbate the challenges 
of distinguishing objects from the background when they share similar colors. In addition 

to understanding their surroundings and locating objects of interest, assessing potential 
risks and hazards within the visual environment becomes an intricate task, demanding 

a comprehensive analysis to ensure personal safety [7]. Therefore, addressing the chal- 
lenges faced by pBLV in environmental interaction holds profound significance due to the 
escalating prevalence of visual impairment globally, which substantially affects millions 

and is projected to increase further. These challenges, which include difficulties in visual 
search, object identification, and risk assessment in diverse environments, critically impact 

the independence, safety, and quality of daily life of pBLV. Innovatively enhancing visual 
perception for these individuals not only promises to mitigate these profound challenges, 
but also aims to empower them with greater autonomy and confidence in navigating their 

surroundings, thus fostering inclusivity and accessibility in society. 
Current assistive technologies for pBLV [8–10] driven by computer vision approaches 

have led to the development of assistive systems that utilize object recognition [11], GPS 

navigation [12], and text-to-speech tools [13]. While these technologies have provided 
valuable assistance to visually impaired individuals [14], they still face certain challenges 
and limitations. One of the primary challenges with existing assistive technologies is their 

limited ability to provide comprehensive scene understanding and guidance to address the 
specific needs of visually impaired individuals. For instance, while many tools focus on 

specific functionalities, such as obstacle detection or route planning, they often fall short 
in delivering detailed descriptions and guidance based on user questions. The current 
solutions also lack the capability to generate contextually relevant information about ob- 

jects, scenes, and potential risks in the environment, limiting an in-depth understanding of 
the environment for visually impaired individuals. Conversational search finds applica- 

tions in various domains such as basic information retrieval, personal information search, 
product selection and travel planning, which facilitates information retrieval through 

conversation [15]. Additionally, these solutions, such as object detection [11], frequently 
encounter difficulties in real-world scenarios due to the need for constant training and adap- 
tation. They exhibit a lack of robustness, which limits their effectiveness, particularly in 

dynamic and unfamiliar environments, in which accurate and efficient perception is crucial. 
This limitation hinders their ability to fully perceive and understand their surroundings, 

resulting in reduced independence and increased reliance on external assistance. 
In this paper, we aim to address the research questions of exploring whether large 

foundation models can address the limitations of current assistive technologies for pBLV by 
enhancing comprehensive scene understanding, providing contextually relevant informa- 

tion, and improving adaptability and robustness in dynamic environments. We posit that 
these large foundation models, through extensive pretraining, can significantly improve 

the functionality of assistive technologies by providing detailed guidance and accurate 
environmental perceptions, thus increasing the independence and safety of visually im- 
paired individuals to navigate their surroundings. As shown in Figure 1, we present a 

novel approach named VisPercep that leverages the advanced large vision-language model 
to enhance visual perception for individuals with blindness and low vision, including scene 

understanding, object localization, and risk assessment. Our work addresses the challenges 
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faced by pBLV by providing them with detailed and comprehensive scene descriptions 
and risk guidance based on user questions, allowing an in-depth understanding of their 
surroundings, locating objects of interest, and identifying potential risks. 

 

Scene Object Risk 
 

 

Figure 1. Multi-Modal Foundation Model Sample Illustration. 

Our system includes three main modules, as illustrated in Figure 2: image tagging 

module, prompt engineering module, and vision-language module. The image tagging 
module, implemented using Recognize Anything Model (RAM) [16], recognizes all objects 

in the captured image. We then integrate the recognized objects and user questions into a 
customized prompt designed for visually impaired individuals through prompt engineer- 
ing. Finally, the vision-language model utilizes InstructBLIP [17] to generate detailed and 

contextually relevant text, facilitating comprehensive scene understanding, object recogni- 
tion, and risk assessment for visually impaired individuals. Our experiments demonstrate 

that our system can recognize objects of interest and provide detailed answers to user 
questions, significantly enhancing the visual understanding of surroundings. 

 

Figure 2. Method Structure Overview. 

Our contributions are summarized as follows: 

1. In response to the challenges faced by pBLV in achieving comprehensive scene recog- 
nition and identifying objects and hazards in unfamiliar environments, we introduce 
an innovative approach that leverages a multi-modal foundation model. This model is 
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designed to significantly enhance environmental understanding by offering detailed 
and comprehensive descriptions of surroundings and alerting users to potential risks. 

2. To directly address the limitations of current assistive technologies, which often lack 

robustness and the capability to adapt to dynamic scenarios, we have developed a 
voice-controlled system. This system uniquely combines a large image tagging model 

with a vision-language foundation model, facilitating intuitive, language-guided 
question answering that caters specifically to the needs of pBLV. 

3. Our approach’s effectiveness is validated through rigorous testing on both indoor 
and outdoor datasets. These experiments demonstrate the system’s superior ability to 
accurately recognize objects and provide accurate descriptions and analyses of the 

environment, thereby directly addressing the core research problem of enhancing 
navigation and interaction for pBLV in diverse settings. 

In the following section of the article: (Section 2) Related Work: Summarized existing 
auxiliary technologies in blind and low vision. (Section 3) Materials and Methods: Proposed 
to leverage the power of a multi-modal foundation model that integrates image tagging 

and visual language models to provide detailed environmental descriptions and risk 
assessments. (Section 4) Experiments and Results: The accuracy and effectiveness of the 
model were validated through indoor and outdoor datasets, demonstrating its guidance 

ability for blind and visually impaired individuals. (Section 5) Conclusion: Summarized 
the contribution of the research, emphasizing the use of new methods to provide better 

guidance and enhance the independence and safety of visually impaired individuals. 
(Section 6) Limitations and Future Research: Explained the difficulties encountered by the 

model at the current stage from different aspects and future research directions. 

2. Related Works 

Initial research has seen a growth in interest in the development of conversational 
search systems intended to support users in their information-seeking activities [18]. This 

work has primarily focused on communication of information exclusively via spoken 
dialogue. While this is sufficient for simple question-type queries, it is an inefficient means 

of engagement for more complex or exploratory queries [19]. In the realm of information, 
conversational search is a relatively new trend [20]. Conversation is the natural mode 

for information exchange in daily life [18], and conversational approaches to information 
retrieval are gaining attention [15]. By integrating conversational search approaches with 
existing assistive technologies, there is potential to enhance the user experience and address 

the limitations of current systems, providing more natural and efficient interaction for 
individuals with visual disabilities. 

In recent years, several assistive technologies and applications developed to support 
individuals with visual disabilities in understanding their environment and enhancing their 

scene understanding [4,21,22]. Traditional tools such as white canes [23] and guide dogs [24] 
have long been used to aid in mobility and spatial awareness. Additionally, advancements 
in technology have led to the development of various assistive devices, including wearable 

cameras [25–27], GPS navigation systems, and object recognition technologies [28]. 
Wearable camera systems, such as the OrCam MyEye and Seeing AI [29], offer real- 

time text reading and text-to-speech capabilities to provide auditory feedback to individuals 
with visual disability. These systems assist in object identification, text reading, and facial 
recognition, enhancing their ability to interact with their surroundings. GPS navigation sys- 

tems, such as BlindSquare [30] and Lazarillo [31], utilize location-based services to provide 
audio instructions and guidance for navigation in both indoor and outdoor environments. 

Computer vision-based technologies have also been explored for scene understand- 
ing. These include object detection systems using deep learning models like YOLO [32] 

and Faster R-CNN [33], which provide real-time identification of objects in the environ- 
ment. Detect and Approach [27] proposes a real-time monocular-based navigation solution 

based on YOLO for pBLV. Additionally, vision-language models like VizWiz [34] and 
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SoundScape [35] incorporate natural language processing to describe visual scenes, answer 
questions, and provide context-aware information. 

While these existing assistive technologies have made significant advancements, they 

still face limitations. Many systems provide partial solutions focused on specific functional- 
ities such as object recognition or detection, but often fall short in delivering comprehensive 

scene understanding and detailed descriptions. Moreover, these technologies may lack 
the ability to provide guidance based on user questions, limiting their effectiveness in 

addressing the specific needs and queries of individuals with visual disability [9]. Further- 
more, these technologies often require multiple devices or interfaces, leading to complexity 
and decreased usability for individuals with visual disability [21]. In contrast to these 

existing approaches, our proposed method offers a comprehensive and integrated solution. 
By combining advanced vision-language models, image tagging, and prompt engineer- 

ing, our approach enhances scene understanding, provides real-time guidance, and offers 
context-aware prompts tailored specifically for individuals with visual disability. 

3. Materials and Methods 

In this work, as shown in Figure 1, the proposed model leverages the advanced large 
vision-language model to assist environmental interaction for individuals with blindness 
and low vision including scene understanding, object localization, and risk assessment. 

Our system utilizes a smartphone to capture images and record user questions (left). 
Based on the input image and user question, our proposed model generates detailed and 

comprehensive scene descriptions and risk assessments (right). Moreover, the camera input 
image is from Visual7W dataset [36]. Our work addresses the challenges faced by pBLV 

by providing them with detailed and comprehensive scene descriptions and risk guidance 
based on user questions, enabling an in-depth understanding of their surroundings, locating 
objects of interest, and identifying potential risks. 

Our system includes three main modules, as illustrated in Figure 2: image tagging 
module, prompt engineering module and vision-language module. Firstly, the image 

tagging module, implemented using Recognize Anything Model (RAM) [16], identifies all 
common objects present in the captured image. Secondly, using prompt engineering, we 

integrate the recognized objects and user queries to create customized prompts tailored 
for individuals with visual disability. Lastly, the vision-language module which utilizes 
InstructBLIP [17] generates detailed and contextually relevant output text, enabling com- 

prehensive and precise scene understanding, object localization, and risk assessment for 
individuals with visual disability. [The input image is from Visual7W dataset [36]. 

Our method aims to overcome the limitations of existing assistive technologies and 
empower individuals with visual disability with improved guidance. In Section 3.1, we 
introduce our image tagging module. Section 3.2 illustrates the prompt engineering tailored 

specifically for individuals with visual disability. We explain the large vision-language 
module in Section 3.3. 

3.1. Image Tagging Module 

As shown in the yellow box of Figure 2, the image tagging module is utilized to 
generate tags for each object present in the captured images, which is crucial as it provides 

a comprehensive understanding of the visual scene by accurately recognizing various 
objects. By incorporating the image tagging module, we obtain a catalog of objects present 
in the environment, facilitating a more precise and comprehensive environment description. 

We employ the Recognize Anything Model (RAM) [16] as our image tagging module, 
which has demonstrated the zero-shot ability to recognize any common category with 

high accuracy. 
Specifically, the image tagging module begins with a pre-trained image encoder, 

which processes an input image I and extracts high-level visual features F, formulated as: 

F = Encoder(I). These features capture important characteristics and representations of the 
objects in the image. After the initial feature extraction stage, an attention mechanism [37] 
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is employed to focus on the most salient regions within the image. Represented mathe- 

matically as A = Attention(F), this attention mechanism allows the model to pay more 
attention to relevant objects and suppress irrelevant ones. Thus, the image tagging module 
can generate accurate and informative tags for the recognized objects. The final stage in- 
volves mapping the extracted features to a set of object categories or tags by the image-tag 

recognition decoder. This mapping, expressed as T = Decoder(A), is learned through 
a training process that leverages large-scale annotated datasets, ensuring the model’s 
ability to generalize to various objects and scenes. The trained RAM model can then be 
applied to new images, accurately recognizing and generating tags for the objects present 
in the environment. 

3.2. Prompt Engineering for pBLV 

We incorporate prompt engineering, as shown in the green box of Figure 2, to create 
customized prompts tailored specifically for individuals with visual disability. This involves 
integrating the output of the image tagging module with user questions to form contextually 

relevant and informative prompts. Moreover, the use of prompt engineering eliminates 
the need for traditional machine learning approaches that require training models on 
labeled datasets, as prompt engineering focuses on generating effective prompts rather 

than optimizing model parameters. 
The RAM generates a set of tags that represent the recognized objects within the 

captured images. We utilize these tags to enhance the final prompt. We include the prompt 

“The image may contain elements of {tags}” to seamlessly integrate the object recognition 
results into a prompt. By incorporating these recognized object tags into the prompt, we 
ensure that the vision-language module receives specific and accurate information about 

the objects in their surroundings. This approach significantly enhances the understanding 
and awareness of the visual environment for the users. 

Furthermore, we consider user questions as vital input for prompt engineering. By 

incorporating user questions into the prompts, we address the individual’s specific needs 

for environmental understanding and ensure that the prompts are highly relevant to their 

current situation. This personalized approach allows individuals with visual disability 

to obtain the targeted information about their environment and the objects of interest. 

For example, in the case of risk assessment, we employ a specific prompt that guides the 

model to act as an assistant for individuals with visual disability, providing comprehensive 

analysis. The prompt we use is “I am visually disabled. You are an assistant for individuals 
with visual disability. Your role is to provide helpful information and assistance based on my query. 
Your task is to provide a clear and concise response that addresses my needs effectively. Don’t 
mention that I am visually disabled to offend me. Now, please answer my questions: [user_query]. 

Your answer should be like a daily conversation with me.” where [user_query] is the user 

question. This prompt enables the model to deliver detailed and accurate explanations 

regarding potential risks, ensuring that the information is communicated in a respectful 

and informative manner. 

3.3. Vision-Language Module 

To generate output text based on the prompts obtained by the prompt-engineering 

module, we employ InstructBLIP [17], a powerful large vision language model for compre- 
hensive scene understanding and analysis, as shown in the right blue box of Figure 2. 

Specifically, InstructBLIP begins by encoding the input image I using the frozen Vision 
Transformer (VIT) [38], which captures a high-level feature embedding V of the image, 

represented as V = VIT(I). The Q-Former [17] in InstructBLIP, distinct from conventional 
models, employs learnable query embedding Q and the image embedding V from VIT for 

processing. This is formulated as C = Q − Former(Q, V), where cross-attention is applied 
to generate contextualized soft image embedding C [17]. The input prompt is also encoded 
as the high-dimensional prompt embedding P by the tokenizer. The LLM incorporates 
both the image embedding and the prompt embedding from the user question to generate 
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rich and comprehensive textual descriptions. Specifically, given the output of Q-Former as 
soft image embedding C and prompt embedding P, the goal is to compute the probability 
of creating the final answer A with a length of N through the transformer model pθ. The 

mathematical expression for this process is given by the equation [39]: 
 

N 

p(A|V, P) = ∏ pθ (Ai|C, P, A<i) (1) 
i=1 

This equation captures the sequential nature of language generation, where each 
embedding in the answer is dependent on the preceding embeddings, as well as the visual 

and prompt embeddings. This probabilistic approach ensures that the generated text is 
not only accurate but also contextually coherent. We demonstrate the algorithm of our 

proposed model in Algorithm 1. 

 

Algorithm 1: Algorithm of Multi-modal Foundation Model 
 

Input: Image: The captured image 
UserQuery: The user question 

Output: OutputText: The generated output text 
Step 1: Predict Tags 

Image −→ Image Tagging Module −→ Tags 
Step 2: Prompt Engineering for pBLV 

Tags + UserQuery −→ Prompt Engineering for pBLV −→ Prompt 
Step 3: Generate OutputText 

Image + Prompt −→ Vision-Language Module −→ OutputText 

 
4. Experiments 

4.1. Implementation Details 

Our system leverages the capabilities of a smartphone, employing a monocular phone 

camera to capture images and the phone’s microphone to receive user voice questions, 
creating a seamless interaction between the user and the system as shown in Figure 3. 

The image and voice input are then transferred to our server, where the processing and 
generation of comprehensive descriptions take place. To convert the user’s voice question 
into text for further processing, we employ Whisper [40], a powerful speech recognition 

system. This technology accurately transcribes the user’s voice question into a textual 
form, enabling seamless integration with our vision-language model. After the input text is 

obtained, our system processes the image and text to generate detailed and contextually 
relevant output descriptions. The system selects the corresponding image frame once the 

user question is detected, ensuring accurate and timely responses. Here we utilize a LLM, 
i.e., Vicuna-13B [41] (Model settings include generating sentences with lengths ranging 
from 1 to 200 using beam search with a width of 5, applying a length penalty of 1, repetition 

penalty of 3, and temperature of 1), to generate the final output text. The output text is then 
transformed into audio format to provide a more accessible experience for individuals with 

visual disability. For text-to-speech conversion, we utilize the robust system Azure [13]. 
This allows us to transform the output text into clear and natural-sounding audio. The 

synthesized audio is then sent from the server to the user’s phone, enabling real-time 
delivery of the assist environmental interaction information. By implementing this client- 
server architecture and incorporating speech recognition and synthesis technologies, our 

system facilitates seamless interaction between the user and our system. 
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Proposed Model 

 

Figure 3. Client-server architecture. 

4.2. Tests on Visual7W Dataset 

We evaluate our proposed approach to the Visual7W dataset [36]. Compared with 
previous studies that solely relied on textual answers, Visual7W introduces a novel form of 

question answering that includes visual answers [36]. This is achieved by establishing a se- 
mantic connection through object-level grounding between textual descriptions and image 

regions [36]. We notice that there are strong connections between objects in images, both in 
terms of spatial location and meaning of existence. To test our model in assisting people 
with visual disability, we selected some images from specific perspectives in this dataset. 

From these perspectives, pBLV often require additional assistance to better understand the 
current environment. In order to better adapt to the needs, we have set this task into three 

categories: Scene Understanding, Object Localization and Risk Assessment. 

4.2.1. Qualitative Performance Analysis for pBLV 

Scene Understanding: We evaluate the effectiveness of our approach on outdoor 
and indoor scene understanding. Sample results are shown at the top of Figure 4. In our 

experiment, the user’s input is “Can you describe the environment around?”. For both indoor 
and outdoor examples, it is evident that the model’s output provides a comprehensive 

and accurate description of the object composition in the environment depicted in the 
image. The answer first summarizes names associated with the current place and then 

gives a specific description of objects and characters in the scene and what is happening at 
this moment. 

Object Localization: We evaluate the effectiveness of our approach in addressing 

object recognition challenges, as demonstrated in the middle of Figure 4. The user question 

for this task is “Where is the {giraffe, sheep, bookshelf, rubbish bin} in the image?”, where “{ }” is 
what the user wants to find out. 

In the outdoor scene, the left image is focused on the giraffe. From the answer, we can 

see that the results are very detailed, not only describing the location of the giraffe on the 
grass and under the trees, but also providing contextual information “The giraffes appear to 

be enjoying the shade provided by the tree and the lush green environment around them.” for users 
to better understand the capture environmental images. 

Risk Assessment: As shown at the bottom of Figure 4, our model provides safety 
tips for people with visual disability to help them identify and deal with potential risks 
according to the current environment. The question is “Is there a risk for me to continue 

moving forward?”. 
The first picture depicts a scene where a pedestrian crossing has a red light. The model 

can provide feedback to the user regarding the risk of crossing the street when the traffic 
signal is red. In the second scene, a train is approaching, which can be extremely dangerous 
if proper precautions are not taken. The model can send an alert that it is risky to cross the 

railway at the current time. It demonstrates that our model can effectively analyze risks 
and provide necessary alerts for pBLV. 

Image and UserQuery 

Phone 
Server 

Internet 

 

OutputText 
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Scene Understanding 

Outdoor Scene Indoor Scene 
 

  

 

 

 

 
Q: Can you describe the environment around? 

A: This place is a park, and the environment 

around it is surrounded by bushes and 

hedges. The couple is sitting on a bench in 

the park while having a conversation. 

A: This place is a clothing store, and it has a 

horse cart in front of it. The environment 

around the store is a busy city street with 

people walking on the sidewalk. 

A: This is a college classroom, 

where students are sitting at 

tables and working on their 

laptops. 

A: This is an office desk with a 

computer, monitor, keyboard, 

mouse, and speakers on it. 

Object Localization 

Outdoor Scene Indoor Scene 

 

 

 

 

 

 

 

 
Q: Where is the {giraffe, sheep, bookshelf, rubbish bin} in front of me? 

A: There are several giraffes standing 

under a large tree in a grassy field. The 

giraffes are spread out across the 

scene, with some closer to the tree and 

others further away. The giraffes 

appear to be enjoying the shade 

provided by the tree and the lush 

green environment around them. 

A: A herd of sheep is grazing on a rocky hillside. The 

sheep are spread out across the hill, with some 

closer to the bottom and others higher up. There are 

at least three sheep visible in the scene, with two of 

them closer to the bottom of the hill and one higher 

up. The rocky hillside provides a natural habitat for 

the sheep, and they seem to be comfortable and 

content in their surroundings. 

A: The bookshelf is located in a 

living room with a couch, a 

television, and a cat. The 

bookshelf is positioned in the 

corner of the room, near the 

couch and the television. 

A: There is a rubbish bin 

located in a bathroom. 

The bin is positioned 

near the toilet and sink, 

making it easily 

accessible for cleaning 

and disposing of waste. 

Risk Assessment 
 

 

 

 

 

 

 

 
Q: Is there a risk for me to continue moving forward? 

A: It is risky to cross this street 

because there is a red light 

A: it is risky to cross the train 

tracks while the train is coming 

A: It is risky to walk on a wet 

sidewalk because it can be slippery 

A: It is risky to walk on the sidewalk because there is a 

yellow fire hydrant in the middle of the sidewalk 

Figure 4. Examples of scene understanding (top), object localization (middle), and risk assessment 

(bottom) on Visual7W dataset. 

4.2.2. Quantitative Analysis of Inference Time and Helpfulness Scoring for pBLV 

In this section, we conduct a statistical quantitative analysis to evaluate our model’s 

performance across three types of tasks. Specifically, we tested the inference time (in 
seconds) of the image tagging module and the vision-language module. As indicated 

in Table 1, inference time testing was performed using an NVIDIA RTX A6000 GPU(48 G). 
In our vision-language model, we utilize a byte-stream transmission approach during 

answer generation. This method allows users to receive the initial part of the answer even 
while the model is still generating subsequent segments. Consequently, we measure the 

inference time when the vision-language module generates the first token. The results 
demonstrate that our model can respond swiftly to user queries, with the total inference 
time (Image Tagging time plus Vision-language Inference time) for Object Localization 

being the fastest, at less than 0.3 s. These times hold potential for further reduction through 
software optimization. 

Furthermore, it’s important to assess how well the model’s generated answers relate 
to and assist pBLV. Therefore, we employ a scoring system ranging from 0 to 10, where 

higher scores indicate greater relevance and helpfulness for pBLV. To determine these 
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scores, we manually counted the number and names of important objects in each scene and 
compared them with the answers generated by the model. A point was deducted for each 
less important object identified in the generated answer. The final scores across all three 

tasks—Scene Understanding, Object Localization, and Risk Assessment—are reported in 
the table. Notably, Risk Assessment received the highest average score of 9.4, underscoring 

the model’s effectiveness in providing relevant and helpful information to pBLV. 

 
Table 1. Quantitative Results of Inference time and Scoring on the Visual7W Dataset 

 

Inference Time (Seconds) 

Tasks Image Tagging 
Vision-Language 

Inference 
Score of 10 

Scene Understanding 0.0419 0.3675 8.85 
Object Localization 0.0399 0.2359 8.60 

Risk Assessment 0.0356 0.2406 9.40 

 

4.2.3. Ablation Study 

We conduct ablation studies to verify the effectiveness of the individual module in 

our model. The experimental settings are listed in Figure 5 where “✓” denotes the module 
is enabled. In the first experimental setting, we only utilize the vision-language module, 
which directly sends user questions and images to InstructBLIP. In the second experimental 
setting, we employ the image tagging module to generate tags for the input image, which 
are then integrated into the user question. Then, both the modified question and the input 
image are fed into the vision-language module. In the third experimental setting, we 
employ prompt engineering specifically designed for individuals with visual disability to 
further refine the prompt by incorporating the generated tags and user questions. 

 
 
 

 
Model Setting 

  
Vision 

Language 

Module 

Image 

Tagging 

Module 

Prompt 

Engineering 

for pBLV 
User Input: Can you describe the environment around? 

 
 
 

 

✔ 

  In the image, there is a black and white cat sitting 

inside an open suitcase. The cat appears to be 

curious about its surroundings as it peers out of 

the suitcase. The suitcase is placed on a white 

surface, possibly a table or a shelf. There are 

other items in the room, such as a pillow, but the 

cat seems to be more interested in exploring the 

interior of the suitcase. 

In the image, a man in a yellow vest is walking 

down a sidewalk next to a brick wall. There are 

several cars parked on the street, and a traffic 

light can be seen in the background. The scene 

appears to take place in a residential or 

commercial area, as there are both houses and 

businesses visible in the vicinity. 

✔ ✔ 
 a black and white cat is hiding behind an open 

suitcase 

a man wearing a safety vest walks down the side 

of a brick building 

 

 

✔ 

 

 

✔ 

 

 

✔ 

A black and white cat is hiding behind an open 

suitcase on a white floor. 

The environment is a street corner with a brick 

building on one side and a road on the other 

side. There is a guard walking down the 

pavement, wearing a green safety vest and 

carrying a baseball hat in his hand. 

Figure 5. Ablation study with different model settings on Visual7W dataset. 

As shown in Figure 5, for the left scene, when only using the vision-language module, 
the model provides some answers that do not match the facts, such as “cat sitting inside an 
open suitcase”, “possibly a table or a shelf ” and “such as a pillow”. These are more likely to be 

inferred from a large language model due to model’s bias (learned from the training data) 
than what actually exists in the image. After combining with the image tagging module, 

the model dropped answers that do not match the facts in the image and the generated 
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answer correctly describes the current scenario. The pipeline should describe the modified 
user questions after integrating them with the tags. Furthermore, if prompt engineering for 
pBLV is applied, answers become more precise e.g., it also accurately describes the location 

of the cat. Here you should describe what is the final prompt generated. 
In the case of the right scene, the model that only uses the vision-language module 

does provide a detailed description of the scene, but there are still errors. The description 
“There are several cars parked on the street, and a traffic light can be seen in the background.” is 

inconsistent with the facts shown in the image, as there is no traffic light and only a white 
street light and an orange fire hydrant. When adding the image tagging module, the model 
gives a more factual description but lacks details. Again you should provide the new 

user question based on the tags. In contrast, Prompt Engineering for pBLV makes the 
answer more precise and detailed. Again you should provide the new user question after 

prompt engineering. 
The example in Figure 5 demonstrates that the integration of the vision-language 

module, image tagging module, and prompt engineering yield the most accurate and 
detailed descriptions. In Figure 6, we further present some randomly selected results of 

the image tagging module. As depicted in the figure, the module successfully recognizes 
common objects within the images, demonstrating its ability to provide a comprehensive 

understanding of the visual scene by accurately identifying various objects. 

 
 

 

 

 
bicycle, couple, path, person, lake, 

man, park, pole, tower, stand, water, 

woman 

Alcohol, beverage, table, dinning 

table, plate, drink, food, fork, person, 

juice, pizza, platter, silverware, sit, slice 

Figure 6. Random selected results of image tagging module on Visual7W dataset. 

4.3. Tests on VizWiz Dataset 

The VizWiz dataset [34] is a collection of images taken by blind and individuals with 
visual disability, specifically designed to evaluate computer vision algorithms aimed at 

assisting individuals with visual disability. In this section, we conduct experiments on the 
task of Visual Question Answering [42] of VizWiz dataset to verify the effectiveness of our 
proposed method. 

We tested 4319 questions from the validation dataset, which can be categorized into 
four types, “Unanswerable”, “Other”, “Yes/No” and “Number”. As for evaluation metrics, 

we use the BLEU [43], ROUGE-L [44], METEOR [45], CIDEr [46] metrics to evaluate our 
results. Since the answer to Visual Question Answer is usually shorter than 4 words, we 

evaluate our results on BLEU_1 and BLEU_2. From Table 2, our model averagely achieves 
quantitative results of 25.43 in BLEU_1 and 53.98 in CIDEr, indicating the effectiveness 
for pBLV. 

 
Table 2. Quantitative Results on Visual Question Answering. Column Q represents four question 

types and average results. 
 

Q BLEU_1 BLEU_2 METEOR ROUGE_L CIDEr 

Unanswerable 8.53 3.33 7.88 13.18 5.65 
Other 34.27 20.75 23.22 44.95 74.72 

Yes/No 50.94 9.10 38.24 73.90 112.82 
Number 11.41 5.82 12.73 16.95 27.48 

Avg. 25.43 14.52 19.09 35.76 53.98 
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4.4. Real-World Tests 

We also conducted experiments to evaluate the proposed system in real-world situa- 

tions as shown in Figure 7. Specifically, we simulate the walking process of pBLV. The main 
content is a real video of a person walking on the street entering and then exiting a subway 

station in New York. Even though this route is quite simple in its geometry and layout, it 
may engender many risks for ppBLV. We captured several characteristic images from this 
video and passed them into our model for evaluation. These scenes are on the street, before 

entering the station, in the subway station, and after exiting the station. 

 
Real-world Tests 

Scene Understanding Risk Assessment Object Localization Risk Assessment 

 

 

 

 

 

 

 

 
Q: Can you describe the 

environment around? 

Q: Is there a risk for me to 

continue moving forward? 

Q: Where is the subway gate in front of me? Q: Is there a risk for me to 

continue moving forward? 

A: A crowded shopping street is 

filled with people walking and 

strolling along the pavement. 

A: No, it is not risky for you to 

go ahead. 

A: The subway gate is located inside a subway station. It 

is positioned at the end of a hallway or corridor within 

the station. The gate appears to be open, allowing 

people to enter or exit the subway station through it. 

There are two turnstiles, one on the left side and one on 

the right side of the gate, allowing multiple people to 

pass through the gate at the same time. The turnstile on 

the left side is closer to the wall, while the turnstile on 

the right side is closer to the center. 

A: be careful about going up 

the stairs because they are 

narrow 

Figure 7. Examples of scene understanding, object detection and localization, and risk assessment 

under real-world settings. 

The first scene shows a street with a crowd. Moreover, there is a shop on the left of the 
image. Our model returns the answer “A crowded shopping street is filled with people walking 

and strolling along the pavement.”, which is consistent with the image content. Our model 
identified the presence of shops on both sides and a large crowd, inferring that this is a 

bustling street scene. This highlights the importance of caution and slow navigation for 
individuals with visual disability amidst the bustling crowd. 

For the second scene, the user is walking on a straight and empty street, when the 
user asks “Is there a risk for me to continue moving forward?” The model answers that “No, 

it is not risky for you to go ahead.”, which is also in line with the actual situation. From the 
picture, we can see that the protagonist is walking on the sidewalk. There is mostly an 

open area on the sidewalk, with only tables and chairs on the right side. Therefore, the 
model determines that the road on this side can be walked, which means there is no risk. 

In the third scene, when the user asks where the subway gate is, the model provides 

a very detailed explanation of the location of the subway gate with directional adjectives, 
such as front, back, left, and right. From the answer, it is clear that there are two gates and 

they are on the left and right sides. 
In the last scenario where there is a staircase, the model reminds the user that there 

currently exists a certain level of risk due to the presence of stairs. Therefore, the model 
provides this answer “be careful about going up the stairs because they are narrow”. This 
indicates that our model can effectively assess whether the current situation poses some 

risk to individuals with visual disability in moving forward. 

5. Conclusions 

In this paper, we present a pioneering approach that addresses the challenges faced 
by people with blindness and low vision (pBLV) in comprehensive scene understanding, 

precise object localization, and risk assessment in unfamiliar environments. By leveraging a 
large vision language model and integrating it with an image tagging module, our method 
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provides pBLV with detailed and comprehensive descriptions and guidance to address 
their specific needs. We evaluate our approach through experiments conducted on both 
indoor and outdoor datasets. Our results demonstrate that our method can recognize 

objects accurately and provides insightful descriptions and analysis for pBLV. 
Theoretical contributions of our work include a thorough exploration of the integration 

of vision language models with deep learning techniques for assisting individuals with 
visual impairments. On the other hand, practical contributions encompass the development 

of a functional system capable of providing detailed scene descriptions and guidance to 
enhance the mobility and independence of individuals with visual impairments. Enhancing 
the mobility of individuals with visual impairments is of paramount importance in fostering 

inclusivity and independence. These advancements will not only improve the practical 
utility of our system but also contribute to the theoretical understanding of assistive 

technologies for individuals with visual impairments, paving the way for more inclusive 
and accessible environments. 

6. Limitations and Future Research 

Despite these advances, we acknowledge certain limitations inherent to our system. 
The dynamic and complex nature of real-world environments poses a significant challenge. 
Factors such as changing lighting conditions, weather variations, and the presence of 

moving objects can impact the system’s ability to accurately interpret scenes and predict 
potential risks, occasionally leading to false alarms. Moreover, the effectiveness of our 

system is contingent upon the quality of input data. Images captured by smartphone 
cameras under suboptimal conditions, such as poor lighting or obstructions, can adversely 

affect the model’s performance, resulting in inaccurate recognitions or missed detections. 
Inherent Limitations of AI Models: Despite the advanced capabilities of our Recognize 

Anything Model (RAM) and the InstructBLIP vision-language model, AI-based systems are 

not infallible. They operate within the confines of their training data and algorithms, which 
might not cover every possible real-world scenario or object encountered by people with 

blindness and low vision (pBLV). This limitation can lead to inaccuracies or false positives 
in object detection and scene interpretation. 

Dynamic and Complex Environments: Real-world environments are highly dynamic 
and complex, with constant changes that can challenge the model’s ability to accurately 

interpret and predict risks. Factors such as varying lighting conditions, weather changes, 
and moving objects can affect the system’s performance and potentially lead to false alarms. 

Quality of Input Data: The effectiveness of our system heavily relies on the quality 
of the input data, i.e., the images captured by the smartphone camera. Blurred images, 
poor lighting conditions, or obstructed views can hinder the model’s ability to accurately 

recognize and analyze the scene, leading to potential false alarms or missed detections. 
In future work, we aim to refine our approach by expanding training datasets to 

include a wider variety of environmental conditions, thereby enhancing the model’s ability 
to generalize across different scenarios. We will also focus on developing more sophisticated 
algorithms that can more effectively distinguish between transient and permanent features 

in the environment, reducing false alarms. Additionally, integrating multimodal data 
sources, including auditory and haptic feedback, will be explored to compensate for visual 

data limitations and improve scene analysis. Incorporating user feedback mechanisms 
will further allow the system to adapt and learn from real-world applications, continually 

improving its performance and reliability for assisting individuals with blindness and 
low vision. 
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