
 

 1 

Digital twins for understanding mechanisms of learning disabilities: 1 
Personalized deep neural networks reveal impact of neuronal 2 

hyperexcitability 3 
 4 

Anthony Strock1, Percy K. Mistry1, and Vinod Menon1,2,3 5 
 6 
 7 

Department of Psychiatry & Behavioral Sciences1 8 
Department of Neurology & Neurological Sciences2 9 

Wu Tsai Neurosciences Institute3 10 
Stanford University School of Medicine 11 

Stanford, CA 94305 12 
 13 
 14 
 15 
Address for correspondence:  16 
 17 
Anthony Strock (astrock@stanford.edu) and Vinod Menon (menon@stanford.edu)   18 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.04.29.591409doi: bioRxiv preprint 

mailto:astrock@stanford.edu
mailto:menon@stanford.edu
https://doi.org/10.1101/2024.04.29.591409
http://creativecommons.org/licenses/by/4.0/


 

 2 

Abstract 19 
 20 
Learning disabilities affect a significant proportion of children worldwide, with far-reaching 21 
consequences for their academic, professional, and personal lives. Here we develop digital twins 22 
– biologically plausible personalized Deep Neural Networks (pDNNs) – to investigate the 23 
neurophysiological mechanisms underlying learning disabilities in children. Our pDNN 24 
reproduces behavioral and neural activity patterns observed in affected children, including lower 25 
performance accuracy, slower learning rates, neural hyper-excitability, and reduced neural 26 
differentiation of numerical problems. Crucially, pDNN models reveal aberrancies in the 27 
geometry of manifold structure, providing a comprehensive view of how neural excitability 28 
influences both learning performance and the internal structure of neural representations. Our 29 
findings not only advance knowledge of the neurophysiological underpinnings of learning 30 
differences but also open avenues for targeted, personalized strategies designed to bridge 31 
cognitive gaps in affected children. This work reveals the power of digital twins integrating AI 32 
and neuroscience to uncover mechanisms underlying neurodevelopmental disorders.  33 
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The early years of childhood are pivotal for the development of foundational academic and 34 
cognitive skills, a process marked by significant individual variability among children 1-3. 35 
Among the essential skills, mathematical proficiency stands out as a particularly challenging area 36 
for a subset of children 4,5. Mathematical Learning Disabilities (MLD), which affects about 5 to 37 
20 percent of the global population, manifests as diminished problem-solving abilities when 38 
benchmarked against peers with similar age and intelligence 5-7. The repercussions of MLD 39 
extend beyond academic challenges, impacting long-term socioeconomic status, including 40 
employment prospects and health outcomes 8-10. Despite extensive research over the past two 41 
decades, the neurobiological underpinnings of MLD remain elusive. Harnessing artificial 42 
intelligence (AI) models that capture individual variability and can serve as digital twins11-13 – 43 
capturing critical components of a biophysical system while allowing for in 44 
silico experimentation – offers new promise. Here we introduce a novel approach by developing 45 
a biologically plausible 14,15 personalized deep neural network (pDNN). These personalized 46 
networks are tailored to mirror individual behavioral patterns and evaluated against 47 
neuroimaging data obtained from the same individuals, thus serving as digital twins on which 48 
further experimentation and analysis of neuronal mechanisms can be performed, which would be 49 
difficult to achieve non-invasively in children. Our goal is to uncover the hidden neural 50 
mechanisms and representations that underpin individual differences in mathematical cognition, 51 
offering new insights into the complex interplay between brain function and MLD. 52 
 53 
MLD is marked by significant challenges in arithmetic problem-solving, a foundation for 54 
developing advanced mathematical concepts 16,17. Children with MLD often struggle with basic 55 
arithmetic operations, such as addition and subtraction 5,18. These difficulties are not just limited 56 
to slower processing speeds but encompass lower accuracy and use of less efficient problem-57 
solving strategies 19-21. Although various cognitive factors have been implicated 5, a unifying, 58 
biologically plausible model for MLD has, however, been elusive. Neuroimaging has played a 59 
crucial role in uncovering the brain basis of MLD 6,17,22-26, with significant dysfunctions 60 
identified in regions critical for numerical cognition, such as the intraparietal sulcus (IPS) 27,28. 61 
Moreover, abnormalities extend to a broader network involved in visual and visuospatial 62 
processing, suggesting MLD as a multifaceted neural dysfunction 23,24,29-32. However, our 63 
understanding of the underlying neural mechanisms, which are vital for overcoming the 64 
challenges posed by MLD, remains limited. 65 
 66 
Recent results have identified reduced behavioral and neural differentiation between distinct 67 
numerical operations in children with MLD 21. This suggests less efficient neural processing, 68 
characterized by over engagement of brain circuits beyond levels typically needed for task 69 
performance. Research has also shown that such impairments often extend into adulthood in 70 
individuals with dyscalculia, highlighting the persistent nature and long-term effects of MLD33.  71 
 72 
Aligned with inferences about less efficient neural processing, recent studies have identified 73 
hyperactive brain patterns and hyperconnectivity 18,34 in key cognitive regions among children 74 
with MLD, suggesting an over-synchronization of neural networks essential for numerical 75 
cognition. Examination of the amplitude of intrinsic low-frequency fluctuations, a proxy measure 76 
for regional neural activity, has extended our understanding of dysfunctional neural circuits 77 
associated with poor math abilities 34. It has been discovered that children with MLD exhibit 78 
greater signal fluctuation across multiple brain regions, a finding indicative of neural hyper-79 
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excitability 34. This result has been further substantiated by reports that parietal and hippocampal 80 
hyperconnectivity is associated with low math achievement in adolescence 35. Additionally, 81 
hyperactivity is associated with greater intrinsic functional connectivity between multiple 82 
cortical regions. Aligned with this pattern of hyperactivity, magnetic resonance spectroscopy 83 
investigations have pointed to differential Glutamate and GABA concentration, indicative of 84 
excitation/inhibition (E/I) imbalances, in children with poor math abilities 36,37, in expert math 85 
calculation (reduced frontal E/I balance) 38. GABA and glutamate in the IPS have also been 86 
shown to explain individual variability in mathematical achievement levels39, and in test anxiety 87 
levels in early childhood 40. Individuals lacking in mathematical education have also been shown 88 
to demonstrate lower inhibition in brain regions relevant to reasoning and learning36. Recent 89 
studies which attempt to rectify E/I imbalance by using neurostimulation have shown that E/I 90 
balance modulates the amount of benefit that can be obtained from neurostimulation 41-43, and 91 
can be a marker for neurostimulation based efficacy and learning41. Despite these advances, the 92 
neurophysiological mechanisms underlying MLD, the sufficiency of establishing E/I imbalances 93 
as contributing factors towards MLD, and the mechanisms via which such imbalances may cause 94 
learning difficulties, remain speculative, primarily due to the correlative nature of brain imaging 95 
studies. 96 

Digital twins, operationalized here via pDNN models, provide a novel lens for addressing crucial 97 
knowledge gaps in the neurophysiology of mathematical cognition and learning disabilities. 98 
DNNs have demonstrated significant success in modeling a variety of cognitive functions 99 
including number sense 14,44,45, word reading 46, object recognition 47,48, and sentence processing 100 
49, yet their application in understanding learning disabilities has been scant, primarily due to 101 
lack of theoretically motivated approaches for introducing individual differences in DNN 102 
behavior. Motivated by the potential role of E/I imbalances in contributing towards learning 103 
differences, we focus on using neural excitability, as a key theoretical mechanism by which 104 
individual differences can be introduced into DNN models. 105 

This study thus introduces a novel personalized pDNN framework (Figure 1A) aimed at 106 
modelling individual behavioral performance and linking it to functional brain imaging data, to 107 
elucidate the specific neurobiological dysfunctions associated with MLD. Specifically, we aimed 108 
to model behavioral and neural deficits in numerical problem-solving using addition and 109 
subtraction, two fundamental operations crucial for early numerical problem-solving proficiency 110 
5,23,50. Behavioral studies suggest that performance on tasks problems involving addition and 111 
subtraction operations is characterized by significant individual differences in problem-solving 112 
abilities in children, and that children with MLD are impaired on both 5,18,50 51. By leveraging 113 
biologically plausible DNNs 14, and integrating behavioral with neuroimaging data, we explored 114 
individual variability and the neural correlates of arithmetic learning, thereby contributing to a 115 
deeper understanding of the neural underpinnings of core numerical problem-solving skills 116 
essential for early cognitive development.  117 

Our study had five primary objectives. Our first objective was to investigate E/I imbalance, 118 
characterized as neural excitability, as a potential and sufficient neurobiological mechanism 119 
(Figure 1B) contributing to cognitive performance deficits in children with MLD. Neural 120 
excitability and E/I balance is a fundamental aspect of neural processing, playing a crucial role in 121 
shaping neural network dynamics, learning, and cognitive function 52-55. Moreover, as reviewed 122 
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above, task-related hyperactivation and intrinsic hyper-fluctuations observed in children with 123 
MLD suggest that E/I imbalance may be a key underlying neurophysiological mechanism. The 124 
concept of E/I imbalance as a putative neural mechanism underlying learning disabilities is 125 
suggested by both theoretical models and empirical research 41,43,53,55-57. E/I balance is a 126 
fundamental aspect of neural processing, playing a crucial role in shaping neural network 127 
dynamics and cognitive function 52-55. We therefore probed whether neural excitability 128 
mechanisms can induce systemic individual differences in the arithmetic problem-solving 129 
behaviors of biologically inspired DNNs. We hypothesized that varying levels of neural 130 
excitability could capture relatively monotonic changes in learning, behavioral patterns, and 131 
latent neural representations, and show meaningful structure in terms of how neural 132 
representations evolved over the network hierarchy with changing excitability levels. 133 
 134 
Our second objective was to construct pDNNs, where we could tune the neural excitability levels 135 
to match the individualized learning profiles of children performing a similar arithmetic task 136 
(Figure 1C) and capture the influence of such varying neural excitability on individual 137 
variations in behavioral task performance. We demonstrate that by manipulating neural 138 
excitability parameters we can, for the first time, match personalized networks to best represent 139 
the behavioral aspects of individual children, thus creating digital twins for both typically 140 
developing children (TD) and children with MLD. We were thus able to obtain a set of TD 141 
pDNNs and MLD pDNNs and evaluate differences between these sets of networks. 142 
 143 
Our third objective was to use fMRI data from children to assess whether pDNNs that were 144 
behaviorally matched to individual children’s profiles were predictive of individual differences 145 
in neural representations observed in empirical data (Figure 1D). We hypothesized that 146 
behaviorally matched pDNNs would reasonably predict aberrant neural representations in 147 
children with MLD. If successful, this would validate the concept of in silico digital twins, and 148 
insights obtained from pDNNs could be used not just to draw inferences about how neural 149 
excitability affects different aspects of neural representations, but also make individualized 150 
predictions. 151 
 152 
Our fourth objective was to analyze the neural data from the best matched pDNNs to extract 153 
insights about how latent neural representations varied with changing neural excitability 154 
(Figure 1E). Our hypothesis was that pDNNs matched to MLD children would show differences 155 
in such latent neural representations compared to pDNNs matched to TD children, thus 156 
developing the link between differences in E/I imbalances and latent neural representations of 157 
mathematical problem solving. This would reveal aspects of information processing deficits, 158 
how these are distributed across the hierarchical structure representing the dorsal visual stream 159 
and IPS, and how the representational geometry of distributed neural measures such as neural 160 
manifold capacity, structure, and dimensionality, impact learning deficits58,59. 161 
 162 
Our fifth objective was to explore whether additional training can normalize behavioral 163 
performance and neural representation patterns in children with MLD to levels observed in TD 164 
children (Figure 1F). We hypothesized that E/I imbalances characterized by neural excitability 165 
would slow down but not put a hard constraint on learning. We determined how much additional 166 
training would be required for MLD pDNNs to match TD pDNNs levels of performance, and 167 
whether such training was accompanied by changes in latent neural representations like those 168 
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seen in TD pDNNs. This approach aimed to provide insights into the adaptive capacity of the 169 
neural processes in MLD, potentially informing future intervention strategies to address 170 
disabilities linked to E/I imbalances. 171 

Our findings demonstrate the significant potential of digital twins, operationalized via pDNNs, in 172 
uncovering latent neurobiological mechanisms underlying individual differences in children’s 173 
behavior and learning. We show that pDNNs can simulate and assess the impact of neural 174 
excitability on cognitive performance, creating a bridge between AI, computational 175 
neuroscience, and empirical brain imaging studies. Our approach provides a novel framework for 176 
linking neural network models with cognitive neuroscience studies in human participants.  177 

Results  178 
 179 
Figure 1 shows the study design, data used and critical steps of our analysis strategy. We first 180 
developed a pDNN model for numerical problem-solving tasks involving addition and 181 
subtraction operations. Our pDNN models were constructed using a biologically inspired model 182 
of the dorsal visual pathway based on the network architecture and physiological parameters of 183 
CORnet-S 14,15. This neural architecture, comprising cortical layers V1, V2, V3, and intraparietal 184 
sulcus (IPS), has been shown to characterize how neural representations can change with 185 
numerosity training, and how learning can reorganize neuronal tuning properties at both the 186 
single unit and population levels14. Importantly, such models have been able to capture learning 187 
driven changes from logarithmic to cyclic and linear mental number lines that are characteristic 188 
of number sense development in humans14. The models were utilized in their raw form, without 189 
any pre-training (Figure 1A). The training problems were similar to those used in our fMRI 190 
study with children 21, incorporating images of handwritten arithmetic operations with results 191 
spanning natural numbers from 0 to 18, designed to mimic the diversity of handwriting children 192 
might encounter in educational settings (see Methods for details). This approach ensured the 193 
robustness and generalizability of the pDNNs in real-world learning scenarios. 194 
 195 
Our empirical data pool consisted of 45 children, aged 7 to 9, from second and third grades, who 196 
performed numerical problem-solving tasks analogous to those processed by the pDNNs. Out of 197 
the 45 participants, 21 children were identified with MLD based on their NumOps scores on 198 
standardized WIAT-II 60 test subscores. The remaining 24 children were considered TD and 199 
served as the control group. The two groups did not differ on age, full-scale IQ, or reading 200 
abilities (Table SI 1). All children solved addition and subtraction problems during fMRI 201 
scanning. In the addition task, they were presented with an equation (e.g., “3 + 4= 8”), and were 202 
asked to indicate, via a button press, whether the presented answer was correct. 36 addition 203 
problems were presented, with 50% paired with correct answers and 50% with incorrect answers. 204 
A similar procedure was used for subtraction problems. Further details of the study protocol and 205 
design are presented in the Methods section and in previous studies 21. 206 
 207 
Tuning neural excitability produces individual differences within pDNNs  208 
 209 
The basic pDNN models were personalized and individual differences in task performance were 210 
simulated by tuning the neural excitability (neural gain parameter G, Figure 1B). Specifically, 211 
we varied this parameter from 1.0 to 5.0 in steps of 0.25. Each of these 17 models with different 212 
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levels of neural gain was trained on the same set of problems for a fixed number of iterations. At 213 
the outset, all pDNN models operated at chance levels of accuracy (approximately 5%, with 214 
possible answers ranging from 0 to 18), ensuring a uniform starting point. We hypothesized that 215 
heightened neural excitability could potentially impede the learning process, either by 216 
decelerating the rate of learning or by limiting the ultimate proficiency attainable by the pDNN. 217 
In either case, under this hypothesis, any fixed number of iterations within a certain bound would 218 
result in a situation where pDNNs with lower neural excitability would have a higher level of 219 
behavioral accuracy, allowing us to match different neural excitability levels to children with 220 
different mathematical achievement levels.  221 
 222 
To assess the role of neural excitability on the learning efficiency of our pDNNs, we focused on 223 
the number of training iterations required for the models to achieve a 95% accuracy threshold. 224 
This threshold was indicative of mastery in solving the addition and subtraction problems used in 225 
our study. We found that models with the lowest level of neural excitability were able to achieve 226 
this threshold in about 1400 iterations, but after about 3800 training iterations, all models 227 
achieved an accuracy exceeding 95%, suggesting that pDNNs models with a wide range of 228 
neural excitability were able to learn to solve addition and subtraction problems with high 229 
reliability (Figure 2A). These results underscore the potential of pDNNs for simulating 230 
numerical problem-solving and learning in children (Figure 2A).  231 
 232 
However, our findings revealed distinct learning trajectories across pDNNs with varying levels 233 
of neural excitability. As excitability increased, we observed a slower progression in accuracy 234 
across learning iterations. The number of iterations required to reach the 95% accuracy 235 
benchmark increased consistently with neural excitability (𝑟 = 0.94, 𝑝 < 10!",	Figure 2B). 236 
After 200 iterations, the relationship between neural excitability and model performance revealed 237 
a strong inverse correlation ( 𝑟 = −0.96, 𝑝 < 10!#, Figures 2C-D). This negative correlation 238 
remained consistent throughout the training process and only began to diminish when pDNNs 239 
approached peak performance levels (Figures 2C-D). 240 
 241 
These results demonstrate that increased neural excitability in pDNNs does not impede the 242 
models’ ability to eventually achieve high levels of accuracy in arithmetic tasks, but does lead to 243 
a slower learning rate, and that tuning the neural excitability of pDNNs can thus produce 244 
individual differences in behavioral performance at any fixed learning iteration (analogous to a 245 
certain level of training in humans). 246 
 247 
pDNNs tuned based on neural excitability can be behaviorally matched to individual children 248 
– MLD matched pDNNs demonstrate higher neural excitability 249 
 250 
Next, we fine-tuned pDNNs to the specific mathematical achievement level of each child 251 
participant. By adjusting the neural excitability values in the pDNNs, we aimed to closely 252 
approximate the mathematical problem-solving behaviors exhibited by children. Matching was 253 
carried out using ‘behavioral distance’ (see Methods for details), a measure of the degree of 254 
alignment between normalized values of each child's mathematical achievement scores and the 255 
pDNN performance. Since the pDNNs ‘experienced’ a much wider range of arithmetic problems 256 
compared to children in the specific task, the matching was done by comparing normalized 257 
accuracy of the pDNNs across all addition and subtraction problems, with the normalized 258 
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NumOps 60 score of children. This ensured that the comparison was robust and ecologically 259 
valid, and that since the comparison was not based on direct task-proximal measures or specific 260 
problem subsets, the neural predictions would be generalizable. By evaluating every 100th 261 
learning iteration of the pDNNs, we determined the best-fitting neural excitability (gain value G) 262 
for each individual child at each iteration. We then identified the specific learning iteration at 263 
which the best-fitting pDNNs for each child most accurately reflected the behavioral 264 
achievement levels (Methods) of the children (Figure 3A) on an average. This analysis 265 
identified iteration 800 as optimal for capturing the full spectrum of individual differences in the 266 
behavioral performance of mathematical problem-solving seen in child participants.  267 
 268 
Figure 3A shows the 95% CI for behavioral distances between the children and their best 269 
matched pDNNs for the TD and MLD groups across different iterations. Iteration 800 was a 270 
good fit for both the TD and MLD groups, and the difference in behavioral distance (measure of 271 
fit) between groups was not significant (𝑡 = −1.09, 𝑝 = 0.28, Figure 3B). We conducted a 272 
control analysis in which we randomly permuted the children’s behavioral scores across different 273 
neural gains at iteration 800. The resulting behavioral distance for these random permutations 274 
(𝑀 = 0.32, 𝑆𝐷 = 0.24) was significantly higher than pDNN fitted data at this iteration for both 275 
MLD (𝑀 = 0.02, 𝑆𝐷 = 0.02) (𝑡 = 48.07, 𝑝 < 10!$#, Figure 3B) and TD groups (𝑀 =276 
0.03, 𝑆𝐷 = 0.02) (𝑡 = 48.96, 𝑝 < 10!%&,	Figure 3B). This result supports the finding that our 277 
model is well-calibrated to empirical data at iteration 800, thereby establishing it as the focal 278 
point for in-depth analysis in subsequent sections. Going forward, the best fitting excitability 279 
models at iterations 800 for TD and MLD groups respectively are collectively termed TD pDNNs 280 
and MLD pDNNs respectively and represent the digital twins for these groups. Figure 3C shows 281 
that, as we hypothesized, the gain of MLD pDNNs (𝑀 = 3.77, 𝑆𝐷 = 0.60) is higher than the 282 
gain of TD pDNNs (𝑀 = 2.05, 𝑆𝐷 = 0.52) (𝑡 = 9.96, 𝑝 < 10!'', Figure 3C). 283 

These findings demonstrate that pDNNs can be individually tailored to represent children’s 284 
varying levels of performance on mental arithmetic tasks, that neural excitability is a sufficient 285 
and key factor in this personalization of pDNNs, and that MLD pDNNs are associated with 286 
higher neural excitability than TD pDNNs. They also demonstrate that the personalized pDNNs 287 
have similar degrees of fit for both TD and MLD children, showing that the personalized models 288 
are not inherently biased and can effectively cover the full spectrum of individual differences. 289 

Behavioral patterns of pDNN models are good representations of empirical behavior of TD 290 
and MLD children in arithmetic tasks 291 
 292 
Although pDNNs were individually matched by selecting the iteration that minimized average 293 
differences in normalized behavioral scores for each child, there was no guarantee that these 294 
behavioral scores would show a good absolute fit at this iteration. We evaluated whether pDNN 295 
performance accurately reflected the behavioral achievement patterns observed in MLD and TD 296 
children. We compared normalized performance scores of these two groups of children 297 
(NumOps) and the normalized accuracy of their corresponding pDNNs. Our statistical 298 
comparison revealed no evidence of significant differences between the normalized behavioral 299 
scores of MLD children (𝑀 = 0.35, 𝑆𝐷 = 0.06) and their matched MLD pDNNs (𝑀 =300 
0.36, 𝑆𝐷 = 0.05) (𝑡 = 0.98, 𝑝 = 0.33, Figure 3D) and no evidence of significant differences 301 
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between the scores of TD children (𝑀 = 0.67, 𝑆𝐷 = 0.13) and their matched TD pDNNs (𝑀 =302 
0.69, 𝑆𝐷 = 0.13) (𝑡 = −0.26, 𝑝 = 0.80, Figure 3D). 303 
 304 
Figure 3D shows that the behavioral scores of MLD pDNNs were significantly lower than TD 305 
pDNNs (𝑡 = −11.06, 𝑝 < 10!'', Figure 3D), and are well aligned with our empirical findings 306 
of lower performance in children with MLD (𝑡 = −11.86, 𝑝 < 10!'(, Figure 3D). 307 
 308 
These results further validate that the behavioral scores of pDNNs, when matched to individual 309 
math achievement levels, accurately reflect empirical data, affirming the utility of pDNNs in 310 
modeling the behavioral nuances of children with MLD and TD in mental arithmetic tasks. 311 
 312 
Neural representational similarity (NRS) between problem types increases with neural 313 
excitability in pDNN models 314 
 315 
Our next goal was to investigate the effect of neural excitability on the pDNN NRS between 316 
addition and subtraction, two distinct numerical operations. This analysis was motivated by our 317 
empirical evidence of higher NRS between addition and subtraction problems in children with 318 
MLD, compared to TD children 21. This profile of less differentiated neural representations was 319 
particularly prominent in the IPS region in children.  320 
 321 
We averaged the NRS between each individual pair of operations in the pDNN model and 322 
examined how this similarity changed with neural excitability G (Figures 4A-B show these for 323 
low and high neural excitability of G = 2.25 and G = 4.0). NRS was computed for each iteration, 324 
for each level of neural excitability, and within each layer of the pDNN (V1, V2, V3, IPS), as 325 
described in Methods. These results show that while the NRS between operations is similar for 326 
high and low gains in the lower V1 layer, the difference amplifies over the layer hierarchy and 327 
shows significant differences between high and low gains in the IPS layer. 328 
 329 
To understand how neural excitability influenced NRS, we obtain the average NRS between 330 
addition and subtraction problems (add-sub NRS). Our findings revealed that after an initial 331 
decrease in NRS upon training, the NRS decreased only slightly with further training iterations 332 
across layers, even when performance accuracy increased to 95% levels (Figure SI 1A). We 333 
observed a consistent increase in NRS with neural excitability across all layers (Figure 4C), with 334 
a strong correlation between add-sub NRS and neural excitability at each layer: V1 (𝑟 = 0.83,335 
𝑝 < 10!%), V2 (𝑟 = 0.96, 𝑝 < 10!)), V3 (𝑟 = 0.95, 𝑝 < 10!#) and IPS (𝑟 = 0.94, 𝑝 <336 
10!"). Figure 4D shows that for low (high) levels of neural excitability, the NRS values 337 
decrease (increase) across layers V1 to IPS, and that increasing excitability causes NRS to 338 
increase faster in higher layers (V3, IPS) compared to V1 and V2. 339 
 340 
Similarly, we examined the NRS between distinct addition problems (add-add NRS) and the 341 
NRS between distinct subtraction problems (sub-sub NRS) and observed a consistent increase in 342 
NRS with neural excitability across all layers (Figures 4E-H): add-add NRS V1 (𝑟 = 0.88, 𝑝 <343 
10!*), V2 (𝑟 = 0.97, 𝑝 < 10!'+), V3 (𝑟 = 0.98, 𝑝 < 10!'') and IPS (𝑟 = 0.97, 𝑝 < 10!'+), 344 
and sub-sub NRS V1 (𝑟 = 0.87, 𝑝 < 10!*), V2 (𝑟 = 0.97, 𝑝 < 10!'+), V3 (𝑟 = 0.98, 𝑝 <345 
10!'+) and IPS (𝑟 = 0.97, 𝑝 < 10!)). 346 
 347 
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These results demonstrate that increasing neural excitability is sufficient to cause greater neural 348 
representational similarity between problem types, that this increased similarity is more 349 
pronounced in the higher IPS layer, and that the higher NRS is not completely mitigated with 350 
additional training iterations, even when behavioral performance improves to 95% accuracy 351 
levels. 352 
 353 
pDNN models of behavioral patterns predict neural task fMRI data reflecting differences 354 
between TD and MLD 355 
 356 
Extending our analysis to pDNN models representative of children with MLD and their TD 357 
peers, we discovered elevated add-sub NRS in MLD-associated pDNN models (Figure 5A) 358 
across layers. A statistically significant higher add-sub NRS was noted for MLD pDNNs 359 
compared to TD pDNNs at all layers: V1 (𝑡 = 6.86, 𝑝 < 10!"), V2 (𝑡 = 9.26, 𝑝 < 10!''), V3 360 
(𝑡 = 11.78, 𝑝 < 10!'%), and IPS (𝑡 = 12.11, 𝑝 < 10!'%). Notably, the effect sizes, as 361 
measured by Cohen’s d, of the difference in NRS between MLD and TD are large and increase 362 
along the network hierarchy: 𝑑 = 2.08 in V1, 𝑑 = 2.82 in V2, 𝑑 = 3.53 in V3, and 𝑑 = 3.66 in 363 
IPS.  364 
 365 
Supplementary analysis (Figures SI 2B-C) shows that MLD pDNNs also showed higher levels 366 
of within operation NRS (both add-add NRS and sub-sub NRS) compared to TD pDNNs: V1 367 
(𝑡 > 7.34, 𝑝 < 10!#), V2 (𝑡 > 10.35, 𝑝 < 10!'(), V3 (𝑡 > 11.75, 𝑝 < 10!'%), and IPS (𝑡 >368 
10.79, 𝑝 < 10!'$). 369 

An important aspect of our study was to determine if the optimally tuned pDNNs could 370 
reasonably predict NRS deficits in children with MLD, as observed through task fMRI data 21. 371 
Specifically, we assess whether the pDNNs, calibrated and matched based only on individual 372 
task-distal mathematical achievement levels of children, also mirrored the unique NRS patterns 373 
evident in the task-related fMRI data from the same children. To achieve this, we calculated the 374 
predicted addition-subtraction (add-sub) NRS within the IPS node of the pDNN model that was a 375 
best fit to each child’s behavioral data. This prediction was then compared to the actual add-sub 376 
NRS derived from previously published empirical fMRI data focusing on the IPS 21.  377 

Figure 5B compares the add-sub IPS NRS between the pDNNs and corresponding children. Our 378 
analysis revealed a moderately strong positive correlation between the predicted and observed 379 
add-sub NRS (𝑟 = 0.63, 𝑝 < 10!*), significantly surpassing the correlation levels that would be 380 
expected from random matching (Figure 5C, 𝑡 = 39.70, 𝑝 < 10!&'). 381 

These results align with our previous empirical findings 21 and further demonstrate a clear 382 
relationship between increasing neural excitability and heightened representational similarity 383 
across numerical operations within the pDNN. This trend is particularly evident in the IPS, 384 
suggesting that hyperexcitability in neural networks may underpin the observed phenomenon.  385 
 386 
These results underscore an important facet of our pDNN models: their ability to not only align 387 
with behavioral patterns but also reflect neural processing differences in the brain. Models that 388 
closely mirrored children's behavioral performance also showed a higher fidelity in 389 
approximating neural representation patterns. This alignment provides a compelling validation 390 
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for the use of pDNNs as a reliable tool in modeling both the behavioral and neurophysiological 391 
aspects of mathematical learning and difficulties.  392 
 393 
Neural hyper-excitability impairs both numerical precision and trueness of response by 394 
reducing the number of different responses accessible to the network 395 
 396 
Behavioral deficits observed in MLD pDNNs may be caused by either a lack of trueness (i.e. 397 
average response is far from the true response) or a lack of precision (i.e. response is highly 398 
variable around the true value) 61. Figure 6A shows the distribution of pDNN responses for each 399 
value of the true result for different values of neural excitability at iteration 800. Using these 400 
distributions, we compute the numerical systematic error (lack of trueness) as the average 401 
distance between the expected response and the average response for that expected response, and 402 
we compute the numerical imprecision as the average standard deviation of the response for each 403 
expected response. We hypothesized that for pDNNs, both systematic error and imprecision 404 
would decrease with training and increase with neural excitability to reflect variations in 405 
accuracy. 406 
 407 
As expected, Figure 6B shows that at iteration 800 the numerical systematic error increases with 408 
neural excitability (𝑟 = 0.82, 𝑝 = 10!%), indicating response that are less true. Figure 6C 409 
shows that numerical imprecision also increases with neural excitability (𝑟 = 0.56, 𝑝 = 0.019), 410 
indicating that responses are more variable and less precise. 411 
 412 
Moreover, as neural excitability increases from 1 to 6, the pDNN responses become both less 413 
true and less precise because they are clustered around a fewer number of unique values. First on 414 
a qualitative level, we can observe in Figure 6A that for pDNNs, the number of different 415 
responses used to provide an answer seems to decrease with neural excitability (fragmentation 416 
along the diagonal as gain increases). By estimating the effective number of different responses 417 
using the entropy of the response (see details in Methods), we note that while pDNN accuracy 418 
across training iterations is strongly negatively correlated with both numerical systematic error 419 
(𝑟 = −0.69, 𝑝 < 10!)*) and numerical imprecision (𝑟 = −0.73, 𝑝 < 10!'''), it is even more 420 
strongly correlated with the effective number of different responses used (𝑟 = 0.95, 𝑝 <421 
10!$($). Figure 6D shows that the effective number of responses used decrease with neural 422 
excitability (𝑟 = −0.96, 𝑝 < 10!)), from using all the 19 unique responses for smaller gains, to 423 
only between 8 and 9 responses for higher gains. 424 
 425 
This shows how increasing excitability directly translates into behavioral deficits in MLD 426 
pDNNs compared to TD pDNNs. Figure 6E shows that the systematic error of MLD pDNNs 427 
(𝑀 = 0.60, 𝑆𝐷 = 0.12) is higher than that of TD pDNNs (𝑀 = 0.15, 𝑆𝐷 = 0.06) (𝑡 = 15.40,428 
𝑝 < 10!'%). Figure 6F shows that the numerical imprecision of MLD pDNNs (𝑀 = 1.53, 𝑆𝐷 =429 
0.49) is higher than that of TD pDNNs (𝑀 = 0.89, 𝑆𝐷 = 0.09) (𝑡 = 5.80, 𝑝 < 10!)). 430 
Figure 6G shows that the effective number of responses used by MLD pDNNs (𝑀 =431 
12.71, 𝑆𝐷 = 1.34) is lower than that by TD pDNNs (𝑀 = 16.89, 𝑆𝐷 = 1.62) (𝑡 = −9.10, 𝑝 <432 
10!'+). 433 
 434 
These results suggests that in the pDNNs, the number of results for which there is a precise 435 
response increases progressively with training (i.e., learning helps formulate a more precise 436 
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latent number line) but that increasing neural excitability slows down this learning process, 437 
affecting the trueness, precision, and granularity of responses. 438 
 439 
Neural hyper-excitability impairs the structure of representational manifolds 440 
 441 
Our next goal was to identify which representational deficits in the pDNNs could cause the 442 
behavioral differences observed in MLD vs TD pDNNs. For each layer we studied the geometric 443 
properties of the 19-manifold (Methods) formed by the neural response to the operations which 444 
share the same results (e.g. the response of 2+7 and 5+4 are part of the same manifold as they 445 
both result in 9). Specifically we studied their manifold capacities, their dimensionality, and how 446 
their manifold centers correlate, as developed in a theory of object maniolds in neural networks 447 
58,59. Manifold capacity reflects how easy it is to separate manifold in two random categories, and 448 
high (low) manifold capacity indicates that it is easy (hard) to separate the manifolds into two 449 
categories. Manifold dimensionality reflects the number of effective dimensions within which 450 
the manifold evolves. Correlation between the centers of the manifold reflects the alignement 451 
between manifolds, with high correlations indicating that the center of the manifolds are aligned, 452 
and low correlations indicating that each center is maximally spread across multiple dimensions. 453 
We tested the hypothesis that higher neural excitability should also result in impaired manifold 454 
structures. In the context of the current task, lower manifold capacity and higher manifold center 455 
correlations reflect impaired manifold structures. 456 
 457 
Figure SI 4A shows how the manifold capacity evolves during training across layers. After a 458 
few iterations we observed, as per our hypothesis, a consistent decrease in manifold capacity 459 
with neural excitability across all layers and iterations. At iteration 800 we observed a strong 460 
negative correlation between manifold capacity and neural excitability at each layer: V1 (𝑟 =461 
−0.77, 𝑝 < 10!$), V2 (𝑟 = −0.76, 𝑝 < 10!$), V3 (𝑟 = −0.80, 𝑝 < 10!$) and IPS (𝑟 =462 
−0.76, 𝑝 < 10!$, Figure 7A). Figure SI 5A shows that at iteration 800, as observed in 463 
previous studies 59, the manifold capacity increases across layers V1 to IPS, with smaller 464 
increases at high levels of excitability. 465 
 466 
Figure SI 4B shows how the manifolds dimensionality evolves during training across layers. 467 
After a few iterations we observed a consistent increase in the manifold dimensionality with 468 
neural excitability across all layers and iterations. At iteration 800 we observed a strong 469 
correlation between manifold dimensionality and neural excitability at each layer: V1 (𝑟 = 0.93,470 
𝑝 < 10!%), V2 (𝑟 = 0.80, 𝑝 < 10!$), V3 (𝑟 = 0.87, 𝑝 < 10!*) and IPS (𝑟 = 0.90, 𝑝 < 10!&, 471 
Figure 7B). Figure SI 5B shows that, as observed in previous studies59, the manifold 472 
dimensionality decreases across layers V1 to IPS. 473 
 474 
Figure SI 4C shows how the correlation between centers of manifolds evolve during training 475 
across layers. We observe a consistent increase across iterations in this correlation in layer V3 476 
and IPS but not in layers V1 and V2. At iteration 800 we observed lower correlations between 477 
neural excitability and manifold center correlations in V1 (𝑟 = 0.005, 𝑝 = 0.99) and V2 (𝑟 =478 
0.24, 𝑝 = 0.36), but higher correlations in V3 (𝑟 = 0.70, 𝑝 < 10!() and IPS (𝑟 = 0.95, 𝑝 <479 
10!#, Figure 7C).  The correlation between manifold centers in the IPS are a strong predictor of 480 
behavioral accuracy (𝑅( = 0.94). Figure SI 5C shows that for low levels of neural excitability, 481 
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the correlation between centers decreases across layers V1 to IPS, but that for high level of 482 
neural excitability, the correlation between centers increases across layers V1 to IPS. 483 
 484 
Extending our analysis to pDNN models representative of children with MLD and their TD 485 
peers, we discovered reduced manifold capacity in MLD pDNN models (Figure 7D) across all 486 
layers. There was a progressive increase in manifold capacity across the pDNN layer hierarchy 487 
in both MLD and TD pDNNs. A statistically significant smaller manifold capacity was noted for 488 
MLD pDNNs compared to TD pDNNs at all layers: V1 (𝑡 = −7.74, 𝑝 < 10!#), V2 (𝑡 =489 
−10.37, 𝑝 < 10!'(), V3 (𝑡 = −6.07, 𝑝 < 10!&), and IPS (𝑡 = −7.06, 𝑝 < 10!"). Notably, 490 
the effect sizes, as measured by Cohen’s d, of the difference in manifold capacity between MLD 491 
and TD are large across the network hierarchy: 𝑑 = 2.34 in V1, 𝑑 = 1.82 in V2, 𝑑 = 1.54 in 492 
V3, and 𝑑 = 1.00 in IPS. 493 
 494 
We discovered increased manifold dimensionality in MLD pDNN models (Figure 7E) compared 495 
to TD pDNNs, across layers. There was a progressive decrease in manifold dimension across the 496 
pDNN layer hierarchy in both MLD and TD pDNNs. A statistically significant higher manifold 497 
dimensionality was noted for MLD pDNNs compared to TD pDNNs at all layers: V1 (𝑡 = 8.89,498 
𝑝 < 10!'+), V2 (𝑡 = 11.37, 𝑝 < 10!'$), V3 (𝑡 = 6.82, 𝑝 < 10!"), and IPS (𝑡 = 8.03, 𝑝 <499 
10!'+). Notably, the effect sizes, as measured by Cohen’s d, of the difference in manifold 500 
dimensionality between MLD and TD are large across the network hierarchy: 𝑑 = −2.65 in V1, 501 
𝑑 = 2.05 in V2, 𝑑 = −2.33 in V3, and 𝑑 = −1.56 in IPS. 502 
 503 
We also discovered increased center correlations across manifolds in MLD pDNNs compared to 504 
TD pDNNs (Figure 7F) across layers. Interestingly, there was a progressive increase in center 505 
correlations across the pDNN layer hierarchy in MLD pDNNs, but a progressive decrease across 506 
the layer hierarchy in TD pDNNs. A statistically significant higher correlation between center of 507 
manifolds was noted for MLD pDNNs compared to TD pDNNs only in IPS: V1 (𝑡 = −1.45,508 
𝑝 = 0.15), V2 (𝑡 = −0.76, 𝑝 = 0.45), V3 (𝑡 = 0.43, 𝑝 = 0.67), and IPS (𝑡 = 12.44, 𝑝 <509 
10!'*). Notably, the effect sizes, as measured by Cohen’s d, of the difference in manifold center 510 
correlations between MLD and TD are large from V2 to IPS: 𝑑 = −0.44 in V1, 𝑑 = −2.56 in 511 
V2, 𝑑 = −2.66 in V3, and 𝑑 = −3.45 in IPS. 512 
 513 
Finally, we observed that in the IPS, manifold capacity, manifold dimensionality and inter-514 
manifold correlations between centers were all strongly correlated with accuracy. Surprisingly, 515 
inter-manifold correlations between centers showed the strongest correlations with behavioral 516 
accuracy (𝑟 = −0.97, 𝑝 < 10!$($), followed by manifold dimensionality (𝑟 = −0.92, 𝑝 <517 
10!(&(), and manifold capacity (𝑟 = 0.73, 𝑝 < 10!'+)). 518 
 519 
These results show that differences on account of higher neural excitability were explained by 520 
decreasing manifold capacity, increasing manifold dimensionality, and increasing center 521 
correlations between IPS manifolds. 522 
 523 
Additional pDNN training to overcome behavioral deficits in MLD 524 
 525 
Our next goal was to use pDNNs to determine how additional training could help MLD pDNNs 526 
reach the level of behavioral performance seen in TD pDNNs. We hypothesized that both 527 
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behavioral and neural representational deficits would reduce with additional cognitive training, 528 
and that pDNNs corresponding to MLD children would converge towards behavioral and neural 529 
representational patterns observed in TD children.  530 
 531 
Figure 8A shows how many additional iterations were required for any individual pDNN to 532 
reach an accuracy level closest to the median accuracy of best matching TD pDNNs (i.e., at 533 
iteration 800). The number of iterations required to match TD pDNNs increased consistently 534 
with neural excitability (𝑟 = 0.93, 𝑝 < 10!"). Figure 8B shows the distribution of percentage 535 
of initial training that is additionally required (i.e., the number of additional training iterations 536 
required beyond the initial 800, divided by 800) to reach median level accuracy of TD pDNN, 537 
separately for MLD pDNNs and TD pDNNs. Expectedly, we observe that MLD pDNNs require 538 
a higher level of additional training (𝑀 = 75%, 𝑆𝐷 = 42%) than TD pDNNs (𝑀 = 5%, 𝑆𝐷 =539 
11%). MLD pDNNs required an additional 900 iterations beyond the initial 800, or in other 540 
words, MLD pDNNs required approximately 2 times the training given to TD pDNNs to achieve 541 
similar levels of accuracy. 542 
 543 
We then analyzed how behavior and representations evolved with this behavioral catch-up for 544 
MLD pDNNs at iteration 1700, and how they compared to the behavior and representations of 545 
TD pDNNs at iteration 800. In Figure 8C-L, we refer to MLD/TD pDNN at iteration 800 as 546 
MLD/TD Pre, and MLD pDNN at iteration 1700 as MLD Post. 547 
 548 
Figure 8C shows that the accuracies of MLD pDNNs at iteration 1700 improve (𝑡 = 13.50, 𝑝 <549 
10!'() and are not significantly different from TD pDNNs at iteration 800 (𝑡 = 1.90, 𝑝 =550 
0.065). Similar patterns are seen in the numerical systematic error (Figure 8D; significant 551 
improvement in MLD pDNNs at iteration 1700, 𝑡 = −15.35, 𝑝 < 10!'%; not significantly 552 
different from TD pDNNs at iteration 800, 𝑡 = −0.17, 𝑝 = 0.86), numerical imprecision 553 
(Figure 8E; significant improvement in MLD pDNNs at iteration 1700, 𝑡 = 4.89, 𝑝 < 10!%; 554 
not significantly different from TD pDNNs at iteration 800, 𝑡 = 1.21, 𝑝 = 0.24), manifold 555 
capacity in the IPS (Figure 8J; significant improvement in MLD pDNNs at iteration 1700, t =556 
5.42, p < 10!&; not significantly different from TD pDNNs at iteration 800, t = 0.26, p =557 
0.79), manifold dimensionality in the IPS (Figure 8K; significant improvement in MLD pDNNs 558 
at iteration 1700, t = −5.83, p < 10!*; not significantly different from TD pDNNs at iteration 559 
800, t = 0.21, p = 0.84), and inter-manifold center correlations in the IPS (Figure 8L; 560 
significant improvement in MLD pDNNs at iteration 1700, t = −24.53, p < 10!'"; not 561 
significantly different from TD pDNNs at iteration 800, t = −1.66, p = 0.11). 562 
 563 
Number of different responses (Figure 8E) in MLD pDNNs shows significant improvement with 564 
additional training (𝑡 = 13.26, 𝑝 < 10!'%) and improves beyond the levels observed in TD 565 
pDNNs at iteration 800 (𝑡 = 2.15, 𝑝 = 0.038). 566 
 567 
The remaining measures for MLD pDNNs show an improvement with the additional training to 568 
1700 iterations, but do not statistically reach the levels demonstrated by TD pDNNs at iteration 569 
800. This includes between operation add-sub NRS (Figure 8G; significant improvement at 570 
iteration 1700, t = −4.39, p < 10!%; still significantly different from TD pDNNs at iteration 571 
800, t = 8.54, p < 10!)), within addition NRS (Figure 8H; significant improvement at 572 
iteration 1700, t = −5.39, p < 10!*; still significantly different from TD pDNNs at iteration 573 
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800, t = t = 6.48, p < 10!"), and within subtraction NRS (Figure 8I; significant improvement 574 
at iteration 1700, t = −5.19, p < 10!*; still significantly different from TD pDNNs at iteration 575 
800, t = 6.65, p < 10!"). 576 
 577 
These results suggests that when MLD pDNNs are provided additional training they can catch up 578 
behaviorally to performance levels characterizing TD pDNNs. This behavioral catch-up is 579 
accompanied by improvements in all measures of neural representations examined here, but only 580 
some of the underlying neural representational deficits are completely overcome, while others 581 
improve but still do not catch up to TD pDNN levels. 582 
 583 
Discussion  584 

 585 
Our study integrates distinct lines of research in human cognitive neuroscience and artificial 586 
intelligence and provides new insights into latent brain mechanisms that contribute to the 587 
diversity of children’s cognitive abilities. We developed cutting-edge personalized deep neural 588 
networks (pDNNs), which are tailored to probe the neural gains, learning dynamics, and 589 
neurophysiological patterns unique to each child (Figure 1), thus providing in silico digital 590 
twins. These digital twins capture the behavioral, learning, and neural variability demonstrated 591 
by both TD children, and children with MLD. We demonstrate that neural network models when 592 
combined with individual human behavioral and brain imaging measures offer powerful tools for 593 
advancing our knowledge of the neurobiology of cognitive strengths and challenges. Our 594 
findings highlight the transformative capacity of pDNNs as a tool in the assessment and 595 
exploration of cognitive disabilities, paving the way for more personalized and effective 596 
educational strategies.  597 

Engineering pDNNs as digital twins to probe individual learning profiles 598 

We developed cognitive neuroscience-informed and biologically plausible pDNNs 14 to capture 599 
individual differences in arithmetic task performance among children with and without MLD. 600 
This model was designed to investigate the complex interplay between behavior, neural 601 
representations, and neurophysiology in children with learning disabilities. We engineered 602 
pDNN models with the unique ability to map diverse arithmetic problems to corresponding 603 
solutions, effectively tuning these models to align with various performance levels. This allowed 604 
us to investigate the latent neurobiological mechanisms that might contribute to the observed 605 
individual differences and weaknesses in neural representations during problem solving. 606 

We demonstrate that these pDNNs can be tuned to match individual levels of mathematical 607 
achievement across varying levels of performance abilities, and that such a model can be used to 608 
uncover latent neurobiological mechanisms underlying weak neural representations of distinct 609 
numerical problems. A key theoretical aspect of our work is analysis of the role of excitatory-610 
inhibitory (E/I) imbalances37,39,43,55,56, manifested as neural hyper-excitability, in capturing the 611 
variability in behavioral, neural, and representational dysfunctions observed in children with 612 
MLD. 613 

Our methodology encompassed six key steps: First, we employed a biologically inspired 614 
hierarchical pDNN model, mimicking the dorsal visual pathway from V1 to IPS, to encode 615 
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addition and subtraction problems. This model's design was based on the CORNET-S 616 
architecture, similar to one used to model the emergence of number sense in children 14. Second, 617 
we adjusted the neuronal excitability parameters within these models to induce individual 618 
differences in task performance. Third, data from children participating in the empirical study 619 
were matched with a corresponding pDNN configuration that best represented their behavioral 620 
performance, to obtain in silico digital twins corresponding to each child. Fourth, we then 621 
explored the congruence in behavioral performance and in neural representations between the 622 
pDNNs and empirical task-based fMRI studies. Fifth, we investigated how variations in neural 623 
hyper-excitability impacted the latent neural representations within these networks, aiming to 624 
shed light on potential neurophysiological underpinnings of MLD. Finally, we probed the 625 
influence of additional training on pDNN networks in MLD, and determined whether latent 626 
neural representations were normalized by additional cognitive training. The resulting 627 
engineered ‘digital twin’ models provide a novel approach to close the loop between AI-based 628 
neural networks, behavior, neural representations, and neurophysiology. 629 

Neural excitability impairs learning 630 

Our study brings to light the significant impact of neural excitability and hyper-excitability on 631 
learning processes, which we evaluated here in the context of MLD. Theoretical models propose 632 
that E/I imbalances could disrupt functional neural circuitry, potentially leading to a range of 633 
neurodevelopmental disorders, including MLD 41,43,56,57. By focusing on E/I imbalance, our 634 
pDNN model provides a more precise understanding of the neurobiological underpinnings of 635 
learning disabilities. This approach also offers a new perspective for investigating the complex 636 
interplay between neural circuitry and learning processes 41,43. 637 

A central finding is how neural hyper-excitability influences the capacity to learn associations 638 
between mental arithmetic problems and their solutions. We observed that elevated neural 639 
excitability levels in the pDNNs were correlated with slower learning rates and less effective 640 
learning outcomes (Figure 2). The results further revealed that as neural excitability increased, 641 
the learning rate of the pDNNs decreased in a monotonic fashion. This trend was not just a delay 642 
in the learning curve but also a qualitative alteration in the learning dynamics of the pDNNs 643 
associated with poor performance.  644 

Next, we fine-tuned pDNNs to match the behavioral performance of individual children by 645 
adjusting neural excitability values. The behavioral scores of matched pDNNs closely mirrored 646 
the empirical behavioral patterns observed in TD and MLD children, validating the utility of 647 
pDNNs in modeling the behavioral nuances of children with MLD and TD in mental arithmetic 648 
tasks. The neural excitability (gain value G) in MLD pDNNs was found to be significantly 649 
higher than in TD pDNNs. This indicates that neural excitability plays a crucial role in 650 
personalizing pDNNs to represent varying levels of task performance, with MLD pDNNs 651 
associated with higher neural excitability (Figure 3). Thus, neural excitability maybe a 652 
significant contributor to suboptimal performance levels observed in children with MLD. These 653 
results resonate with empirical research on Glutamate/GABA levels indicating excitatory-654 
inhibitory imbalances 41,43,56,57, and intrinsic fMRI hyperactivity and hyperconnectivity 34, as well 655 
as task-related hyperactivity and hyperconnectivity in MLD 18.  656 
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Together, our computational modeling of pDNNs and empirical findings reinforce the notion that 657 
neural excitability plays a crucial role in learning and may be a key neurophysiological factor 658 
underlying MLD. By highlighting the role of neural hyper-excitability, our research advances 659 
understanding of the etiology and manifestation of MLD. Furthermore, it points to neural 660 
excitability as a promising biomarker for identifying learning challenges, guiding interventions, 661 
and monitoring their effectiveness.  662 

Neural hyper-excitability leads to less differentiated neural representations in pDNNs, and 663 
predicts empirical fMRI findings 664 

Next, we examined the impact of neuronal hyper-excitability on distributed neural 665 
representations in each layer of the pDNN model. Neural representational similarity (NRS) was 666 
used to quantify the degree of overlap or distinctiveness between neural representations of 667 
addition and subtraction problems62. NRS measures the correlation between patterns of neural 668 
activity evoked by different stimuli or task conditions. High NRS indicates that the neural 669 
representations are similar or overlapping, while low NRS suggests more distinct or 670 
differentiated representations. 671 
 672 
We found that increased neuronal excitability led to less differentiated neural representations in 673 
processing numerical operations (Figure 4). Specifically, NRS between addition and subtraction 674 
problems (add-sub NRS) was consistently higher across all layers of the pDNN as neural 675 
excitability increased. This effect was most pronounced in the IPS layer of the model, a key brain 676 
region for numerical cognition. Such diminished differentiation in neural representations in the 677 
IPS is significant, as it aligns with empirical findings in children with MLD, who also exhibit 678 
less distinct neural representations across numerical operations 21. It is also notable that the 679 
differences in NRS between TD and MLD pDNNs were minimal in the perceptual V1 layer, but 680 
were significantly amplified at subsequent cognitive stages, with maximum differences in the 681 
IPS.  682 
 683 
Furthermore, we examined within-operation NRS across addition problems (add-add NRS) and 684 
subtraction problems (sub-sub) and found that it also increased with higher neural excitability 685 
across all pDNN layers (Figure 4). This suggests that hyper-excitability not only leads to greater 686 
overlap between distinct numerical operations but also blurs the boundaries between 687 
representations of problems within the same operation type. 688 

Importantly, by tuning the neural excitability of the pDNN to align with individual behavioral 689 
variations in children, we could accurately map variations in neural representations to empirical 690 
fMRI data. Specifically, we determined whether neural representations in pDNNs could predict 691 
empirical values of neural representations obtained in brain imaging data obtained from the same 692 
group of children. Even though the models were fit only on task-distal behavioral achievement 693 
levels, we found that the best-fitting pDNN models showed a reasonably strong level of 694 
prediction for the severity of aberrancies in neural representations deficits as observed in task-695 
based fMRI data from children with MLD (Figure 5). This alignment between predicted and 696 
observed neural representations underscores the relationship between neural excitability and 697 
representational similarity across numerical operations within the pDNN.  698 
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Together, our findings demonstrate how tuning neural excitability in pDNNs can effectively 699 
model individual differences in math abilities, highlighting the role of neural hyper-excitability 700 
in cognitive performance deficits among children with MLD. Additionally, the findings 701 
emphasize the potential of pDNNs to predict high-level neural representations, offering insights 702 
into neurobiological dysfunction associated with learning disabilities.  703 

Neural excitability reduces the trueness, precision, and granularity of behavioral responses 704 

Next, we examined how neural excitability influences the trueness, precision, and granularity of 705 
behavioral responses in pDNNs that simulate the cognitive performance of children with MLD 706 
and TD children. Trueness refers to how close, on average, the responses are to the correct 707 
answers, and is measured by systematic errors from the true answer. Precision on the other hand 708 
refers to how consistent or variable the responses are for a given answer. The granularity is 709 
measured in terms of number of different responses that the pDNN is able to provide across the 710 
set of problems. We found that higher neural excitability led to higher systematic errors, lower 711 
precision (higher variability around the true answer), and lower granularity of responses. 712 
(Figure 6B-D). This suggests that neural excitability affects both the accuracy and the 713 
consistency of the pDNNs' performance on the mathematical problem-solving tasks, along with 714 
the use of a smaller subset of possible responses. The use of a smaller set of unique responses 715 
suggests a less developed internal representation of numerical magnitudes. This further supports 716 
the idea that higher neural excitability constrains the pDNNs' ability to develop a rich and precise 717 
representation of the numerical space. These results were mirrored in our comparison of MLD 718 
and TD model pDNNs, with higher errors, lower precision, and a smaller number of unique 719 
responses in the MLD group compared to the TD group (Figure 6 E-G).  720 

This highlights a plausible neurobiological mechanism for the behavioral deficits observed in 721 
children with MLD. The pDNN model provides a framework for understanding how 722 
abnormalities in neural excitability can give rise to the cognitive and behavioral impairments 723 
associated with MLD. This insight can guide future research on potential interventions that target 724 
specific neural mechanisms underlying MLD, such as training paradigms that aim to improve 725 
systematic errors, imprecision, and granularity of responses. 726 

Neural excitability influences manifold structure 727 

Our next objective was to uncover how neural excitability impacts the separability and geometry 728 
of object manifolds in pDNNs 58,59. Stimuli are represented in the brain by the collective 729 
population responses of neurons, and an object presented under varying conditions gives rise to a 730 
collection of neural population responses called an ‘object manifold’ 59,63. Manifolds in this 731 
context represent low-dimensional subspaces formed by neural responses to stimuli that share 732 
common features. To explore the geometric properties of neural responses we leveraged recent 733 
advances in manifold analysis, focusing on three key measures: manifold capacity, manifold 734 
dimensionality, and inter-manifold center correlation. Recent theoretical progress has connected 735 
these measures with classification capacity 58,59. By examining alterations in the manifold 736 
structure of latent representations across various layers of the pDNN, we aimed to quantify how 737 
neural network properties are altered by neural gain and elucidate the impact on pDNN models 738 
associated with MLD. 739 
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Manifold capacity reflects the ease of separating a collection of manifolds into two categories. A 740 
high manifold capacity signifies greater ease in segregating the manifold into two discernible 741 
categories. In the present study, categories were represented by the 19 possible solutions ranging 742 
from 0 to 18 as described above. As expected, we found that manifold capacity increased with 743 
training (Figure SI 4). Crucially, we found consistent decrease in manifold capacity with 744 
increased neural excitability, demonstrating that higher neural excitability makes it harder to 745 
distinguish between different numerical representations (Figure 7A). Analysis comparing pDNN 746 
models in MLD and TD revealed that manifold capacity increased progressively from layers 747 
from V1 to IPS, with higher capacity in TD compared to MLD pDNN models (Figure 7D), and 748 
lower amplification of the manifold capacity as we move across the stages in the cognitive 749 
hierarchy from V1 to IPS in MLD pDNNs. This differentiation underscores the impact of neural 750 
excitability on numerical cognition, highlighting a critical barrier in MLD that hampers the 751 
separation of numerical representations into clear, distinguishable categories.  752 

Manifold dimensionality denotes the requisite number of effective dimensions to encapsulate the 753 
geometric characteristics inherent to the dataset. We observed a significant increase in manifold 754 
dimensionality with neural excitability (Figure 7B). This suggests that elevated neural 755 
excitability creates a more complex and less easily partitioned representational space, 756 
complicating the task of distinguishing between distinct problem solutions. Analysis comparing 757 
pDNN models in MLD and TD revealed a progressive decrease in manifold dimensionality from 758 
the V1 to IPS layers, with lower dimensionality in TD compared to MLD pDNN models 759 
(Figure 7E).  760 

Finally, we examine inter-manifold correlation which quantifies the relation between centers of 761 
manifolds across the 19 possible solutions. High correlations would indicate that the centers of 762 
the manifolds are aligned, while low correlations indicate that each center is maximally spread 763 
across multiple dimensions. Inter-manifold correlations in the IPS, but not earlier layers, 764 
increased with neural excitability (Figure 7C), suggesting that higher excitability leads to 765 
impairments in how the manifolds are organized in the neural space at a higher cognitive (IPS) 766 
but not lower perceptual (Figure 7F) level. Interestingly, inter-manifold correlation, rather than 767 
manifold capacity or dimensionality, was the most predictive of pDNN performance on both 768 
addition and subtraction problems. Analysis comparing pDNN models in MLD and TD revealed 769 
a striking difference in the pattern of inter-manifold correlation across layers. In TD pDNNs, 770 
inter-manifold correlation decreased progressively from lower (V1) to higher (IPS) layers, 771 
suggesting a gradual decorrelation of problem set representations along the processing hierarchy 772 
(Figure 7F). This aligns with previous reports of reduced correlation between neural 773 
representations in higher processing stages of deep neural networks, which is thought to support 774 
more efficient and robust information processing 59. In contrast, MLD pDNNs showed a 775 
progressive increase in inter-manifold correlation from lower to higher layers, with a higher 776 
correlation in the IPS layer compared to TD pDNNs (Figure 7F). This suggests that the neural 777 
representations of different problem sets are sub-optimally separated in the higher processing 778 
stages of MLD pDNNs, which may contribute to the deficits in numerical problem-solving 779 
observed in this group.  780 

These results demonstrate that the manifold structure of latent representations changes across 781 
various layers of the pDNN, with the IPS showing highest manifold capacity, and lowest 782 
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manifold dimension and inter-manifold correlation. Each of these geometric properties was 783 
distorted in pDNN models associated with MLD. The findings provide a more comprehensive 784 
model of how neural excitability influences not just overall learning performance, but also the 785 
internal geometric structure of neural representations. These impediments highlight manifold 786 
structure as a potential neural marker for distinguishing between typical and atypical numerical 787 
processing pathways and provide clues towards the design of training and interventions that 788 
could target specific aspects of neural representations, such as inter-manifold center correlations. 789 
Digital twin platforms could provide an experimental setup to test how different training 790 
paradigms affect different aspects of manifold geometry. 791 

Mitigating behavioral deficits in MLD through extended learning 792 

Next, we examined whether extended learning could mitigate behavioral deficits in MLD. 793 
Remarkably, we found that with sufficient training MLD pDNNs can reach the same proficiency 794 
levels in mathematical tasks as pDNNs tuned to performance levels tuned to TD controls 795 
(Figure 8C-E). This implies that children with MLD may require more time and training to 796 
achieve the same level of proficiency as TD children. The amount of additional training needed 797 
was directly proportional to individual levels of hyper-excitability (Figure 8A). We observed 798 
that on an average, MLD pDNNs required about 2 times the training required by TD pDNNs to 799 
reach the same average levels of behavioral performance (Figure 8B). While this is a 800 
significantly higher level of time and effort, the positive finding is that while neural hyper-801 
excitability significantly slows down learning, it may not be an unsurmountable impediment to 802 
learning. Such a delay in learning progression, characterized by a decrease in the learning rate in 803 
proportion to increased neural excitability, aligns with empirical evidence suggesting that with 804 
targeted and sustained training, children with MLD can progressively improve arithmetic task 805 
performance 64. This finding suggests potential pathways for intervention that could help 806 
children with MLD achieve their full learning potential. Future studies employing rigorous 807 
cognitive training methodologies are needed to validate the potential of such interventions. These 808 
studies should aim to explore the optimal intensity, duration, and type of cognitive training that 809 
would be most beneficial for children with MLD. 810 

Persistent MLD deficits in latent neural representations and manifold structure  811 

Our investigation next focused on whether additional training, which normalized behavioral 812 
performance in MLD pDNNs to match that of TD pDNNs, also normalized latent neural 813 
representations as assessed by neural representational similarity and object manifold properties. 814 
Despite a 2-fold increase in training for MLD pDNNs, we observed that improvements in 815 
behavioral performance did not correspond to equivalent changes in all aspects of neural 816 
representations and manifold structures.  817 

While manifold geometrical properties, such as manifold capacity, manifold dimensionality and 818 
center correlations of the manifold structures significantly, changed for the MLD pDNNs with 819 
additional training (Figure 8L), aligning with the levels shown by the best-matched TD pDNNs, 820 
other deficits persisted. Specifically, although neural representational similarity decreased with 821 
additional training, MLD pDNNs continued to exhibit higher neural representational similarity 822 
compared to TD pDNNs (Figure 8G-I). This suggests that certain latent neural representations 823 
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remain resistant to change even after extensive training. This selective influence on latent neural 824 
representations highlights specific mechanisms that could be targeted for remedial cognitive 825 
interventions, although the precise approaches require further investigation.  826 

Implications for educational neuroscience 827 

Our findings have implications for educational neuroscience. The ability to create digital twins 828 
that model individual learning processes and neural patterns opens new avenues for personalized 829 
education strategies. These strategies could be specifically tailored to address the unique 830 
cognitive needs and challenges of each child, particularly those with MLD. The insights gained 831 
from our pDNN models suggest the potential for developing more effective intervention 832 
strategies for children with MLD. Specific AI based strategies can be used to discover the most 833 
effective training paradigms – for instance, evaluating training paradigms that are the most 834 
effective in reducing aberrant neural representations and manifold structure could lead to 835 
identifying the most effective training mechanisms for addressing learning disabilities.  836 

The fact that neural representations and object manifold structure between problem types were 837 
not fully remediated for MLD pDNNs, despite behavioral accuracy normalization, suggests that 838 
high neural excitability may present persistent latent neural representations. These 839 
representations could impose learning constraints on more complex problem sets or necessitate a 840 
significantly higher level of training than explored in this study for mitigation.  841 

Our findings also highlight the persistence of certain neural representational deficits even after 842 
behavioral performance has been normalized through additional training. This suggests that 843 
while we can improve behavioral outcomes, underlying neural representations may require more 844 
targeted and possibly intensive interventions. The selective influence of additional training on 845 
latent neural representations, such as the decorrelation of problem set representations, reveals 846 
specific neurobiological mechanisms that could form potential targets for cognitive 847 
interventions. However, the exact nature and implementation of these interventions remain to be 848 
explored in future research. 849 

Limitations and future directions 850 

While our pDNN approach has provided a novel perspective for investigating the 851 
neurobiological underpinnings of mathematical difficulties, it focuses primarily on E/I imbalance 852 
as a theoretical mechanism, and proves its sufficiency, but not necessity, for characterizing 853 
individual differences in learning profiles. Future research should consider other plausible 854 
mechanisms that may contribute to learning disabilities. Our approach demonstrates how 855 
alternate hypotheses can be systematically evaluated against empirical data using DNN models. 856 
While our study presents a significant step forward, it is important to acknowledge the 857 
limitations of modeling complex human cognitive processes such as mental arithmetic using 858 
DNNs. The scope of our study was confined to an area of mathematical learning, and the 859 
applicability of our findings to other cognitive domains remains to be explored. Future research 860 
should explore the applicability of pDNNs to other cognitive tasks and learning disabilities.  861 
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Given the significant role of neural excitability and hyper-excitability in learning processes, 862 
particularly in the context of MLD, an important implication of our research is the potential for 863 
brain stimulation techniques designed to suppress neural hyper-excitability as a therapeutic 864 
intervention for MLD. Such interventions could target the excitatory-inhibitory balance in key 865 
brain hubs, aiming to normalize neural excitability levels and thereby improve learning outcomes 866 
for children with MLD. This approach aligns with the broader goal of developing personalized 867 
education and intervention strategies based on individual neurobiological profiles. 868 

Conclusion 869 

Our study represents a significant advance in the integration of cognitive neuroscience and 870 
artificial intelligence to unravel the complex neurobiological mechanisms underlying MLD in 871 
children. By developing and employing pDNNs as digital twins, we have elucidated the intricate 872 
interplay between neural excitability, learning dynamics, and individual neurophysiological 873 
patterns that contribute to the diverse cognitive abilities observed in children. Our pDNN 874 
models, informed by cognitive neuroscience and tailored to individual learning profiles, also 875 
mirror the learning patterns and neural activity observed in children, thereby validating their 876 
utility in cognitive neuroscience. The application of pDNNs to model individual learning 877 
processes and neural patterns in children with MLD demonstrates the potential of these models 878 
in cognitive neuroscience and opens new avenues for the development of targeted educational 879 
interventions.  880 

  881 
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Methods  882 
 883 
A. Human study protocol and Design  884 
 885 
We developed a pDNN to model arithmetic problem-solving tasks performed by children with 886 
mathematical learning disabilities (MLD) and typically developing (TD) children during fMRI 887 
scanning 18,21,34. 888 
 889 
Participants 890 
 891 
Behavioral and neuroimaging data were acquired from 45 children in their 2nd or 3rd grade of 892 
schooling (ages 7 to 9). Numerical problem-solving skills of children were assessed using the 893 
Numerical Operations (NumOps) subtest of the Wechsler Individual Achievement Test 2nd 894 
Edition 60. 21 children scoring below 90 (i.e. the 25th percentile) on the NumOps were classified 895 
in the MLD group, while the remaining 24 children formed the TD group. The two groups did 896 
not differ on age, full-scale IQ, and reading abilities. All participants had Full-scale IQ scores > 897 
80 (range: 84-128), as assessed by the Wechsler Abbreviated Scale of Intelligence (WASI).  898 
 899 
Behavioral task 900 
 901 
Children were shown equations involving additional or subtraction operations that were a sum or 902 
a difference of two small numbers, e.g. “10 + 2 = 13” or “10 − 2 = 8. They were asked to 903 
press one of two buttons, the first identifying the equation as correct, e.g. “10 − 2 = 8”, and the 904 
second identifying the equation as wrong, e.g. “10 + 2 = 13”. Additional details on the 905 
behavioral task conditions are previously published 18,21,34. 906 
 907 
Neural recordings 908 
 909 
Each child performed the task during fMRI scanning. Additional details on the fMRI data 910 
acquisition, preprocessing, and analysis procedures are previously described 18,21,34.  911 
 912 
B. pDNN study protocol and Design 913 
 914 
To probe the impact of neural hyperexcitability on mathematical learning and on representations 915 
we adapted a math task that has been studied in our lab in children18,21,34 to a task that can be 916 
solved by an artificial neural network model. We then adapted a biologically inspired artificial 917 
neural network model of the visual cortex to solve that task and personalized these biologically 918 
inspired networks to match individual differences in the performance of children by varying the 919 
neural excitability of the networks. We observed the impact of varying neural excitability on 920 
both the behavioral performance and neural representation used to solve that task. Finally, we 921 
compared the observed effects of increased neural excitability to the effects observed in children 922 
with MLD. 923 
 924 
Step 1: Adaptation of behavioral addition and subtraction tasks and stimuli 925 
 926 
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In the original study, asking for the validity of an equation instead of directly asking for the 927 
result of sums or differences was a way to simplify the apparatus used to perform the task while 928 
the fMRI signal was being recorded. The pDNN task uses similar addition and subtraction 929 
problems, where the model has to produce the right answer. We used the MNIST dataset of 930 
handwritten digits 65 to generate images of human-readable sums and differences of positive 931 
integers. We considered only sums and difference which resulted in a value bounded between 0 932 
and 18, i.e. 380 unique problems (190 unique addition and 190 unique subtraction problems). For 933 
each problem we generated 100 variants, half were used for training and the other half for 934 
testing. In total we used 19000 problems for training and 19000 problems for testing. Since 935 
operation symbols are not present in MNIST, we generated synthetic operation symbols “+” and 936 
“–” by using the character "1" as a vertical stroke and rotated this character to obtain a horizontal 937 
stroke. We represented each problem as 𝑇'𝑈'𝑆𝑇(𝑈(, where 𝑇' and 𝑈' (resp. 𝑇( and 𝑈() represent 938 
respectively the tenth and unit digit of the first (resp. second) operand, and 𝑆 represents the 939 
symbol of the operation (+ or −). For single digit operands we consider the tenth digit to be an 940 
empty space (an image filled with black). To generate each variant, we randomly selected a 941 
visual representation for each character (i.e. a 3x28x28 tensor filled with 0 for an empty space) 942 
and concatenated them into a 3x28x140 tensor (See Figure SI 6). 943 
 944 
Step 2: Using pDNNs to solve addition and subtraction problems 945 
 946 
The pDNNs model the dorsal visual pathway involved in numerical cognition. The architecture 947 
of pDNN is adapted from CORnet-S, a model of the visual pathway. Our adapted pDNN is 948 
composed of four layers V1, V2, V3 and IPS, corresponding to key brain regions forming the 949 
dorsal visual processing stream, and participating in the processing of numerical information. All 950 
representational analysis of pDNN were focused on the last time step of each layer (see SI for 951 
details of the architecture). For the sake of simplicity and in order to reduce any initial bias, the 952 
pDNN was not pretrained on ImageNet or any other stimuli set, that is, only the architecture 953 
from CORnet-S was used, and not its weights after training on ImageNet. Moreover, three 954 
additional structural modifications were introduced to the network adapted from CORnet-S. 955 
First, the output layer was made 19-dimensional, corresponding to the 19 possible answers 956 
between 0 and 18. Second, in order to control the excitability of neurons, the parameters 957 
governing batch normalization were fixed across training iterations. In pDNN, the batch 958 
normalizations enforce the input to the non-linearity, (i.e. the input to the neurons) to have a 959 
mean of 0 and a variance of 1 across training iterations. Third, we modified the non-linearity to 960 
account for differences in neural excitability of neurons (see Step 3 for details). 961 
 962 
We trained pDNNs to solve visually presented addition and subtraction (see Figure 1A) for 963 
different levels of excitability using cross entropy loss as the error function, and the Adam 964 
optimizer 66 with a learning rate of η = 0.001. We tested the pDNNs after every 100 batches of 965 
100 problems, i.e. after learning from 10000 examples of addition or subtraction. 966 
 967 
Step 3: Varying neural excitability in pDNN 968 
 969 
In pDNN, the response of a neuron is simplified as follows: 970 
 971 

𝑦 = 𝐺 ×max(0, 𝑥) 972 
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 973 
where	𝑦 represents the output firing rate of a neuron, 𝑥 represents the overall input that the 974 
neuron receives from other neurons (enforced to be of mean 0 and standard deviation 1 by batch 975 
normalization), 𝐺 represents the gain of the neuron that scales the intensity of the response (see 976 
Figure 1C). We consider the gains 𝐺 varying from 1 to 5 in steps of 0.25 (Figure 1B), i.e., 𝐺 =977 
1 + 0.25 × 𝑘 for 𝑘 ∈ ⟦0,16⟧. In the paper, excitability level refers to the gain 𝐺. 978 
 979 
Step 4: Behavioral matching 980 
 981 
To compare any single pDNN and child at the behavioral level, we calculate a behavioral 982 
distance between the normalized accuracy of the pDNN model and the normalized NumOps 983 
score for the child. These measures are normalized by setting the maximum and minimum 984 
accuracy measured over all gains and iterations to 1 and 0 respectively for the pDNNs, and by 985 
setting the maximum and minimum NumOps scores to 1 and 0 respectively for the children. We 986 
then use a Manhattan distance (L1 norm) to define the distance between the normalized NumOps 987 
score and the normalized pDNNs scores. This is used to find the best matching excitability level 988 
of pDNN for each child at each training iteration. 989 
 990 
Step 5: Identifying the best matching training iteration 991 
 992 
We select the best matching iteration as the iteration where the average behavioral distance 993 
scores across children and their best-fit models is the smallest. This distance was minimal for 994 
iteration 800. 995 
 996 
Step 6: Behavioral and neural analysis of pDNN 997 
 998 
We focused pDNN behavioral analysis on (1) its accuracy on the addition and subtraction 999 
problems, and on (2) the trueness, the precision, and the entropy of its response to the problems. 1000 
Inspired by previous studies (e.g. investigating the differences between TD and MLD children) 1001 
we examined how neural gain 𝐺 was affecting (1) the neural representation similarity (NRS) 1002 
between addition and subtraction problems within each region of pDNN, and (2) the geometric 1003 
properties of the 19 manifolds specific to each pDNN response to the problems. 1004 
 1005 
Numerical systematic error and imprecision 1006 
 1007 
As standardized in 61, we defined numerical systematic error and numerical imprecision 1008 
(represented in Figure 1E). Numerical systematic error was computed as the average absolute 1009 
value of differences between actual and expected values of responses, measured at, and averaged 1010 
across each level of expected response. Similarly, numerical imprecision was computed as the 1011 
average standard deviation of the actual responses measured at and averaged across each level of 1012 
expected response. 1013 
 1014 
Entropy and estimation of the number of different responses 1015 
 1016 
We estimated the effective number of different responses used by using the distribution of the 1017 
provided answer (Figure 6A). While this distribution would provide us with the counts of 1018 
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responses with non-zero probability, some responses may be used very infrequently and affect 1019 
this measure significantly. To overcome this limitation, we calculated the entropy of the 1020 
response. More precisely, as the entropy of a uniform discrete random variable with 𝑛 possible 1021 
outcomes is ln(n), we used the exponential of the entropy of the response as a proxy to measure 1022 
the effective number of different responses utilized by each pDNN. 1023 
 1024 
Neural representational similarity (NRS) 1025 
 1026 
We computed the mean response of each neuron for each region individually while receiving 1027 
each of the distinct 380 operations. Then, we computed the correlation (across neurons) between 1028 
each of these mean responses, obtaining a 380x380 similarity matrix 𝑀 (shown in Figure 4B) 1029 
for each region. For practical visualization purposes we sort the rows and columns of 𝑀 so that 1030 
(1) addition problems come before subtraction problems, (2) among similar type of problems, 1031 
operations with smaller results come first, and (3) among similar type of problems with the same 1032 
result, operations with smaller first operands come first. To compute the NRS between addition 1033 
and subtraction problems (referred to as add-sub similarity) within a region, we average the 1034 
similarity between each pair of addition and subtraction problems. To compute the NRS between 1035 
addition problems (referred to as add-add similarity), we average the similarity between each 1036 
pair of two addition problems. To compute the NRS between subtraction problems (referred to as 1037 
sub-sub similarity), we average the similarity between each pair of two subtraction problems. 1038 
 1039 
Geometrical properties of result-manifolds 1040 
 1041 
Recent theoretical advances58,59 have defined geometrical metrics that are helpful to understand 1042 
separable manifolds in neural representations. They quantify the separability of different 1043 
manifolds using manifold capacity, which measures how easy it is to distinguish two random 1044 
subgroups of the manifolds. They show that this manifold capacity can be computed from 1045 
geometrical properties of the manifold, namely the average manifold radius, the average 1046 
manifold dimensionality, and the correlation between the center of manifolds. Manifold radius 1047 
reflects the size of the manifold, manifold dimensionality reflects the number of effective 1048 
dimensions within which the manifold evolves, and correlation between center of manifold 1049 
reflects the alignment of manifolds. We compute the manifold capacity, the manifold 1050 
dimensionality, and the correlation between manifold centers for each layer in pDNN separately 1051 
by using: https://github.com/schung039/neural_manifolds_replicaMFT.  1052 
 1053 
Step 7: Comparing effect of hyperexcitability in pDNN vs effect of MLD in children 1054 
 1055 
To compare children and pDNN at the neural level we compared their representational similarity. 1056 
We focused on representational similarity between addition and subtraction. In prior empirical 1057 
work 21 the correlation coefficients were normalized using the Fisher z-transform before 1058 
performing group level analysis. Here, to compare pDNN correlation coefficients with the 1059 
correlation coefficients obtained from fMRI data, we applied the inverse of the z-transform (i.e. 1060 
the tangent hyperbolic function) on the representational similarity from fMRI data reported in 21. 1061 
  1062 
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Figures 1263 
 1264 

 1265 

1266 
Figure 1. Design and analysis of personalized deep neural networks (pDNNs) for modeling 1267 
numerical cognition and learning disabilities. A. Schematic depicting a biologically inspired 1268 
deep neural network (DNN) model mimicking the dorsal visual pathway involved in numerical 1269 
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cognition. The model is trained to solve visually presented addition and subtraction problems. B. 1270 
Schematic illustrating the modulation of neural excitability in the model, based on brain imaging 1271 
studies suggesting a link between excitation/inhibition (E/I) balance and learning capabilities. 1272 
Neural excitability is measured as the gain G. C. Creating digital twins – personalized DNNs 1273 
(pDNNs) that match individual children's performance levels (assessed by NumOps) – by 1274 
adapting neural excitability. Based on previous brain imaging studies, we hypothesize that neural 1275 
hyper-excitability (i.e., higher G) is a plausible mechanism underlying mathematical learning 1276 
disabilities (MLD) compared to typically developing (TD) children. D. Validation of pDNNs by 1277 
verifying whether they exhibit the same representational deficits observed in brain imaging 1278 
studies, namely lower neural differentiation of numerical problems measured with Neural 1279 
Representational Similarity (NRS). E. Schematic depicting further analyses of how multiple 1280 
behavioral and representational aspects of the model evolve during training and with varying 1281 
levels of neural excitability. F. Investigation of the influence of additional training on pDNNs in 1282 
the MLD group and the associated changes in latent neural representations. This analysis aims to 1283 
uncover the potential for remediation and the neural mechanisms underlying the improvements 1284 
in numerical cognition following targeted training. 1285 
  1286 
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 1287 
Figure 2. Neural hyper-excitability reduces learning speed and accuracy in DNNs. A. 1288 
Learning trajectories of DNN models with different levels of neural excitability, measured as 1289 
neural gain G. Neural gain G is represented by color, varying from blue (G = 1) to yellow (G = 1290 
5). As neural excitability increases, the progression in accuracy across learning iterations slows 1291 
down, indicating a slower learning rate. B. Number of iterations required to reach an accuracy of 1292 
95% for different values of neural gain G. The number of iterations needed to reach the 95% 1293 
accuracy benchmark consistently increases with neural excitability (r = 0.94, p < 1e-7), 1294 
demonstrating that heightened excitability impairs learning efficiency. C. Changes in DNN test 1295 
accuracy with neural gain G for different iterations, represented by color ranging from blue 1296 
(iteration 0) to yellow (iteration 3800). Higher neural gain values are associated with lower test 1297 
accuracies across all iterations, suggesting that hyper-excitability hinders the model's ability to 1298 
generalize to new problem sets. D. Correlation between DNN test accuracy and neural gain G 1299 
across iterations. The negative correlation between test accuracy and neural gain remains 1300 
consistent throughout the training process. This indicates that the detrimental effect of hyper-1301 
excitability on learning and generalization persists across the training trajectory. *** p < 0.001. 1302 
  1303 
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 1304 
Figure 3. Personalized deep neural networks (pDNNs) tuned for neural excitability capture 1305 
individual differences in children's math performance and serve as in silico digital twins. A. 1306 
A distance metric between pDNN model accuracy and children's normalized math scores across 1307 
training iterations was used to identify the best matching point (iteration 800, dotted black line). 1308 
The red and blue lines represent the average distance for pDNNs tuned to match children with 1309 
mathematical learning disabilities (MLD) and typically developing (TD) children, respectively. 1310 
Gray lines show the average distance for pDNNs with randomly assigned neural excitability 1311 
levels, serving as a control. Shaded areas denote the range between the 5th and 95th percentiles 1312 
across children in each group. B. Distribution of the distance metric at iteration 800 for MLD 1313 
(red) and TD (blue) groups, compared to the random control (gray). The distance metric for both 1314 
MLD and TD groups is significantly lower than the controls (MLD: p < 1e-38; TD: p < 1e-46), 1315 
indicating a strong match between pDNNs and children's behavioral performance. C. 1316 
Distribution of the best-matched neural excitability levels (gain G) at iteration 800 for MLD and 1317 
TD groups. The neural excitability levels are significantly higher for pDNNs matched to MLD 1318 
children compared to those matched to TD children, suggesting that higher neural excitability is 1319 
associated with math learning difficulties. D. Comparison of behavioral performance 1320 
distributions between pDNNs and children at iteration 800. The normalized behavioral scores of 1321 
MLD children and their matched pDNNs do not differ significantly, and the same holds for TD 1322 
children and their matched pDNNs. Both MLD children and their matched pDNNs show 1323 
significantly lower behavioral scores compared to TD children and their matched pDNNs, 1324 
respectively (children: p < 1e-11; pDNNs: p < 1e-10). These results demonstrate that pDNNs 1325 
tuned for neural excitability accurately capture the individual differences in math performance 1326 
observed in children. ***  p < 0.001.  1327 
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 1329 
Figure 4. Hyper-excitability diminishes differentiation of neural representations across 1330 
pDNN layers. A. Observed pDNN NRS matrix across model layers (V1→IPS) for a low level of 1331 
neural excitability (G = 2.25). B. Observed pDNN NRS matrix across model layers (V1→IPS) 1332 
for a high level of neural excitability (G = 4). C-D. Relationship between pDNN NRS and neural 1333 
gain G for NRS between addition and subtraction problems, with linear regression lines (red) 1334 
showing the strength and direction of the correlation. Summary showing the evolution of NRS 1335 
measures across model layers (V1→IPS) for different levels of neural gain G, depicted as a color 1336 
gradient from blue (G = 1) to yellow (G = 5). NRS between addition and subtraction problems 1337 
(add-sub NRS) increases with neural gain across all layers, indicating reduced differentiation 1338 
between problem types. E-F. NRS between addition problems (add-add NRS) increases with 1339 
neural gain across all layers, suggesting reduced differentiation within problem types. G-H. NRS 1340 
between subtraction problems (sub-sub NRS) also increases with neural gain across all layers, 1341 
further confirming reduced differentiation within problem types. *** p < 0.001. 1342 
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 1344 
Figure 5. Digital twins predict children's neural differentiation deficits and validate the 1345 
excitability-based mechanism underlying math learning disabilities (MLD). A. Comparison 1346 
of NRS between addition and subtraction problems (add-sub NRS) across pDNN layers (V1 to 1347 
IPS) for models matched to children with MLD (red) and typically developing (TD) children 1348 
(blue). MLD pDNNs show significantly higher add-sub NRS compared to TD pDNNs across all 1349 
layers, indicating reduced neural differentiation between problem types. The effect size of the 1350 
difference in add-sub NRS between MLD and TD pDNNs increases along the network hierarchy, 1351 
suggesting a more pronounced deficit in higher-order processing regions. B. Correlation between 1352 
children's empirically observed add-sub NRS in the intraparietal sulcus (IPS), based on brain 1353 
imaging data, and the predicted add-sub NRS from their corresponding digital twin (behaviorally 1354 
matched pDNNs). The significant positive correlation (p < 1e-5) demonstrates that pDNNs 1355 
capture the individual variability in neural differentiation deficits observed in children. C. 1356 
Comparison of the correlation between predicted and observed add-sub NRS for behaviorally 1357 
matched pDNNs (blue) and randomly matched pDNNs (gray). The correlation for behaviorally 1358 
matched pDNNs is significantly higher than that of randomly matched pDNNs, validating the 1359 
importance of aligning neural excitability levels to individual behavioral profiles for predicting 1360 
neural deficits. These results support the neural validity of the pDNN models as digital twins and 1361 
highlight the critical role of neural excitability in shaping the neural representational deficits 1362 
observed in children with MLD. *** p < 0.001. 1363 
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 1365 
 1366 

 1367 
Figure 6. Neural hyper-excitability impairs precision of response and increases systematic 1368 
error in pDNN models. A. Increasing neural gain (excitability) yields more diffuse pDNN 1369 
response distributions across possible solutions, indicating declining precision. B. Numerical 1370 
systematic error increases with excitability. C. Numerical imprecision, measured by standard 1371 
deviation of responses, increases with excitability. D. The effective number of unique responses 1372 
used by pDNNs, estimated using the entropy of the response distribution, decreases with 1373 
increasing excitability. This suggests that higher excitability leads to a less diverse set of 1374 
responses, potentially indicating a less precise internal representation of the numerical solution 1375 
space. E. Comparing the behaviorally matched digital twins for TD and MLD, the numerical 1376 
systematic error is significantly higher (p < 1e-14) for MLD pDNNs compared to TD pDNNs. F. 1377 
Numerical imprecision is significantly higher (p < 1e-9) for MLD pDNNs compared to TD 1378 
pDNNs, aligning with empirical behavioral deficits observed in children with MLD. G. The 1379 
MLD pDNN uses significantly fewer unique responses compared to the TD pDNN (p < 1e-10), 1380 
further supporting the notion that hyper-excitability in MLD is associated with a less precise and 1381 
less diverse internal representation of numerical quantities. These results highlight the impact of 1382 
neural excitability on the precision and variability of behavioral responses in pDNNs. * p < 0.05, 1383 
*** p < 0.001. 1384 
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 1386 
Figure 7. Neural hyper-excitability degrades manifold geometry of latent representations in 1387 
the pDNNs. A-C. Three key manifold properties in the IPS layer of pDNNs change with neural 1388 
gain levels. A. Manifold capacity, reflecting the separability of neural representations, shows a 1389 
decrease with higher excitation, indicating that hyper-excitability makes it more difficult to 1390 
distinguish between different numerical manifolds. B. Manifold dimensionality, indicating the 1391 
complexity of the representational space, increases with greater neural gain, suggesting that 1392 
hyper-excitability leads to more complex and less efficiently organized representations. C. 1393 
Correlations between manifold centers, relating to the alignment of representations, increase with 1394 
neural gain, implying that hyper-excitability causes the centers of different numerical manifolds 1395 
to become more aligned, potentially leading to increased interference between representations. 1396 
D-F. At the best-fit iteration, MLD pDNNs (red) exhibit properties consistent with hyper-1397 
excitation compared to TD pDNNs (blue). D. Manifold capacity is significantly reduced in MLD 1398 
pDNNs, indicating less separable and more overlapping representations. E. Manifold 1399 
dimensionality is significantly higher in MLD pDNNs, suggesting more complex and less 1400 
efficient representational spaces. F. Correlations between manifold centers are significantly 1401 
higher in MLD pDNNs, implying suboptimal representations. These results demonstrate that 1402 
neural hyper-excitability, as observed in MLD, leads to degraded manifold geometry of latent 1403 
representations in pDNNs. *** p < 0.001. 1404 
  1405 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.04.29.591409doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591409
http://creativecommons.org/licenses/by/4.0/


 

 41 

 1406 
Figure 8. Additional training enables MLD digital twins to remediate behavioral but not all 1407 
neural representational deficits. A. The number of additional training iterations required for 1408 
MLD pDNNs to catch up to the accuracy level that TD pDNNs demonstrate at iteration 600 1409 
increases consistently with higher neural gain. B. MLD pDNNs require on average 2.7x the 1410 
training to reach the same performance level as TD pDNNs. C-L. Comparison of MLD pDNN 1411 
properties pre-training (iteration 800, best behavioral fit) versus post-additional training 1412 
(iteration 1700, performance caught up to TD levels). C-F. Properties of behavioral responses. 1413 
G-I. Similarity between neural representation (NRS). J-L Manifolds geometrical properties. C. 1414 
Deficits in accuracy, D. numerical systematic error, E. numerical imprecision, and F. effective 1415 
number of unique responses are remediated by additional training. However, deficits in NRS 1416 
persist G. across operations (add-sub NRS), H. across addition trials (add-add NRS) and I. 1417 
across subtraction trials (sub-sub NRS). Deficits in J. manifold capacity, K. manifold 1418 
dimensionality, and L. manifold center correlations normalize with additional training. These 1419 
results suggest that while behavioral deficits can be remediated through additional training, 1420 
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neural representational deficits persists in MLD pDNNs, but aberrant geometry of the underlying 1421 
manifolds normalize. * p < 0.05. *** p < 0.001. 1422 
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