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Abstract: People with blindness and low vision (pBLV) encounter substantial challenges when
it comes to comprehensive scene recognition and precise object identification in unfamiliar envi-
ronments. Additionally, due to the vision loss, pBLV have difficulty in accessing and identifying
potential tripping hazards independently. Previous assistive technologies for the visually impaired
often struggle in real-world scenarios due to the need for constant training and lack of robustness,
which limits their effectiveness, especially in dynamic and unfamiliar environments, where accurate
and efficient perception is crucial. Therefore, we frame our research question in this paper as: How
can we assist pBLV in recognizing scenes, identifying objects, and detecting potential tripping hazards in
unfamiliar environments, where existing assistive technologies often falter due to their lack of robustness? We
hypothesize that by leveraging large pretrained foundation models and prompt engineering, we can
create a system that effectively addresses the challenges faced by pBLV in unfamiliar environments.
Motivated by the prevalence of large pretrained foundation models, particularly in assistive robotics
applications, due to their accurate perception and robust contextual understanding in real-world sce-
narios induced by extensive pretraining, we present a pioneering approach that leverages foundation
models to enhance visual perception for pBLV, offering detailed and comprehensive descriptions
of the surrounding environment and providing warnings about potential risks. Specifically, our
method begins by leveraging a large-image tagging model (i.e., Recognize Anything Model (RAM))
to identify all common objects present in the captured images. The recognition results and user
query are then integrated into a prompt, tailored specifically for pBLV, using prompt engineering.
By combining the prompt and input image, a vision-language foundation model (i.e., InstructBLIP)
generates detailed and comprehensive descriptions of the environment and identifies potential risks
in the environment by analyzing environmental objects and scenic landmarks, relevant to the prompt.
We evaluate our approach through experiments conducted on both indoor and outdoor datasets.
Our results demonstrate that our method can recognize objects accurately and provide insightful
descriptions and analysis of the environment for pBLV.

Keywords: assistive technology; multi-model foundation model; vision-language model

1. Introduction

The prevalence of visual impairment has reached alarming levels, affecting millions
of individuals worldwide, as highlighted by recent estimates from the World Health Or-
ganization (WHO) [1,2]. The number of people experiencing moderate to severe visual
impairment or complete blindness continues to rise steadily, with projections indicating a
further surge in these numbers by 2050 [3]. Visual impairment, whether partial or complete,
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presents significant challenges that profoundly impact various aspects of daily life for
pBLV [4]. Among the critical tasks that pose difficulties for pVLB is visual search, which
involves actively scanning the environment and locating a specific target among distracting
elements [5]. Even for individuals with normal vision, visual search can be demanding,
especially in complex environments. However, for individuals with blindness or low vision,
these challenges are further compounded [6]. Those with peripheral vision loss, central
vision loss, or hemi-field vision loss often struggle to pinpoint a particular location or
search for objects due to reduced fields of view. They often require assistance to accurately
identify the environment or locate objects of interest. Similarly, individuals experiencing
blurred vision or nearsightedness encounter difficulties in identifying objects at varying
distances. Color-deficient vision and low-contrast vision further exacerbate the challenges
of distinguishing objects from the background when they share similar colors. In addition
to understanding their surroundings and locating objects of interest, assessing potential
risks and hazards within the visual environment becomes an intricate task, demanding
a comprehensive analysis to ensure personal safety [7]. Therefore, addressing the chal-
lenges faced by pBLV in environmental interaction holds profound significance due to the
escalating prevalence of visual impairment globally, which substantially affects millions
and is projected to increase further. These challenges, which include difficulties in visual
search, object identification, and risk assessment in diverse environments, critically impact
the independence, safety, and quality of daily life of pBLV. Innovatively enhancing visual
perception for these individuals not only promises to mitigate these profound challenges,
but also aims to empower them with greater autonomy and confidence in navigating their
surroundings, thus fostering inclusivity and accessibility in society.

Current assistive technologies for pBLV [8-10] driven by computer vision approaches
have led to the development of assistive systems that utilize object recognition [11], GPS
navigation [12], and text-to-speech tools [13]. While these technologies have provided
valuable assistance to visually impaired individuals [14], they still face certain challenges
and limitations. One of the primary challenges with existing assistive technologies is their
limited ability to provide comprehensive scene understanding and guidance to address the
specific needs of visually impaired individuals. For instance, while many tools focus on
specific functionalities, such as obstacle detection or route planning, they often fall short
in delivering detailed descriptions and guidance based on user questions. The current
solutions also lack the capability to generate contextually relevant information about ob-
jects, scenes, and potential risks in the environment, limiting an in-depth understanding of
the environment for visually impaired individuals. Conversational search finds applica-
tions in various domains such as basic information retrieval, personal information search,
product selection and travel planning, which facilitates information retrieval through
conversation [15]. Additionally, these solutions, such as object detection [11], frequently
encounter difficulties in real-world scenarios due to the need for constant training and adap-
tation. They exhibit a lack of robustness, which limits their effectiveness, particularly in
dynamic and unfamiliar environments, in which accurate and efficient perception is crucial.
This limitation hinders their ability to fully perceive and understand their surroundings,
resulting in reduced independence and increased reliance on external assistance.

In this paper, we aim to address the research questions of exploring whether large
foundation models can address the limitations of current assistive technologies for pBLV by
enhancing comprehensive scene understanding, providing contextually relevant informa-
tion, and improving adaptability and robustness in dynamic environments. We posit that
these large foundation models, through extensive pretraining, can significantly improve
the functionality of assistive technologies by providing detailed guidance and accurate
environmental perceptions, thus increasing the independence and safety of visually im-
paired individuals to navigate their surroundings. As shown in Figure 1, we present a
novel approach named VisPercep that leverages the advanced large vision-language model
to enhance visual perception for individuals with blindness and low vision, including scene
understanding, object localization, and risk assessment. Our work addresses the challenges
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faced by pBLV by providing them with detailed and comprehensive scene descriptions
and risk guidance based on user questions, allowing an in-depth understanding of their
surroundings, locating objects of interest, and identifying potential risks.

Scene Object Risk
Understanding Localization Assessment
Can you describe Where is the Is it safe for
the environment cow in me to continue
around? front of me? moving forward?

> 2 $ 3§

» Multi-modal Foundation Model

2 3 3

It appears you areinacity  the cow isin be careful
street with a corner store and front of the about going
a traffic light. There is also a entrance of  through the

silver car driving through the anold intersection
intersection, which is fashioned because there
controlled by a stop light. store is a red light

Figure 1. Multi-Modal Foundation Model Sample Illustration.

Our system includes three main modules, as illustrated in Figure 2: image tagging
module, prompt engineering module, and vision-language module. The image tagging
module, implemented using Recognize Anything Model (RAM) [16], recognizes all objects
in the captured image. We then integrate the recognized objects and user questions into a
customized prompt designed for visually impaired individuals through prompt engineer-
ing. Finally, the vision-language model utilizes InstructBLIP [17] to generate detailed and
contextually relevant text, facilitating comprehensive scene understanding, object recogni-
tion, and risk assessment for visually impaired individuals. Our experiments demonstrate
that our system can recognize objects of interest and provide detailed answers to user
questions, significantly enhancing the visual understanding of surroundings.

Input Tmage /" Vision Language Module
( VIT
&

L Q-Former

Large Language Model

(Vicunal3B)
Tegs ~— |
Prompt
Trolley, Palm Tree Engineering Output Answer:
User For pBLV A green trolley is driving down
Query the street next to palm trees.
What is in front of me?

Figure 2. Method Structure Overview.

Our contributions are summarized as follows:

1. Inresponse to the challenges faced by pBLV in achieving comprehensive scene recog-

nition and identifying objects and hazards in unfamiliar environments, we introduce
an innovative approach that leverages a multi-modal foundation model. This model is
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designed to significantly enhance environmental understanding by offering detailed
and comprehensive descriptions of surroundings and alerting users to potential risks.

2. To directly address the limitations of current assistive technologies, which often lack
robustness and the capability to adapt to dynamic scenarios, we have developed a
voice-controlled system. This system uniquely combines a large image tagging model
with a vision-language foundation model, facilitating intuitive, language-guided
question answering that caters specifically to the needs of pBLV.

3. Our approach’s effectiveness is validated through rigorous testing on both indoor
and outdoor datasets. These experiments demonstrate the system’s superior ability to
accurately recognize objects and provide accurate descriptions and analyses of the
environment, thereby directly addressing the core research problem of enhancing
navigation and interaction for pBLV in diverse settings.

In the following section of the article: (Section 2) Related Work: Summarized existing
auxiliary technologies in blind and low vision. (Section 3) Materials and Methods: Proposed
to leverage the power of a multi-modal foundation model that integrates image tagging
and visual language models to provide detailed environmental descriptions and risk
assessments. (Section 4) Experiments and Results: The accuracy and effectiveness of the
model were validated through indoor and outdoor datasets, demonstrating its guidance
ability for blind and visually impaired individuals. (Section 5) Conclusion: Summarized
the contribution of the research, emphasizing the use of new methods to provide better
guidance and enhance the independence and safety of visually impaired individuals.
(Section 6) Limitations and Future Research: Explained the difficulties encountered by the
model at the current stage from different aspects and future research directions.

2. Related Works

Initial research has seen a growth in interest in the development of conversational
search systems intended to support users in their information-seeking activities [18]. This
work has primarily focused on communication of information exclusively via spoken
dialogue. While this is sufficient for simple question-type queries, it is an inefficient means
of engagement for more complex or exploratory queries [19]. In the realm of information,
conversational search is a relatively new trend [20]. Conversation is the natural mode
for information exchange in daily life [18], and conversational approaches to information
retrieval are gaining attention [15]. By integrating conversational search approaches with
existing assistive technologies, there is potential to enhance the user experience and address
the limitations of current systems, providing more natural and efficient interaction for
individuals with visual disabilities.

In recent years, several assistive technologies and applications developed to support
individuals with visual disabilities in understanding their environment and enhancing their
scene understanding [4,21,22]. Traditional tools such as white canes [23] and guide dogs [24]
have long been used to aid in mobility and spatial awareness. Additionally, advancements
in technology have led to the development of various assistive devices, including wearable
cameras [25-27], GPS navigation systems, and object recognition technologies [28].

Wearable camera systems, such as the OrCam MyEye and Seeing Al [29], offer real-
time text reading and text-to-speech capabilities to provide auditory feedback to individuals
with visual disability. These systems assist in object identification, text reading, and facial
recognition, enhancing their ability to interact with their surroundings. GPS navigation sys-
tems, such as BlindSquare [30] and Lazarillo [31], utilize location-based services to provide
audio instructions and guidance for navigation in both indoor and outdoor environments.

Computer vision-based technologies have also been explored for scene understand-
ing. These include object detection systems using deep learning models like YOLO [32]
and Faster R-CNN [33], which provide real-time identification of objects in the environ-
ment. Detect and Approach [27] proposes a real-time monocular-based navigation solution

based on YOLO for pBLV. Additionally, vision-language models like VizWiz [34] and
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SoundScape [35] incorporate natural language processing to describe visual scenes, answer
questions, and provide context-aware information.

While these existing assistive technologies have made significant advancements, they
still face limitations. Many systems provide partial solutions focused on specific functional-
ities such as object recognition or detection, but often fall short in delivering comprehensive
scene understanding and detailed descriptions. Moreover, these technologies may lack
the ability to provide guidance based on user questions, limiting their effectiveness in
addressing the specific needs and queries of individuals with visual disability [9]. Further-
more, these technologies often require multiple devices or interfaces, leading to complexity
and decreased usability for individuals with visual disability [21]. In contrast to these
existing approaches, our proposed method offers a comprehensive and integrated solution.
By combining advanced vision-language models, image tagging, and prompt engineer-
ing, our approach enhances scene understanding, provides real-time guidance, and offers
context-aware prompts tailored specifically for individuals with visual disability.

3. Materials and Methods

In this work, as shown in Figure 1, the proposed model leverages the advanced large
vision-language model to assist environmental interaction for individuals with blindness
and low vision including scene understanding, object localization, and risk assessment.
Our system utilizes a smartphone to capture images and record user questions (left).
Based on the input image and user question, our proposed model generates detailed and
comprehensive scene descriptions and risk assessments (right). Moreover, the camera input
image is from Visual7W dataset [36]. Our work addresses the challenges faced by pBLV
by providing them with detailed and comprehensive scene descriptions and risk guidance
based on user questions, enabling an in-depth understanding of their surroundings, locating
objects of interest, and identifying potential risks.

Our system includes three main modules, as illustrated in Figure 2: image tagging
module, prompt engineering module and vision-language module. Firstly, the image
tagging module, implemented using Recognize Anything Model (RAM) [16], identifies all
common objects present in the captured image. Secondly, using prompt engineering, we
integrate the recognized objects and user queries to create customized prompts tailored
for individuals with visual disability. Lastly, the vision-language module which utilizes
InstructBLIP [17] generates detailed and contextually relevant output text, enabling com-
prehensive and precise scene understanding, object localization, and risk assessment for
individuals with visual disability. [The input image is from Visual7W dataset [36].

Our method aims to overcome the limitations of existing assistive technologies and
empower individuals with visual disability with improved guidance. In Section 3.1, we
introduce our image tagging module. Section 3.2 illustrates the prompt engineering tailored
specifically for individuals with visual disability. We explain the large vision-language
module in Section 3.3.

3.1. Image Tagging Module

As shown in the yellow box of Figure 2, the image tagging module is utilized to
generate tags for each object present in the captured images, which is crucial as it provides
a comprehensive understanding of the visual scene by accurately recognizing various
objects. By incorporating the image tagging module, we obtain a catalog of objects present
in the environment, facilitating a more precise and comprehensive environment description.
We employ the Recognize Anything Model (RAM) [16] as our image tagging module,
which has demonstrated the zero-shot ability to recognize any common category with
high accuracy.

Specifically, the image tagging module begins with a pre-trained image encoder,
which processes an input image I and extracts high-level visual features F, formulated as:
F = Encoder(I). These features capture important characteristics and representations of the
objects in the image. After the initial feature extraction stage, an attention mechanism [37]
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is employed to focus on the most salient regions within the image. Represented mathe-
matically as A = Attention(F), this attention mechanism allows the model to pay more
attention to relevant objects and suppress irrelevant ones. Thus, the image tagging module
can generate accurate and informative tags for the recognized objects. The final stage in-
volves mapping the extracted features to a set of object categories or tags by the image-tag
recognition decoder. This mapping, expressed as T = Decoder(A), is learned through
a training process that leverages large-scale annotated datasets, ensuring the model’s
ability to generalize to various objects and scenes. The trained RAM model can then be
applied to new images, accurately recognizing and generating tags for the objects present
in the environment.

3.2. Prompt Engineering for pBLV

We incorporate prompt engineering, as shown in the green box of Figure 2, to create
customized prompts tailored specifically for individuals with visual disability. This involves
integrating the output of the image tagging module with user questions to form contextually
relevant and informative prompts. Moreover, the use of prompt engineering eliminates
the need for traditional machine learning approaches that require training models on
labeled datasets, as prompt engineering focuses on generating effective prompts rather
than optimizing model parameters.

The RAM generates a set of tags that represent the recognized objects within the
captured images. We utilize these tags to enhance the final prompt. We include the prompt
“The image may contain elements of {tags}” to seamlessly integrate the object recognition
results into a prompt. By incorporating these recognized object tags into the prompt, we
ensure that the vision-language module receives specific and accurate information about
the objects in their surroundings. This approach significantly enhances the understanding
and awareness of the visual environment for the users.

Furthermore, we consider user questions as vital input for prompt engineering. By
incorporating user questions into the prompts, we address the individual’s specific needs
for environmental understanding and ensure that the prompts are highly relevant to their
current situation. This personalized approach allows individuals with visual disability
to obtain the targeted information about their environment and the objects of interest.
For example, in the case of risk assessment, we employ a specific prompt that guides the
model to act as an assistant for individuals with visual disability, providing comprehensive
analysis. The prompt we use is “I am visually disabled. You are an assistant for individuals
with visual disability. Your role is to provide helpful information and assistance based on my query.
Your task is to provide a clear and concise response that addresses my needs effectively. Don’t
mention that I am visually disabled to offend me. Now, please answer my questions: [user_query].
Your answer should be like a daily conversation with me.” where [user_query] is the user
question. This prompt enables the model to deliver detailed and accurate explanations
regarding potential risks, ensuring that the information is communicated in a respectful
and informative manner.

3.3. Vision-Language Module

To generate output text based on the prompts obtained by the prompt-engineering
module, we employ InstructBLIP [17], a powerful large vision language model for compre-
hensive scene understanding and analysis, as shown in the right blue box of Figure 2.

Specifically, InstructBLIP begins by encoding the input image I using the frozen Vision
Transformer (VIT) [38], which captures a high-level feature embedding V of the image,
represented as V = VIT(I). The Q-Former [17] in InstructBLIP, distinct from conventional
models, employs learnable query embedding Q and the image embedding V from VIT for
processing. This is formulated as C = Q — Former(Q, V), where cross-attention is applied
to generate contextualized soft image embedding C [17]. The input prompt is also encoded
as the high-dimensional prompt embedding P by the tokenizer. The LLM incorporates
both the image embedding and the prompt embedding from the user question to generate
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rich and comprehensive textual descriptions. Specifically, given the output of Q-Former as
soft image embedding C and prompt embedding P, the goal is to compute the probability
of creating the final answer A with a length of N through the transformer model pe. The
mathematical expression for this process is given by the equation [39]:

N

p(A|V, P) = ]:[1 pe(AilC, P, A<j) 1)

This equation captures the sequential nature of language generation, where each
embedding in the answer is dependent on the preceding embeddings, as well as the visual
and prompt embeddings. This probabilistic approach ensures that the generated text is
not only accurate but also contextually coherent. We demonstrate the algorithm of our
proposed model in Algorithm 1.

Algorithm 1: Algorithm of Multi-modal Foundation Model

Input: Image: The captured image
UserQuery: The user question
Output: OutputText: The generated output text
Step 1: Predict Tags
Image —— Image Tagging Module —— Tags
Step 2: Prompt Engineering for pBLV
Tags + UserQuery —— Prompt Engineering for pBLV —— Prompt
Step 3: Generate OutputText
Image + Prompt —— Vision-Language Module —— OutputText

4. Experiments
4.1. Implementation Details

Our system leverages the capabilities of a smartphone, employing a monocular phone
camera to capture images and the phone’s microphone to receive user voice questions,
creating a seamless interaction between the user and the system as shown in Figure 3.
The image and voice input are then transferred to our server, where the processing and
generation of comprehensive descriptions take place. To convert the user’s voice question
into text for further processing, we employ Whisper [40], a powerful speech recognition
system. This technology accurately transcribes the user’s voice question into a textual
form, enabling seamless integration with our vision-language model. After the input text is
obtained, our system processes the image and text to generate detailed and contextually
relevant output descriptions. The system selects the corresponding image frame once the
user question is detected, ensuring accurate and timely responses. Here we utilize a LLM,
i.e., Vicuna-13B [41] (Model settings include generating sentences with lengths ranging
from 1 to 200 using beam search with a width of 5, applying a length penalty of 1, repetition
penalty of 3, and temperature of 1), to generate the final output text. The output text is then
transformed into audio format to provide a more accessible experience for individuals with
visual disability. For text-to-speech conversion, we utilize the robust system Azure [13].
This allows us to transform the output text into clear and natural-sounding audio. The
synthesized audio is then sent from the server to the user’s phone, enabling real-time
delivery of the assist environmental interaction information. By implementing this client-
server architecture and incorporating speech recognition and synthesis technologies, our
system facilitates seamless interaction between the user and our system.
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Proposed Model

Image and UserQuery
Ll
4—

OutputText

Figure 3. Client-server architecture.

4.2. Tests on Visual7W Dataset

We evaluate our proposed approach to the Visual7W dataset [36]. Compared with
previous studies that solely relied on textual answers, Visual7W introduces a novel form of
question answering that includes visual answers [36]. This is achieved by establishing a se-
mantic connection through object-level grounding between textual descriptions and image
regions [36]. We notice that there are strong connections between objects in images, both in
terms of spatial location and meaning of existence. To test our model in assisting people
with visual disability, we selected some images from specific perspectives in this dataset.
From these perspectives, pBLV often require additional assistance to better understand the
current environment. In order to better adapt to the needs, we have set this task into three
categories: Scene Understanding, Object Localization and Risk Assessment.

4.2.1. Qualitative Performance Analysis for pBLV

Scene Understanding: We evaluate the effectiveness of our approach on outdoor
and indoor scene understanding. Sample results are shown at the top of Figure 4. In our
experiment, the user’s input is “Can you describe the environment around?”. For both indoor
and outdoor examples, it is evident that the model’s output provides a comprehensive
and accurate description of the object composition in the environment depicted in the
image. The answer first summarizes names associated with the current place and then
gives a specific description of objects and characters in the scene and what is happening at
this moment.

Object Localization: We evaluate the effectiveness of our approach in addressing
object recognition challenges, as demonstrated in the middle of Figure 4. The user question
for this task is “Where is the {giraffe, sheep, bookshelf, rubbish bin} in the image?”, where “{ } is
what the user wants to find out.

In the outdoor scene, the left image is focused on the giraffe. From the answer, we can
see that the results are very detailed, not only describing the location of the giraffe on the
grass and under the trees, but also providing contextual information “The giraffes appear to
be enjoying the shade provided by the tree and the lush green environment around them.” for users
to better understand the capture environmental images.

Risk Assessment: As shown at the bottom of Figure 4, our model provides safety
tips for people with visual disability to help them identify and deal with potential risks
according to the current environment. The question is “Is there a risk for me to continue
moving forward?” .

The first picture depicts a scene where a pedestrian crossing has a red light. The model
can provide feedback to the user regarding the risk of crossing the street when the traffic
signal is red. In the second scene, a train is approaching, which can be extremely dangerous
if proper precautions are not taken. The model can send an alert that it is risky to cross the
railway at the current time. It demonstrates that our model can effectively analyze risks
and provide necessary alerts for pBLV.
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Scene Understanding

Outdoor Scene Indoor Scene

Q: Can you describe the environment around?

A: This place is a park, and the environment | A: This place is a clothing store, and it hasa | A: This is a college classroom, = A: This is an office desk with a
around it is surrounded by bushes and = horse cart in front of it. The environment = where students are sitting at = computer, monitor, keyboard,
hedges. The couple is sitting on a benchin = around the store is a busy city street with | tables and working on their = mouse, and speakers on it.
the park while having a conversation. people walking on the sidewalk. laptops.

Object Localization

Outdoor Scene Indoor Scene

L U

A: There are several giraffes standing = A: A herd of sheep is grazing on a rocky hillside. The = A: The bookshelf is located in a | A: There is a rubbish bin
under a large tree in a grassy field. The | sheep are spread out across the hill, with some | living room with a couch, a located in a bathroom.
giraffes are spread out across the = closer to the bottom and others higher up. There are = television, and a cat. The | The bin is positioned
scene, with some closer to the tree and  at least three sheep visible in the scene, with two of = bookshelf is positioned in the | near the toilet and sink,

others further away. The giraffes = them closer to the bottom of the hill and one higher | corner of the room, near the | making it easily
appear to be enjoying the shade ' up. The rocky hillside provides a natural habitat for | couch and the television. accessible for cleaning
provided by the tree and the lush = the sheep, and they seem to be comfortable and and disposing of waste.
green environment around them. content in their surroundings.

Risk Assessment

Q: Is there a risk for me to continue moving forward?

A: Itis risky to cross this street = A: it is risky to cross the train ~ A: It is risky to walk on a wet = A:ltis risky to walk on the sidewalk because there is a
because there is a red light tracks while the train is coming | sidewalk because it can be slippery | yellow fire hydrant in the middle of the sidewalk

Figure 4. Examples of scene understanding (top), object localization (middle), and risk assessment
(bottom) on Visual7W dataset.

4.2.2. Quantitative Analysis of Inference Time and Helpfulness Scoring for pBLV

In this section, we conduct a statistical quantitative analysis to evaluate our model’s
performance across three types of tasks. Specifically, we tested the inference time (in
seconds) of the image tagging module and the vision-language module. As indicated
in Table 1, inference time testing was performed using an NVIDIA RTX A6000 GPU(48 G).
In our vision-language model, we utilize a byte-stream transmission approach during
answer generation. This method allows users to receive the initial part of the answer even
while the model is still generating subsequent segments. Consequently, we measure the
inference time when the vision-language module generates the first token. The results
demonstrate that our model can respond swiftly to user queries, with the total inference
time (Image Tagging time plus Vision-language Inference time) for Object Localization
being the fastest, at less than 0.3 s. These times hold potential for further reduction through
software optimization.

Furthermore, it's important to assess how well the model’s generated answers relate
to and assist pBLV. Therefore, we employ a scoring system ranging from 0 to 10, where
higher scores indicate greater relevance and helpfulness for pBLV. To determine these
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scores, we manually counted the number and names of important objects in each scene and
compared them with the answers generated by the model. A point was deducted for each
less important object identified in the generated answer. The final scores across all three
tasks —Scene Understanding, Object Localization, and Risk Assessment—are reported in
the table. Notably, Risk Assessment received the highest average score of 9.4, underscoring
the model’s effectiveness in providing relevant and helpful information to pBLV.

Table 1. Quantitative Results of Inference time and Scoring on the Visual7W Dataset

Inference Time (Seconds)
Vision-Language

Tasks Image Tagging Inference Score of 10
Scene Understanding 0.0419 0.3675 8.85
Object Localization 0.0399 0.2359 8.60
Risk Assessment 0.0356 0.2406 9.40

4.2.3. Ablation Study

We conduct ablation studies to verify the effectiveness of the individual module in
our model. The experimental settings are listed in Figure 5 where “v” denotes the module
is enabled. In the first experimental setting, we only utilize the vision-language module,
which directly sends user questions and images to InstructBLIP. In the second experimental
setting, we employ the image tagging module to generate tags for the input image, which
are then integrated into the user question. Then, both the modified question and the input
image are fed into the vision-language module. In the third experimental setting, we
employ prompt engineering specifically designed for individuals with visual disability to
further refine the prompt by incorporating the generated tags and user questions.

Model Setting

Vision Image Prompt

Language Tagging Engineering User Input: Can you describe the environment around?
Module Module for pBLV

In the image, there is a black and white cat sitting | In the image, a man in a yellow vest is walking
inside an open suitcase. The cat appears to be | down a sidewalk next to a brick wall. There are
curious about its surroundings as it peers out of | several cars parked on the street, and a traffic
the suitcase. The suitcase is placed on a white | light can be seen in the background. The scene
surface, possibly a table or a shelf. There are | appears to take place in a residential or
other items in the room, such as a pillow, but the | commercial area, as there are both houses and
cat seems to be more interested in exploring the | businesses visible in the vicinity.

interior of the suitcase.

a black and white cat is hiding behind an open | a man wearing a safety vest walks down the side
suitcase of a brick building

A black and white cat is hiding behind an open The environment is a street corner with a brick
suitcase on a white floor. building on one side and a road on the other
4 v v side. There is a guard walking down the
pavement, wearing a green safety vest and
carrying a baseball hat in his hand.

Figure 5. Ablation study with different model settings on Visual7W dataset.

As shown in Figure 5, for the left scene, when only using the vision-language module,
the model provides some answers that do not match the facts, such as “cat sitting inside an
open suitcase”, “possibly a table or a shelf” and “such as a pillow” . These are more likely to be
inferred from a large language model due to model’s bias (learned from the training data)
than what actually exists in the image. After combining with the image tagging module,

the model dropped answers that do not match the facts in the image and the generated
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answer correctly describes the current scenario. The pipeline should describe the modified
user questions after integrating them with the tags. Furthermore, if prompt engineering for
pBLV is applied, answers become more precise e.g., it also accurately describes the location
of the cat. Here you should describe what is the final prompt generated.

In the case of the right scene, the model that only uses the vision-language module
does provide a detailed description of the scene, but there are still errors. The description
“There are several cars parked on the street, and a traffic light can be seen in the background.” is
inconsistent with the facts shown in the image, as there is no traffic light and only a white
street light and an orange fire hydrant. When adding the image tagging module, the model
gives a more factual description but lacks details. Again you should provide the new
user question based on the tags. In contrast, Prompt Engineering for pBLV makes the
answer more precise and detailed. Again you should provide the new user question after
prompt engineering.

The example in Figure 5 demonstrates that the integration of the vision-language
module, image tagging module, and prompt engineering yield the most accurate and
detailed descriptions. In Figure 6, we further present some randomly selected results of
the image tagging module. As depicted in the figure, the module successfully recognizes
common objects within the images, demonstrating its ability to provide a comprehensive
understanding of the visual scene by accurately identifying various objects.

bicycle, couple, path, person, lake, | Alcohol, beverage, table, dinning
man, park, pole, tower, stand, water, | table, plate, drink, food, fork, person,
woman juice, pizza, platter, silverware, sit, slice

Figure 6. Random selected results of image tagging module on Visual7W dataset.

4.3. Tests on VizWiz Dataset

The VizWiz dataset [34] is a collection of images taken by blind and individuals with
visual disability, specifically designed to evaluate computer vision algorithms aimed at
assisting individuals with visual disability. In this section, we conduct experiments on the
task of Visual Question Answering [42] of VizWiz dataset to verify the effectiveness of our
proposed method.

We tested 4319 questions from the validation dataset, which can be categorized into
four types, “Unanswerable”, “Other”, “Yes/No” and “Number”. As for evaluation metrics,
we use the BLEU [43], ROUGE-L [44], METEOR [45], CIDEr [46] metrics to evaluate our
results. Since the answer to Visual Question Answer is usually shorter than 4 words, we
evaluate our results on BLEU_1 and BLEU_2. From Table 2, our model averagely achieves
quantitative results of 25.43 in BLEU_1 and 53.98 in CIDEr, indicating the effectiveness
for pBLV.

Table 2. Quantitative Results on Visual Question Answering. Column Q represents four question
types and average results.

Q BLEU_1 BLEU_2 METEOR ROUGE_L CIDEr
Unanswerable 8.53 3.33 7.88 13.18 5.65
Other 34.27 20.75 23.22 4495 74.72
Yes/No 50.94 9.10 38.24 73.90 112.82
Number 11.41 5.82 12.73 16.95 27.48

Avg. 25.43 14.52 19.09 35.76 53.98
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4.4. Real-World Tests

We also conducted experiments to evaluate the proposed system in real-world situa-
tions as shown in Figure 7. Specifically, we simulate the walking process of pBLV. The main
content is a real video of a person walking on the street entering and then exiting a subway
station in New York. Even though this route is quite simple in its geometry and layout, it
may engender many risks for ppBLV. We captured several characteristic images from this
video and passed them into our model for evaluation. These scenes are on the street, before
entering the station, in the subway station, and after exiting the station.

Real-world Tests

Scene Understanding Risk Assessment Object Localization Risk Assessment

Q: Can you describe the Q: Is there a risk for me to Q: Where is the subway gate in front of me? Q: Is there a risk for me to
environment around? continue moving forward? continue moving forward?

A: A crowded shopping streetis = A:No, itis not risky foryouto = A: The subway gate is located inside a subway station. It = A: be careful about going up
filled with people walking and = go ahead. is positioned at the end of a hallway or corridor within | the stairs because they are
strolling along the pavement. the station. The gate appears to be open, allowing = narrow

people to enter or exit the subway station through it.

There are two turnstiles, one on the left side and one on

the right side of the gate, allowing multiple people to

pass through the gate at the same time. The turnstile on

the left side is closer to the wall, while the turnstile on

the right side is closer to the center.

Figure 7. Examples of scene understanding, object detection and localization, and risk assessment
under real-world settings.

The first scene shows a street with a crowd. Moreover, there is a shop on the left of the
image. Our model returns the answer “A crowded shopping street is filled with people walking
and strolling along the pavement.”, which is consistent with the image content. Our model
identified the presence of shops on both sides and a large crowd, inferring that this is a
bustling street scene. This highlights the importance of caution and slow navigation for
individuals with visual disability amidst the bustling crowd.

For the second scene, the user is walking on a straight and empty street, when the
user asks “Is there a risk for me to continue moving forward?” The model answers that “No,
it is not risky for you to go ahead.”, which is also in line with the actual situation. From the
picture, we can see that the protagonist is walking on the sidewalk. There is mostly an
open area on the sidewalk, with only tables and chairs on the right side. Therefore, the
model determines that the road on this side can be walked, which means there is no risk.

In the third scene, when the user asks where the subway gate is, the model provides
a very detailed explanation of the location of the subway gate with directional adjectives,
such as front, back, left, and right. From the answer, it is clear that there are two gates and
they are on the left and right sides.

In the last scenario where there is a staircase, the model reminds the user that there
currently exists a certain level of risk due to the presence of stairs. Therefore, the model
provides this answer “be careful about going up the stairs because they are narrow”. This
indicates that our model can effectively assess whether the current situation poses some
risk to individuals with visual disability in moving forward.

5. Conclusions

In this paper, we present a pioneering approach that addresses the challenges faced
by people with blindness and low vision (pBLV) in comprehensive scene understanding,
precise object localization, and risk assessment in unfamiliar environments. By leveraging a
large vision language model and integrating it with an image tagging module, our method
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provides pBLV with detailed and comprehensive descriptions and guidance to address
their specific needs. We evaluate our approach through experiments conducted on both
indoor and outdoor datasets. Our results demonstrate that our method can recognize
objects accurately and provides insightful descriptions and analysis for pBLV.

Theoretical contributions of our work include a thorough exploration of the integration
of vision language models with deep learning techniques for assisting individuals with
visual impairments. On the other hand, practical contributions encompass the development
of a functional system capable of providing detailed scene descriptions and guidance to
enhance the mobility and independence of individuals with visual impairments. Enhancing
the mobility of individuals with visual impairments is of paramount importance in fostering
inclusivity and independence. These advancements will not only improve the practical
utility of our system but also contribute to the theoretical understanding of assistive
technologies for individuals with visual impairments, paving the way for more inclusive
and accessible environments.

6. Limitations and Future Research

Despite these advances, we acknowledge certain limitations inherent to our system.
The dynamic and complex nature of real-world environments poses a significant challenge.
Factors such as changing lighting conditions, weather variations, and the presence of
moving objects can impact the system’s ability to accurately interpret scenes and predict
potential risks, occasionally leading to false alarms. Moreover, the effectiveness of our
system is contingent upon the quality of input data. Images captured by smartphone
cameras under suboptimal conditions, such as poor lighting or obstructions, can adversely
affect the model’s performance, resulting in inaccurate recognitions or missed detections.
Inherent Limitations of AI Models: Despite the advanced capabilities of our Recognize
Anything Model (RAM) and the InstructBLIP vision-language model, Al-based systems are
not infallible. They operate within the confines of their training data and algorithms, which
might not cover every possible real-world scenario or object encountered by people with
blindness and low vision (pBLV). This limitation can lead to inaccuracies or false positives
in object detection and scene interpretation.
Dynamic and Complex Environments: Real-world environments are highly dynamic
and complex, with constant changes that can challenge the model’s ability to accurately
interpret and predict risks. Factors such as varying lighting conditions, weather changes,
and moving objects can affect the system’s performance and potentially lead to false alarms.

Quality of Input Data: The effectiveness of our system heavily relies on the quality
of the input data, i.e., the images captured by the smartphone camera. Blurred images,
poor lighting conditions, or obstructed views can hinder the model’s ability to accurately
recognize and analyze the scene, leading to potential false alarms or missed detections.

In future work, we aim to refine our approach by expanding training datasets to
include a wider variety of environmental conditions, thereby enhancing the model’s ability
to generalize across different scenarios. We will also focus on developing more sophisticated
algorithms that can more effectively distinguish between transient and permanent features
in the environment, reducing false alarms. Additionally, integrating multimodal data
sources, including auditory and haptic feedback, will be explored to compensate for visual
data limitations and improve scene analysis. Incorporating user feedback mechanisms
will further allow the system to adapt and learn from real-world applications, continually
improving its performance and reliability for assisting individuals with blindness and
low vision.
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