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Abstract

Learning disabilities affect a significant proportion of children worldwide, with far-reaching
consequences for their academic, professional, and personal lives. Here we develop digital twins
— biologically plausible personalized Deep Neural Networks (pDNNs) — to investigate the
neurophysiological mechanisms underlying learning disabilities in children. Our pDNN
reproduces behavioral and neural activity patterns observed in affected children, including lower
performance accuracy, slower learning rates, neural hyper-excitability, and reduced neural
differentiation of numerical problems. Crucially, pPDNN models reveal aberrancies in the
geometry of manifold structure, providing a comprehensive view of how neural excitability
influences both learning performance and the internal structure of neural representations. Our
findings not only advance knowledge of the neurophysiological underpinnings of learning
differences but also open avenues for targeted, personalized strategies designed to bridge
cognitive gaps in affected children. This work reveals the power of digital twins integrating Al
and neuroscience to uncover mechanisms underlying neurodevelopmental disorders.
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The early years of childhood are pivotal for the development of foundational academic and
cognitive skills, a process marked by significant individual variability among children !-3.
Among the essential skills, mathematical proficiency stands out as a particularly challenging area
for a subset of children #°. Mathematical Learning Disabilities (MLD), which affects about 5 to
20 percent of the global population, manifests as diminished problem-solving abilities when
benchmarked against peers with similar age and intelligence 7. The repercussions of MLD
extend beyond academic challenges, impacting long-term socioeconomic status, including
employment prospects and health outcomes 31, Despite extensive research over the past two
decades, the neurobiological underpinnings of MLD remain elusive. Harnessing artificial
intelligence (AI) models that capture individual variability and can serve as digital twins!'!-!® —
capturing critical components of a biophysical system while allowing for in

silico experimentation — offers new promise. Here we introduce a novel approach by developing
a biologically plausible '*!> personalized deep neural network (pDNN). These personalized
networks are tailored to mirror individual behavioral patterns and evaluated against
neuroimaging data obtained from the same individuals, thus serving as digital twins on which
further experimentation and analysis of neuronal mechanisms can be performed, which would be
difficult to achieve non-invasively in children. Our goal is to uncover the hidden neural
mechanisms and representations that underpin individual differences in mathematical cognition,
offering new insights into the complex interplay between brain function and MLD.

MLD is marked by significant challenges in arithmetic problem-solving, a foundation for
developing advanced mathematical concepts ®!7. Children with MLD often struggle with basic
arithmetic operations, such as addition and subtraction >!8, These difficulties are not just limited
to slower processing speeds but encompass lower accuracy and use of less efficient problem-
solving strategies 1°-2!. Although various cognitive factors have been implicated °, a unifying,
biologically plausible model for MLD has, however, been elusive. Neuroimaging has played a
crucial role in uncovering the brain basis of MLD %17-22-26 with significant dysfunctions
identified in regions critical for numerical cognition, such as the intraparietal sulcus (IPS
Moreover, abnormalities extend to a broader network involved in visual and visuospatial
processing, suggesting MLD as a multifaceted neural dysfunction 2324232, However, our
understanding of the underlying neural mechanisms, which are vital for overcoming the
challenges posed by MLD, remains limited.

) 27,28'

Recent results have identified reduced behavioral and neural differentiation between distinct
numerical operations in children with MLD 2!, This suggests less efficient neural processing,
characterized by over engagement of brain circuits beyond levels typically needed for task
performance. Research has also shown that such impairments often extend into adulthood in
individuals with dyscalculia, highlighting the persistent nature and long-term effects of MLD??.

Aligned with inferences about less efficient neural processing, recent studies have identified
hyperactive brain patterns and hyperconnectivity '*3* in key cognitive regions among children
with MLD, suggesting an over-synchronization of neural networks essential for numerical
cognition. Examination of the amplitude of intrinsic low-frequency fluctuations, a proxy measure
for regional neural activity, has extended our understanding of dysfunctional neural circuits
associated with poor math abilities . It has been discovered that children with MLD exhibit
greater signal fluctuation across multiple brain regions, a finding indicative of neural hyper-
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80  excitability 3. This result has been further substantiated by reports that parietal and hippocampal
81  hyperconnectivity is associated with low math achievement in adolescence *°. Additionally,

82  hyperactivity is associated with greater intrinsic functional connectivity between multiple

83  cortical regions. Aligned with this pattern of hyperactivity, magnetic resonance spectroscopy

84  investigations have pointed to differential Glutamate and GABA concentration, indicative of

85  excitation/inhibition (E/I) imbalances, in children with poor math abilities 37, in expert math
86  calculation (reduced frontal E/I balance) *3. GABA and glutamate in the IPS have also been

87  shown to explain individual variability in mathematical achievement levels®®, and in test anxiety
88 levels in early childhood #°. Individuals lacking in mathematical education have also been shown
89  to demonstrate lower inhibition in brain regions relevant to reasoning and learning®. Recent

90  studies which attempt to rectify E/I imbalance by using neurostimulation have shown that E/I

91  balance modulates the amount of benefit that can be obtained from neurostimulation *'-**, and

92  can be a marker for neurostimulation based efficacy and learning*!. Despite these advances, the
93  neurophysiological mechanisms underlying MLD, the sufficiency of establishing E/I imbalances
94  as contributing factors towards MLD, and the mechanisms via which such imbalances may cause
95  learning difficulties, remain speculative, primarily due to the correlative nature of brain imaging
96  studies.

97  Digital twins, operationalized here via pPDNN models, provide a novel lens for addressing crucial
98  knowledge gaps in the neurophysiology of mathematical cognition and learning disabilities.
99  DNNs have demonstrated significant success in modeling a variety of cognitive functions
100  including number sense %43 word reading #°, object recognition #’*¥, and sentence processing
101 ¥, yet their application in understanding learning disabilities has been scant, primarily due to
102 lack of theoretically motivated approaches for introducing individual differences in DNN
103 behavior. Motivated by the potential role of E/I imbalances in contributing towards learning
104  differences, we focus on using neural excitability, as a key theoretical mechanism by which
105  individual differences can be introduced into DNN models.

106  This study thus introduces a novel personalized pPDNN framework (Figure 1A) aimed at

107  modelling individual behavioral performance and linking it to functional brain imaging data, to
108  elucidate the specific neurobiological dysfunctions associated with MLD. Specifically, we aimed
109  to model behavioral and neural deficits in numerical problem-solving using addition and

110 subtraction, two fundamental operations crucial for early numerical problem-solving proficiency
111 52330 Behavioral studies suggest that performance on tasks problems involving addition and

112 subtraction operations is characterized by significant individual differences in problem-solving
113 abilities in children, and that children with MLD are impaired on both >!830 5! By leveraging
114  biologically plausible DNNs 4, and integrating behavioral with neuroimaging data, we explored
115  individual variability and the neural correlates of arithmetic learning, thereby contributing to a
116  deeper understanding of the neural underpinnings of core numerical problem-solving skills

117  essential for early cognitive development.

118  Our study had five primary objectives. Our first objective was to investigate E/I imbalance,

119  characterized as neural excitability, as a potential and sufficient neurobiological mechanism

120 (Figure 1B) contributing to cognitive performance deficits in children with MLD. Neural

121  excitability and E/I balance is a fundamental aspect of neural processing, playing a crucial role in
122 shaping neural network dynamics, learning, and cognitive function >, Moreover, as reviewed
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123 above, task-related hyperactivation and intrinsic hyper-fluctuations observed in children with
124 MLD suggest that E/I imbalance may be a key underlying neurophysiological mechanism. The
125  concept of E/I imbalance as a putative neural mechanism underlying learning disabilities is

126  suggested by both theoretical models and empirical research 4!:4333:55-57 E/I balance is a

127  fundamental aspect of neural processing, playing a crucial role in shaping neural network

128  dynamics and cognitive function 32->5, We therefore probed whether neural excitability

129  mechanisms can induce systemic individual differences in the arithmetic problem-solving

130  behaviors of biologically inspired DNNs. We hypothesized that varying levels of neural

131  excitability could capture relatively monotonic changes in learning, behavioral patterns, and
132 latent neural representations, and show meaningful structure in terms of how neural

133 representations evolved over the network hierarchy with changing excitability levels.

134

135  Our second objective was to construct pPDNNs, where we could tune the neural excitability levels
136  to match the individualized learning profiles of children performing a similar arithmetic task
137  (Figure 1C) and capture the influence of such varying neural excitability on individual

138  variations in behavioral task performance. We demonstrate that by manipulating neural

139  excitability parameters we can, for the first time, match personalized networks to best represent
140  the behavioral aspects of individual children, thus creating digital twins for both typically

141  developing children (TD) and children with MLD. We were thus able to obtain a set of TD

142 pDNNs and MLD pDNNs and evaluate differences between these sets of networks.

143

144 Our third objective was to use fMRI data from children to assess whether pDNNs that were
145  behaviorally matched to individual children’s profiles were predictive of individual differences
146  in neural representations observed in empirical data (Figure 1D). We hypothesized that

147  behaviorally matched pDNNs would reasonably predict aberrant neural representations in

148  children with MLD. If successful, this would validate the concept of in silico digital twins, and
149  insights obtained from pDNNs could be used not just to draw inferences about how neural

150  excitability affects different aspects of neural representations, but also make individualized

151  predictions.

152

153  Our fourth objective was to analyze the neural data from the best matched pDNNs to extract
154  insights about how latent neural representations varied with changing neural excitability

155  (Figure 1E). Our hypothesis was that pPDNNs matched to MLD children would show differences
156  in such latent neural representations compared to pDNNs matched to TD children, thus

157  developing the link between differences in E/I imbalances and latent neural representations of
158  mathematical problem solving. This would reveal aspects of information processing deficits,
159  how these are distributed across the hierarchical structure representing the dorsal visual stream
160  and IPS, and how the representational geometry of distributed neural measures such as neural
161  manifold capacity, structure, and dimensionality, impact learning deficits>*->°.

162

163 Our fifth objective was to explore whether additional training can normalize behavioral

164  performance and neural representation patterns in children with MLD to levels observed in TD
165  children (Figure 1F). We hypothesized that E/I imbalances characterized by neural excitability
166  would slow down but not put a hard constraint on learning. We determined how much additional
167  training would be required for MLD pDNNs to match TD pDNNs levels of performance, and
168  whether such training was accompanied by changes in latent neural representations like those
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169  seen in TD pDNNSs. This approach aimed to provide insights into the adaptive capacity of the
170  neural processes in MLD, potentially informing future intervention strategies to address
171  disabilities linked to E/I imbalances.

172 Our findings demonstrate the significant potential of digital twins, operationalized via pDNNs, in
173 uncovering latent neurobiological mechanisms underlying individual differences in children’s
174  behavior and learning. We show that pPDNNs can simulate and assess the impact of neural

175  excitability on cognitive performance, creating a bridge between Al, computational

176  neuroscience, and empirical brain imaging studies. Our approach provides a novel framework for
177  linking neural network models with cognitive neuroscience studies in human participants.

178  Results

179

180  Figure 1 shows the study design, data used and critical steps of our analysis strategy. We first
181  developed a pPDNN model for numerical problem-solving tasks involving addition and

182  subtraction operations. Our pDNN models were constructed using a biologically inspired model
183  of the dorsal visual pathway based on the network architecture and physiological parameters of
184  CORnet-S %15, This neural architecture, comprising cortical layers V1, V2, V3, and intraparietal
185  sulcus (IPS), has been shown to characterize how neural representations can change with

186  numerosity training, and how learning can reorganize neuronal tuning properties at both the

187  single unit and population levels'*. Importantly, such models have been able to capture learning
188  driven changes from logarithmic to cyclic and linear mental number lines that are characteristic
189  of number sense development in humans'4. The models were utilized in their raw form, without
190  any pre-training (Figure 1A). The training problems were similar to those used in our fMRI

191  study with children 2!, incorporating images of handwritten arithmetic operations with results
192 spanning natural numbers from 0 to 18, designed to mimic the diversity of handwriting children
193  might encounter in educational settings (see Methods for details). This approach ensured the
194  robustness and generalizability of the pDNNs in real-world learning scenarios.

195

196  Our empirical data pool consisted of 45 children, aged 7 to 9, from second and third grades, who
197  performed numerical problem-solving tasks analogous to those processed by the pPDNNs. Out of
198  the 45 participants, 21 children were identified with MLD based on their NumOps scores on

199  standardized WIAT-II ® test subscores. The remaining 24 children were considered TD and

200  served as the control group. The two groups did not differ on age, full-scale 1Q, or reading

201  abilities (Table SI 1). All children solved addition and subtraction problems during fMRI

202  scanning. In the addition task, they were presented with an equation (e.g., “3 + 4= 8”), and were
203  asked to indicate, via a button press, whether the presented answer was correct. 36 addition

204  problems were presented, with 50% paired with correct answers and 50% with incorrect answers.
205 A similar procedure was used for subtraction problems. Further details of the study protocol and
206  design are presented in the Methods section and in previous studies 2!.

207

208  Tuning neural excitability produces individual differences within pDNNs

209

210  The basic pDNN models were personalized and individual differences in task performance were
211  simulated by tuning the neural excitability (neural gain parameter G, Figure 1B). Specifically,
212 we varied this parameter from 1.0 to 5.0 in steps of 0.25. Each of these 17 models with different
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213 levels of neural gain was trained on the same set of problems for a fixed number of iterations. At
214  the outset, all pPDNN models operated at chance levels of accuracy (approximately 5%, with

215  possible answers ranging from 0 to 18), ensuring a uniform starting point. We hypothesized that
216  heightened neural excitability could potentially impede the learning process, either by

217  decelerating the rate of learning or by limiting the ultimate proficiency attainable by the pDNN.
218  In either case, under this hypothesis, any fixed number of iterations within a certain bound would
219  result in a situation where pDNNs with lower neural excitability would have a higher level of
220  behavioral accuracy, allowing us to match different neural excitability levels to children with
221  different mathematical achievement levels.

222

223 To assess the role of neural excitability on the learning efficiency of our pDNNs, we focused on
224 the number of training iterations required for the models to achieve a 95% accuracy threshold.
225  This threshold was indicative of mastery in solving the addition and subtraction problems used in
226  our study. We found that models with the lowest level of neural excitability were able to achieve
227  this threshold in about 1400 iterations, but after about 3800 training iterations, all models

228  achieved an accuracy exceeding 95%, suggesting that pPDNNs models with a wide range of

229  neural excitability were able to learn to solve addition and subtraction problems with high

230  reliability (Figure 2A). These results underscore the potential of pDNN5s for simulating

231  numerical problem-solving and learning in children (Figure 2A).

232

233 However, our findings revealed distinct learning trajectories across pDNNs with varying levels
234  of neural excitability. As excitability increased, we observed a slower progression in accuracy
235  across learning iterations. The number of iterations required to reach the 95% accuracy

236  benchmark increased consistently with neural excitability (r = 0.94, p < 1077, Figure 2B).
237  After 200 iterations, the relationship between neural excitability and model performance revealed
238  astrong inverse correlation (7 = —0.96, p < 1078, Figures 2C-D). This negative correlation
239  remained consistent throughout the training process and only began to diminish when pDNNs
240  approached peak performance levels (Figures 2C-D).

241

242 These results demonstrate that increased neural excitability in pPDNNs does not impede the

243 models’ ability to eventually achieve high levels of accuracy in arithmetic tasks, but does lead to
244  aslower learning rate, and that tuning the neural excitability of pDNNs can thus produce

245  individual differences in behavioral performance at any fixed learning iteration (analogous to a
246  certain level of training in humans).

247

248  pDNNs tuned based on neural excitability can be behaviorally matched to individual children
249  — MLD matched pDNNs demonstrate higher neural excitability

250

251  Next, we fine-tuned pDNNSs to the specific mathematical achievement level of each child

252  participant. By adjusting the neural excitability values in the pDNNs, we aimed to closely

253  approximate the mathematical problem-solving behaviors exhibited by children. Matching was
254  carried out using ‘behavioral distance’ (see Methods for details), a measure of the degree of
255  alignment between normalized values of each child's mathematical achievement scores and the
256  pDNN performance. Since the pDNNs ‘experienced’ a much wider range of arithmetic problems
257  compared to children in the specific task, the matching was done by comparing normalized

258  accuracy of the pDNNs across all addition and subtraction problems, with the normalized
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259 NumOps *° score of children. This ensured that the comparison was robust and ecologically

260  valid, and that since the comparison was not based on direct task-proximal measures or specific
261  problem subsets, the neural predictions would be generalizable. By evaluating every 100™

262  learning iteration of the pDNNs, we determined the best-fitting neural excitability (gain value G)
263  for each individual child at each iteration. We then identified the specific learning iteration at
264  which the best-fitting pDNNs for each child most accurately reflected the behavioral

265 achievement levels (Methods) of the children (Figure 3A) on an average. This analysis

266  identified iteration 800 as optimal for capturing the full spectrum of individual differences in the
267  behavioral performance of mathematical problem-solving seen in child participants.

268

269  Figure 3A shows the 95% CI for behavioral distances between the children and their best

270  matched pDNNs for the TD and MLD groups across different iterations. Iteration 800 was a

271  good fit for both the TD and MLD groups, and the difference in behavioral distance (measure of
272 fit) between groups was not significant (t = —1.09, p = 0.28, Figure 3B). We conducted a

273 control analysis in which we randomly permuted the children’s behavioral scores across different
274  neural gains at iteration 800. The resulting behavioral distance for these random permutations
275 (M = 0.32,5D = 0.24) was significantly higher than pDNN fitted data at this iteration for both
276  MLD (M = 0.02,SD = 0.02) (t = 48.07, p < 10738, Figure 3B) and TD groups (M =

277  0.03,SD = 0.02) (t = 48.96, p < 10~*%, Figure 3B). This result supports the finding that our
278  model is well-calibrated to empirical data at iteration 800, thereby establishing it as the focal
279  point for in-depth analysis in subsequent sections. Going forward, the best fitting excitability
280  models at iterations 800 for TD and MLD groups respectively are collectively termed 7D pDNNs
281  and MLD pDNNs respectively and represent the digital twins for these groups. Figure 3C shows
282  that, as we hypothesized, the gain of MLD pDNNs (M = 3.77,5SD = 0.60) is higher than the
283  gain of TD pDNNs (M = 2.05,5D = 0.52) (t = 9.96, p < 10711, Figure 3C).

284  These findings demonstrate that pDNNs can be individually tailored to represent children’s

285  varying levels of performance on mental arithmetic tasks, that neural excitability is a sufficient
286  and key factor in this personalization of pPDNNs, and that MLD pDNNSs are associated with

287  higher neural excitability than TD pDNNSs. They also demonstrate that the personalized pDNNs
288  have similar degrees of fit for both TD and MLD children, showing that the personalized models
289  are not inherently biased and can effectively cover the full spectrum of individual differences.

290  Behavioral patterns of pDNN models are good representations of empirical behavior of TD
291  and MLD children in arithmetic tasks

292

293  Although pDNNs were individually matched by selecting the iteration that minimized average
294  differences in normalized behavioral scores for each child, there was no guarantee that these
295  behavioral scores would show a good absolute fit at this iteration. We evaluated whether pDNN
296  performance accurately reflected the behavioral achievement patterns observed in MLD and TD
297  children. We compared normalized performance scores of these two groups of children

298  (NumOps) and the normalized accuracy of their corresponding pDNNs. Our statistical

299  comparison revealed no evidence of significant differences between the normalized behavioral
300  scores of MLD children (M = 0.35,SD = 0.06) and their matched MLD pDNNs (M =

301 0.36,SD = 0.05) (t = 0.98, p = 0.33, Figure 3D) and no evidence of significant differences
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302  between the scores of TD children (M = 0.67,SD = 0.13) and their matched TD pDNNs (M =
303 0.69,SD =0.13) (t = —0.26, p = 0.80, Figure 3D).

304

305  Figure 3D shows that the behavioral scores of MLD pDNNs were significantly lower than TD
306 pDNNs (t = —11.06, p < 10711, Figure 3D), and are well aligned with our empirical findings
307  of lower performance in children with MLD (t = —11.86, p < 107 '2, Figure 3D).

308

309  These results further validate that the behavioral scores of pPDNNs, when matched to individual
310  math achievement levels, accurately reflect empirical data, affirming the utility of pDNN5s in
311  modeling the behavioral nuances of children with MLD and TD in mental arithmetic tasks.

312

313 Neural representational similarity (NRS) between problem types increases with neural

314  excitability in pDNN models

315

316  Our next goal was to investigate the effect of neural excitability on the pPDNN NRS between
317  addition and subtraction, two distinct numerical operations. This analysis was motivated by our
318  empirical evidence of higher NRS between addition and subtraction problems in children with
319  MLD, compared to TD children 2!. This profile of less differentiated neural representations was
320  particularly prominent in the IPS region in children.

321

322 We averaged the NRS between each individual pair of operations in the pDNN model and

323  examined how this similarity changed with neural excitability G (Figures 4A-B show these for
324 low and high neural excitability of G = 2.25 and G = 4.0). NRS was computed for each iteration,
325  for each level of neural excitability, and within each layer of the pDNN (V1, V2, V3, IPS), as
326  described in Methods. These results show that while the NRS between operations is similar for
327  high and low gains in the lower V1 layer, the difference amplifies over the layer hierarchy and
328  shows significant differences between high and low gains in the IPS layer.

329

330  To understand how neural excitability influenced NRS, we obtain the average NRS between
331  addition and subtraction problems (add-sub NRS). Our findings revealed that after an initial

332 decrease in NRS upon training, the NRS decreased only slightly with further training iterations
333 across layers, even when performance accuracy increased to 95% levels (Figure SI 1A). We
334  observed a consistent increase in NRS with neural excitability across all layers (Figure 4C), with
335  astrong correlation between add-sub NRS and neural excitability at each layer: V1 (r = 0.83,
336 p<107%),V2(r=0.96, p<107°), V3 (r=0.95, p <1078)and IPS (r = 0.94, p <

337  1077). Figure 4D shows that for low (high) levels of neural excitability, the NRS values

338  decrease (increase) across layers V1 to IPS, and that increasing excitability causes NRS to

339 increase faster in higher layers (V3, IPS) compared to V1 and V2.

340

341  Similarly, we examined the NRS between distinct addition problems (add-add NRS) and the
342  NRS between distinct subtraction problems (sub-sub NRS) and observed a consistent increase in
343  NRS with neural excitability across all layers (Figures 4E-H): add-add NRS V1 (r = 0.88, p <
344 107%),V2(r=0.97, p <1071%), V3 (r =098, p < 10711)and IPS (r = 0.97, p < 10710),
345  and sub-sub NRSV1 (r = 0.87, p < 107%), V2 (r =097, p < 10719, V3 (r=10.98, p <
346 1071% and IPS (r = 0.97, p < 107°).

347
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348  These results demonstrate that increasing neural excitability is sufficient to cause greater neural
349  representational similarity between problem types, that this increased similarity is more

350  pronounced in the higher IPS layer, and that the higher NRS is not completely mitigated with
351  additional training iterations, even when behavioral performance improves to 95% accuracy
352 levels.

353

354  pDNN models of behavioral patterns predict neural task fMRI data reflecting differences
355  between TD and MLD

356

357  Extending our analysis to pPDNN models representative of children with MLD and their TD
358  peers, we discovered elevated add-sub NRS in MLD-associated pDNN models (Figure SA)
359  across layers. A statistically significant higher add-sub NRS was noted for MLD pDNNs

360  compared to TD pDNNSs at all layers: V1 (t = 6.86, p < 1077), V2 (t = 9.26, p < 10711), V3
361  (t=11.78, p < 107™),and IPS (t = 12.11, p < 10~*). Notably, the effect sizes, as

362  measured by Cohen’s d, of the difference in NRS between MLD and TD are large and increase
363  along the network hierarchy: d = 2.08 in V1,d = 2.82in V2, d = 3.53in V3, and d = 3.66 in
364 IPS.

365

366  Supplementary analysis (Figures SI 2B-C) shows that MLD pDNNs also showed higher levels
367  of within operation NRS (both add-add NRS and sub-sub NRS) compared to TD pDNNs: V1
368  (t>7.34, p<1078), V2 (t > 10.35, p < 1071?), V3 (t > 11.75, p < 1071%), and IPS (t >
369  10.79, p < 10713).

370  An important aspect of our study was to determine if the optimally tuned pDNNs could

371  reasonably predict NRS deficits in children with MLD, as observed through task fMRI data 2!.
372  Specifically, we assess whether the pPDNNs, calibrated and matched based only on individual
373  task-distal mathematical achievement levels of children, also mirrored the unique NRS patterns
374  evident in the task-related fMRI data from the same children. To achieve this, we calculated the
375  predicted addition-subtraction (add-sub) NRS within the IPS node of the pDNN model that was a
376  best fit to each child’s behavioral data. This prediction was then compared to the actual add-sub
377  NRS derived from previously published empirical fMRI data focusing on the IPS 2!,

378  Figure SB compares the add-sub [PS NRS between the pPDNNs and corresponding children. Our
379  analysis revealed a moderately strong positive correlation between the predicted and observed
380 add-sub NRS (r = 0.63, p < 107°), significantly surpassing the correlation levels that would be
381  expected from random matching (Figure 5C, t = 39.70, p < 107%1).

382  These results align with our previous empirical findings ! and further demonstrate a clear

383  relationship between increasing neural excitability and heightened representational similarity
384  across numerical operations within the pDNN. This trend is particularly evident in the IPS,

385  suggesting that hyperexcitability in neural networks may underpin the observed phenomenon.
386

387  These results underscore an important facet of our pDNN models: their ability to not only align
388  with behavioral patterns but also reflect neural processing differences in the brain. Models that
389  closely mirrored children's behavioral performance also showed a higher fidelity in

390  approximating neural representation patterns. This alignment provides a compelling validation
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391  for the use of pDNNSs as a reliable tool in modeling both the behavioral and neurophysiological
392 aspects of mathematical learning and difficulties.

393

394  Neural hyper-excitability impairs both numerical precision and trueness of response by

395  reducing the number of different responses accessible to the network

396

397  Behavioral deficits observed in MLD pDNNs may be caused by either a lack of trueness (i.e.
398  average response is far from the true response) or a lack of precision (i.e. response is highly

399  variable around the true value) ®!. Figure 6A shows the distribution of pDNN responses for each
400  value of the true result for different values of neural excitability at iteration 800. Using these

401  distributions, we compute the numerical systematic error (lack of trueness) as the average

402  distance between the expected response and the average response for that expected response, and
403  we compute the numerical imprecision as the average standard deviation of the response for each
404  expected response. We hypothesized that for pPDNNs, both systematic error and imprecision

405  would decrease with training and increase with neural excitability to reflect variations in

406  accuracy.

407

408  As expected, Figure 6B shows that at iteration 800 the numerical systematic error increases with
409  neural excitability (r = 0.82, p = 107%), indicating response that are less true. Figure 6C

410  shows that numerical imprecision also increases with neural excitability (r = 0.56, p = 0.019),
411  indicating that responses are more variable and less precise.

412

413  Moreover, as neural excitability increases from 1 to 6, the pPDNN responses become both less
414  true and less precise because they are clustered around a fewer number of unique values. First on
415  a qualitative level, we can observe in Figure 6A that for pDNNs, the number of different

416  responses used to provide an answer seems to decrease with neural excitability (fragmentation
417  along the diagonal as gain increases). By estimating the effective number of different responses
418  using the entropy of the response (see details in Methods), we note that while pDNN accuracy
419  across training iterations is strongly negatively correlated with both numerical systematic error
420 (r = —0.69, p < 10~°°) and numerical imprecision (r = —0.73, p < 10~1'1), it is even more
421  strongly correlated with the effective number of different responses used (r = 0.95, p <

422 107323), Figure 6D shows that the effective number of responses used decrease with neural

423  excitability (r = —0.96, p < 107), from using all the 19 unique responses for smaller gains, to
424  only between 8 and 9 responses for higher gains.
425

426  This shows how increasing excitability directly translates into behavioral deficits in MLD

427  pDNNs compared to TD pDNNs. Figure 6E shows that the systematic error of MLD pDNNs
428 (M = 0.60,SD = 0.12) is higher than that of TD pDNNs (M = 0.15,SD = 0.06) (t = 15.40,
429 p < 107%). Figure 6F shows that the numerical imprecision of MLD pDNNs (M = 1.53,5D =
430  0.49) is higher than that of TD pDNNs (M = 0.89,SD = 0.09) (t = 5.80, p < 107°).

431  Figure 6G shows that the effective number of responses used by MLD pDNNs (M =

432 12.71,5D = 1.34) is lower than that by TD pDNNs (M = 16.89,5SD = 1.62) (t = —9.10, p <
433 10710),

434

435  These results suggests that in the pDNNs, the number of results for which there is a precise

436  response increases progressively with training (i.e., learning helps formulate a more precise
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437  latent number line) but that increasing neural excitability slows down this learning process,

438  affecting the trueness, precision, and granularity of responses.

439

440  Neural hyper-excitability impairs the structure of representational manifolds

441

442  Our next goal was to identify which representational deficits in the pDNNs could cause the

443  behavioral differences observed in MLD vs TD pDNNs. For each layer we studied the geometric
444  properties of the 19-manifold (Methods) formed by the neural response to the operations which
445  share the same results (e.g. the response of 2+7 and 5+4 are part of the same manifold as they
446  both result in 9). Specifically we studied their manifold capacities, their dimensionality, and how
447  their manifold centers correlate, as developed in a theory of object maniolds in neural networks
448 5859 Manifold capacity reflects how easy it is to separate manifold in two random categories, and
449  high (low) manifold capacity indicates that it is easy (hard) to separate the manifolds into two
450  categories. Manifold dimensionality reflects the number of effective dimensions within which
451  the manifold evolves. Correlation between the centers of the manifold reflects the alignement
452  between manifolds, with high correlations indicating that the center of the manifolds are aligned,
453  and low correlations indicating that each center is maximally spread across multiple dimensions.
454  We tested the hypothesis that higher neural excitability should also result in impaired manifold
455  structures. In the context of the current task, lower manifold capacity and higher manifold center
456  correlations reflect impaired manifold structures.

457

458  Figure SI 4A shows how the manifold capacity evolves during training across layers. After a
459  few iterations we observed, as per our hypothesis, a consistent decrease in manifold capacity
460  with neural excitability across all layers and iterations. At iteration 800 we observed a strong
461  negative correlation between manifold capacity and neural excitability at each layer: V1 (r =
462 —0.77, p < 1073),V2 (r = —0.76, p < 1073), V3 (r = —0.80, p < 1073) and IPS (r =

463  —0.76, p < 1073, Figure 7A). Figure SI 5A shows that at iteration 800, as observed in

464  previous studies >°, the manifold capacity increases across layers V1 to IPS, with smaller

465  increases at high levels of excitability.

466

467  Figure SI 4B shows how the manifolds dimensionality evolves during training across layers.
468  After a few iterations we observed a consistent increase in the manifold dimensionality with

469  neural excitability across all layers and iterations. At iteration 800 we observed a strong

470  correlation between manifold dimensionality and neural excitability at each layer: V1 (r = 0.93,
471 p<107),V2(r=10.80, p <1073), V3 (r =0.87, p < 107>) and IPS (r = 0.90, p < 107,
472  Figure 7B). Figure SI 5B shows that, as observed in previous studies®, the manifold

473  dimensionality decreases across layers V1 to IPS.

474

475  Figure SI 4C shows how the correlation between centers of manifolds evolve during training
476  across layers. We observe a consistent increase across iterations in this correlation in layer V3
477  and IPS but not in layers V1 and V2. At iteration 800 we observed lower correlations between
478  neural excitability and manifold center correlations in V1 (r = 0.005, p = 0.99) and V2 (r =
479  0.24, p = 0.36), but higher correlations in V3 (r = 0.70, p < 1072) and IPS (r = 0.95, p <
480 1078, Figure 7C). The correlation between manifold centers in the IPS are a strong predictor of
481  behavioral accuracy (R? = 0.94). Figure SI 5C shows that for low levels of neural excitability,
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482  the correlation between centers decreases across layers V1 to IPS, but that for high level of

483  neural excitability, the correlation between centers increases across layers V1 to IPS.

484

485  Extending our analysis to pDNN models representative of children with MLD and their TD

486  peers, we discovered reduced manifold capacity in MLD pDNN models (Figure 7D) across all
487  layers. There was a progressive increase in manifold capacity across the pDNN layer hierarchy
488  in both MLD and TD pDNNs. A statistically significant smaller manifold capacity was noted for
489  MLD pDNNs compared to TD pDNNSs at all layers: V1 (t = —7.74, p < 1078), V2 (t =

490 —10.37, p < 1071%), V3 (t = —6.07, p < 107%), and IPS (t = —7.06, p < 10~7). Notably,
491  the effect sizes, as measured by Cohen’s d, of the difference in manifold capacity between MLD
492  and TD are large across the network hierarchy: d = 2.34in V1,d = 1.82in V2, d = 1.54 in
493  V3,and d = 1.00 in IPS.

494

495  We discovered increased manifold dimensionality in MLD pDNN models (Figure 7E) compared
496  to TD pDNNS, across layers. There was a progressive decrease in manifold dimension across the
497  pDNN layer hierarchy in both MLD and TD pDNN:S. A statistically significant higher manifold
498  dimensionality was noted for MLD pDNNs compared to TD pDNNss at all layers: V1 (t = 8.89,
499 p< 10719, V2(t=1137, p<10713), V3 (t =6.82, p <1077),and IPS (t = 8.03, p <
500  10719). Notably, the effect sizes, as measured by Cohen’s d, of the difference in manifold

501  dimensionality between MLD and TD are large across the network hierarchy: d = —2.65 in V1,
502 d=2.05inV2,d=-233inV3,andd = —1.56 in IPS.

503

504  We also discovered increased center correlations across manifolds in MLD pDNNs compared to
505 TD pDNNs (Figure 7F) across layers. Interestingly, there was a progressive increase in center
506  correlations across the pDNN layer hierarchy in MLD pDNN:Ss, but a progressive decrease across
507  the layer hierarchy in TD pDNNSs. A statistically significant higher correlation between center of
508  manifolds was noted for MLD pDNNs compared to TD pDNNs only in IPS: V1 (t = —1.45,
509 p=0.15),V2(t=-0.76, p =0.45), V3 (t = 0.43, p = 0.67),and IPS (t = 12.44, p <

510  10715). Notably, the effect sizes, as measured by Cohen’s d, of the difference in manifold center
511  correlations between MLD and TD are large from V2 to IPS: d = —0.44in V1,d = —2.56 in
512 V2,d =—-2.66inV3,and d = —3.45 in IPS.

513

514  Finally, we observed that in the IPS, manifold capacity, manifold dimensionality and inter-

515  manifold correlations between centers were all strongly correlated with accuracy. Surprisingly,
516  inter-manifold correlations between centers showed the strongest correlations with behavioral
517  accuracy (r = —0.97, p < 107323), followed by manifold dimensionality (r = —0.92, p <
518  107262), and manifold capacity (r = 0.73, p < 107109),

519

520  These results show that differences on account of higher neural excitability were explained by
521  decreasing manifold capacity, increasing manifold dimensionality, and increasing center

522  correlations between IPS manifolds.

523

524  Additional pDNN training to overcome behavioral deficits in MLD

525

526  Our next goal was to use pDNNs to determine how additional training could help MLD pDNNs
527  reach the level of behavioral performance seen in TD pDNNs. We hypothesized that both
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528  behavioral and neural representational deficits would reduce with additional cognitive training,
529  and that pDNNs corresponding to MLD children would converge towards behavioral and neural
530  representational patterns observed in TD children.

531

532 Figure 8A shows how many additional iterations were required for any individual pDNN to
533  reach an accuracy level closest to the median accuracy of best matching TD pDNNs (i.e., at

534 iteration 800). The number of iterations required to match TD pDNNSs increased consistently
535  with neural excitability (r = 0.93, p < 1077). Figure 8B shows the distribution of percentage
536  of initial training that is additionally required (i.e., the number of additional training iterations
537  required beyond the initial 800, divided by 800) to reach median level accuracy of TD pDNN,
538  separately for MLD pDNNs and TD pDNNs. Expectedly, we observe that MLD pDNNs require
539  ahigher level of additional training (M = 75%, SD = 42%) than TD pDNNs (M = 5%, SD =
540  11%). MLD pDNNs required an additional 900 iterations beyond the initial 800, or in other

541  words, MLD pDNNs required approximately 2 times the training given to TD pDNNSs to achieve
542  similar levels of accuracy.

543

544  We then analyzed how behavior and representations evolved with this behavioral catch-up for
545  MLD pDNN:s at iteration 1700, and how they compared to the behavior and representations of
546  TD pDNNs at iteration 800. In Figure 8C-L, we refer to MLD/TD pDNN at iteration 800 as
547  MLD/TD Pre, and MLD pDNN at iteration 1700 as MLD Post.

548

549  Figure 8C shows that the accuracies of MLD pDNN:s at iteration 1700 improve (t = 13.50, p <
550  10712) and are not significantly different from TD pDNN:s at iteration 800 (t = 1.90, p =

551  0.065). Similar patterns are seen in the numerical systematic error (Figure 8D; significant

552 improvement in MLD pDNN:S at iteration 1700, t = —15.35, p < 107%; not significantly

553  different from TD pDNNS at iteration 800, t = —0.17, p = 0.86), numerical imprecision

554  (Figure 8E; significant improvement in MLD pDNNSs at iteration 1700, t = 4.89, p < 107%;
555  not significantly different from TD pDNNS at iteration 800, t = 1.21, p = 0.24), manifold

556  capacity in the IPS (Figure 8J; significant improvement in MLD pDNNs at iteration 1700, t =
557  5.42, p < 107; not significantly different from TD pDNNs at iteration 800, t = 0.26, p =
558  0.79), manifold dimensionality in the IPS (Figure 8K; significant improvement in MLD pDNNs
559  atiteration 1700, t = —5.83, p < 107>; not significantly different from TD pDNNs at iteration
560 800,t=0.21, p = 0.84), and inter-manifold center correlations in the IPS (Figure 8L;

561  significant improvement in MLD pDNNs at iteration 1700, t = —24.53, p < 10717; not

562  significantly different from TD pDNNs at iteration 800, t = —1.66, p = 0.11).

563

564  Number of different responses (Figure 8E) in MLD pDNNs shows significant improvement with
565  additional training (t = 13.26, p < 107%) and improves beyond the levels observed in TD
566  pDNNs at iteration 800 (t = 2.15, p = 0.038).

567

568  The remaining measures for MLD pDNNs show an improvement with the additional training to
569 1700 iterations, but do not statistically reach the levels demonstrated by TD pDNNss at iteration
570  800. This includes between operation add-sub NRS (Figure 8G; significant improvement at

571  iteration 1700,t = —4.39, p < 10™*; still significantly different from TD pDNNs at iteration
572 800, t = 8.54, p < 107?), within addition NRS (Figure 8H; significant improvement at

573  iteration 1700,t = —5.39, p < 1075; still significantly different from TD pDNNs at iteration
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574  800,t =t = 6.48,p < 1077), and within subtraction NRS (Figure 8I; significant improvement
575  atiteration 1700,t = —5.19,p < 1075; still significantly different from TD pDNN:s at iteration
576  800,t = 6.65,p < 1077).

577

578  These results suggests that when MLD pDNNs are provided additional training they can catch up
579  behaviorally to performance levels characterizing TD pDNNSs. This behavioral catch-up is

580  accompanied by improvements in all measures of neural representations examined here, but only
581  some of the underlying neural representational deficits are completely overcome, while others
582  improve but still do not catch up to TD pDNN levels.

583

584  Discussion

585

586  Our study integrates distinct lines of research in human cognitive neuroscience and artificial

587 intelligence and provides new insights into latent brain mechanisms that contribute to the

588  diversity of children’s cognitive abilities. We developed cutting-edge personalized deep neural
589  networks (pDNNs), which are tailored to probe the neural gains, learning dynamics, and

590 neurophysiological patterns unique to each child (Figure 1), thus providing in silico digital

591  twins. These digital twins capture the behavioral, learning, and neural variability demonstrated
592 by both TD children, and children with MLD. We demonstrate that neural network models when
593  combined with individual human behavioral and brain imaging measures offer powerful tools for
594  advancing our knowledge of the neurobiology of cognitive strengths and challenges. Our

595  findings highlight the transformative capacity of pDNNs as a tool in the assessment and

596  exploration of cognitive disabilities, paving the way for more personalized and effective

597  educational strategies.

598  Engineering pDNNs as digital twins to probe individual learning profiles

599  We developed cognitive neuroscience-informed and biologically plausible pPDNNs ' to capture
600 individual differences in arithmetic task performance among children with and without MLD.
601  This model was designed to investigate the complex interplay between behavior, neural

602  representations, and neurophysiology in children with learning disabilities. We engineered

603  pDNN models with the unique ability to map diverse arithmetic problems to corresponding

604  solutions, effectively tuning these models to align with various performance levels. This allowed
605  us to investigate the latent neurobiological mechanisms that might contribute to the observed
606 individual differences and weaknesses in neural representations during problem solving.

607  We demonstrate that these pPDNNs can be tuned to match individual levels of mathematical

608 achievement across varying levels of performance abilities, and that such a model can be used to
609  uncover latent neurobiological mechanisms underlying weak neural representations of distinct
610  numerical problems. A key theoretical aspect of our work is analysis of the role of excitatory-
611  inhibitory (E/I) imbalances?’-*43->>36 manifested as neural hyper-excitability, in capturing the
612  variability in behavioral, neural, and representational dysfunctions observed in children with
613 MLD.

614  Our methodology encompassed six key steps: First, we employed a biologically inspired
615  hierarchical pPDNN model, mimicking the dorsal visual pathway from V1 to IPS, to encode
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616  addition and subtraction problems. This model's design was based on the CORNET-S

617  architecture, similar to one used to model the emergence of number sense in children 4. Second,
618  we adjusted the neuronal excitability parameters within these models to induce individual

619  differences in task performance. Third, data from children participating in the empirical study
620  were matched with a corresponding pDNN configuration that best represented their behavioral
621  performance, to obtain in silico digital twins corresponding to each child. Fourth, we then

622  explored the congruence in behavioral performance and in neural representations between the
623  pDNNs and empirical task-based fMRI studies. Fifth, we investigated how variations in neural
624  hyper-excitability impacted the latent neural representations within these networks, aiming to
625  shed light on potential neurophysiological underpinnings of MLD. Finally, we probed the

626  influence of additional training on pDNN networks in MLD, and determined whether latent
627  neural representations were normalized by additional cognitive training. The resulting

628  engineered ‘digital twin’ models provide a novel approach to close the loop between Al-based
629  neural networks, behavior, neural representations, and neurophysiology.

630  Neural excitability impairs learning

631  Our study brings to light the significant impact of neural excitability and hyper-excitability on
632  learning processes, which we evaluated here in the context of MLD. Theoretical models propose
633  that E/I imbalances could disrupt functional neural circuitry, potentially leading to a range of
634  neurodevelopmental disorders, including MLD 41433657 By focusing on E/I imbalance, our

635  pDNN model provides a more precise understanding of the neurobiological underpinnings of
636 learning disabilities. This approach also offers a new perspective for investigating the complex
637 interplay between neural circuitry and learning processes 4143,

638 A central finding is how neural hyper-excitability influences the capacity to learn associations
639  between mental arithmetic problems and their solutions. We observed that elevated neural

640  excitability levels in the pDNNs were correlated with slower learning rates and less effective
641 learning outcomes (Figure 2). The results further revealed that as neural excitability increased,
642  the learning rate of the pDNNss decreased in a monotonic fashion. This trend was not just a delay
643  in the learning curve but also a qualitative alteration in the learning dynamics of the pDNNs

644  associated with poor performance.

645  Next, we fine-tuned pDNNs to match the behavioral performance of individual children by

646  adjusting neural excitability values. The behavioral scores of matched pDNNs closely mirrored
647  the empirical behavioral patterns observed in TD and MLD children, validating the utility of
648  pDNNs in modeling the behavioral nuances of children with MLD and TD in mental arithmetic
649  tasks. The neural excitability (gain value G) in MLD pDNNs was found to be significantly

650  higher than in TD pDNNS. This indicates that neural excitability plays a crucial role in

651  personalizing pDNNSs to represent varying levels of task performance, with MLD pDNN5s

652  associated with higher neural excitability (Figure 3). Thus, neural excitability maybe a

653  significant contributor to suboptimal performance levels observed in children with MLD. These
654  results resonate with empirical research on Glutamate/GABA levels indicating excitatory-

655  inhibitory imbalances #!#>->67 and intrinsic fMRI hyperactivity and hyperconnectivity **, as well
656  as task-related hyperactivity and hyperconnectivity in MLD '3,
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657  Together, our computational modeling of pPDNNs and empirical findings reinforce the notion that
658  neural excitability plays a crucial role in learning and may be a key neurophysiological factor
659  underlying MLD. By highlighting the role of neural hyper-excitability, our research advances
660  understanding of the etiology and manifestation of MLD. Furthermore, it points to neural

661  excitability as a promising biomarker for identifying learning challenges, guiding interventions,
662  and monitoring their effectiveness.

663  Neural hyper-excitability leads to less differentiated neural representations in pDNNs, and
664  predicts empirical fMRI findings

665  Next, we examined the impact of neuronal hyper-excitability on distributed neural

666  representations in each layer of the pPDNN model. Neural representational similarity (NRS) was
667  used to quantify the degree of overlap or distinctiveness between neural representations of

668  addition and subtraction problems®?. NRS measures the correlation between patterns of neural
669  activity evoked by different stimuli or task conditions. High NRS indicates that the neural

670  representations are similar or overlapping, while low NRS suggests more distinct or

671  differentiated representations.

672

673  We found that increased neuronal excitability led to less differentiated neural representations in
674  processing numerical operations (Figure 4). Specifically, NRS between addition and subtraction
675  problems (add-sub NRS) was consistently higher across all layers of the pDNN as neural

676  excitability increased. This effect was most pronounced in the IPS layer of the model, a key brain
677  region for numerical cognition. Such diminished differentiation in neural representations in the
678  IPS is significant, as it aligns with empirical findings in children with MLD, who also exhibit
679 less distinct neural representations across numerical operations 2. It is also notable that the

680  differences in NRS between TD and MLD pDNNs were minimal in the perceptual V1 layer, but
681  were significantly amplified at subsequent cognitive stages, with maximum differences in the
682 IPS.

683

684  Furthermore, we examined within-operation NRS across addition problems (add-add NRS) and
685  subtraction problems (sub-sub) and found that it also increased with higher neural excitability
686  across all pDNN layers (Figure 4). This suggests that hyper-excitability not only leads to greater
687  overlap between distinct numerical operations but also blurs the boundaries between

688  representations of problems within the same operation type.

689  Importantly, by tuning the neural excitability of the pDNN to align with individual behavioral
690  variations in children, we could accurately map variations in neural representations to empirical
691  fMRI data. Specifically, we determined whether neural representations in pPDNNs could predict
692  empirical values of neural representations obtained in brain imaging data obtained from the same
693  group of children. Even though the models were fit only on task-distal behavioral achievement
694  levels, we found that the best-fitting pPDNN models showed a reasonably strong level of

695  prediction for the severity of aberrancies in neural representations deficits as observed in task-
696  based fMRI data from children with MLD (Figure 5). This alignment between predicted and
697  observed neural representations underscores the relationship between neural excitability and

698  representational similarity across numerical operations within the pDNN.
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699  Together, our findings demonstrate how tuning neural excitability in pDNNs can effectively
700  model individual differences in math abilities, highlighting the role of neural hyper-excitability
701  in cognitive performance deficits among children with MLD. Additionally, the findings

702  emphasize the potential of pDNNSs to predict high-level neural representations, offering insights
703  into neurobiological dysfunction associated with learning disabilities.

704  Neural excitability reduces the trueness, precision, and granularity of behavioral responses

705  Next, we examined how neural excitability influences the trueness, precision, and granularity of
706  behavioral responses in pPDNNs that simulate the cognitive performance of children with MLD
707  and TD children. Trueness refers to how close, on average, the responses are to the correct

708  answers, and is measured by systematic errors from the true answer. Precision on the other hand
709  refers to how consistent or variable the responses are for a given answer. The granularity is

710  measured in terms of number of different responses that the pDNN is able to provide across the
711  set of problems. We found that higher neural excitability led to higher systematic errors, lower
712 precision (higher variability around the true answer), and lower granularity of responses.

713 (Figure 6B-D). This suggests that neural excitability affects both the accuracy and the

714 consistency of the pDNNs' performance on the mathematical problem-solving tasks, along with
715  the use of a smaller subset of possible responses. The use of a smaller set of unique responses
716  suggests a less developed internal representation of numerical magnitudes. This further supports
717  the idea that higher neural excitability constrains the pDNNs' ability to develop a rich and precise
718  representation of the numerical space. These results were mirrored in our comparison of MLD
719  and TD model pDNNs, with higher errors, lower precision, and a smaller number of unique

720  responses in the MLD group compared to the TD group (Figure 6 E-G).

721  This highlights a plausible neurobiological mechanism for the behavioral deficits observed in
722 children with MLD. The pDNN model provides a framework for understanding how

723  abnormalities in neural excitability can give rise to the cognitive and behavioral impairments

724  associated with MLD. This insight can guide future research on potential interventions that target
725  specific neural mechanisms underlying MLD, such as training paradigms that aim to improve
726  systematic errors, imprecision, and granularity of responses.

727  Neural excitability influences manifold structure

728  Our next objective was to uncover how neural excitability impacts the separability and geometry
729  of object manifolds in pDNNs %%, Stimuli are represented in the brain by the collective

730  population responses of neurons, and an object presented under varying conditions gives rise to a
731  collection of neural population responses called an ‘object manifold’ >*-%°. Manifolds in this

732 context represent low-dimensional subspaces formed by neural responses to stimuli that share
733  common features. To explore the geometric properties of neural responses we leveraged recent
734 advances in manifold analysis, focusing on three key measures: manifold capacity, manifold

735  dimensionality, and inter-manifold center correlation. Recent theoretical progress has connected
736  these measures with classification capacity **°°. By examining alterations in the manifold

737  structure of latent representations across various layers of the pDNN, we aimed to quantify how
738  neural network properties are altered by neural gain and elucidate the impact on pDNN models
739  associated with MLD.
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740  Manifold capacity reflects the ease of separating a collection of manifolds into two categories. A
741  high manifold capacity signifies greater ease in segregating the manifold into two discernible
742  categories. In the present study, categories were represented by the 19 possible solutions ranging
743  from 0 to 18 as described above. As expected, we found that manifold capacity increased with
744 training (Figure SI 4). Crucially, we found consistent decrease in manifold capacity with

745  increased neural excitability, demonstrating that higher neural excitability makes it harder to

746  distinguish between different numerical representations (Figure 7A). Analysis comparing pDNN
747  models in MLD and TD revealed that manifold capacity increased progressively from layers

748  from V1 to IPS, with higher capacity in TD compared to MLD pDNN models (Figure 7D), and
749  lower amplification of the manifold capacity as we move across the stages in the cognitive

750  hierarchy from V1 to IPS in MLD pDNN:Ss. This differentiation underscores the impact of neural
751  excitability on numerical cognition, highlighting a critical barrier in MLD that hampers the

752 separation of numerical representations into clear, distinguishable categories.

753  Manifold dimensionality denotes the requisite number of effective dimensions to encapsulate the
754  geometric characteristics inherent to the dataset. We observed a significant increase in manifold
755  dimensionality with neural excitability (Figure 7B). This suggests that elevated neural

756  excitability creates a more complex and less easily partitioned representational space,

757  complicating the task of distinguishing between distinct problem solutions. Analysis comparing
758  pDNN models in MLD and TD revealed a progressive decrease in manifold dimensionality from
759  the V1 to IPS layers, with lower dimensionality in TD compared to MLD pDNN models

760  (Figure 7E).

761  Finally, we examine inter-manifold correlation which quantifies the relation between centers of
762  manifolds across the 19 possible solutions. High correlations would indicate that the centers of
763  the manifolds are aligned, while low correlations indicate that each center is maximally spread
764  across multiple dimensions. Inter-manifold correlations in the IPS, but not earlier layers,

765  increased with neural excitability (Figure 7C), suggesting that higher excitability leads to

766  impairments in how the manifolds are organized in the neural space at a higher cognitive (IPS)
767  but not lower perceptual (Figure 7F) level. Interestingly, inter-manifold correlation, rather than
768  manifold capacity or dimensionality, was the most predictive of pPDNN performance on both
769  addition and subtraction problems. Analysis comparing pDNN models in MLD and TD revealed
770  astriking difference in the pattern of inter-manifold correlation across layers. In TD pDNN:Ss,
771  inter-manifold correlation decreased progressively from lower (V1) to higher (IPS) layers,

772  suggesting a gradual decorrelation of problem set representations along the processing hierarchy
773  (Figure 7F). This aligns with previous reports of reduced correlation between neural

774  representations in higher processing stages of deep neural networks, which is thought to support
775  more efficient and robust information processing *°. In contrast, MLD pDNNs showed a

776  progressive increase in inter-manifold correlation from lower to higher layers, with a higher

777  correlation in the IPS layer compared to TD pDNNs (Figure 7F). This suggests that the neural
778  representations of different problem sets are sub-optimally separated in the higher processing
779  stages of MLD pDNNs, which may contribute to the deficits in numerical problem-solving

780  observed in this group.

781  These results demonstrate that the manifold structure of latent representations changes across
782  various layers of the pDNN, with the IPS showing highest manifold capacity, and lowest

19


https://doi.org/10.1101/2024.04.29.591409
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.29.591409; this version posted May 2, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

783  manifold dimension and inter-manifold correlation. Each of these geometric properties was

784  distorted in pDNN models associated with MLD. The findings provide a more comprehensive
785  model of how neural excitability influences not just overall learning performance, but also the
786  internal geometric structure of neural representations. These impediments highlight manifold
787  structure as a potential neural marker for distinguishing between typical and atypical numerical
788  processing pathways and provide clues towards the design of training and interventions that

789  could target specific aspects of neural representations, such as inter-manifold center correlations.
790  Digital twin platforms could provide an experimental setup to test how different training

791  paradigms affect different aspects of manifold geometry.

792  Mitigating behavioral deficits in MLD through extended learning

793  Next, we examined whether extended learning could mitigate behavioral deficits in MLD.

794  Remarkably, we found that with sufficient training MLD pDNNs can reach the same proficiency
795  levels in mathematical tasks as pPDNNs tuned to performance levels tuned to TD controls

796  (Figure 8C-E). This implies that children with MLD may require more time and training to

797  achieve the same level of proficiency as TD children. The amount of additional training needed
798  was directly proportional to individual levels of hyper-excitability (Figure 8A). We observed
799  that on an average, MLD pDNNs required about 2 times the training required by TD pDNNSs to
800  reach the same average levels of behavioral performance (Figure 8B). While this is a

801  significantly higher level of time and effort, the positive finding is that while neural hyper-

802  excitability significantly slows down learning, it may not be an unsurmountable impediment to
803  learning. Such a delay in learning progression, characterized by a decrease in the learning rate in
804  proportion to increased neural excitability, aligns with empirical evidence suggesting that with
805  targeted and sustained training, children with MLD can progressively improve arithmetic task
806  performance . This finding suggests potential pathways for intervention that could help

807  children with MLD achieve their full learning potential. Future studies employing rigorous

808  cognitive training methodologies are needed to validate the potential of such interventions. These
809  studies should aim to explore the optimal intensity, duration, and type of cognitive training that
810  would be most beneficial for children with MLD.

811  Persistent MLD deficits in latent neural representations and manifold structure

812  Our investigation next focused on whether additional training, which normalized behavioral
813  performance in MLD pDNNs to match that of TD pDNNSs, also normalized latent neural

814  representations as assessed by neural representational similarity and object manifold properties.
815  Despite a 2-fold increase in training for MLD pDNNSs, we observed that improvements in

816  behavioral performance did not correspond to equivalent changes in all aspects of neural

817  representations and manifold structures.

818  While manifold geometrical properties, such as manifold capacity, manifold dimensionality and
819  center correlations of the manifold structures significantly, changed for the MLD pDNNs with
820  additional training (Figure 8L), aligning with the levels shown by the best-matched TD pDNNs,
821  other deficits persisted. Specifically, although neural representational similarity decreased with
822  additional training, MLD pDNNSs continued to exhibit higher neural representational similarity
823  compared to TD pDNNs (Figure 8G-I). This suggests that certain latent neural representations
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824  remain resistant to change even after extensive training. This selective influence on latent neural
825  representations highlights specific mechanisms that could be targeted for remedial cognitive
826  interventions, although the precise approaches require further investigation.

827  Implications for educational neuroscience

828  Our findings have implications for educational neuroscience. The ability to create digital twins
829  that model individual learning processes and neural patterns opens new avenues for personalized
830  education strategies. These strategies could be specifically tailored to address the unique

831  cognitive needs and challenges of each child, particularly those with MLD. The insights gained
832  from our pDNN models suggest the potential for developing more effective intervention

833  strategies for children with MLD. Specific Al based strategies can be used to discover the most
834  effective training paradigms — for instance, evaluating training paradigms that are the most

835  effective in reducing aberrant neural representations and manifold structure could lead to

836  identifying the most effective training mechanisms for addressing learning disabilities.

837  The fact that neural representations and object manifold structure between problem types were
838  not fully remediated for MLD pDNNS, despite behavioral accuracy normalization, suggests that
839  high neural excitability may present persistent latent neural representations. These

840  representations could impose learning constraints on more complex problem sets or necessitate a
841  significantly higher level of training than explored in this study for mitigation.

842  Our findings also highlight the persistence of certain neural representational deficits even after
843  behavioral performance has been normalized through additional training. This suggests that

844  while we can improve behavioral outcomes, underlying neural representations may require more
845  targeted and possibly intensive interventions. The selective influence of additional training on
846 latent neural representations, such as the decorrelation of problem set representations, reveals
847  specific neurobiological mechanisms that could form potential targets for cognitive

848 interventions. However, the exact nature and implementation of these interventions remain to be
849  explored in future research.

850  Limitations and future directions

851  While our pDNN approach has provided a novel perspective for investigating the

852  neurobiological underpinnings of mathematical difficulties, it focuses primarily on E/I imbalance
853  as a theoretical mechanism, and proves its sufficiency, but not necessity, for characterizing

854  individual differences in learning profiles. Future research should consider other plausible

855  mechanisms that may contribute to learning disabilities. Our approach demonstrates how

856  alternate hypotheses can be systematically evaluated against empirical data using DNN models.
857  While our study presents a significant step forward, it is important to acknowledge the

858  limitations of modeling complex human cognitive processes such as mental arithmetic using
859  DNNs. The scope of our study was confined to an area of mathematical learning, and the

860  applicability of our findings to other cognitive domains remains to be explored. Future research
861  should explore the applicability of pPDNNs to other cognitive tasks and learning disabilities.
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862  Given the significant role of neural excitability and hyper-excitability in learning processes,

863  particularly in the context of MLD, an important implication of our research is the potential for
864  brain stimulation techniques designed to suppress neural hyper-excitability as a therapeutic

865  intervention for MLD. Such interventions could target the excitatory-inhibitory balance in key
866  brain hubs, aiming to normalize neural excitability levels and thereby improve learning outcomes
867  for children with MLD. This approach aligns with the broader goal of developing personalized
868  education and intervention strategies based on individual neurobiological profiles.

869  Conclusion

870  Our study represents a significant advance in the integration of cognitive neuroscience and

871 artificial intelligence to unravel the complex neurobiological mechanisms underlying MLD in
872  children. By developing and employing pDNNs as digital twins, we have elucidated the intricate
873 interplay between neural excitability, learning dynamics, and individual neurophysiological
874  patterns that contribute to the diverse cognitive abilities observed in children. Our pDNN

875  models, informed by cognitive neuroscience and tailored to individual learning profiles, also
876  mirror the learning patterns and neural activity observed in children, thereby validating their
877  utility in cognitive neuroscience. The application of pPDNNs to model individual learning

878  processes and neural patterns in children with MLD demonstrates the potential of these models
879  in cognitive neuroscience and opens new avenues for the development of targeted educational
880 interventions.

881
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882  Methods

883

884  A. Human study protocol and Design

885

886  We developed a pDNN to model arithmetic problem-solving tasks performed by children with
887  mathematical learning disabilities (MLD) and typically developing (TD) children during fMRI

888  scanning 82134,
889

890  Participants
891

892  Behavioral and neuroimaging data were acquired from 45 children in their 2nd or 3rd grade of
893  schooling (ages 7 to 9). Numerical problem-solving skills of children were assessed using the
894  Numerical Operations (NumOps) subtest of the Wechsler Individual Achievement Test 2"

895  Edition %°. 21 children scoring below 90 (i.e. the 25th percentile) on the NumOps were classified
896  in the MLD group, while the remaining 24 children formed the TD group. The two groups did
897  not differ on age, full-scale 1Q, and reading abilities. All participants had Full-scale IQ scores >
898 80 (range: 84-128), as assessed by the Wechsler Abbreviated Scale of Intelligence (WASI).

899

900  Behavioral task

901

902  Children were shown equations involving additional or subtraction operations that were a sum or
903 adifference of two small numbers, e.g. “10 + 2 = 13” or “10 — 2 = 8. They were asked to
904  press one of two buttons, the first identifying the equation as correct, e.g. “10 — 2 = 8”, and the
905  second identifying the equation as wrong, e.g. “10 + 2 = 13”. Additional details on the

906  behavioral task conditions are previously published 82134,

907

908  Neural recordings

909

910  Each child performed the task during fMRI scanning. Additional details on the fMRI data

911  acquisition, preprocessing, and analysis procedures are previously described '821-34,

912

913  B. pDNN study protocol and Design

914

915  To probe the impact of neural hyperexcitability on mathematical learning and on representations
916  we adapted a math task that has been studied in our lab in children!®2!* to a task that can be
917  solved by an artificial neural network model. We then adapted a biologically inspired artificial
918  neural network model of the visual cortex to solve that task and personalized these biologically
919 inspired networks to match individual differences in the performance of children by varying the
920  neural excitability of the networks. We observed the impact of varying neural excitability on
921  both the behavioral performance and neural representation used to solve that task. Finally, we
922  compared the observed effects of increased neural excitability to the effects observed in children
923  with MLD.

924

925  Step 1: Adaptation of behavioral addition and subtraction tasks and stimuli

926
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927  In the original study, asking for the validity of an equation instead of directly asking for the

928  result of sums or differences was a way to simplify the apparatus used to perform the task while
929  the fMRI signal was being recorded. The pDNN task uses similar addition and subtraction

930  problems, where the model has to produce the right answer. We used the MNIST dataset of

931  handwritten digits % to generate images of human-readable sums and differences of positive
932  integers. We considered only sums and difference which resulted in a value bounded between 0
933  and 18, i.e. 380 unique problems (190 unique addition and 190 unique subtraction problems). For
934  each problem we generated 100 variants, half were used for training and the other half for

935  testing. In total we used 19000 problems for training and 19000 problems for testing. Since

936  operation symbols are not present in MNIST, we generated synthetic operation symbols “+” and
937  “=” by using the character "1" as a vertical stroke and rotated this character to obtain a horizontal
938  stroke. We represented each problem as T, U, ST,U,, where T; and U; (resp. T, and U,) represent
939  respectively the tenth and unit digit of the first (resp. second) operand, and S represents the

940  symbol of the operation (+ or —). For single digit operands we consider the tenth digit to be an
941  empty space (an image filled with black). To generate each variant, we randomly selected a

942  visual representation for each character (i.e. a 3x28x28 tensor filled with 0 for an empty space)
943  and concatenated them into a 3x28x140 tensor (See Figure SI 6).

944

945  Step 2: Using pDNNs to solve addition and subtraction problems

946

947  The pDNNs model the dorsal visual pathway involved in numerical cognition. The architecture
948  of pDNN is adapted from CORnet-S, a model of the visual pathway. Our adapted pDNN is

949  composed of four layers V1, V2, V3 and IPS, corresponding to key brain regions forming the
950  dorsal visual processing stream, and participating in the processing of numerical information. All
951  representational analysis of pPDNN were focused on the last time step of each layer (see SI for
952 details of the architecture). For the sake of simplicity and in order to reduce any initial bias, the
953  pDNN was not pretrained on ImageNet or any other stimuli set, that is, only the architecture

954  from CORnet-S was used, and not its weights after training on ImageNet. Moreover, three

955  additional structural modifications were introduced to the network adapted from CORnet-S.

956  First, the output layer was made 19-dimensional, corresponding to the 19 possible answers

957  between 0 and 18. Second, in order to control the excitability of neurons, the parameters

958  governing batch normalization were fixed across training iterations. In pDNN, the batch

959  normalizations enforce the input to the non-linearity, (i.e. the input to the neurons) to have a

960  mean of 0 and a variance of 1 across training iterations. Third, we modified the non-linearity to
961  account for differences in neural excitability of neurons (see Step 3 for details).

962

963  We trained pDNNSs to solve visually presented addition and subtraction (see Figure 1A) for

964  different levels of excitability using cross entropy loss as the error function, and the Adam

965  optimizer ® with a learning rate of 7 = 0.001. We tested the pPDNNSs after every 100 batches of
966 100 problems, i.e. after learning from 10000 examples of addition or subtraction.

967

968  Step 3: Varying neural excitability in pDNN

969

970  In pDNN, the response of a neuron is simplified as follows:
971

972 y = G X max(0, x)
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973
974  where y represents the output firing rate of a neuron, x represents the overall input that the
975  neuron receives from other neurons (enforced to be of mean 0 and standard deviation 1 by batch
976  normalization), G represents the gain of the neuron that scales the intensity of the response (see
977  Figure 1C). We consider the gains G varying from 1 to 5 in steps of 0.25 (Figure 1B), i.e., G =
978 14 0.25 X k for k € [0,16]. In the paper, excitability level refers to the gain G.
979
980  Step 4: Behavioral matching
981
982  To compare any single pDNN and child at the behavioral level, we calculate a behavioral
983  distance between the normalized accuracy of the pDNN model and the normalized NumOps
984  score for the child. These measures are normalized by setting the maximum and minimum
985  accuracy measured over all gains and iterations to 1 and O respectively for the pPDNNs, and by
986  setting the maximum and minimum NumOps scores to 1 and 0 respectively for the children. We
987  then use a Manhattan distance (L1 norm) to define the distance between the normalized NumOps
988  score and the normalized pDNNs scores. This is used to find the best matching excitability level
989  of pDNN for each child at each training iteration.
990
991  Step 5: Identifying the best matching training iteration
992
993  We select the best matching iteration as the iteration where the average behavioral distance
994  scores across children and their best-fit models is the smallest. This distance was minimal for
995  iteration 800.
996
997  Step 6: Behavioral and neural analysis of pDNN
998
999  We focused pDNN behavioral analysis on (1) its accuracy on the addition and subtraction
1000  problems, and on (2) the trueness, the precision, and the entropy of its response to the problems.
1001  Inspired by previous studies (e.g. investigating the differences between TD and MLD children)
1002 we examined how neural gain G was affecting (1) the neural representation similarity (NRS)
1003 between addition and subtraction problems within each region of pDNN, and (2) the geometric
1004  properties of the 19 manifolds specific to each pDNN response to the problems.
1005
1006  Numerical systematic error and imprecision
1007
1008  As standardized in ®!, we defined numerical systematic error and numerical imprecision
1009  (represented in Figure 1E). Numerical systematic error was computed as the average absolute
1010  value of differences between actual and expected values of responses, measured at, and averaged
1011  across each level of expected response. Similarly, numerical imprecision was computed as the
1012  average standard deviation of the actual responses measured at and averaged across each level of
1013 expected response.
1014
1015  Entropy and estimation of the number of different responses
1016
1017  We estimated the effective number of different responses used by using the distribution of the
1018  provided answer (Figure 6A). While this distribution would provide us with the counts of
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1019  responses with non-zero probability, some responses may be used very infrequently and affect
1020  this measure significantly. To overcome this limitation, we calculated the entropy of the

1021  response. More precisely, as the entropy of a uniform discrete random variable with n possible
1022 outcomes is In(n), we used the exponential of the entropy of the response as a proxy to measure
1023 the effective number of different responses utilized by each pDNN.

1024

1025  Neural representational similarity (NRS)

1026

1027  We computed the mean response of each neuron for each region individually while receiving
1028  each of the distinct 380 operations. Then, we computed the correlation (across neurons) between
1029  each of these mean responses, obtaining a 380x380 similarity matrix M (shown in Figure 4B)
1030  for each region. For practical visualization purposes we sort the rows and columns of M so that
1031 (1) addition problems come before subtraction problems, (2) among similar type of problems,
1032 operations with smaller results come first, and (3) among similar type of problems with the same
1033 result, operations with smaller first operands come first. To compute the NRS between addition
1034  and subtraction problems (referred to as add-sub similarity) within a region, we average the
1035  similarity between each pair of addition and subtraction problems. To compute the NRS between
1036  addition problems (referred to as add-add similarity), we average the similarity between each
1037  pair of two addition problems. To compute the NRS between subtraction problems (referred to as
1038  sub-sub similarity), we average the similarity between each pair of two subtraction problems.
1039

1040  Geometrical properties of result-manifolds

1041

1042  Recent theoretical advances®®>° have defined geometrical metrics that are helpful to understand
1043 separable manifolds in neural representations. They quantify the separability of different

1044  manifolds using manifold capacity, which measures how easy it is to distinguish two random
1045  subgroups of the manifolds. They show that this manifold capacity can be computed from

1046  geometrical properties of the manifold, namely the average manifold radius, the average

1047  manifold dimensionality, and the correlation between the center of manifolds. Manifold radius
1048  reflects the size of the manifold, manifold dimensionality reflects the number of effective

1049  dimensions within which the manifold evolves, and correlation between center of manifold

1050  reflects the alignment of manifolds. We compute the manifold capacity, the manifold

1051  dimensionality, and the correlation between manifold centers for each layer in pDNN separately
1052 by using: https://github.com/schung039/neural_manifolds_replicaMFT.

1053

1054  Step 7: Comparing effect of hyperexcitability in pDNN vs effect of MLD in children

1055

1056  To compare children and pDNN at the neural level we compared their representational similarity.
1057  We focused on representational similarity between addition and subtraction. In prior empirical
1058  work 2! the correlation coefficients were normalized using the Fisher z-transform before

1059  performing group level analysis. Here, to compare pDNN correlation coefficients with the

1060  correlation coefficients obtained from fMRI data, we applied the inverse of the z-transform (i.e.
1061  the tangent hyperbolic function) on the representational similarity from fMRI data reported in 2!
1062
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1267  Figure 1. Design and analysis of personalized deep neural networks (pDNNs) for modeling
1268  numerical cognition and learning disabilities. A. Schematic depicting a biologically inspired
1269  deep neural network (DNN) model mimicking the dorsal visual pathway involved in numerical
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1270  cognition. The model is trained to solve visually presented addition and subtraction problems. B.
1271  Schematic illustrating the modulation of neural excitability in the model, based on brain imaging
1272 studies suggesting a link between excitation/inhibition (E/I) balance and learning capabilities.
1273 Neural excitability is measured as the gain G. C. Creating digital twins — personalized DNNs
1274  (pDNNs) that match individual children's performance levels (assessed by NumOps) — by

1275  adapting neural excitability. Based on previous brain imaging studies, we hypothesize that neural
1276  hyper-excitability (i.e., higher G) is a plausible mechanism underlying mathematical learning
1277  disabilities (MLD) compared to typically developing (TD) children. D. Validation of pDNNs by
1278  verifying whether they exhibit the same representational deficits observed in brain imaging

1279  studies, namely lower neural differentiation of numerical problems measured with Neural

1280  Representational Similarity (NRS). E. Schematic depicting further analyses of how multiple
1281  behavioral and representational aspects of the model evolve during training and with varying
1282  levels of neural excitability. F. Investigation of the influence of additional training on pDNNs5 in
1283  the MLD group and the associated changes in latent neural representations. This analysis aims to
1284  uncover the potential for remediation and the neural mechanisms underlying the improvements
1285  in numerical cognition following targeted training.

1286
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1287
1288  Figure 2. Neural hyper-excitability reduces learning speed and accuracy in DNNs. A.

1289  Learning trajectories of DNN models with different levels of neural excitability, measured as
1290  neural gain G. Neural gain G is represented by color, varying from blue (G = 1) to yellow (G =
1291  5). As neural excitability increases, the progression in accuracy across learning iterations slows
1292 down, indicating a slower learning rate. B. Number of iterations required to reach an accuracy of
1293 95% for different values of neural gain G. The number of iterations needed to reach the 95%
1294  accuracy benchmark consistently increases with neural excitability (» = 0.94, p < le-7),

1295  demonstrating that heightened excitability impairs learning efficiency. C. Changes in DNN test
1296  accuracy with neural gain G for different iterations, represented by color ranging from blue
1297  (iteration 0) to yellow (iteration 3800). Higher neural gain values are associated with lower test
1298  accuracies across all iterations, suggesting that hyper-excitability hinders the model's ability to
1299  generalize to new problem sets. D. Correlation between DNN test accuracy and neural gain G
1300  across iterations. The negative correlation between test accuracy and neural gain remains

1301  consistent throughout the training process. This indicates that the detrimental effect of hyper-
1302  excitability on learning and generalization persists across the training trajectory. *** p <0.001.
1303
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1304
1305  Figure 3. Personalized deep neural networks (pDNNs) tuned for neural excitability capture

1306  individual differences in children's math performance and serve as in silico digital twins. A.
1307 A distance metric between pPDNN model accuracy and children's normalized math scores across
1308  training iterations was used to identify the best matching point (iteration 800, dotted black line).
1309  The red and blue lines represent the average distance for pDNNs tuned to match children with
1310  mathematical learning disabilities (MLD) and typically developing (TD) children, respectively.
1311  Gray lines show the average distance for pDNNs with randomly assigned neural excitability
1312 levels, serving as a control. Shaded areas denote the range between the 5th and 95th percentiles
1313  across children in each group. B. Distribution of the distance metric at iteration 800 for MLD
1314  (red) and TD (blue) groups, compared to the random control (gray). The distance metric for both
1315  MLD and TD groups is significantly lower than the controls (MLD: p < le-38; TD: p < le-46),
1316  indicating a strong match between pDNNs and children's behavioral performance. C.

1317  Distribution of the best-matched neural excitability levels (gain G) at iteration 800 for MLD and
1318  TD groups. The neural excitability levels are significantly higher for pPDNNs matched to MLD
1319  children compared to those matched to TD children, suggesting that higher neural excitability is
1320  associated with math learning difficulties. D. Comparison of behavioral performance

1321  distributions between pDNNs and children at iteration 800. The normalized behavioral scores of
1322 MLD children and their matched pDNNs do not differ significantly, and the same holds for TD
1323 children and their matched pDNNs. Both MLD children and their matched pDNNs show

1324  significantly lower behavioral scores compared to TD children and their matched pDNNss,

1325  respectively (children: p < le-11; pDNNs: p < le-10). These results demonstrate that pDNN5s
1326  tuned for neural excitability accurately capture the individual differences in math performance
1327  observed in children. *** p <0.001.
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Figure 4. Hyper-excitability diminishes differentiation of neural representations across
pDNN layers. A. Observed pDNN NRS matrix across model layers (V1—IPS) for a low level of
neural excitability (G = 2.25). B. Observed pDNN NRS matrix across model layers (V1—IPS)
for a high level of neural excitability (G = 4). C-D. Relationship between pDNN NRS and neural
gain G for NRS between addition and subtraction problems, with linear regression lines (red)
showing the strength and direction of the correlation. Summary showing the evolution of NRS
measures across model layers (V1—IPS) for different levels of neural gain G, depicted as a color
gradient from blue (G = 1) to yellow (G = 5). NRS between addition and subtraction problems
(add-sub NRS) increases with neural gain across all layers, indicating reduced differentiation
between problem types. E-F. NRS between addition problems (add-add NRS) increases with
neural gain across all layers, suggesting reduced differentiation within problem types. G-H. NRS
between subtraction problems (sub-sub NRS) also increases with neural gain across all layers,
further confirming reduced differentiation within problem types. *** p < 0.001.
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1344
1345  Figure 5. Digital twins predict children's neural differentiation deficits and validate the

1346  excitability-based mechanism underlying math learning disabilities (MLD). A. Comparison
1347  of NRS between addition and subtraction problems (add-sub NRS) across pDNN layers (V1 to
1348  IPS) for models matched to children with MLD (red) and typically developing (TD) children
1349  (blue). MLD pDNNSs show significantly higher add-sub NRS compared to TD pDNNs across all
1350 layers, indicating reduced neural differentiation between problem types. The effect size of the
1351  difference in add-sub NRS between MLD and TD pDNNSs increases along the network hierarchy,
1352 suggesting a more pronounced deficit in higher-order processing regions. B. Correlation between
1353  children's empirically observed add-sub NRS in the intraparietal sulcus (IPS), based on brain
1354  imaging data, and the predicted add-sub NRS from their corresponding digital twin (behaviorally
1355  matched pDNNs). The significant positive correlation (p < /e-5) demonstrates that pDNNs

1356  capture the individual variability in neural differentiation deficits observed in children. C.

1357  Comparison of the correlation between predicted and observed add-sub NRS for behaviorally
1358  matched pDNNs (blue) and randomly matched pDNNs (gray). The correlation for behaviorally
1359  matched pDNNS is significantly higher than that of randomly matched pDNNSs, validating the
1360  importance of aligning neural excitability levels to individual behavioral profiles for predicting
1361  neural deficits. These results support the neural validity of the pDNN models as digital twins and
1362 highlight the critical role of neural excitability in shaping the neural representational deficits
1363  observed in children with MLD. *** p <(.001.
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Figure 6. Neural hyper-excitability impairs precision of response and increases systematic
error in pDNN models. A. Increasing neural gain (excitability) yields more diffuse pDNN
response distributions across possible solutions, indicating declining precision. B. Numerical
systematic error increases with excitability. C. Numerical imprecision, measured by standard
deviation of responses, increases with excitability. D. The effective number of unique responses
used by pDNNSs, estimated using the entropy of the response distribution, decreases with
increasing excitability. This suggests that higher excitability leads to a less diverse set of
responses, potentially indicating a less precise internal representation of the numerical solution
space. E. Comparing the behaviorally matched digital twins for TD and MLD, the numerical
systematic error is significantly higher (p < /e-14) for MLD pDNNs compared to TD pDNNs. F.
Numerical imprecision is significantly higher (p < /e-9) for MLD pDNNs compared to TD
pDNN:Ss, aligning with empirical behavioral deficits observed in children with MLD. G. The
MLD pDNN uses significantly fewer unique responses compared to the TD pDNN (p < /e-10),
further supporting the notion that hyper-excitability in MLD is associated with a less precise and
less diverse internal representation of numerical quantities. These results highlight the impact of
neural excitability on the precision and variability of behavioral responses in pDNNs. * p <0.05,
*xE p <0.001.
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1386
1387  Figure 7. Neural hyper-excitability degrades manifold geometry of latent representations in

1388  the pDNNs. A-C. Three key manifold properties in the IPS layer of pDNNs change with neural
1389  gain levels. A. Manifold capacity, reflecting the separability of neural representations, shows a
1390  decrease with higher excitation, indicating that hyper-excitability makes it more difficult to

1391  distinguish between different numerical manifolds. B. Manifold dimensionality, indicating the
1392 complexity of the representational space, increases with greater neural gain, suggesting that

1393 hyper-excitability leads to more complex and less efficiently organized representations. C.

1394  Correlations between manifold centers, relating to the alignment of representations, increase with
1395  neural gain, implying that hyper-excitability causes the centers of different numerical manifolds
1396  to become more aligned, potentially leading to increased interference between representations.
1397  D-F. At the best-fit iteration, MLD pDNNSs (red) exhibit properties consistent with hyper-

1398  excitation compared to TD pDNNs (blue). D. Manifold capacity is significantly reduced in MLD
1399  pDNNS, indicating less separable and more overlapping representations. E. Manifold

1400  dimensionality is significantly higher in MLD pDNNSs, suggesting more complex and less

1401  efficient representational spaces. F. Correlations between manifold centers are significantly
1402 higher in MLD pDNNSs, implying suboptimal representations. These results demonstrate that
1403 neural hyper-excitability, as observed in MLD, leads to degraded manifold geometry of latent
1404  representations in pDNNs. *** p <0.001.
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1406

1407  Figure 8. Additional training enables MLD digital twins to remediate behavioral but not all
1408  neural representational deficits. A. The number of additional training iterations required for
1409  MLD pDNN:S to catch up to the accuracy level that TD pDNNs demonstrate at iteration 600
1410  increases consistently with higher neural gain. B. MLD pDNNs require on average 2.7x the
1411  training to reach the same performance level as TD pDNNs. C-L. Comparison of MLD pDNN
1412 properties pre-training (iteration 800, best behavioral fit) versus post-additional training

1413 (iteration 1700, performance caught up to TD levels). C-F. Properties of behavioral responses.
1414 G-I Similarity between neural representation (NRS). J-L. Manifolds geometrical properties. C.
1415  Deficits in accuracy, D. numerical systematic error, E. numerical imprecision, and F. effective
1416  number of unique responses are remediated by additional training. However, deficits in NRS
1417  persist G. across operations (add-sub NRS), H. across addition trials (add-add NRS) and I.
1418  across subtraction trials (sub-sub NRS). Deficits in J. manifold capacity, K. manifold

1419  dimensionality, and L. manifold center correlations normalize with additional training. These
1420  results suggest that while behavioral deficits can be remediated through additional training,
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1421  neural representational deficits persists in MLD pDNNSs, but aberrant geometry of the underlying
1422 manifolds normalize. * p < 0.05. *** p <0.001.
1423
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