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Abstract 
We developed a novel Proactive Reactive and Attentional Dynamics (PRAD) computational 
model designed to dissect the latent mechanisms of inhibitory control in human cognition. 
Leveraging data from over 7,500 participants in the NIH Adolescent Brain Cognitive 
Development study, we demonstrate that PRAD surpasses traditional models by integrating 
proactive, reactive, and attentional components of inhibitory control. Employing a hierarchical 
Bayesian framework, PRAD offers a granular view of the dynamics underpinning action 
execution and inhibition, provides debiased estimates of stop-signal reaction times, and 
elucidates individual and temporal variability in cognitive control processes. Our findings reveal 
significant intra-individual variability, challenging conventional assumptions of random 
variability across trials. By addressing nonergodicity and systematically accounting for the multi-
componential nature of cognitive control, PRAD advances our understanding of the cognitive 
mechanisms driving individual differences in cognitive control and provides a sophisticated 
computational framework for dissecting dynamic cognitive processes across diverse populations. 
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Introduction 
 
Human cognition is a dynamic process, which relies in part, on goal-directed beliefs about task 
characteristics, context-dependent flexible action control, the capacity to learn from a history of 
decisions and consequences, leading to moment-to-moment adaptation of response strategies to 
optimize behavioral outcomes 1-5.  Impairments in cognitive systems that regulate such dynamic 
processes underlying everyday cognitive functioning are a hallmark of psychopathology 6-10. 
Identifying latent cognitive factors that drive adaptive and maladaptive behavioral dynamics is 
critical for understanding individual differences in how cognitive processes unfold over time, 
and how their associated alterations in regulatory systems affect symptom presentation in 
neuropsychiatric disorders 11-18. However, conventional methods are unable to reveal multi-
componential latent constructs that govern dynamic cognitive control processes.  
 
Here, we develop Proactive Reactive and Attentional Dynamics (PRAD), a novel computational 
model to characterize and measure latent cognitive constructs that govern behavioral dynamics 
of action execution and inhibition, whose deficits are often associated with multiple psychiatric 
disorders including attention deficit hyperactivity disorder, autism, substance abuse, and 
schizophrenia. This model was applied to a response inhibition paradigm in the large-scale (N > 
7500) Adolescent Brain Cognitive Development (ABCD)19 study to uncover the mechanisms by 
which dynamic cognitive processes involved in response initiation and inhibition are regulated, 
and the nature of individual differences in the latent cognitive constructs associated with such 
adaptive and maladaptive regulation. 
 
Inhibitory control, the ability to withhold or cancel undesirable action, thought, and emotion, is 
fundamental to goal-directed behaviors 20-26. The stop-signal task (SST, Figure 1A) is a widely 
used paradigm27,28 to study inhibitory control mechanisms and their neural underpinnings. The 
SST involves making a response to a Go signal but inhibiting the prepared response when the Go 
signal is quickly followed by an infrequent Stop signal. The time interval between Go and Stop 
signals is called the stop-signal delay (SSD) and is experimentally manipulated. On stop signal 
trials with longer SSD, the prepotent Go response is cognitively further along, and more difficult 
to stop after detecting the Stop signal. The SST has been used in a variety of domains, including 
non-human primates 29-31, rodents 32-35, during development in children 20,36-38, through the adult 
human life span 39,40, in neurodiverse populations 21,22,41-45, psychiatric disorders 23,24,46-48, under 
the effect of medication 49,50 and intervention51-53, substance dependence 25,54,55, sleep disorders 
56,57, learning difficulties 58,59, eating disorders 26,60, in studies of pregnancy related changes 61, 
and genetic basis of inhibitory control 62. Understanding the dynamic cognitive mechanisms that 
underlie SST holds great promise for enhancing our knowledge of latent processes driving 
cognitive functioning. Despite its widespread use, the SST and the traditional computational 
models applied to interpret it face significant challenges that limit their explanatory power and 
practical utility. 

Current computational models of inhibitory control suffer from several limitations. In these 
models, the efficiency of an individual's inhibitory control is measured by estimating the latent 
stop-signal reaction time (SSRT). However, the SSRT cannot be measured directly and is 
typically estimated using a race model 63-65. One of the primary concerns with traditional SST 
analysis is the validity of SSRT measures under conditions that violate assumptions of such a 
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race model, including context and stochastic independence. Recent research66-68 has highlighted 
the severe implications of these violations, questioning the reliability of SSRT as a definitive 
measure of inhibitory control 66,69, although recent approaches have proposed model-based 
solutions to overcome some of these issues 70,71. The reliability and validity of inferred SSRT 
measures become more questionable in the presence of specific behavioral patterns that 
confound SSRT measurement 69,72,73, potentially leading to systematic bias in conventional 
measures of SSRT and inhibitory control. This critique underscores a critical gap in the current 
understanding and measurement of inhibitory mechanisms, pointing to the need for more 
quantitively precise models that can account for the complex dynamics of cognitive processes. 

Existing models of inhibitory control often fail to adequately differentiate between proactive and 
reactive control mechanisms. Proactive control refers to the anticipation and prevention of 
impulsive actions through the maintenance of goal-relevant information, whereas reactive 
control involves the suppression of an action in response to a stop signal 1,2,74.The dichotomy 
between these processes and their interaction with both top-down and bottom-up regulatory 
mechanisms remains insufficiently explored in current research paradigms, especially in terms of 
quantitative measurements of such interacting processes 75,76. Previous studies have modified the 
standard SST paradigm to probe the proactive component 77-81, introducing variability in task 
design, and rendering replication more challenging. While the dynamic belief model has been 
used to study proactive control in the SST 82,83, it captures trial-wise anticipation of a stop signal 
but is not feasible for estimating other latent components, such as reactive control 84. This 
theoretical gap hinders a comprehensive understanding of the multiple dimensions of inhibitory 
control and their implications for behavior and cognition. 

The concept of nonergodicity further complicates the interpretation of SST data. In nonergodic 
processes, the statistical patterns observed in a group do not necessarily reflect the patterns of 
individual cases. Thus, conclusions drawn from group averages can be misleading when applied 
to individuals. 85-88. There is growing evidence that psychological phenomena are frequently 
nonergodic 87. The acknowledgment of nonergodicity calls for dynamic, individualized 
approaches to analyzing cognitive data, challenging the conventional reliance on aggregated 
metrics and static models 89-99. 

To address these limitations, we developed an integrated computational model that incorporates 
dynamic modulation of behavior by multiple latent cognitive processes governing inhibitory 
control, which allow for complex sequential dependencies, do not make assumptions of context 
or stochastic independence, and establish quantitative measures for multiple components of 
reactive and proactive control. The PRAD model was implemented within a hierarchical 
Bayesian framework, allowing for the estimation of individual-level parameters and trial-level 
measures. This approach enables the identification and measurement of distinct components that 
characterize individual differences in inhibitory control, while also accounting for the temporal 
variability in cognitive processes (Figure 1B).  

We had five primary objectives in this study. Our first objective was to develop, implement, and 
validate PRAD, a novel computational cognitive model for inhibitory control that 
comprehensively accounts for the multi-componential dynamic processes that are not currently 
represented in extant models (see SI Table S1 for a complete list of features and SI text for 
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details of known issues that these features tackle as well as comparison of these features to some 
existing accounts of inhibitory control). PRAD provides a novel comprehensive account of 
dynamic reactive and proactive inhibition, providing more robust and dissociated measures of 
individual differences in inhibitory control (Figure 2). Our second objective was to demonstrate 
PRAD’s robustness across a wide range of measures and its ability to overcome limitations of 
conventional race models, including providing debiased estimates of SSRT. Our third objective 
was to investigate nonergodicity and systemic intra-individual variability in inhibitory control 
processes. Our fourth objective was to examine the distinct components of inhibitory control, 
including proactive delayed response (PDR) mechanisms and attentional modulation of stopping 
(AMS), and their dynamic interactions. Our fifth objective focused on evaluating PRAD's 
predictive power for performance across a broad spectrum of cognitive domains. This goal 
sought to validate PRAD's effectiveness beyond its initial context and explore its potential as a 
more precise tool for understanding the latent substrates of cognitive variability in standardized 
assessments.  
 
We demonstrate that the PRAD model effectively captures the latent processes of inhibitory 
control with a three-factor structure: proactive control, reactive control, and attention modulation 
of reactive control. The model's proactive control component significantly accounts for 
individual performance differences and adaptivity to errors and changing conditions. PRAD's 
cognitive control parameters also outperform traditional SSRT measures in explaining individual 
differences across various cognitive tasks, provide debiased measures of inhibitory control, and 
provide a better explanation of behavioral dynamics in children with diverse cognitive and 
demographic profiles. These findings validate the PRAD model and highlight its potential for 
clinical research and use in probing neural instantiations of cognitive dynamics. 
 
 
Results  
 
PRAD model overview 
 
The Proactive Reactive and Attentional Dynamics (PRAD) model integrates multiple 
components of inhibitory control, extending beyond traditional approaches. Figure 2A illustrates 
the model's structure, incorporating proactive, reactive, and attentional mechanisms. The go 
process is modulated by PDR, which is driven by a cognitive state switching mechanism and 
belief updating about stop signal delays. The stop process combines baseline reactive inhibition 
with attentional modulation effects. Figure 2B and SI Table S2 illustrate the mechanisms and 
summarize the key model parameters. Additional analysis demonstrated that the model shows 
strong parameter recovery (SI Figure S1). We applied PRAD to SST data from 7787 individuals 
from the ABCD dataset.  
 
PRAD reveals distinct cognitively plausible components of inhibitory control  
 
The model envisages a core reactive inhibitory process, modulated by attentional variations in 
stopping expectancies, and a dynamically adjusted proactive delayed response of the go process, 
all three of which affect observed inhibitory behavior (Figure 3A). Factor analysis of a subset of 
model parameters that are theoretically relevant to these three aspects of inhibitory control 
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revealed the robustness of this three-factor structure (CFI 0.997, TLI 0.977, RMSEA 0.045; 
Figure 3B, SI Table S3). Factor 1, representing proactive control, loaded heavily on parameters 
(𝜃!, 𝜃", 𝜇) that governed the trial level probability of engaging PDR mechanisms, and the 
adaptive belief updating about historical stop-signal delays that modulated the PDR duration. 
Factor 2, capturing basic reactive control (baseline SSRT), was dominated by parameters (δₛ, αₛ) 
governing the baseline stop process. Factor 3, reflecting attentional modulation that influences 
variations in trial-level SSRT, loaded strongly on parameters (𝛾!, 𝛾") influencing the dynamic 
adjustment of stopping expectancy, which in turn affects dynamic SSRT. Factors 1 and 3 were 
not correlated, but factor 2 shows low correlations with the other 2 factors (|r| = 0.085, 0.16; both 
p < 0.0001), suggesting related but distinct processes. Supplementary analysis (SI Table S4) 
reports control analysis showing that 1- and 2-factor models were not adequate, and a 4-factor 
model was not identifiable. 
 
The three factors explained a significant portion of individual differences in inhibitory control 
performance. Regression analyses using all individual-level model parameters significantly 
predicted various measures of inhibitory control, including PRAD stop-signal reaction time 
(SSRT; 𝑅# = 86%), observed stop-failure rate (SFR; 𝑅# = 65%), observed mean experienced 
stop-signal delay (xSSD; 𝑅# = 77%), SSRT coefficient of variation (SSRTCV;  𝑅# = 89%), as 
well as observed RT (𝑅# = 67%) and RT CV (𝑅# = 68%), all p < 0.0001. Importantly, 
parameters from each of the three factors contributed uniquely and significantly to these 
predictions, with standardized beta coefficients ranging from -0.86 to 0.80 (see SI Table S5). 
 
These results align with the theoretical constructs of proactive control, reactive control, and 
attentional modulation, and validate the model's ability to dissociate different aspects of 
inhibitory control.  
 
PRAD inferred SSRT shows systematic compensation for known biases in traditional SSRT 
 
PRAD-inferred SSRT demonstrated systematic compensation for known biases in traditional 
SSRT estimates28,67,69. Comparing model-based median SSRT (mean 340ms, SD 155ms) to non-
parametric integration method SSRT (iSSRT, mean 302ms, SD 135ms) revealed that traditional 
iSSRT estimates were lower by 38ms on average (t(7786) = -32.3, p < 0.0001), and showed a 
smaller degree of individual differences (SD lower by 20ms) between individuals (F(7786,7786) 
= 0.76, p < 0.0001). 
 
Crucially, PRAD SSRT estimates were significantly higher for conditions known to lead to 
underestimation of traditional SSRT (Figure 4A-E; SI Table S6). These included participants 
with higher right skew of RT (F(3,7783) = 21.9, p < 0.0001), larger RT slowdown (F(3, 7783) = 
9.3, p < 0.0001), high stop success rates (F(2,7784) = 76.8, p < 0.0001), higher go-omission rates 
(t(7785) = 3.4, p < 0.0001) and those classified as race-model violators (t(7785) = 28.9, p < 
0.0001).  
 
Additionally, PRAD revealed systematic differences in previously unexamined conditions, such 
as high RT variability (F(3,7783) = 9.2, p<0.0001), high RT kurtosis (F(3,7783) = 25.4, 
p<0.0001), high SSRT variability (F(3,7783) = 116, p<0.0001), and low correlations between 
SFR and SSD (F(3,7783) = 72.6, p<0.0001) (Figures 4F-I). 
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These results demonstrate PRAD's ability to provide more accurate and unbiased SSRT 
estimates across a wide range of performance patterns, particularly for individuals who deviate 
from typical performance profiles. 
 
PRAD tracks aggregate patterns in overt behavioral measures, outperforming conventional 
methods 
 
The PRAD model is implemented as a generative hierarchical Bayesian model, which generates 
posterior distributions for trial-level behavior for each individual based on the inferred 
parameters. PRAD demonstrated robust performance across various measures and outperformed 
control models (Figure 5A-F; SI Figure S2). SI Table S7 shows key observed measures at an 
aggregate level, and the summarized PRAD model posterior values corresponding to these 
observed measures. 
 
At the group level, PRAD accurately captured trends in stop failure rates and reaction times 
across different experimental contingencies (SSD, nSSD). Specifically, the posterior predictives 
generated by the PRAD model explained aggregate behavioral patterns including (i) non-linear 
S-shaped patterns of stop failure rate with increasing SSD (Figure 5A) and non-monotonicity at 
low SSD values, an indicator of violations of context independence 67; (ii) linear increase in stop-
failure RT with increasing SSD (SI Figure S2A), an indicator of the link between slower RT and 
better stopping performance, or the influence of SSD on RT; (iii) increasing variability in 
stopping accuracy (Figure 5B,D,F) with numbers of trials since encountering the last stop signal 
(nSSD), (iv) increasing variability in RT with SSD (SI Figure S2B), and (v) lower choice 
accuracies at low SSDs (SI Figure S2C). 
 
We also compared PRAD versus two control models – fixed stopping model (FSM) and random 
variability model (RVM); details of both are provided in the Methods. Crucially, the PRAD 
model outperformed both control models (FSM, RVM) on all of these aggregate measures. 
Importantly, control models failed to effectively capture the diverse patterns across different 
subgroups based on simple observed measures, such as whether SFR increased or decreased with 
SSD (Figures 5C,E) and nSSD (Figures 5D,F), while the PRAD model provides superior model 
fits for every single subgroup. 
 
RMSE distance from the observed aggregate curves (Figure 5G, SI Table S8) show that across 
trends based on different experimental contingencies, PRAD reduced RMSE by between 77% - 
80% for SFR, 13% - 45% for RT on stop failures, and 48% - 61% for choice accuracies on stop 
failure, compared to the FSM model. Similarly, PRAD reduced RMSE by between 58% - 66% 
for SFR, 45% - 50% for RT on stop failures, and 48% - 51% for choice accuracies on stop 
failure, compared to the RVM model.  
 
These results suggest that incorporating sequential adaptive processes is crucial for 
characterizing behavioral dynamics on the SST, which PRAD achieves better than conventional 
approaches.   
 
PRAD captures behavioral dynamics at the individual-subject level 



 8 

 
We then examined PRAD robustness at the individual participant level. We assessed how well 
the model posterior values generated by PRAD explain behavioral patterns at an individual level 
(mean values per individual). Individual subject-level fits showed strong correlations between 
PRAD model fits and observed data for multiple behavioral measures (SI Figures S3). Notably, 
individual-level comparisons showed stronger correlations (Figure 5H; SI Table S9) and lower 
RMSE (SI Table S10) between observed and predicted values for PRAD across almost all key 
measures compared to the RVM and FSM control models. This included go reaction time (r = 
0.91; p < 0.0001), stop-failure reaction time (r = 0.90; p < 0.0001), and stop-failure rate (r = 0.85; 
p < 0.0001), but importantly, also second order effects like post-go RTs (r = 0.92, p < 0.0001), 
post-stop RTs (r = 0.86, p < 0.0001), difference between stop and go RTs (r = 0.51, p < 0.0001), 
post-inhibitory differences in RTs (r = 0.45, p < 0.0001), and dynamic within-subject 
correlations like SFR vs SSD (r = 0.63, p < 0.0001) and SFR vs nSSD (r = 0.73, p < 0.0001). 
 
For a significant proportion of participants, observed and latent measures like RTs and SSRT 
show within-subject correlations with various sequential or experimental contingencies (SI 
Table S11). Analysis of intra-individual variability in Go RTs and SSRTs revealed that 
significant variance could be explained by model parameters, rather than random noise (SI 
Figures S4). For reaction time coefficient of variation (RTCV), 72% of the variability was 
explained by model parameters. For SSRT coefficient of variation (SSRTCV), 81% was 
explained by model parameters. PRAD’s ability to account for the wide range of variability and 
individual differences is reflected in the Kullback-Leibler divergence between the distribution of 
observed RT related measures and model posterior values of these observed measures. PRAD 
reduces the KL divergence (thus providing a closer match to the observed range of individual 
differences) for RT related distributions by between 29%-89% compared to RVM and 4%-83% 
compared to FSM (SI Table S12). These results demonstrate that PRAD can accurately capture 
behavioral variability at both the individual-subject level and in terms of individual differences 
between subjects. Supplementary analysis shows that a large proportion of this explained 
variance is attributable to novel adaptive model parameters. See SI text for additional details on 
intra-individual variability and estimates of PRAD latent dynamic measures (SI Table S13). 
 
Additionally, we measured Deviance information criteria (DIC), which assesses model fit 
appropriately penalized for model complexity. In spite of the additional complexity, PRAD 
resulted in lowest (best) DIC values for 60% of the individuals, compared to 22% for the RVM, 
and 18% for the FSM model, suggesting that the additional complexity was necessary to explain 
behavior in a majority of individuals. 
 
Visualizing trial-by-trial variability in PRAD components  
 
To visualize the dynamic interplay of key PRAD components and their trial-by-trial variability at 
the individual subject level, we examined detailed time courses of model-derived measures for 
representative participants. Figure 6 illustrates the dynamics involved in stop trials from a single 
participant, showing how stopping expectancy, SSRT, PDR, and RT interact on a trial-by-trial 
basis. Stopping expectancy, modulated by attentional regulation, fluctuated considerably from 
trial to trial and showed an inverse relationship with SSRT. This revealed how dynamic 
attentional processes can influence inhibitory performance on a moment-to-moment basis. We 
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also observed that task difficulty (represented by SSD) and stopping efficiency (SSRT) varied 
substantially across trials, with their sum (SSD+SSRT) providing insight into the overall 
challenge of inhibition on each trial.  Our analysis of stop-failure trials revealed complex 
relationships between PDR, SSD+SSRT, and RT, demonstrating how proactive and reactive 
mechanisms interact to determine inhibitory outcomes. 
 
To further elucidate these dynamics, we closely examined three specific stop trials with varying 
levels of difficulty. We found that successful inhibition could occur even on more difficult trials 
(higher SSD) when compensatory mechanisms like increased stopping expectancy or heightened 
PDR were engaged. Conversely, easier trials could result in failures when these compensatory 
mechanisms were absent. 
 
These observations highlight PRAD's capacity to capture and explain the substantial intra-
individual variability in inhibitory control processes, accounting for the complex interplay 
between task parameters, attentional modulation, and proactive control strategies that occur on a 
trial-by-trial basis. 
 
PRAD reveals nonergodicity in behavioral dynamics  
 
PRAD revealed substantial evidence for nonergodic processes in inhibitory control.  
Specifically, the model uncovered differences between within-subject and between-subject 
correlations for both latent and observed measures (Figures 7A-D), indicating nonergodicity. 
For example (SI Table S14), we observed opposite patterns of within-subject and between 
subjects correlations, in the associations between mean experienced stop-signal delay and stop-
failure rate (average within r = 0.22, between = -0.77), RT and probability of proactive state 
(average within r = 0.42, between = -0.05), RT and SSRT (average within r = 0.56, between = -
0.13), stop-failure rate and probability of proactive state (average within r = -0.31, between = 
0.06), SSRT and average proactive delay (average within r = 0.01, between = -0.39).These 
divergences suggests that within-subject and between-subjects effects can differ significantly, 
reflecting nonergodicity of behavioral dynamics.  
 
Proactive Delayed Response (PDR) mechanisms in inhibitory control 
 
PRAD revealed the substantial contribution of PDR mechanisms to inhibitory control. Across 
individuals, proactive cognitive states occurred on an average of 78% of trials (2.5th to 97.5th 
percentile 3-98%), with PDR accounting for approximately 28% (2.5th to 97.5th percentile 2-
51%) of average reaction times of 515ms (mean PDR = 150ms, 2.5th to 97.5th percentile 8-
322ms; Figure 8A).  
 
Between subjects, the average PDR is associated with both the mean RT (r = 0.59, p < 0.0001) of 
responses as well as RTCV across trials (r = -0.51, p <0.0001), and is negatively correlated with 
SFR (r = -0.59, p < 0.0001), and positively correlated with xSSD (r = 0.61, p <0.0001). The 
variability in PDR (PDRCV) is correlated with RTCV (r = 0.36, p <0.0001). Linear regressions 
(SI Table S15) show that across individuals, PDR is significantly related to SFR (𝑅# = 0.48,
𝛽 = −0.44, 𝑝 < 0.0001) and xSSD (𝑅# = 0.46, 𝛽 = 0.48, 𝑝 < 0.0001) even after controlling 
for SSRT. The results demonstrate that individuals with longer delayed responding show more 
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successful inhibitory control (lower SFR, higher xSSD) by appropriate modulation of RTs, even 
after controlling for the effect of SSRT on successful inhibition. Regression controlling for the 
influence of average experienced SSD and SSRT shows that the average probability of proactive 
states is significantly related to SFR (𝑅# = 0.65, 𝛽 = −0.15, 𝑝 < 0.0001). Within-subject 
regressions also show that after controlling for SSRT, SSD, and variable drift rate across trials, 
the probability of proactivity, but not the length of proactive delay, is significantly related to 
stop-failures (SI Figure S5). 
 
Individual differences in PDR were characterized by three key parameters: baseline proclivity for 
proactive control (𝜃!), degree of adaptive or maladaptive error monitoring (𝜃"), and persistence 
of belief updating that affected the tracking of stop-signal delays (μ).  
 
Higher baseline proactivity (θ!) was positively associated with increased PDR (r = 0.44, p < 
0.0001) but not so with RT (r = -0.07, p<0.0001), suggesting that PDR mechanisms may be 
linked to core capabilities, and individuals with faster processing speeds may also have improved 
top-down PDR regulation. Baseline proclivity for proactive control (𝜃!) is also correlated to 
lower RT coefficient of variability (r = -0.29, p <0.0001). 
 
Persistence in belief updating (μ) affected the absolute error between tracked and current stop-
signal delays (r = 0.42, p < 0.0001), with lower μ values associated with higher recency bias, and 
more accurate dynamic SSD tracking, and hence more well-calibrated PDR (Figure 8B). 
 
Error monitoring (𝜃") influenced the adaptivity of PDR following errors (Figures 8C-D), with 
adaptive individuals (𝜃" < 0) showing an increase in probability of PDR following stop-failures, 
while maladaptive individuals (𝜃" > 0) showed a decrease. For individuals with 𝜃" < 0 (62% of 
individuals), the delayed response states post stop-failure increases (adaptively) to 90% 
compared to 73% post go-omission. For individuals with 𝜃" > 0, delayed response states post 
stop-failure are (maladaptively) 55%, compared to 77% post go-omission. The resulting 
differences in delayed response states manifest as a difference in reaction times (since delayed 
responding increases RT), between post stop-failure and post go-omission trials. This difference 
depends on whether individuals demonstrate adaptive (mean increase of 37ms) or maladaptive 
(mean decrease of 25ms) values of 𝜃". Higher values of 𝜃" lead to higher go-omission rates (r = 
0.527, p < 0.0001), and lower values of 𝜃" lead to higher post-inhibitory error effects, with a 
negative correlation between 𝜃" and the difference between post-stop error and post-go error RTs 
(r = -0.38, p < 0.0001). 
 
These results demonstrate that individual differences in average PDR levels as well as PDR 
variability are influenced by differences in baseline cognitive states, persistence in belief 
updating, and error monitoring processes. These results also showcase how the model captures 
post-inhibitory effects100 by adaptive or maladaptive modulation of the proactive inhibitory 
channels. 
 
Attentional Modulation of Stopping (AMS) mechanisms in inhibitory control 
 
Attentional Modulation of Stopping (AMS) emerged as a crucial component of inhibitory control 
in the PRAD model. AMS is governed by two key parameters: attention-based adaptivity (γ₁) 
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and attention length (γ0). These parameters modulate the stopping expectancy which in turn 
affects the SSRT on a trial-by-trial basis. 
 
Across participants, the average stopping expectancy ranged from 0.43 to 0.66 (2.5th to 97.5th 
percentile). Across all trials and participants, the stopping expectancy ranged from 0.38 to 0.71 
(2.5th to 97.5th percentile). This stopping expectancy is the implicit expectation about the 
probability of encountering a stop signal; it is the initial bias of the stopping drift diffusion 
process, modulating the baseline reactive stopping process. Linear regression (SI Table S16) 
reveals that after controlling for stop process drift, response thresholds, and non-decision time 
(i.e., the remaining parameters affecting SSRT), the AMS driven stopping expectancy still has an 
influence on SSRT (𝑅# = 0.84, 𝛽 = −0.21, 𝑝 < 0.0001).  
 
The variability in stopping expectancy represents the strength of the AMS effect, and the 
coefficient of variation of stopping expectancy ranged from 0.005 (2.5th percentile; weak AMS 
effect) to 0.229 (97.5th percentile; moderate AMS effect). The SSRTCV is positively correlated 
with variability in stopping expectancy (r = 0.55, p <0.0001). Linear regression (SI Table S16, 
𝑅# = 0.83)	𝑠hows that average stopping expectancy 	(𝛽 = 0.36, 𝑝 < 0.0001) and coefficient of 
variation of stopping expectancy 	(𝛽 = 0.55, 𝑝 < 0.0001) have a significant influence on 
SSRTCV even after controlling for the effects of stop process drift rate and stop process decision 
threshold. 
 
To further quantify the impact of attentional modulation on stop process dynamics across our 
sample, we analyzed subgroups based on their attentional modulation parameter (γ₁). Analysis 
revealed that 57% of participants showed decreasing attentional control (γ₁ < 0) as the number of 
trials since the last stop signal increased, while 43% showed increasing control (γ₁ > 0). Here 
increasing attentional control refers to increasing bias of the stopping process, which on the 
presentation of a stop signal stimulus would result in faster SSRTs. 

We found significant differences between these subgroups in several key measures as a function 
of the number of trials since the last stop signal (nSSD). Changes in stopping expectancy with 
nSSD (Figure 9A) showed a divergent trend between subgroups (t(7785) = 839, p < 0.0001), 
with the γ₁ > 0 group maintaining higher expectancy as nSSD increased (average r = 0.96), while 
the γ₁ < 0 group showed decreasing expectancy (average r = -0.97). This translated to significant 
differences in the correlation of SSRT (Figure 9B) and nSSD between subgroups (t(7785) = -
157, p < 0.0001), and correlation of observed SFR (Figure 9C) and nSSD between subgroups 
(t(7785) = -52, p < 0.0001), with the γ₁ > 0 group showing more stable performance, in terms of 
reducing SFR with nSSD (average correlation -0.21 vs 0.16). Thus, AMS parameters 
significantly influenced patterns of stop-failure rates. 

AMS processes also provided a continuous process explanation for what have previously been 
termed trigger failures 101-103, or assumed failures to initiate the stopping process (Figure 9D). 
The AMS mechanism in the PRAD model allowed the distribution of SSRTs to include higher 
valued SSRTs on some trials. As a result, the total SSD + SSRT were higher than the 90th 
percentile individual RT for 14% of stop trials across individuals (95% CI from 0% to 82%; 
average 5% for stronger factor 2 and 22% for weaker factor 2; SI text for more details). The 
AMS modulation, which allows for greater trial-level variability in the SSRT thus results in a 
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higher degree of SSRT being higher than the typical RTs, especially for participants low on 
factor 2 (weak reactive inhibition), as seen in Figure 9D. Such trials, in the absence of the PRAD 
model would be difficult to explain and be classified as trigger failures within the traditional 
account. 
 
The distribution of SSRT and RT (Figure 9E) across the sample revealed substantial individual 
differences, with SSRT showing greater between-subject variability (CV = 0.44) compared to RT 
(average CV = 0.16). Finally, we found that the log ratio of SSRT/RT (Figure 9F, SI Table S16) 
was significantly influenced by both stop process drift rate (β = -0.27, p < 0.0001) and threshold 
(β = 0.63, p < 0.0001), accounting for 74% of the variance in this measure.  

These findings demonstrate the pervasive influence of attentional modulation on stop process 
dynamics across our sample, highlighting its role in explaining individual differences in 
inhibitory control performance. See SI text for additional details on AMS mechanisms and 
trigger failure explanations. 

Dynamic interactions between proactive and reactive control processes 
 
PRAD uncovered complex interaction dynamics between proactive and reactive control 
mechanisms. Figure 10 demonstrates the variability in PDR and AMS processes across 
individuals, highlighting how different combinations of these processes can lead to similar 
overall performance but through distinct cognitive mechanisms. SI text and SI Figure S6 further 
elucidate these interactions between proactive and reactive processes.  
 
These results highlight the importance of considering the dynamic interplay between different 
control mechanisms when characterizing individual differences in inhibitory control.  
 
PRAD better predicts cognitive performance on multiple NIH Toolbox tasks 
 
PRAD parameters demonstrated superior predictive power for performance on NIH Toolbox 
cognitive tasks compared to traditional SSRT measures. Using support vector machines to fit the 
overall NIH cognitive toolbox scores, we found that adjusted R² improved from 6.3% to 27.7% 
when using PRAD parameters instead of traditional iSSRT measures (Figure 11A). The 
correlations between actual and fitted values increased from 0.25 to 0.53 (Figure 11B). Cross-
validated results confirmed this pattern, with PRAD parameters maintaining higher predictive 
power (adjusted R² = 15.3%; correlations 0.40) compared to iSSRT (adjusted R² = 4.6%; 
correlations 0.22) (Figure 11C-D).  
 
Similar improvements were observed for individual NIH cognitive toolbox tasks and subscores, 
including Flanker Inhibitory Control, Dimensional Change Card Sort, and Pattern Comparison 
Processing Speed tasks (SI Table S17; Figure 11). 
 
These findings suggest that PRAD parameters capture generalizable aspects of cognitive control 
that extend beyond the specific context of the stop-signal task, providing a more comprehensive 
characterization of individual differences in cognitive abilities. 
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Reducing biases in inferences about nontypical subpopulations 
 
PRAD provides improved fits to data compared to the control models. For some of the key 
measures – RT, RT SD, SFR, and correlation between SFR and SSD – we evaluated the absolute 
value of residuals based on both the PRAD and RVM models (SI Table S18). The effect sizes 
(Cohen’s d) for improved fits on these measures for PRAD vs RVM range from 0.33 to 1.27. 
 
For each measure, we then evaluated the mean absolute residuals by population subgroups based 
on cognitive ability (median split using NIH cognitive toolbox scores), age (median split), and 
family income (based on income lower than or greater than $50k annually). We computed the 
bias against nontypical subgroups by comparing these mean absolute residuals between the 
nontypical and typical subgroups (lower vs higher cognitive ability, younger vs older children, 
lower vs higher family income).  
 
While both PRAD and RVM models demonstrated bias (relatively better fits for typical vs 
nontypical subgroups), this bias was significantly lower in the PRAD model vs RVM for RT, RT 
SD, and correlation between SFR and SSD. The percentage reduction in bias (SI Figure S7) 
across these three measures ranged from 27%-65% (Cohen’s d 0.16 – 0.25) for cognitive 
subgroups, 39%-68% (Cohen’s d 0.07 – 0.23) for age based subgroups, and 24% to 71% 
(Cohen’s d 0.09 – 0.21) for income based subgroups. Importantly, to identify a reduction in bias, 
we ensured that the PRAD model showed lower mean absolute value of residuals for both typical 
and nontypical subgroups compared to RVM and also showed a reduction in difference between 
these. 
 
 
Discussion  
 
We developed and validated a novel computational model of Proactive, Reactive, and 
Attentional Dynamics (PRAD), that characterizes latent proactive, reactive, and attentional 
components underlying inhibitory control. We leveraged a very large dataset (N > 7,500) of 
children ages 9-10 from the NIH ABCD study, which allowed us to probe distinct sources of 
response intraindividual variability in ways that were previously not possible. The ABCD study 
provides a unique opportunity to investigate cognitive processes at an unprecedented scale, with 
a sample size that far exceeds most previous studies in the field. This large dataset enabled us to 
conduct detailed analyses at both the group and individual levels, as well as to examine cognitive 
dynamics at the single-trial level. PRAD demonstrates robustness to violations of context 
independence, a limitation of extant models. PRAD model parameters provide a better 
explanation of individual differences in performance across a range of executive function, 
attention, processing speed, language, and learning/memory tasks compared to conventional 
models. We delineate specific mechanisms of proactive control and attention modulation, 
demonstrating their interaction and ability to compensate for weak reactive inhibitory control. 
PRAD as a sophisticated, multicomponent, model offers a dynamic framework for precisely 
characterizing goal-directed behaviors and meaningfully delineating individual differences in 
cognitive control processes and their functional consequences. These advances will be critical for 
examining dynamic neurocognitive mechanisms of inhibitory control in diverse populations. 
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PRAD model provides a robust framework for understanding inhibitory control dynamics 
 
Our first goal was to develop a new computational model of response inhibition which explicitly 
accounts for proactive control, overcomes limitations of conventional race models of reactive 
control, and explicitly measures sources of intraindividual response variability rather than 
treating it as random noise. We demonstrate that PRAD provides a strong fit to the data at both 
the aggregate and individual levels. Linear regressions showed that nearly all model parameters 
(SI Table S5) significantly predicted conventional measures of inhibitory control and sources of 
variance known to affect it. Our model involved three components of inhibitory control: a basic 
Go and reactive control process, a dynamic proactive delayed response mechanism, and a 
dynamic attention modulation mechanism (Figure 2). Validating the model's theoretical 
constructs, a factor analysis revealed three interpretable factors - proactive control, reactive 
control, and attention modulation (Figure 3). These results demonstrate that PRAD is a robust 
cognitive framework for distinguishing among three dissociable pathways of response inhibition 
beyond reactive control alone 104-106. PRAD parameters that comprise each latent pathway 
reliably capture individual differences to more precisely delineate the emergent function of 
cognitive control and contribute towards the development of a richer theoretical framework 107. 
 
PRAD overcomes limitations of previous approaches and debiases SSRT estimates and 
inferences about non-typical populations 
 
Traditional SSRT estimates are prone to biases when assumptions of context and stochastic 
independence are violated. PRAD does not rely on these assumptions, allowing for sequential 
processes to modulate both Go and Stop processes. Apart from the fact that traditional measures 
of SSRT cannot capture trial-level variability in SSRT or related cognitive dynamics, another big 
limitation is that they have been shown to be biased and unreliable under certain conditions. 
Specifically, it has been shown that estimates based on the independent race model can be biased 
67, and suffer from underestimation  – particularly when participants show a higher right skew of 
RT28,69, when participants show a larger slowdown in RT 69, when stop success rates are very 
high, when go omission rates are higher 28, and when stop RTs are longer than go RTs 28. The 
model's robustness was tested against conventional SST estimates using the heterogeneous 
ABCD dataset, which included performance patterns that violate race model assumptions. PRAD 
effectively compensated for known, systematic biases in conventional measures, particularly 
when stop success rates exceeded 75%, go-omission rates exceeded 20% and for violators of 
context independence. 
 
Specifically, PRAD revealed that the degree of SSRT underestimation in race models was larger 
for participants with slower reaction times, greater RT slowdown, higher stop success rates, 
higher go-omission rates, and for violators of context independence. Results demonstrated that 
PRAD robustly identifies and characterizes response inhibition even when assumptions of the 
race model and context independence are violated, effectively compensating for known, 
systematic biases in conventional measures. Thus, PRAD effectively characterizes and rectifies 
biases inherent in traditional cognitive control models. This is especially important when 
investigating neurodevelopmental disorders and older adults who exhibit diminished 
performance and greater variability. 
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The detection of other systematic patterns of differences from non-parametric methods (Figure 
4), while exploratory, is indicative that there may be other previously unexamined specific 
patterns of behavior that lead to biases in traditional non-parametric iSSRT estimates, that can be 
detected by the PRAD models. 
 
Additionally, compared to control models, PRAD more effectively captures the full spectrum of 
cognitive heterogeneity present in both typical and non-typical or under-represented developing 
populations, as demonstrated by the reduction in bias of inferences (SI Figure S7) for nontypical 
subgroups based on cognitive abilities, age, and family income.  
 
Nonergodicity in cognitive dynamics revealed by PRAD 
 
Nonergodicity in a behavioral context occurs when statistics of a behavior over time (within-
individual dynamics) do not converge to statistics of the behavior over individuals (between-
individual dynamics) 108. In other words, nonergodic processes exhibit different inferences when 
behavioral dynamics are analyzed at the within-individual level compared to the between-
individual level. This distinction is crucial because within-subjects conclusions are often drawn 
from between-subjects inferences 109. Yet, such generalizations are only valid for ergodic 
processes 110. 
 
In our study using the SST and the PRAD model, we found strong evidence for nonergodicity in 
cognitive dynamics related to response inhibition. Specifically, we observed that the 
relationships between different cognitive processes, such as proactive control, reactive control, 
and attentional modulation, exhibited different patterns when analyzed within individuals over 
time compared to between individuals (Figure 7). Moreover, the relationship between 
probability of proactivity and stop-failure rate showed opposite patterns within and between 
individuals (Figure 7). These findings suggest that the interactions among cognitive processes 
underlying response inhibition are nonergodic, and that within-individual dynamics cannot be 
fully captured by between-individual analyses. 
 
The implications of these findings are twofold. First, they highlight the importance of 
considering individual differences in cognitive dynamics when studying response inhibition and 
other cognitive processes. Group-level analyses may not adequately capture the complex, time-
dependent relationships between cognitive processes within individuals. Second, the presence of 
nonergodicity along with individual differences in within-subject dynamics suggest that 
personalized approaches to understanding and modifying cognitive control deficits may be 
necessary. Interventions targeting specific cognitive processes, such as proactive control or 
attentional modulation, may have different effects depending on an individual's unique cognitive 
dynamics. 
 
Integrated modeling of proactive inhibitory control   
 
Proactive control, the ability to anticipate and prepare for forthcoming events, is often neglected 
in conventional models. PRAD explicitly models proactive control using dynamic parameters 
that capture trait-like and state mechanisms distinguishing proactive delayed responses on a trial-
by-trial basis. A key finding is the substantial contribution of proactive control processes, beyond 
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just reactive control, in shaping inhibitory performance. PRAD revealed that across individuals, 
over 75% of trials engaged some form of proactive control, with an average delay of 150ms 
constituting nearly 30% of average reaction times. Crucially, longer proactive delays were 
associated with more successful inhibition, underscoring the pivotal yet underappreciated role of 
proactive control in SST performance. This echoes a few previous findings that revealed 
negative association between proactive control and SSRT and suggested that better proactive 
control is related to faster stopping speed 79,81. It is noteworthy that these previous studies relied 
on additional experimental manipulation to probe proactive control whereas PRAD can identify 
proactive control components from the standard SST. Such studies with experimentally 
manipulated versions of the SST task have estimated go response delays in the range of 100-
140ms79,111,112, similar to the PRAD inferred average of 150ms 
 
PRAD's latent parameters shed light on how individual differences in baseline proactive control 
tendency, tracking of stimuli in memory, and adaptive vs maladaptive error monitoring 
dynamically influence the manifestation of proactive control. Baseline proactive control 
tendency was the largest contributor to overall proactive delayed responding, followed by 
working memory and error sensitivity. Memory recency bias correlated with individual 
variability of proactive delay. PRAD differentiated adaptive and maladaptive error response 
patterns, which manifested as differences in reaction times. Such patterns likely have utility in 
characterizing cognitive control subtypes in typical development and psychopathology. 
 
These findings have important implications. Previous models largely focused on reactive control, 
which is important for responding to unexpected stimuli in the environment. However, many 
daily life situations require proactive control to minimize the need for reactive inhibition and 
reduce impulsivity. As proactive control is generated by an individual's goals, explicit 
measurements of it may have greater ecological validity in characterizing everyday response 
tendencies and psychopathology. 
 
Attentional modulation plays a key role in shaping inhibitory control dynamics 
 
PRAD also revealed that attentional modulation, based on individual differences in latent 
measures of sustained attention, affects intra-individual variability in SSRT and stop failure rate. 
We postulated that sustained attention modulates expectancy of stopping, which is influenced by 
the duration since the last stop signal was encountered. In PRAD, this stopping expectancy is 
governed by the parameter γ1. Negative values of γ1 indicate a decline in expectancy and a 
corresponding decrease in attentional control over the reactive stop process. Conversely, positive 
values of γ1 indicate a rise in expectancy and an amplification of attentional control over the 
reactive stop process. We found that γ1 influences the bias of the stop drift process, thereby 
modulating the baseline reactive inhibition.  
 
Notably, linear regression revealed that even after controlling for stop process drift, response 
thresholds, and non-decision time, attentional modulation, as indexed by γ1, still has a significant 
influence on SSRT. The average attentional modulation was found to significantly affect 
variability in SSRT and was correlated with SSRT coefficient of variation. Furthermore, there 
was a notable within-individual correlation between stop-failure rates and trials since the last 
stop trial, highlighting the dynamic nature of attentional modulation on inhibitory control.  
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These findings underscore the pivotal role of attentional modulation and individual differences in 
latent measures of sustained attention in shaping intra-individual variability in SSRT and stop 
failures. Our results advance the understanding of how the dynamics of inhibitory control are 
influenced by stopping biases and highlight the intricate interplay between attentional 
modulation and inhibitory control. The ability of the PRAD model to capture these complex 
relationships provides a more comprehensive and nuanced view of the cognitive processes 
underlying response inhibition, which may have important implications for understanding 
inhibitory control deficits in various clinical populations.  
 
PRAD better predicts cognitive task performance on a wide range of NIH toolbox tasks 
 
The PRAD model significantly enhances our ability to predict cognitive task performance across 
a spectrum of domains assessed by the NIH Toolbox Cognitive Battery. Specifically, our 
analysis revealed that parameters derived from the PRAD model outperformed traditional SSRT 
metrics for explaining individual differences in tasks measuring executive function, attention, 
processing speed, language, and learning/memory (Figure 11). The NIH Toolbox is an integral 
component within the Research Domain Criteria (RDoC) framework, utilized for assessing a 
wide range of cognitive functions across various disorders and developmental stages. This 
comprehensive toolset enables researchers to bridge cognitive performance with underlying 
neural and psychological mechanisms, making the PRAD model's predictive power particularly 
valuable. 
 
Our findings lend substantial external validity to the PRAD model, underscoring its utility in 
representing latent processes crucial for a broad range of cognitive tasks. This is crucial as the 
RDoC framework aims to understand psychiatric disorders through a dimensional approach that 
transcends traditional diagnostic categories. By aligning PRAD with tasks from the NIH 
Toolbox, our findings highlight the model's capacity to capture cognitive processes that are 
foundational across multiple domains of function and dysfunction. 
 
Standard neuropsychological assessments often fall short in isolating specific control processes 
that contribute to cognitive task performance. This limitation is addressed by the PRAD model's 
process specificity, which enables a more nuanced characterization of control deficits. For 
instance, traditional tests might not differentiate between an individual's inherent proactive 
control capabilities and their reactive control responses under pressure. In contrast, PRAD's 
detailed parameterization allows for the disentanglement of these processes, offering insights 
into how specific aspects of control contribute to overall task performance. 
 
Moreover, the PRAD model's ability to predict performance across diverse cognitive domains 
validated by the NIH Toolbox not only reinforces the model's external validity but also 
emphasizes its potential in identifying fundamental control mechanisms that are broadly 
applicable across various cognitive tasks. This advance sets the stage for future research aimed at 
integrating cognitive modeling with clinical diagnostics and therapeutic interventions, guided by 
the principles of the RDoC framework. 
 
Implications for probing heterogeneity and intraindividual variability 
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Our modeling and insights have important implications. The availability of dynamic trial-level 
latent cognitive parameters allows for rigorous quantitative investigations of nonergodic neural 
processes involved in inhibitory control. The key factors tackled in our work – debiased SSRT 
measurements for extreme performers, debiased inferences for non-typical or under-represented 
subgroups, heterogeneity in intraindividual variability, and heterogeneity in proactive, top-down, 
and bottom-up regulatory processes contributing to modulation of inhibitory control may become 
even more important in clinical and neurodiverse populations. 
 
Moreover, the distinction between reliance on proactive versus reactive control mechanisms, as 
illuminated by the PRAD model, offers a refined lens through which maladaptive behaviors and 
transdiagnostic symptoms can be understood. Individual differences in these control strategies 
could account for the wide variability in cognitive performance and behavioral outcomes 
observed across and within psychiatric disorders. This understanding holds significant promise 
for tailoring interventions to target specific cognitive control deficits, moving towards a more 
personalized approach in clinical practice. For example, an overreliance on reactive control and a 
diminished capacity for proactive control may contribute to impulsive behaviors and difficulty 
with goal-directed planning, which are common features of many psychiatric disorders. By 
considering individual differences in these control mechanisms, PRAD can help to elucidate the 
cognitive processes that may underlie common symptoms across different diagnostic categories, 
in line with the RDoC approach. More broadly, PRAD exemplifies the utility of computational 
approaches in unraveling the complex dynamics of cognition. It paves the way for developing 
models that can better capture heterogeneity in cognitive processes across populations, 
advancing our understanding of mechanisms underlying adaptive and maladaptive behavior. 
 
 
Conclusion 
 
PRAD provides a powerful computational framework for dissecting the intricate dynamics of 
inhibitory control in human cognition. The PRAD model effectively characterizes latent 
proactive, reactive, and attentional components underlying inhibitory control, offering significant 
implications for understanding the interplay between proactive and reactive control mechanisms. 
The strong influence of proactive control processes on behavioral variability suggests that factors 
previously attributed to reactive inhibitory control failures may reflect breakdowns in proactive 
control. By integrating proactive, reactive, and attentional mechanisms, PRAD advances our 
understanding of the cognitive underpinnings of inhibitory control and individual differences 
therein.  
 
The comprehensive and dynamic nature of PRAD provides a robust framework for 
characterizing cognitive control variations across diverse populations. By leveraging 
computational models like PRAD, we anticipate advancing our understanding of the mechanistic 
accounts of cognitive disruptions associated with psychopathology. The availability of dynamic 
trial-level latent cognitive parameters allows for holistic investigation of nonergodic neural 
processes involved in inhibitory control, supporting the RDoC framework. 
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The model's ability to tackle nonergodic processes and systematic biases for non-typical 
populations enables examining neural mechanisms of control in diverse and clinical groups.  
PRAD's process specificity and explanatory power highlight its potential for elucidating control 
deficits in psychopathology and informing individualized interventions. More broadly, PRAD 
exemplifies the utility of sophisticated computational approaches in unraveling the complex 
dynamics of cognition. It paves the way for developing models that can better capture 
heterogeneity in cognitive processes across populations and advancing our understanding of 
mechanisms underlying adaptive and maladaptive behavior. 
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Materials and Methods 
 
Participants and inclusion criteria 
The present study used a sample of N = 7787 from the Adolescent Brain Cognitive Development 
(ABCD) study. The ABCD study is an ongoing, longitudinal study within the United States that 
follows a nationally representative sample of children aged 9–10 at baseline 113,114. Data were 
from the baseline visit of the ABCD study115 (Collection #2573). 9355 participants had two 
complete runs of the SST task and had data that were successfully fit with the PRAD model, 
including checks for convergence. We then excluded participants who had a glitch reported in 
the task presentation (N = 257) and those who had left vs right choice accuracies less than 
chance level (N = 164).  Then, we excluded siblings by randomly keeping one member from 
each family (using the genetic_paired_subjectid variables from gen_y_pihat; 𝑁 = 1147 
excluded). Applying these inclusion criteria left us with a sample of 𝑁 = 7787. See SI Table 
S19 for participant demographics. 
 
Stop-Signal Task 
Participants completed the SST 116 task during fMRI acquisition. Left and right facing arrows 
were presented serially as “go” stimuli. Participants indicated the direction of the arrows using a 
button box and were instructed to respond as quickly and accurately as possible, but to withhold 
their response on a small subset of trials (“stop” trials) when they saw an upward facing arrow 
(the “stop” signal), which only appeared after a brief delay (stop signal delay – SSD). 
Participants completed two runs of 180 trials each, with each run including 30  “stop” trials and 
150 “go” trials. On stop trials, the time delay between the “go” and “stop” signals (SSD) was 
dynamically adjusted by 50 milliseconds increments – increasing after successful stopping and 
decreasing after unsuccessful stopping, targeted to modulate the difficulty levels so that each 
participant would be able to successfully inhibit their responses approximately 50% of the time.  
 
Computational Modeling - PRAD 
The PRAD model incorporates latent dynamics that respond to endogenous and exogenous 
variables, with trait measures governing the interaction of such endogenous and exogenous 
variables with latent processes, giving rise to non-stationary dynamics. This allows the PRAD 
model to account for violations of context and stochastic independence. Overall, the PRAD 
model incorporates separate evidence accumulation (drift-diffusion) processes for the go and 
stop processes, similar to a canonical horse-race model117. However, in addition to typical drift-
diffusion process parameters, PRAD includes additional individual trait-like and dynamic trial-
level measures. The full PRAD model is specified below.  
(a) The go process is modeled as a drift diffusion process, with a trial-invariant non-decision 
time (𝜏$) and initial directional bias (𝛽$), but a trial-varying decision threshold (𝛼$,&) and drift 
rate (𝛿$,&). The dynamic decision threshold 

𝛼$,& =	𝛼$"	A1 − 𝜖',&("C +	𝛼$#	A	𝜖',&("C,	
where (𝛼$", 𝛼$#) are distinct threshold levels and 𝜖',&(" is an indicator of whether the left vs 
right choice on the previous trial was erroneous. Thus, the dynamic threshold implements a form 
of performance monitoring and varies between two levels based on the outcome of the previous 
trials, with 𝛼$" being the default threshold and 𝛼$# reflecting the threshold after post-error 
adjustments. The dynamic drift rate 
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𝛿$,& =	
𝛿!		𝕊)*,&

(1 +	𝑒("#(,&-.!(/")) 	if	𝑠𝑡𝑖𝑚& ≠ 0, else	0.	

Here 𝛿! is a measure of the maximum drift rate for an individual, with the actual drift rate 
depending on the duration of the go stimulus (𝑠𝑡𝑖𝑚&) and an individual parameter 𝜅!, which can 
be interpreted as the stimulus duration at which the drift rate is half the maximum. 𝕊)*,& assumes 
values 1 or -1 depending on the direction of the go stimulus (left or right). PRAD allows for trial 
level changes to the drift rate, overcoming the issues with variable go stimulus durations 
highlighted in previous work67.  
 
In addition, in the PRAD model, the onset of the go process may be deliberately delayed in 
anticipation of a stop signal. This dynamic adaptation is modeled by adding a further delay 𝜔&	to 
the go process to reflect proactive delayed responding to the go stimulus, where: 

𝜔&	 =	𝜆&	𝜌& . 
Here, 𝜆& reflects a trial-level belief updating process, based on the history of stop signal delays 
(SSD) encountered, and is an internal noisy estimate of the prospective anticipated SSD. The 
parameter 𝜇 (0 < 𝜇 < 1) reflects persistence in belief updating, with high persistence implying a 
lower decay rate of older SSDs encountered. Further, letting SSD& be the SSD and 𝕀2,& be a stop 
trial indicator,  

𝜆&	 =	
A∑ 𝜇&(-("	SSD- 	𝕀2,-&("

-3" C	
A∑ 𝜇&(-("		𝕀2,-&("

-3" C	
. 

𝜌& is a binary variable representing cognitive state. 𝜌& indicates the presence (𝜌& = 1) or absence 
(𝜌& = 0) of a proactive cognitive state on trial 𝑡. The proactive delayed responding is only 
initiated on proactive cognitive states. Proactive cognitive states are governed by a baseline 
proclivity for proactivity (𝜃!), and a performance-monitoring based modulation (𝜃").   

	𝜌&	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖	 _
1

1 +	𝑒(45"	6	5#	78$,!&#9	(	5#	78',!&#9:
`. 

Here, 𝜖$,&(" is an indicator of a go-omission (incorrectly stopping on a go trial) on the previous 
trial, and 𝜖2,&(" is an indicator of a stopping error (not stopping on a stop trial). The PRAD 
model assumes that the correction in terms of increasing or decreasing the probability of a 
proactive cognitive state following these two types of trials will be in opposite directions. The 
sign of 𝜃" is an indicator of adaptivity or maladaptivity of the performance monitoring 
mechanism, and the absolute value of 	𝜃" denotes the sensitivity of the state-switching 
mechanism to errors. Probability of proactivity was the posterior mean of	𝜌&, i.e., the posterior 
probability of	𝜌& = 1. Proactive delaying was the posterior mean of 𝜆& on trials with probability 
of proactivity greater than 0.5, otherwise 0.  
 
Thus, the overall effective non-decision time, as compared to traditional models, will be: 

𝜏$	 +		𝜔&	 
 

Here, 𝜏$		is the fixed component, or the core non-decision time, while 𝜔&	 measures the strategic 
adjustment to the non-decision time. Note that because of this mechanism, 𝜏$	cannot directly be 
compared to non-decision times from traditional models (see SI text for details). 
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(b) The stop process is modeled as a drift diffusion process with a trial-invariant non-decision 
time (𝜏2), decision threshold (𝛼2), and drift rate (𝛿2), but a trial-varying bias (𝛽2,&). The stop 
process begins at the onset of the stop signal. The initial bias is 

𝛽2,& =	a
1

1 +	𝑒(;#(<22=!(	;"	)
b.	 

Here, 𝑛𝑆𝑆𝐷& reflects the number of trials since a stop signal was last encountered. This reflects 
an attentional mechanism that modulates the stopping bias 𝛽2,& (which varies from 0 to 1). 
Positive values of 𝛾" result in an increase in stopping bias as 𝑛𝑆𝑆𝐷&	increases and vice versa. 
Similarly, negative values of 𝛾" result in a decrease in stopping bias as 𝑛𝑆𝑆𝐷&	increases and vice 
versa. The absolute value of 𝛾" measures the sensitivity to attentional modulation. The 𝛾! 
parameter is a measure of the value of 𝑛𝑆𝑆𝐷& when stopping bias is neutral (0.5).  
 
Both the go and stop processes are implemented within a hierarchical Bayesian modeling 
framework in JAGS118, using the Wiener distribution119, which produces a joint distribution of 
the reaction times and the decision choice on each trial. The reaction times of the go process 
correspond to the reaction times for pressing the left or right buttons in response to the go 
stimulus. The reaction times of the stop process correspond to the SSRT. The stop process is 
only initiated on stop trials after the appearance of the stop stimulus (which appears after a delay 
corresponding to the SSD). The SSRT is not manifested as a behavioral action. Rather, if the 
SSRT, which is the duration of the stop process, plus the SSD on a stop trial is smaller than the 
go process reaction time, then the go action can be successfully inhibited (successful stop). The 
interaction of the basic go and stop processes can be influenced by the dynamics of the proactive 
delayed responding as well as the dynamics of the attentional modulation of reactive stopping. 
The PRAD model enables obtaining the full posterior distributions of SSRT, proactive delay in 
responding of the go process, and the probability of proactive cognitive states at a trial level. For 
further details of the model, see ref. 120. The models were implemented in a hierarchical Bayesian 
framework in JAGS118 which implements a Gibbs sampler for Markov Chain Monte Carlo 
(MCMC) simulations. The sampling hyperparameters, Bayesian priors, and additional 
computational details are described in the SI text and SI Table S20, and related control analysis 
is presented in SI Table S21. 
 
Control Models 
RVM: Random variability model is a simplification of the PRAD model without the dynamic 
hierarchical components and is equivalent to a full Bayesian implementation of the traditional 
horse-race model117, but with the addition of allowing SSRT to vary randomly across trials, 
based on the parameters of a stopping drift diffusion process. It can be considered a nested 
version of PRAD with the following constraints applied, plus a change in some priors (SI table 
S20): Constraints: 𝛼$" =	𝛼$#	, 𝛿$,& =	𝛿!		𝕊)*,&, 𝜆&	 = 	0, 𝜌& = 0, 𝛽2,& = 	0.5. 
 
FSM: Fixed SSRT model is a further simplification of RVM, where the stopping process is not 
explicitly modeled, but a constant SSRT value is inferred for each individual which applies to all 
trials.  
 
Parameter Recovery 
To test parameter recovery, we sampled 750 combinations of parameters inferred from actual 
data, then generated new simulated data (RT, stopping success, choice accuracy, at a trial level) 



 23 

using the PRAD model and these combinations of parameters. Finally, we fit this simulated data 
using the PRAD model and compared the inferred parameters (recovered) to the parameters used 
to simulate the data. Parameter recovery is not an assessment of the validity of the PRAD model 
or its assumptions,  nor a measure of effectiveness of  the Bayesian methods used to make 
inferences. It does provide a way to check the implementation of the model, diagnose any 
potential identifiability issues 121, and understand the adequacy of the ABCD SST experimental 
designs for making useful model inferences. 
 
Factor Analysis 
Factor analysis was carried out using the lavaan122 package in R123 with the following choice of 
SEM (structural equation model) hyperparameters: (rotation = "oblimin", estimator = "ML", 
likelihood = "normal",   auto.var  = TRUE, auto.efa  = TRUE). To compare and evaluate the 
adequacy of factor analysis models, we used the following criteria: CFI (comparative fit index; 
threshold 0.95), TLI (Tucker-Lewis index; threshold 0.95), and RMSEA (threshold < 0.08). 
 
Analysis of bias in traditional SSRT measures versus PRAD 
For each of the below, participants were split into groups based on the relevant measure, and the 
difference between the PRAD model inferred SSRT and non-parametric integrated SSRT 
(iSSRT) was assessed for group differences. Since the latter is a single value at the individual 
level, while the PRAD model yields a posterior distribution of SSRTs for each trial, we 
computed the median of the posterior distributions for each trial and used the average of these 
across trials to assess individual level SSRTs. 
 
RT skewness and RT slowdown: Participants were split into four groups (quantiles) based on 
these measures and assessed for group differences using ANOVA analysis. Significant group 
differences and increasing SSRT difference as skewness and slowdown increased (previously 
reported conditions where iSSRT has been shown to underestimate SSRT28,69) were indicative of 
debiased PRAD SSRT. 
 
Stop success rates: Participants were split into three groups based on stop success being < =25%, 
25%-75% and >=75% and assessed for group differences using ANOVA analysis. Previous 
literature has recommended assessing non-parametric SSRT only when stopping success ranges 
in the 25%-75% range, with underestimation reported for high success rates 28,69. Significant 
group differences and higher SSRT difference for high stop success rates were indicative of 
debiased PRAD SSRT. 
 
Go omission rates: Participants were split into two groups based on go-omission rates being < or 
> 20% and assessed for group differences using a t-test. Previous literature has recommended 
avoiding non-parametric SSRT when go-omission rates are high28,69. Significant group 
differences and higher SSRT difference for high go-omission rates were indicative of debiased 
PRAD SSRT. 
 
Violators (NDAR classification): Participants were split into two groups based on whether they 
were classified as violators as per the ABCD NDAR classification, which infers violators as 
children who seem to violate traditional assumptions of context independence, which are 
necessary for accurate non-parametric SSRT estimation. These groups were assessed for group 
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differences using a t-test. Significant group differences and higher SSRT difference for violators 
were indicative of debiased PRAD SSRT. 
 
Other measures (exploratory): Other behavioral measures were used to split individuals into four 
groups (quantiles) and assess whether there were group differences and the SSRT differences 
across groups increased or decreased monotonically. This was done by splitting individuals 
based on RT SD, RT kurtosis, SSRT SD, and within individual correlation between SFR and 
SSD. Previous literature has not adequately assessed whether these variables may affect 
estimation of SSRT, and this provides an exploratory analysis, providing insights into which 
variables may possibly systematically bias traditional estimates. 
 
Assessing nonergodicity 
Nonergodicity in the behavioral sciences has been assessed in terms of differences in inferences 
that can be made about the statistics of a variable or association between multiple variables, 
when inferred based on within-individual analysis versus between-individual analysis 86,87. 
Acknowledging that there is a strict statistical definition of nonergodicity, we rely on this 
intuitive understanding of nonergodicity as it has been adopted in the behavioral sciences. Thus, 
nonergodicity is assessed by comparing the correlation between pairs of observed or latent 
measures that may vary across trials: (a) Within-individual correlations assess the correlation 
across all trials for a single individual. We then assess the average of these correlations across 
individuals, and what % of individuals show +ve vs -ve correlations. (b) Between-individual 
correlations first summarize the trial level measures within each individual (mean or median) and 
then correlate the summarized measures across individuals. When the direction of the between-
subject correlations is different from the average of the within-individual correlations, or more 
than half the individuals show within-individual correlations in the opposite direction to the 
between-subject correlations, we assess these relationships as characterizing nonergodic 
processes. 
 
Predicting NIH Cognitive Toolbox – SVM 
For predicting NIH cognitive toolbox scores, we implemented a support vector machine (SVM) 
regression model with a Gaussian kernel, and assessed the fit (using all the data) as well as the 
cross-validated prediction (using 10-fold CV), for the following uncorrected scores124,125: Overall 
NIH cognitive toolbox score, Fluid sub-score, Crystallized sub-score, and individual scores on 
the following tasks: dimensional change card sort test (DCCS), picture vocabulary test (PVT), 
list sorting working memory test (LSWM), flanker inhibitory control and attention test (Flanker), 
pattern comparison processing speed test (PCPST), and oral reading recognition test (ORRT). 
Brief details of these tasks are included in the SI Text. To assess the quality of predictions, we 
evaluated the adjusted R2 and the correlations between predictions and actuals. 
 
Statistical Testing 
Unless stated otherwise, correlations refer to Pearson’s linear correlation coefficient, p-values are 
based on two-tailed tests. 
 
Software 
Data were processed and analyzed using R123, MATLAB, and JAGS118 (version 4.3.0). 
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Figures 
 
 

 
 
Figure 1. Overview of the stop signal task and analysis pipeline. (A) Illustration of Go and 
Stop trials in the stop signal task. On Go trials, participants respond to indicate arrow direction; 
on Stop trials, they must inhibit their response when the stop signal appears. (B) Schematic 
representation of the data analysis and modeling approach used in this study, outlining the 
process from raw data to model-derived insights. 
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Figure 2. Schematic of the Proactive Reactive and Attentional Dynamics (PRAD) model. 
(A) Overview of how latent cognitive processes interact to produce observed behavior. The 
model infers latent variables related to three mechanisms of dynamic inhibitory control: basic 
reactive inhibition, proactive response delaying, and attentional modulation of stopping 
expectancy. (B) Mathematical details of the model, showing two drift diffusion processes (go, 
stop) augmented with dynamic parameters. Blue - individual-level parameters, Red - trial-level 
dynamic parameters.  
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Figure 3. Core components of the PRAD model. (A) Illustration of three key inhibitory 
subprocesses: (1) basic reactive inhibition (red box), where competing Stop and Go processes 
determine trial outcome; (2) proactive delayed responding (PDR, green box), where anticipatory 
delaying of the Go process can lead to successful stopping; and (3) attentional modulation of 
stopping expectancy (yellow box), where top-down modulation can influence SSRT. (B) Factor 
analysis results showing how seven key PRAD parameters load onto three distinct factors 
corresponding to these subprocesses – proactive control, basic reactive control, and attentional 
modulation – demonstrating the model's ability to dissociate different aspects of inhibitory 
control. 
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Figure 4. Debiasing of stop-signal reaction time (SSRT) estimates. Comparison of PRAD-
inferred SSRT with traditional non-parametric integrated SSRT (iSSRT) across various 
conditions. (A-E) Conditions known to bias SSRT estimates, including high RT skewness, RT 
slowdown, stop success rates, go omission rates, and context independence violations. (F-I) 
Additional conditions revealed by PRAD, such as high RT variability and kurtosis, high SSRT 
variability, and low SSD-SFR correlations. Higher PRAD SSRT estimates in these conditions 
demonstrate the model's ability to compensate for known biases and reveal new insights into 
SSRT estimation. 
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Figure 5. Model fit comparisons. (A-F) Aggregate behavior patterns for stop-failure rates 
(SFR) across different stop-signal delays (SSD) and number of trials since last stop signal 



 39 

(nSSD), comparing actual data with predictions from PRAD and control models (RVM and 
FSM). PRAD uniquely accounts for subgroup differences in SFR-SSD and SFR-nSSD 
relationships. (G) Root mean square error (RMSE) comparisons across models for various 
behavioral measures, showing PRAD's superior fit. RMSE computed based on the distance 
between binned aggregate curves (actuals vs model posterior generated values). (H) 
Improvements in individual-level fit correlations using PRAD compared to control models 
across multiple behavioral measures. Dark green – actuals, Light green – PRAD, dark blue – 
RVM, light blue – FSM. RVM = Random Variability control model; FSM = Fixed SSRT control 
model. 
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Figure 6. Illustrative single-participant dynamics on stop trials. (A) Trial-by-trial 
fluctuations in stopping expectancy, SSRT, SSD, PDR, and RT, illustrating the complex 
interplay of these variables. (B) Comparison of three specific stop trials (16, 19, and 39) 
demonstrating how different combinations of SSD, SSRT, and PDR lead to successful stops or 
failures, highlighting the model's ability to capture nuanced trial-level dynamics. On stop trial 
16, SSD is low (easy trial), but it still results in a stop-failure as there is no proactive delaying of 
the go process (PDR ~ 0), and RT < (SSD+SSRT). On stop trial 19, SSD is higher (difficult 
trial), but SSRT is much lower because stopping expectancy is higher (attentional modulation of 
SSRT), resulting in a successful stop. On stop trial 39, SSD is even higher (very difficult), and 
stopping expectancy is not very high, resulting in a high SSRT. However, in spite of SSD+SSRT 
being higher than stop trial 16, this trial does not result in a stop-failure because of the influence 
of proactive delay of the go process (high PDR).  
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Figure 7. Evidence for nonergodicity in cognitive dynamics. Comparison of within-subject 
(green) and between-subject (blue) correlations for various pairs of observed and latent variables. 
Differences between these correlations, especially sign changes, indicate nonergodic processes. 
Notable nonergodic effects are observed in some of the relationships between mean experienced 
SSD, SFR, SSRT, RT, PDR, and probability of proactive state. The between-subjects values 
plotted are based on average values for individuals and bootstrapping the sample. SFR: Stop 
failure rate, SSRT: Stop-signal reaction time, RT: Reaction time, PDR: Proactive delayed 
responding, ppro: probability of proactive cognitive state. Error bars reflect 2.5th to 97.5th 
percentiles for within subject correlations and 2.5th to 97.5th percentiles based on bootstrapped 
samples for between subject correltions. 
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Figure 8. Proactive Delayed Response (PDR) dynamics. (A) Distribution of median PDR and 
RT across individuals, showing the range of proactive control strategies. (B) Relationship 
between persistence in belief updating (μ) and SSD tracking errors, illustrating maladaptive 
effects of high persistence. (C) Differences in post stop-failure proactivity between θ"  
subgroups. (D) Relationship between error monitoring adaptivity θ" and differences in proactive 
delaying probability following stop-failures vs. go trials. 
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Figure 9. Attentional Modulation of Stopping (AMS) dynamics. (A-C) Evolution of stopping 
dynamics (expectancy, SSRT, and SFR) with increasing trials since last stop signal (nSSD) for 
different attentional modulation subgroups (γ"> 0 vs γ"< 0), showing adaptive and maladaptive 
patterns. (D) Relationship between stopping expectancy and proportion of high SSRT trials, 
differentiated by basic reactive process strength. (E) Distribution of median SSRT and RT across 
individuals. (F) Log-Ratio of SSRT/RT as a function of stopping process drift rate and threshold, 
illustrating parameter interactions. 
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Figure 10. Illustration of variability in PDR and AMS processes across four representative 
participants. Comparison of trial-by-trial fluctuations in PDR, RT, stopping expectancy, and 
SSRT, demonstrating how similar overall performance can arise from different underlying 
cognitive dynamics. This figure highlights how the PRAD model can dissociate different sources 
of intra-individual variability that may be indistinguishable using traditional measures. 
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Figure 11. Predictive power of PRAD for NIH Toolbox cognitive tasks. Comparison of 
model fit and cross-validated performance using traditional SSRT (iSSRT) versus PRAD model 
parameters. Results show superior predictive power of PRAD for task-distal cognitive measures, 
with higher adjusted R² and correlations between predicted and actual values in both model fit 
and cross-validated analyses. Error bars show the 2.5th to 97.5th percentiles across 10-fold cross-
validation. 
 


