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Abstract

We developed a novel Proactive Reactive and Attentional Dynamics (PRAD) computational
model designed to dissect the latent mechanisms of inhibitory control in human cognition.
Leveraging data from over 7,500 participants in the NIH Adolescent Brain Cognitive
Development study, we demonstrate that PRAD surpasses traditional models by integrating
proactive, reactive, and attentional components of inhibitory control. Employing a hierarchical
Bayesian framework, PRAD offers a granular view of the dynamics underpinning action
execution and inhibition, provides debiased estimates of stop-signal reaction times, and
elucidates individual and temporal variability in cognitive control processes. Our findings reveal
significant intra-individual variability, challenging conventional assumptions of random
variability across trials. By addressing nonergodicity and systematically accounting for the multi-
componential nature of cognitive control, PRAD advances our understanding of the cognitive
mechanisms driving individual differences in cognitive control and provides a sophisticated
computational framework for dissecting dynamic cognitive processes across diverse populations.



Introduction

Human cognition is a dynamic process, which relies in part, on goal-directed beliefs about task
characteristics, context-dependent flexible action control, the capacity to learn from a history of
decisions and consequences, leading to moment-to-moment adaptation of response strategies to
optimize behavioral outcomes . Impairments in cognitive systems that regulate such dynamic
processes underlying everyday cognitive functioning are a hallmark of psychopathology ¢-1°.
Identifying latent cognitive factors that drive adaptive and maladaptive behavioral dynamics is
critical for understanding individual differences in how cognitive processes unfold over time,
and how their associated alterations in regulatory systems affect symptom presentation in
neuropsychiatric disorders !'"!¥. However, conventional methods are unable to reveal multi-
componential latent constructs that govern dynamic cognitive control processes.

Here, we develop Proactive Reactive and Attentional Dynamics (PRAD), a novel computational
model to characterize and measure latent cognitive constructs that govern behavioral dynamics
of action execution and inhibition, whose deficits are often associated with multiple psychiatric
disorders including attention deficit hyperactivity disorder, autism, substance abuse, and
schizophrenia. This model was applied to a response inhibition paradigm in the large-scale (N >
7500) Adolescent Brain Cognitive Development (ABCD)! study to uncover the mechanisms by
which dynamic cognitive processes involved in response initiation and inhibition are regulated,
and the nature of individual differences in the latent cognitive constructs associated with such
adaptive and maladaptive regulation.

Inhibitory control, the ability to withhold or cancel undesirable action, thought, and emotion, is
fundamental to goal-directed behaviors 292, The stop-signal task (SST, Figure 1A) is a widely
used paradigm?’-?® to study inhibitory control mechanisms and their neural underpinnings. The
SST involves making a response to a Go signal but inhibiting the prepared response when the Go
signal is quickly followed by an infrequent Stop signal. The time interval between Go and Stop
signals is called the stop-signal delay (SSD) and is experimentally manipulated. On stop signal
trials with longer SSD, the prepotent Go response is cognitively further along, and more difficult
to stop after detecting the Stop signal. The SST has been used in a variety of domains, including
non-human primates 2°3!, rodents 3*3°, during development in children 2%3¢-38  through the adult
human life span 3°49, in neurodiverse populations 21224145 psychiatric disorders 23244648 under
the effect of medication #*-° and intervention!->3, substance dependence 2>°*33, sleep disorders
3657 learning difficulties %%, eating disorders 26, in studies of pregnancy related changes !,
and genetic basis of inhibitory control 2. Understanding the dynamic cognitive mechanisms that
underlie SST holds great promise for enhancing our knowledge of latent processes driving
cognitive functioning. Despite its widespread use, the SST and the traditional computational
models applied to interpret it face significant challenges that limit their explanatory power and
practical utility.

Current computational models of inhibitory control suffer from several limitations. In these
models, the efficiency of an individual's inhibitory control is measured by estimating the latent
stop-signal reaction time (SSRT). However, the SSRT cannot be measured directly and is
typically estimated using a race model ¢*-%°, One of the primary concerns with traditional SST
analysis is the validity of SSRT measures under conditions that violate assumptions of such a



race model, including context and stochastic independence. Recent research®-%® has highlighted
the severe implications of these violations, questioning the reliability of SSRT as a definitive
measure of inhibitory control ¢, although recent approaches have proposed model-based
solutions to overcome some of these issues 77!, The reliability and validity of inferred SSRT
measures become more questionable in the presence of specific behavioral patterns that
confound SSRT measurement %7273, potentially leading to systematic bias in conventional
measures of SSRT and inhibitory control. This critique underscores a critical gap in the current
understanding and measurement of inhibitory mechanisms, pointing to the need for more
quantitively precise models that can account for the complex dynamics of cognitive processes.

Existing models of inhibitory control often fail to adequately differentiate between proactive and
reactive control mechanisms. Proactive control refers to the anticipation and prevention of
impulsive actions through the maintenance of goal-relevant information, whereas reactive
control involves the suppression of an action in response to a stop signal 74 The dichotomy
between these processes and their interaction with both top-down and bottom-up regulatory
mechanisms remains insufficiently explored in current research paradigms, especially in terms of
quantitative measurements of such interacting processes 76, Previous studies have modified the
standard SST paradigm to probe the proactive component '8!, introducing variability in task
design, and rendering replication more challenging. While the dynamic belief model has been
used to study proactive control in the SST 8283, it captures trial-wise anticipation of a stop signal
but is not feasible for estimating other latent components, such as reactive control . This
theoretical gap hinders a comprehensive understanding of the multiple dimensions of inhibitory
control and their implications for behavior and cognition.

The concept of nonergodicity further complicates the interpretation of SST data. In nonergodic
processes, the statistical patterns observed in a group do not necessarily reflect the patterns of
individual cases. Thus, conclusions drawn from group averages can be misleading when applied
to individuals. %8, There is growing evidence that psychological phenomena are frequently
nonergodic 7. The acknowledgment of nonergodicity calls for dynamic, individualized
approaches to analyzing cognitive data, challenging the conventional reliance on aggregated
metrics and static models ¥-%°.

To address these limitations, we developed an integrated computational model that incorporates
dynamic modulation of behavior by multiple latent cognitive processes governing inhibitory
control, which allow for complex sequential dependencies, do not make assumptions of context
or stochastic independence, and establish quantitative measures for multiple components of
reactive and proactive control. The PRAD model was implemented within a hierarchical
Bayesian framework, allowing for the estimation of individual-level parameters and trial-level
measures. This approach enables the identification and measurement of distinct components that
characterize individual differences in inhibitory control, while also accounting for the temporal
variability in cognitive processes (Figure 1B).

We had five primary objectives in this study. Our first objective was to develop, implement, and
validate PRAD, a novel computational cognitive model for inhibitory control that
comprehensively accounts for the multi-componential dynamic processes that are not currently
represented in extant models (see SI Table S1 for a complete list of features and SI text for



details of known issues that these features tackle as well as comparison of these features to some
existing accounts of inhibitory control). PRAD provides a novel comprehensive account of
dynamic reactive and proactive inhibition, providing more robust and dissociated measures of
individual differences in inhibitory control (Figure 2). Our second objective was to demonstrate
PRAD’s robustness across a wide range of measures and its ability to overcome limitations of
conventional race models, including providing debiased estimates of SSRT. Our third objective
was to investigate nonergodicity and systemic intra-individual variability in inhibitory control
processes. Our fourth objective was to examine the distinct components of inhibitory control,
including proactive delayed response (PDR) mechanisms and attentional modulation of stopping
(AMS), and their dynamic interactions. Our fifth objective focused on evaluating PRAD's
predictive power for performance across a broad spectrum of cognitive domains. This goal
sought to validate PRAD's effectiveness beyond its initial context and explore its potential as a
more precise tool for understanding the latent substrates of cognitive variability in standardized
assessments.

We demonstrate that the PRAD model effectively captures the latent processes of inhibitory
control with a three-factor structure: proactive control, reactive control, and attention modulation
of reactive control. The model's proactive control component significantly accounts for
individual performance differences and adaptivity to errors and changing conditions. PRAD's
cognitive control parameters also outperform traditional SSRT measures in explaining individual
differences across various cognitive tasks, provide debiased measures of inhibitory control, and
provide a better explanation of behavioral dynamics in children with diverse cognitive and
demographic profiles. These findings validate the PRAD model and highlight its potential for
clinical research and use in probing neural instantiations of cognitive dynamics.

Results
PRAD model overview

The Proactive Reactive and Attentional Dynamics (PRAD) model integrates multiple
components of inhibitory control, extending beyond traditional approaches. Figure 2A illustrates
the model's structure, incorporating proactive, reactive, and attentional mechanisms. The go
process is modulated by PDR, which is driven by a cognitive state switching mechanism and
belief updating about stop signal delays. The stop process combines baseline reactive inhibition
with attentional modulation effects. Figure 2B and SI Table S2 illustrate the mechanisms and
summarize the key model parameters. Additional analysis demonstrated that the model shows
strong parameter recovery (SI Figure S1). We applied PRAD to SST data from 7787 individuals
from the ABCD dataset.

PRAD reveals distinct cognitively plausible components of inhibitory control

The model envisages a core reactive inhibitory process, modulated by attentional variations in
stopping expectancies, and a dynamically adjusted proactive delayed response of the go process,
all three of which affect observed inhibitory behavior (Figure 3A). Factor analysis of a subset of
model parameters that are theoretically relevant to these three aspects of inhibitory control



revealed the robustness of this three-factor structure (CFI 0.997, TLI 0.977, RMSEA 0.045;
Figure 3B, SI Table S3). Factor 1, representing proactive control, loaded heavily on parameters
(6, 61, 1) that governed the trial level probability of engaging PDR mechanisms, and the
adaptive belief updating about historical stop-signal delays that modulated the PDR duration.
Factor 2, capturing basic reactive control (baseline SSRT), was dominated by parameters (s, o)
governing the baseline stop process. Factor 3, reflecting attentional modulation that influences
variations in trial-level SSRT, loaded strongly on parameters (¥, y;) influencing the dynamic
adjustment of stopping expectancy, which in turn affects dynamic SSRT. Factors 1 and 3 were
not correlated, but factor 2 shows low correlations with the other 2 factors (|r] = 0.085, 0.16; both
p <0.0001), suggesting related but distinct processes. Supplementary analysis (SI Table S4)
reports control analysis showing that 1- and 2-factor models were not adequate, and a 4-factor
model was not identifiable.

The three factors explained a significant portion of individual differences in inhibitory control
performance. Regression analyses using all individual-level model parameters significantly
predicted various measures of inhibitory control, including PRAD stop-signal reaction time
(SSRT; R? = 86%), observed stop-failure rate (SFR; R? = 65%), observed mean experienced
stop-signal delay (xSSD; R? = 77%), SSRT coefficient of variation (SSRTCV; R? = 89%), as
well as observed RT (R? = 67%) and RT CV (R? = 68%)), all p < 0.0001. Importantly,
parameters from each of the three factors contributed uniquely and significantly to these
predictions, with standardized beta coefficients ranging from -0.86 to 0.80 (see SI Table S5).

These results align with the theoretical constructs of proactive control, reactive control, and
attentional modulation, and validate the model's ability to dissociate different aspects of
inhibitory control.

PRAD inferred SSRT shows systematic compensation for known biases in traditional SSRT

PRAD-inferred SSRT demonstrated systematic compensation for known biases in traditional
SSRT estimates?®¢76°, Comparing model-based median SSRT (mean 340ms, SD 155ms) to non-
parametric integration method SSRT (iSSRT, mean 302ms, SD 135ms) revealed that traditional
iSSRT estimates were lower by 38ms on average (t(7786) = -32.3, p < 0.0001), and showed a
smaller degree of individual differences (SD lower by 20ms) between individuals (F(7786,7786)
=0.76, p <0.0001).

Crucially, PRAD SSRT estimates were significantly higher for conditions known to lead to
underestimation of traditional SSRT (Figure 4A-E; SI Table S6). These included participants
with higher right skew of RT (F(3,7783) =21.9, p < 0.0001), larger RT slowdown (F(3, 7783) =
9.3, p <0.0001), high stop success rates (F(2,7784) = 76.8, p < 0.0001), higher go-omission rates
(t(7785) = 3.4, p <0.0001) and those classified as race-model violators (t(7785) = 28.9, p <
0.0001).

Additionally, PRAD revealed systematic differences in previously unexamined conditions, such
as high RT variability (F(3,7783) = 9.2, p<0.0001), high RT kurtosis (F(3,7783) = 25.4,
p<0.0001), high SSRT variability (F(3,7783) = 116, p<0.0001), and low correlations between
SFR and SSD (F(3,7783) = 72.6, p<0.0001) (Figures 4F-I).



These results demonstrate PRAD's ability to provide more accurate and unbiased SSRT
estimates across a wide range of performance patterns, particularly for individuals who deviate
from typical performance profiles.

PRAD tracks aggregate patterns in overt behavioral measures, outperforming conventional
methods

The PRAD model is implemented as a generative hierarchical Bayesian model, which generates
posterior distributions for trial-level behavior for each individual based on the inferred
parameters. PRAD demonstrated robust performance across various measures and outperformed
control models (Figure SA-F; SI Figure S2). SI Table S7 shows key observed measures at an
aggregate level, and the summarized PRAD model posterior values corresponding to these
observed measures.

At the group level, PRAD accurately captured trends in stop failure rates and reaction times
across different experimental contingencies (SSD, nSSD). Specifically, the posterior predictives
generated by the PRAD model explained aggregate behavioral patterns including (i) non-linear
S-shaped patterns of stop failure rate with increasing SSD (Figure 5A) and non-monotonicity at
low SSD values, an indicator of violations of context independence ©’; (ii) linear increase in stop-
failure RT with increasing SSD (SI Figure S2A), an indicator of the link between slower RT and
better stopping performance, or the influence of SSD on RT; (iii) increasing variability in
stopping accuracy (Figure 5B,D,F) with numbers of trials since encountering the last stop signal
(nSSD), (iv) increasing variability in RT with SSD (SI Figure S2B), and (v) lower choice
accuracies at low SSDs (SI Figure S2C).

We also compared PRAD versus two control models — fixed stopping model (FSM) and random
variability model (RVM); details of both are provided in the Methods. Crucially, the PRAD
model outperformed both control models (FSM, RVM) on all of these aggregate measures.
Importantly, control models failed to effectively capture the diverse patterns across different
subgroups based on simple observed measures, such as whether SFR increased or decreased with
SSD (Figures 5C,E) and nSSD (Figures 5D,F), while the PRAD model provides superior model
fits for every single subgroup.

RMSE distance from the observed aggregate curves (Figure SG, SI Table S8) show that across
trends based on different experimental contingencies, PRAD reduced RMSE by between 77% -
80% for SFR, 13% - 45% for RT on stop failures, and 48% - 61% for choice accuracies on stop
failure, compared to the FSM model. Similarly, PRAD reduced RMSE by between 58% - 66%
for SFR, 45% - 50% for RT on stop failures, and 48% - 51% for choice accuracies on stop
failure, compared to the RVM model.

These results suggest that incorporating sequential adaptive processes is crucial for
characterizing behavioral dynamics on the SST, which PRAD achieves better than conventional

approaches.

PRAD captures behavioral dynamics at the individual-subject level



We then examined PRAD robustness at the individual participant level. We assessed how well
the model posterior values generated by PRAD explain behavioral patterns at an individual level
(mean values per individual). Individual subject-level fits showed strong correlations between
PRAD model fits and observed data for multiple behavioral measures (SI Figures S3). Notably,
individual-level comparisons showed stronger correlations (Figure SH; SI Table S9) and lower
RMSE (SI Table S10) between observed and predicted values for PRAD across almost all key
measures compared to the RVM and FSM control models. This included go reaction time (r =
0.91; p < 0.0001), stop-failure reaction time (r = 0.90; p < 0.0001), and stop-failure rate (r = 0.85;
p <0.0001), but importantly, also second order effects like post-go RTs (r =0.92, p < 0.0001),
post-stop RTs (r = 0.86, p < 0.0001), difference between stop and go RTs (r =0.51, p < 0.0001),
post-inhibitory differences in RTs (r = 0.45, p < 0.0001), and dynamic within-subject
correlations like SFR vs SSD (r = 0.63, p < 0.0001) and SFR vs nSSD (r = 0.73, p < 0.0001).

For a significant proportion of participants, observed and latent measures like RTs and SSRT
show within-subject correlations with various sequential or experimental contingencies (SI
Table S11). Analysis of intra-individual variability in Go RTs and SSRTs revealed that
significant variance could be explained by model parameters, rather than random noise (SI
Figures S4). For reaction time coefficient of variation (RTCV), 72% of the variability was
explained by model parameters. For SSRT coefficient of variation (SSRTCV), 81% was
explained by model parameters. PRAD’s ability to account for the wide range of variability and
individual differences is reflected in the Kullback-Leibler divergence between the distribution of
observed RT related measures and model posterior values of these observed measures. PRAD
reduces the KL divergence (thus providing a closer match to the observed range of individual
differences) for RT related distributions by between 29%-89% compared to RVM and 4%-83%
compared to FSM (SI Table S12). These results demonstrate that PRAD can accurately capture
behavioral variability at both the individual-subject level and in terms of individual differences
between subjects. Supplementary analysis shows that a large proportion of this explained
variance is attributable to novel adaptive model parameters. See SI text for additional details on
intra-individual variability and estimates of PRAD latent dynamic measures (SI Table S13).

Additionally, we measured Deviance information criteria (DIC), which assesses model fit
appropriately penalized for model complexity. In spite of the additional complexity, PRAD
resulted in lowest (best) DIC values for 60% of the individuals, compared to 22% for the RVM,
and 18% for the FSM model, suggesting that the additional complexity was necessary to explain
behavior in a majority of individuals.

Visualizing trial-by-trial variability in PRAD components

To visualize the dynamic interplay of key PRAD components and their trial-by-trial variability at
the individual subject level, we examined detailed time courses of model-derived measures for
representative participants. Figure 6 illustrates the dynamics involved in stop trials from a single
participant, showing how stopping expectancy, SSRT, PDR, and RT interact on a trial-by-trial
basis. Stopping expectancy, modulated by attentional regulation, fluctuated considerably from
trial to trial and showed an inverse relationship with SSRT. This revealed how dynamic
attentional processes can influence inhibitory performance on a moment-to-moment basis. We



also observed that task difficulty (represented by SSD) and stopping efficiency (SSRT) varied
substantially across trials, with their sum (SSD+SSRT) providing insight into the overall
challenge of inhibition on each trial. Our analysis of stop-failure trials revealed complex
relationships between PDR, SSD+SSRT, and RT, demonstrating how proactive and reactive
mechanisms interact to determine inhibitory outcomes.

To further elucidate these dynamics, we closely examined three specific stop trials with varying
levels of difficulty. We found that successful inhibition could occur even on more difficult trials
(higher SSD) when compensatory mechanisms like increased stopping expectancy or heightened
PDR were engaged. Conversely, easier trials could result in failures when these compensatory
mechanisms were absent.

These observations highlight PRAD's capacity to capture and explain the substantial intra-
individual variability in inhibitory control processes, accounting for the complex interplay
between task parameters, attentional modulation, and proactive control strategies that occur on a
trial-by-trial basis.

PRAD reveals nonergodicity in behavioral dynamics

PRAD revealed substantial evidence for nonergodic processes in inhibitory control.
Specifically, the model uncovered differences between within-subject and between-subject
correlations for both latent and observed measures (Figures 7A-D), indicating nonergodicity.
For example (SI Table S14), we observed opposite patterns of within-subject and between
subjects correlations, in the associations between mean experienced stop-signal delay and stop-
failure rate (average within r = 0.22, between = -0.77), RT and probability of proactive state
(average within r = 0.42, between = -0.05), RT and SSRT (average within r = 0.56, between = -
0.13), stop-failure rate and probability of proactive state (average within r = -0.31, between =
0.06), SSRT and average proactive delay (average within r = 0.01, between = -0.39).These
divergences suggests that within-subject and between-subjects effects can differ significantly,
reflecting nonergodicity of behavioral dynamics.

Proactive Delayed Response (PDR) mechanisms in inhibitory control

PRAD revealed the substantial contribution of PDR mechanisms to inhibitory control. Across
individuals, proactive cognitive states occurred on an average of 78% of trials (2.5% to 97.5%
percentile 3-98%), with PDR accounting for approximately 28% (2.5% to 97.5" percentile 2-
51%) of average reaction times of 515ms (mean PDR = 150ms, 2.5 to 97.5' percentile 8-
322ms; Figure 8A).

Between subjects, the average PDR is associated with both the mean RT (r = 0.59, p < 0.0001) of
responses as well as RTCV across trials (r =-0.51, p <0.0001), and is negatively correlated with
SFR (r =-0.59, p <0.0001), and positively correlated with xSSD (r = 0.61, p <0.0001). The
variability in PDR (PDRCYV) is correlated with RTCV (r = 0.36, p <0.0001). Linear regressions
(SI Table S15) show that across individuals, PDR is significantly related to SFR (R? = 0.48,

B = —0.44, p < 0.0001) and xSSD (R? = 0.46, B = 0.48, p < 0.0001) even after controlling
for SSRT. The results demonstrate that individuals with longer delayed responding show more



successful inhibitory control (lower SFR, higher xSSD) by appropriate modulation of RTs, even
after controlling for the effect of SSRT on successful inhibition. Regression controlling for the
influence of average experienced SSD and SSRT shows that the average probability of proactive
states is significantly related to SFR (R? = 0.65, B = —0.15, p < 0.0001). Within-subject
regressions also show that after controlling for SSRT, SSD, and variable drift rate across trials,
the probability of proactivity, but not the length of proactive delay, is significantly related to
stop-failures (SI Figure S5).

Individual differences in PDR were characterized by three key parameters: baseline proclivity for
proactive control (6,), degree of adaptive or maladaptive error monitoring (6, ), and persistence
of belief updating that affected the tracking of stop-signal delays ().

Higher baseline proactivity (8,) was positively associated with increased PDR (r = 0.44, p <
0.0001) but not so with RT (r = -0.07, p<0.0001), suggesting that PDR mechanisms may be
linked to core capabilities, and individuals with faster processing speeds may also have improved
top-down PDR regulation. Baseline proclivity for proactive control (6,) is also correlated to
lower RT coefficient of variability (r =-0.29, p <0.0001).

Persistence in belief updating (i) affected the absolute error between tracked and current stop-
signal delays (r = 0.42, p <0.0001), with lower p values associated with higher recency bias, and
more accurate dynamic SSD tracking, and hence more well-calibrated PDR (Figure 8B).

Error monitoring (6,) influenced the adaptivity of PDR following errors (Figures 8C-D), with
adaptive individuals (6; < 0) showing an increase in probability of PDR following stop-failures,
while maladaptive individuals (8; > 0) showed a decrease. For individuals with 8; < 0 (62% of
individuals), the delayed response states post stop-failure increases (adaptively) to 90%
compared to 73% post go-omission. For individuals with 8; > 0, delayed response states post
stop-failure are (maladaptively) 55%, compared to 77% post go-omission. The resulting
differences in delayed response states manifest as a difference in reaction times (since delayed
responding increases RT), between post stop-failure and post go-omission trials. This difference
depends on whether individuals demonstrate adaptive (mean increase of 37ms) or maladaptive
(mean decrease of 25ms) values of 6, . Higher values of 8, lead to higher go-omission rates (r =
0.527, p <0.0001), and lower values of 8, lead to higher post-inhibitory error effects, with a
negative correlation between 6, and the difference between post-stop error and post-go error RTs
(r=-0.38,p <0.0001).

These results demonstrate that individual differences in average PDR levels as well as PDR
variability are influenced by differences in baseline cognitive states, persistence in belief
updating, and error monitoring processes. These results also showcase how the model captures
post-inhibitory effects!® by adaptive or maladaptive modulation of the proactive inhibitory
channels.

Attentional Modulation of Stopping (AMS) mechanisms in inhibitory control

Attentional Modulation of Stopping (AMS) emerged as a crucial component of inhibitory control
in the PRAD model. AMS is governed by two key parameters: attention-based adaptivity (y1)
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and attention length (y0). These parameters modulate the stopping expectancy which in turn
affects the SSRT on a trial-by-trial basis.

Across participants, the average stopping expectancy ranged from 0.43 to 0.66 (2.5 to 97.5®
percentile). Across all trials and participants, the stopping expectancy ranged from 0.38 to 0.71
(2.5" to 97.5™ percentile). This stopping expectancy is the implicit expectation about the
probability of encountering a stop signal; it is the initial bias of the stopping drift diffusion
process, modulating the baseline reactive stopping process. Linear regression (SI Table S16)
reveals that after controlling for stop process drift, response thresholds, and non-decision time
(i.e., the remaining parameters affecting SSRT), the AMS driven stopping expectancy still has an
influence on SSRT (R? = 0.84, f = —0.21, p < 0.0001).

The variability in stopping expectancy represents the strength of the AMS effect, and the
coefficient of variation of stopping expectancy ranged from 0.005 (2.5" percentile; weak AMS
effect) to 0.229 (97.5" percentile; moderate AMS effect). The SSRTCV is positively correlated
with variability in stopping expectancy (r = 0.55, p <0.0001). Linear regression (SI Table S16,
R? = 0.83) shows that average stopping expectancy (B = 0.36, p < 0.0001) and coefficient of
variation of stopping expectancy (S = 0.55, p < 0.0001) have a significant influence on
SSRTCYV even after controlling for the effects of stop process drift rate and stop process decision
threshold.

To further quantify the impact of attentional modulation on stop process dynamics across our
sample, we analyzed subgroups based on their attentional modulation parameter (y1). Analysis
revealed that 57% of participants showed decreasing attentional control (y: < 0) as the number of
trials since the last stop signal increased, while 43% showed increasing control (y: > 0). Here
increasing attentional control refers to increasing bias of the stopping process, which on the
presentation of a stop signal stimulus would result in faster SSRTs.

We found significant differences between these subgroups in several key measures as a function
of the number of trials since the last stop signal (nSSD). Changes in stopping expectancy with
nSSD (Figure 9A) showed a divergent trend between subgroups (t(7785) = 839, p < 0.0001),
with the y: > 0 group maintaining higher expectancy as nSSD increased (average r = 0.96), while
the y:1 < 0 group showed decreasing expectancy (average r = -0.97). This translated to significant
differences in the correlation of SSRT (Figure 9B) and nSSD between subgroups (t(7785) = -
157, p <0.0001), and correlation of observed SFR (Figure 9C) and nSSD between subgroups
(t(7785) = -52, p < 0.0001), with the y1 > 0 group showing more stable performance, in terms of
reducing SFR with nSSD (average correlation -0.21 vs 0.16). Thus, AMS parameters
significantly influenced patterns of stop-failure rates.

AMS processes also provided a continuous process explanation for what have previously been
termed trigger failures %19, or assumed failures to initiate the stopping process (Figure 9D).
The AMS mechanism in the PRAD model allowed the distribution of SSRTs to include higher
valued SSRTs on some trials. As a result, the total SSD + SSRT were higher than the 90™
percentile individual RT for 14% of stop trials across individuals (95% CI from 0% to 82%;
average 5% for stronger factor 2 and 22% for weaker factor 2; SI text for more details). The
AMS modulation, which allows for greater trial-level variability in the SSRT thus results in a
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higher degree of SSRT being higher than the typical RTs, especially for participants low on
factor 2 (weak reactive inhibition), as seen in Figure 9D. Such trials, in the absence of the PRAD
model would be difficult to explain and be classified as trigger failures within the traditional
account.

The distribution of SSRT and RT (Figure 9E) across the sample revealed substantial individual
differences, with SSRT showing greater between-subject variability (CV = 0.44) compared to RT
(average CV = 0.16). Finally, we found that the log ratio of SSRT/RT (Figure 9F, SI Table S16)
was significantly influenced by both stop process drift rate (f =-0.27, p < 0.0001) and threshold
(B=10.63, p<0.0001), accounting for 74% of the variance in this measure.

These findings demonstrate the pervasive influence of attentional modulation on stop process
dynamics across our sample, highlighting its role in explaining individual differences in
inhibitory control performance. See SI text for additional details on AMS mechanisms and
trigger failure explanations.

Dynamic interactions between proactive and reactive control processes

PRAD uncovered complex interaction dynamics between proactive and reactive control
mechanisms. Figure 10 demonstrates the variability in PDR and AMS processes across
individuals, highlighting how different combinations of these processes can lead to similar
overall performance but through distinct cognitive mechanisms. SI text and SI Figure S6 further
elucidate these interactions between proactive and reactive processes.

These results highlight the importance of considering the dynamic interplay between different
control mechanisms when characterizing individual differences in inhibitory control.

PRAD better predicts cognitive performance on multiple NIH Toolbox tasks

PRAD parameters demonstrated superior predictive power for performance on NIH Toolbox
cognitive tasks compared to traditional SSRT measures. Using support vector machines to fit the
overall NIH cognitive toolbox scores, we found that adjusted R? improved from 6.3% to 27.7%
when using PRAD parameters instead of traditional iSSRT measures (Figure 11A). The
correlations between actual and fitted values increased from 0.25 to 0.53 (Figure 11B). Cross-
validated results confirmed this pattern, with PRAD parameters maintaining higher predictive
power (adjusted R? = 15.3%; correlations 0.40) compared to iSSRT (adjusted R? = 4.6%;
correlations 0.22) (Figure 11C-D).

Similar improvements were observed for individual NIH cognitive toolbox tasks and subscores,
including Flanker Inhibitory Control, Dimensional Change Card Sort, and Pattern Comparison
Processing Speed tasks (SI Table S17; Figure 11).

These findings suggest that PRAD parameters capture generalizable aspects of cognitive control

that extend beyond the specific context of the stop-signal task, providing a more comprehensive
characterization of individual differences in cognitive abilities.

12



Reducing biases in inferences about nontypical subpopulations

PRAD provides improved fits to data compared to the control models. For some of the key
measures — RT, RT SD, SFR, and correlation between SFR and SSD — we evaluated the absolute
value of residuals based on both the PRAD and RVM models (SI Table S18). The effect sizes
(Cohen’s d) for improved fits on these measures for PRAD vs RVM range from 0.33 to 1.27.

For each measure, we then evaluated the mean absolute residuals by population subgroups based
on cognitive ability (median split using NIH cognitive toolbox scores), age (median split), and
family income (based on income lower than or greater than $50k annually). We computed the
bias against nontypical subgroups by comparing these mean absolute residuals between the
nontypical and typical subgroups (lower vs higher cognitive ability, younger vs older children,
lower vs higher family income).

While both PRAD and RVM models demonstrated bias (relatively better fits for typical vs
nontypical subgroups), this bias was significantly lower in the PRAD model vs RVM for RT, RT
SD, and correlation between SFR and SSD. The percentage reduction in bias (SI Figure S7)
across these three measures ranged from 27%-65% (Cohen’s d 0.16 — 0.25) for cognitive
subgroups, 39%-68% (Cohen’s d 0.07 — 0.23) for age based subgroups, and 24% to 71%
(Cohen’s d 0.09 — 0.21) for income based subgroups. Importantly, to identify a reduction in bias,
we ensured that the PRAD model showed lower mean absolute value of residuals for both typical
and nontypical subgroups compared to RVM and also showed a reduction in difference between
these.

Discussion

We developed and validated a novel computational model of Proactive, Reactive, and
Attentional Dynamics (PRAD), that characterizes latent proactive, reactive, and attentional
components underlying inhibitory control. We leveraged a very large dataset (N > 7,500) of
children ages 9-10 from the NIH ABCD study, which allowed us to probe distinct sources of
response intraindividual variability in ways that were previously not possible. The ABCD study
provides a unique opportunity to investigate cognitive processes at an unprecedented scale, with
a sample size that far exceeds most previous studies in the field. This large dataset enabled us to
conduct detailed analyses at both the group and individual levels, as well as to examine cognitive
dynamics at the single-trial level. PRAD demonstrates robustness to violations of context
independence, a limitation of extant models. PRAD model parameters provide a better
explanation of individual differences in performance across a range of executive function,
attention, processing speed, language, and learning/memory tasks compared to conventional
models. We delineate specific mechanisms of proactive control and attention modulation,
demonstrating their interaction and ability to compensate for weak reactive inhibitory control.
PRAD as a sophisticated, multicomponent, model offers a dynamic framework for precisely
characterizing goal-directed behaviors and meaningfully delineating individual differences in
cognitive control processes and their functional consequences. These advances will be critical for
examining dynamic neurocognitive mechanisms of inhibitory control in diverse populations.
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PRAD model provides a robust framework for understanding inhibitory control dynamics

Our first goal was to develop a new computational model of response inhibition which explicitly
accounts for proactive control, overcomes limitations of conventional race models of reactive
control, and explicitly measures sources of intraindividual response variability rather than
treating it as random noise. We demonstrate that PRAD provides a strong fit to the data at both
the aggregate and individual levels. Linear regressions showed that nearly all model parameters
(SI Table S5) significantly predicted conventional measures of inhibitory control and sources of
variance known to affect it. Our model involved three components of inhibitory control: a basic
Go and reactive control process, a dynamic proactive delayed response mechanism, and a
dynamic attention modulation mechanism (Figure 2). Validating the model's theoretical
constructs, a factor analysis revealed three interpretable factors - proactive control, reactive
control, and attention modulation (Figure 3). These results demonstrate that PRAD is a robust
cognitive framework for distinguishing among three dissociable pathways of response inhibition
beyond reactive control alone %419, PRAD parameters that comprise each latent pathway
reliably capture individual differences to more precisely delineate the emergent function of
cognitive control and contribute towards the development of a richer theoretical framework 7.

PRAD overcomes limitations of previous approaches and debiases SSRT estimates and
inferences about non-typical populations

Traditional SSRT estimates are prone to biases when assumptions of context and stochastic
independence are violated. PRAD does not rely on these assumptions, allowing for sequential
processes to modulate both Go and Stop processes. Apart from the fact that traditional measures
of SSRT cannot capture trial-level variability in SSRT or related cognitive dynamics, another big
limitation is that they have been shown to be biased and unreliable under certain conditions.
Specifically, it has been shown that estimates based on the independent race model can be biased
67_and suffer from underestimation — particularly when participants show a higher right skew of
RT?%%%, when participants show a larger slowdown in RT ¢, when stop success rates are very
high, when go omission rates are higher 28, and when stop RTs are longer than go RTs 2. The
model's robustness was tested against conventional SST estimates using the heterogeneous
ABCD dataset, which included performance patterns that violate race model assumptions. PRAD
effectively compensated for known, systematic biases in conventional measures, particularly
when stop success rates exceeded 75%, go-omission rates exceeded 20% and for violators of
context independence.

Specifically, PRAD revealed that the degree of SSRT underestimation in race models was larger
for participants with slower reaction times, greater RT slowdown, higher stop success rates,
higher go-omission rates, and for violators of context independence. Results demonstrated that
PRAD robustly identifies and characterizes response inhibition even when assumptions of the
race model and context independence are violated, effectively compensating for known,
systematic biases in conventional measures. Thus, PRAD effectively characterizes and rectifies
biases inherent in traditional cognitive control models. This is especially important when
investigating neurodevelopmental disorders and older adults who exhibit diminished
performance and greater variability.
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The detection of other systematic patterns of differences from non-parametric methods (Figure
4), while exploratory, is indicative that there may be other previously unexamined specific
patterns of behavior that lead to biases in traditional non-parametric iSSRT estimates, that can be
detected by the PRAD models.

Additionally, compared to control models, PRAD more effectively captures the full spectrum of
cognitive heterogeneity present in both typical and non-typical or under-represented developing
populations, as demonstrated by the reduction in bias of inferences (SI Figure S7) for nontypical
subgroups based on cognitive abilities, age, and family income.

Nonergodicity in cognitive dynamics revealed by PRAD

Nonergodicity in a behavioral context occurs when statistics of a behavior over time (within-
individual dynamics) do not converge to statistics of the behavior over individuals (between-
individual dynamics) '%. In other words, nonergodic processes exhibit different inferences when
behavioral dynamics are analyzed at the within-individual level compared to the between-
individual level. This distinction is crucial because within-subjects conclusions are often drawn
from between-subjects inferences '%°. Yet, such generalizations are only valid for ergodic
processes 10,

In our study using the SST and the PRAD model, we found strong evidence for nonergodicity in
cognitive dynamics related to response inhibition. Specifically, we observed that the
relationships between different cognitive processes, such as proactive control, reactive control,
and attentional modulation, exhibited different patterns when analyzed within individuals over
time compared to between individuals (Figure 7). Moreover, the relationship between
probability of proactivity and stop-failure rate showed opposite patterns within and between
individuals (Figure 7). These findings suggest that the interactions among cognitive processes
underlying response inhibition are nonergodic, and that within-individual dynamics cannot be
fully captured by between-individual analyses.

The implications of these findings are twofold. First, they highlight the importance of
considering individual differences in cognitive dynamics when studying response inhibition and
other cognitive processes. Group-level analyses may not adequately capture the complex, time-
dependent relationships between cognitive processes within individuals. Second, the presence of
nonergodicity along with individual differences in within-subject dynamics suggest that
personalized approaches to understanding and modifying cognitive control deficits may be
necessary. Interventions targeting specific cognitive processes, such as proactive control or
attentional modulation, may have different effects depending on an individual's unique cognitive
dynamics.

Integrated modeling of proactive inhibitory control
Proactive control, the ability to anticipate and prepare for forthcoming events, is often neglected
in conventional models. PRAD explicitly models proactive control using dynamic parameters

that capture trait-like and state mechanisms distinguishing proactive delayed responses on a trial-
by-trial basis. A key finding is the substantial contribution of proactive control processes, beyond
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just reactive control, in shaping inhibitory performance. PRAD revealed that across individuals,
over 75% of trials engaged some form of proactive control, with an average delay of 150ms
constituting nearly 30% of average reaction times. Crucially, longer proactive delays were
associated with more successful inhibition, underscoring the pivotal yet underappreciated role of
proactive control in SST performance. This echoes a few previous findings that revealed
negative association between proactive control and SSRT and suggested that better proactive
control is related to faster stopping speed 7°8!. It is noteworthy that these previous studies relied
on additional experimental manipulation to probe proactive control whereas PRAD can identify
proactive control components from the standard SST. Such studies with experimentally
manipulated versions of the SST task have estimated go response delays in the range of 100-
140ms” 11112 gimilar to the PRAD inferred average of 150ms

PRAD's latent parameters shed light on how individual differences in baseline proactive control
tendency, tracking of stimuli in memory, and adaptive vs maladaptive error monitoring
dynamically influence the manifestation of proactive control. Baseline proactive control
tendency was the largest contributor to overall proactive delayed responding, followed by
working memory and error sensitivity. Memory recency bias correlated with individual
variability of proactive delay. PRAD differentiated adaptive and maladaptive error response
patterns, which manifested as differences in reaction times. Such patterns likely have utility in
characterizing cognitive control subtypes in typical development and psychopathology.

These findings have important implications. Previous models largely focused on reactive control,
which is important for responding to unexpected stimuli in the environment. However, many
daily life situations require proactive control to minimize the need for reactive inhibition and
reduce impulsivity. As proactive control is generated by an individual's goals, explicit
measurements of it may have greater ecological validity in characterizing everyday response
tendencies and psychopathology.

Attentional modulation plays a key role in shaping inhibitory control dynamics

PRAD also revealed that attentional modulation, based on individual differences in latent
measures of sustained attention, affects intra-individual variability in SSRT and stop failure rate.
We postulated that sustained attention modulates expectancy of stopping, which is influenced by
the duration since the last stop signal was encountered. In PRAD, this stopping expectancy is
governed by the parameter y1. Negative values of y1 indicate a decline in expectancy and a
corresponding decrease in attentional control over the reactive stop process. Conversely, positive
values of y1 indicate a rise in expectancy and an amplification of attentional control over the
reactive stop process. We found that y1 influences the bias of the stop drift process, thereby
modulating the baseline reactive inhibition.

Notably, linear regression revealed that even after controlling for stop process drift, response
thresholds, and non-decision time, attentional modulation, as indexed by vy, still has a significant
influence on SSRT. The average attentional modulation was found to significantly affect
variability in SSRT and was correlated with SSRT coefficient of variation. Furthermore, there
was a notable within-individual correlation between stop-failure rates and trials since the last
stop trial, highlighting the dynamic nature of attentional modulation on inhibitory control.
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These findings underscore the pivotal role of attentional modulation and individual differences in
latent measures of sustained attention in shaping intra-individual variability in SSRT and stop
failures. Our results advance the understanding of how the dynamics of inhibitory control are
influenced by stopping biases and highlight the intricate interplay between attentional
modulation and inhibitory control. The ability of the PRAD model to capture these complex
relationships provides a more comprehensive and nuanced view of the cognitive processes
underlying response inhibition, which may have important implications for understanding
inhibitory control deficits in various clinical populations.

PRAD better predicts cognitive task performance on a wide range of NIH toolbox tasks

The PRAD model significantly enhances our ability to predict cognitive task performance across
a spectrum of domains assessed by the NIH Toolbox Cognitive Battery. Specifically, our
analysis revealed that parameters derived from the PRAD model outperformed traditional SSRT
metrics for explaining individual differences in tasks measuring executive function, attention,
processing speed, language, and learning/memory (Figure 11). The NIH Toolbox is an integral
component within the Research Domain Criteria (RDoC) framework, utilized for assessing a
wide range of cognitive functions across various disorders and developmental stages. This
comprehensive toolset enables researchers to bridge cognitive performance with underlying
neural and psychological mechanisms, making the PRAD model's predictive power particularly
valuable.

Our findings lend substantial external validity to the PRAD model, underscoring its utility in
representing latent processes crucial for a broad range of cognitive tasks. This is crucial as the
RDoC framework aims to understand psychiatric disorders through a dimensional approach that
transcends traditional diagnostic categories. By aligning PRAD with tasks from the NIH
Toolbox, our findings highlight the model's capacity to capture cognitive processes that are
foundational across multiple domains of function and dysfunction.

Standard neuropsychological assessments often fall short in isolating specific control processes
that contribute to cognitive task performance. This limitation is addressed by the PRAD model's
process specificity, which enables a more nuanced characterization of control deficits. For
instance, traditional tests might not differentiate between an individual's inherent proactive
control capabilities and their reactive control responses under pressure. In contrast, PRAD's
detailed parameterization allows for the disentanglement of these processes, offering insights
into how specific aspects of control contribute to overall task performance.

Moreover, the PRAD model's ability to predict performance across diverse cognitive domains
validated by the NIH Toolbox not only reinforces the model's external validity but also
emphasizes its potential in identifying fundamental control mechanisms that are broadly
applicable across various cognitive tasks. This advance sets the stage for future research aimed at
integrating cognitive modeling with clinical diagnostics and therapeutic interventions, guided by
the principles of the RDoC framework.

Implications for probing heterogeneity and intraindividual variability
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Our modeling and insights have important implications. The availability of dynamic trial-level
latent cognitive parameters allows for rigorous quantitative investigations of nonergodic neural
processes involved in inhibitory control. The key factors tackled in our work — debiased SSRT
measurements for extreme performers, debiased inferences for non-typical or under-represented
subgroups, heterogeneity in intraindividual variability, and heterogeneity in proactive, top-down,
and bottom-up regulatory processes contributing to modulation of inhibitory control may become
even more important in clinical and neurodiverse populations.

Moreover, the distinction between reliance on proactive versus reactive control mechanisms, as
illuminated by the PRAD model, offers a refined lens through which maladaptive behaviors and
transdiagnostic symptoms can be understood. Individual differences in these control strategies
could account for the wide variability in cognitive performance and behavioral outcomes
observed across and within psychiatric disorders. This understanding holds significant promise
for tailoring interventions to target specific cognitive control deficits, moving towards a more
personalized approach in clinical practice. For example, an overreliance on reactive control and a
diminished capacity for proactive control may contribute to impulsive behaviors and difficulty
with goal-directed planning, which are common features of many psychiatric disorders. By
considering individual differences in these control mechanisms, PRAD can help to elucidate the
cognitive processes that may underlie common symptoms across different diagnostic categories,
in line with the RDoC approach. More broadly, PRAD exemplifies the utility of computational
approaches in unraveling the complex dynamics of cognition. It paves the way for developing
models that can better capture heterogeneity in cognitive processes across populations,
advancing our understanding of mechanisms underlying adaptive and maladaptive behavior.

Conclusion

PRAD provides a powerful computational framework for dissecting the intricate dynamics of
inhibitory control in human cognition. The PRAD model effectively characterizes latent
proactive, reactive, and attentional components underlying inhibitory control, offering significant
implications for understanding the interplay between proactive and reactive control mechanisms.
The strong influence of proactive control processes on behavioral variability suggests that factors
previously attributed to reactive inhibitory control failures may reflect breakdowns in proactive
control. By integrating proactive, reactive, and attentional mechanisms, PRAD advances our
understanding of the cognitive underpinnings of inhibitory control and individual differences
therein.

The comprehensive and dynamic nature of PRAD provides a robust framework for
characterizing cognitive control variations across diverse populations. By leveraging
computational models like PRAD, we anticipate advancing our understanding of the mechanistic
accounts of cognitive disruptions associated with psychopathology. The availability of dynamic
trial-level latent cognitive parameters allows for holistic investigation of nonergodic neural
processes involved in inhibitory control, supporting the RDoC framework.
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The model's ability to tackle nonergodic processes and systematic biases for non-typical
populations enables examining neural mechanisms of control in diverse and clinical groups.
PRAD's process specificity and explanatory power highlight its potential for elucidating control
deficits in psychopathology and informing individualized interventions. More broadly, PRAD
exemplifies the utility of sophisticated computational approaches in unraveling the complex
dynamics of cognition. It paves the way for developing models that can better capture
heterogeneity in cognitive processes across populations and advancing our understanding of
mechanisms underlying adaptive and maladaptive behavior.
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Materials and Methods

Participants and inclusion criteria

The present study used a sample of N = 7787 from the Adolescent Brain Cognitive Development
(ABCD) study. The ABCD study is an ongoing, longitudinal study within the United States that
follows a nationally representative sample of children aged 9-10 at baseline !!>!!4, Data were
from the baseline visit of the ABCD study!!> (Collection #2573). 9355 participants had two
complete runs of the SST task and had data that were successfully fit with the PRAD model,
including checks for convergence. We then excluded participants who had a glitch reported in
the task presentation (N = 257) and those who had left vs right choice accuracies less than
chance level (N = 164). Then, we excluded siblings by randomly keeping one member from
each family (using the genetic_paired subjectid variables from gen y pihat; N = 1147
excluded). Applying these inclusion criteria left us with a sample of N = 7787. See SI Table
S19 for participant demographics.

Stop-Signal Task

Participants completed the SST !¢ task during fMRI acquisition. Left and right facing arrows
were presented serially as “go” stimuli. Participants indicated the direction of the arrows using a
button box and were instructed to respond as quickly and accurately as possible, but to withhold
their response on a small subset of trials (“stop” trials) when they saw an upward facing arrow
(the “stop” signal), which only appeared after a brief delay (stop signal delay — SSD).
Participants completed two runs of 180 trials each, with each run including 30 “stop” trials and
150 “go” trials. On stop trials, the time delay between the “go” and “stop” signals (SSD) was
dynamically adjusted by 50 milliseconds increments — increasing after successful stopping and
decreasing after unsuccessful stopping, targeted to modulate the difficulty levels so that each
participant would be able to successfully inhibit their responses approximately 50% of the time.

Computational Modeling - PRAD
The PRAD model incorporates latent dynamics that respond to endogenous and exogenous
variables, with trait measures governing the interaction of such endogenous and exogenous
variables with latent processes, giving rise to non-stationary dynamics. This allows the PRAD
model to account for violations of context and stochastic independence. Overall, the PRAD
model incorporates separate evidence accumulation (drift-diffusion) processes for the go and
stop processes, similar to a canonical horse-race model'!”. However, in addition to typical drift-
diffusion process parameters, PRAD includes additional individual trait-like and dynamic trial-
level measures. The full PRAD model is specified below.
(a) The go process is modeled as a drift diffusion process, with a trial-invariant non-decision
time (75) and initial directional bias (f;), but a trial-varying decision threshold (a; ;) and drift
rate (8¢ ¢). The dynamic decision threshold

At = Qg1 (1 - Ec,t—1) + Qg2 (Ec,t—1)'
where (ag4, @) are distinct threshold levels and € ;4 is an indicator of whether the left vs
right choice on the previous trial was erroneous. Thus, the dynamic threshold implements a form
of performance monitoring and varies between two levels based on the outcome of the previous
trials, with @, being the default threshold and «;, reflecting the threshold after post-error
adjustments. The dynamic drift rate
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80 Sirt
(1 + e—lz(stimt—xo))
Here 6, is a measure of the maximum drift rate for an individual, with the actual drift rate
depending on the duration of the go stimulus (stim;) and an individual parameter k,, which can
be interpreted as the stimulus duration at which the drift rate is half the maximum. S,z ; assumes
values 1 or -1 depending on the direction of the go stimulus (left or right). PRAD allows for trial

level changes to the drift rate, overcoming the issues with variable go stimulus durations
highlighted in previous work®’.

Oge = if stim; # 0, else 0.

In addition, in the PRAD model, the onset of the go process may be deliberately delayed in
anticipation of a stop signal. This dynamic adaptation is modeled by adding a further delay w, to
the go process to reflect proactive delayed responding to the go stimulus, where:

wr = At pe.
Here, A, reflects a trial-level belief updating process, based on the history of stop signal delays
(SSD) encountered, and is an internal noisy estimate of the prospective anticipated SSD. The
parameter u (0 < p < 1) reflects persistence in belief updating, with high persistence implying a
lower decay rate of older SSDs encountered. Further, letting SSD, be the SSD and I ; be a stop
trial indicator,

(Ziztut=i-1 ssp; I,

(ZiZiut=t Igy)

p¢ 1s a binary variable representing cognitive state. p, indicates the presence (p; = 1) or absence
(p: = 0) of a proactive cognitive state on trial t. The proactive delayed responding is only
initiated on proactive cognitive states. Proactive cognitive states are governed by a baseline
proclivity for proactivity (8,), and a performance-monitoring based modulation (6,).

1

1+ e—(90 +61 (€t-1) — 61 (Gs,t—1)) .

Here, € -1 1s an indicator of a go-omission (incorrectly stopping on a go trial) on the previous
trial, and €5,_4 is an indicator of a stopping error (not stopping on a stop trial). The PRAD
model assumes that the correction in terms of increasing or decreasing the probability of a
proactive cognitive state following these two types of trials will be in opposite directions. The
sign of 8, is an indicator of adaptivity or maladaptivity of the performance monitoring
mechanism, and the absolute value of 8, denotes the sensitivity of the state-switching
mechanism to errors. Probability of proactivity was the posterior mean of p,, i.e., the posterior
probability of p, = 1. Proactive delaying was the posterior mean of A; on trials with probability
of proactivity greater than 0.5, otherwise 0.

At:

p: ~ Bernoulli

Thus, the overall effective non-decision time, as compared to traditional models, will be:
Tg + W¢

Here, 7 is the fixed component, or the core non-decision time, while w; measures the strategic

adjustment to the non-decision time. Note that because of this mechanism, t; cannot directly be
compared to non-decision times from traditional models (see SI text for details).
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(b) The stop process is modeled as a drift diffusion process with a trial-invariant non-decision
time (7s), decision threshold (a5), and drift rate (85), but a trial-varying bias (fBs ). The stop
process begins at the onset of the stop signal. The initial bias is

1

Bs’t h <]_ + e~ v1(nSSD¢— Vo))'
Here, nSSD;, reflects the number of trials since a stop signal was last encountered. This reflects
an attentional mechanism that modulates the stopping bias fs, (which varies from 0 to 1).
Positive values of y; result in an increase in stopping bias as nSSD;, increases and vice versa.
Similarly, negative values of y; result in a decrease in stopping bias as nSSD; increases and vice
versa. The absolute value of y; measures the sensitivity to attentional modulation. The y,
parameter is a measure of the value of nSSD, when stopping bias is neutral (0.5).

Both the go and stop processes are implemented within a hierarchical Bayesian modeling
framework in JAGS!'®, using the Wiener distribution'!”, which produces a joint distribution of
the reaction times and the decision choice on each trial. The reaction times of the go process
correspond to the reaction times for pressing the left or right buttons in response to the go
stimulus. The reaction times of the stop process correspond to the SSRT. The stop process is
only initiated on stop trials after the appearance of the stop stimulus (which appears after a delay
corresponding to the SSD). The SSRT is not manifested as a behavioral action. Rather, if the
SSRT, which is the duration of the stop process, plus the SSD on a stop trial is smaller than the
g0 process reaction time, then the go action can be successfully inhibited (successful stop). The
interaction of the basic go and stop processes can be influenced by the dynamics of the proactive
delayed responding as well as the dynamics of the attentional modulation of reactive stopping.
The PRAD model enables obtaining the full posterior distributions of SSRT, proactive delay in
responding of the go process, and the probability of proactive cognitive states at a trial level. For
further details of the model, see ref. 12°. The models were implemented in a hierarchical Bayesian
framework in JAGS!'!® which implements a Gibbs sampler for Markov Chain Monte Carlo
(MCMC) simulations. The sampling hyperparameters, Bayesian priors, and additional
computational details are described in the SI text and SI Table S20, and related control analysis
is presented in SI Table S21.

Control Models

RVM: Random variability model is a simplification of the PRAD model without the dynamic
hierarchical components and is equivalent to a full Bayesian implementation of the traditional
horse-race model'!”, but with the addition of allowing SSRT to vary randomly across trials,
based on the parameters of a stopping drift diffusion process. It can be considered a nested
version of PRAD with the following constraints applied, plus a change in some priors (SI table
S20): Constraints: agy = gz, 06+ = 60 Sire, Ae = 0,0 =0, sy = 0.5.

FSM: Fixed SSRT model is a further simplification of RVM, where the stopping process is not
explicitly modeled, but a constant SSRT value is inferred for each individual which applies to all
trials.

Parameter Recovery

To test parameter recovery, we sampled 750 combinations of parameters inferred from actual
data, then generated new simulated data (RT, stopping success, choice accuracy, at a trial level)
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using the PRAD model and these combinations of parameters. Finally, we fit this simulated data
using the PRAD model and compared the inferred parameters (recovered) to the parameters used
to simulate the data. Parameter recovery is not an assessment of the validity of the PRAD model
or its assumptions, nor a measure of effectiveness of the Bayesian methods used to make
inferences. It does provide a way to check the implementation of the model, diagnose any
potential identifiability issues 2!, and understand the adequacy of the ABCD SST experimental
designs for making useful model inferences.

Factor Analysis

Factor analysis was carried out using the lavaan'?? package in R!?* with the following choice of
SEM (structural equation model) hyperparameters: (rotation = "oblimin", estimator = "ML",
likelihood = "normal", auto.var = TRUE, auto.efa = TRUE). To compare and evaluate the
adequacy of factor analysis models, we used the following criteria: CFI (comparative fit index;
threshold 0.95), TLI (Tucker-Lewis index; threshold 0.95), and RMSEA (threshold < 0.08).

Analysis of bias in traditional SSRT measures versus PRAD

For each of the below, participants were split into groups based on the relevant measure, and the
difference between the PRAD model inferred SSRT and non-parametric integrated SSRT
(iISSRT) was assessed for group differences. Since the latter is a single value at the individual
level, while the PRAD model yields a posterior distribution of SSRTs for each trial, we
computed the median of the posterior distributions for each trial and used the average of these
across trials to assess individual level SSRTs.

RT skewness and RT slowdown: Participants were split into four groups (quantiles) based on
these measures and assessed for group differences using ANOVA analysis. Significant group
differences and increasing SSRT difference as skewness and slowdown increased (previously
reported conditions where iSSRT has been shown to underestimate SSRT?%%%) were indicative of
debiased PRAD SSRT.

Stop success rates: Participants were split into three groups based on stop success being < =25%,
25%-75% and >=75% and assessed for group differences using ANOVA analysis. Previous
literature has recommended assessing non-parametric SSRT only when stopping success ranges
in the 25%-75% range, with underestimation reported for high success rates 2%°. Significant
group differences and higher SSRT difference for high stop success rates were indicative of
debiased PRAD SSRT.

Go omission rates: Participants were split into two groups based on go-omission rates being < or
> 20% and assessed for group differences using a t-test. Previous literature has recommended
avoiding non-parametric SSRT when go-omission rates are high?®%, Significant group
differences and higher SSRT difference for high go-omission rates were indicative of debiased
PRAD SSRT.

Violators (NDAR classification): Participants were split into two groups based on whether they
were classified as violators as per the ABCD NDAR classification, which infers violators as
children who seem to violate traditional assumptions of context independence, which are
necessary for accurate non-parametric SSRT estimation. These groups were assessed for group
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differences using a t-test. Significant group differences and higher SSRT difference for violators
were indicative of debiased PRAD SSRT.

Other measures (exploratory): Other behavioral measures were used to split individuals into four
groups (quantiles) and assess whether there were group differences and the SSRT differences
across groups increased or decreased monotonically. This was done by splitting individuals
based on RT SD, RT kurtosis, SSRT SD, and within individual correlation between SFR and
SSD. Previous literature has not adequately assessed whether these variables may affect
estimation of SSRT, and this provides an exploratory analysis, providing insights into which
variables may possibly systematically bias traditional estimates.

Assessing nonergodicity

Nonergodicity in the behavioral sciences has been assessed in terms of differences in inferences
that can be made about the statistics of a variable or association between multiple variables,
when inferred based on within-individual analysis versus between-individual analysis 627,
Acknowledging that there is a strict statistical definition of nonergodicity, we rely on this
intuitive understanding of nonergodicity as it has been adopted in the behavioral sciences. Thus,
nonergodicity is assessed by comparing the correlation between pairs of observed or latent
measures that may vary across trials: (a) Within-individual correlations assess the correlation
across all trials for a single individual. We then assess the average of these correlations across
individuals, and what % of individuals show +ve vs -ve correlations. (b) Between-individual
correlations first summarize the trial level measures within each individual (mean or median) and
then correlate the summarized measures across individuals. When the direction of the between-
subject correlations is different from the average of the within-individual correlations, or more
than half the individuals show within-individual correlations in the opposite direction to the
between-subject correlations, we assess these relationships as characterizing nonergodic
processes.

Predicting NIH Cognitive Toolbox — SVM

For predicting NIH cognitive toolbox scores, we implemented a support vector machine (SVM)
regression model with a Gaussian kernel, and assessed the fit (using all the data) as well as the
cross-validated prediction (using 10-fold CV), for the following uncorrected scores!?#!2%: QOverall
NIH cognitive toolbox score, Fluid sub-score, Crystallized sub-score, and individual scores on
the following tasks: dimensional change card sort test (DCCS), picture vocabulary test (PVT),
list sorting working memory test (LSWM), flanker inhibitory control and attention test (Flanker),
pattern comparison processing speed test (PCPST), and oral reading recognition test (ORRT).
Brief details of these tasks are included in the SI Text. To assess the quality of predictions, we
evaluated the adjusted R? and the correlations between predictions and actuals.

Statistical Testing
Unless stated otherwise, correlations refer to Pearson’s linear correlation coefficient, p-values are

based on two-tailed tests.

Software
Data were processed and analyzed using R, MATLAB, and JAGS!!® (version 4.3.0).
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Figure 1. Overview of the stop signal task and analysis pipeline. (A) Illustration of Go and

Stop trials in the stop signal task. On Go trials, participants respond to indicate arrow direction;

on Stop trials, they must inhibit their response when the stop signal appears. (B) Schematic
representation of the data analysis and modeling approach used in this study, outlining the
process from raw data to model-derived insights.

34



A. Schematic of PRAD model
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Figure 2. Schematic of the Proactive Reactive and Attentional Dynamics (PRAD) model.
(A) Overview of how latent cognitive processes interact to produce observed behavior. The
model infers latent variables related to three mechanisms of dynamic inhibitory control: basic
reactive inhibition, proactive response delaying, and attentional modulation of stopping
expectancy. (B) Mathematical details of the model, showing two drift diffusion processes (go,

stop) augmented with dynamic parameters. Blue - individual-level parameters, Red - trial-level

dynamic parameters.
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A.PRAD: Three core inhibitory subprocesses
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B. Factor analysis of key PRAD parameters involved in the core inhibitory subprocesses

Factor Loadings
1

1 Factor Weights
T
0.02(-0.01|-0.03 |-0.01 I factor 1

factor 1 BN -0.02|-0.03|-0.02

I
factor 2 | 0.11 | 0.08 —O.ZE Sy NN -0.08 | -0.03 10 factor 2 | 0.01
1

factor 3| -0 |0.02 | 0.03 |-0.08|-0.03 EE{MNeK:Vi i factor3‘ 0
-1

2} [t} 1t (55 o

:r0.01 0.02 10

-1

s T o

s 1 T 0 1 K s

Figure 3. Core components of the PRAD model. (A) Illustration of three key inhibitory
subprocesses: (1) basic reactive inhibition (red box), where competing Stop and Go processes
determine trial outcome; (2) proactive delayed responding (PDR, green box), where anticipatory
delaying of the Go process can lead to successful stopping; and (3) attentional modulation of
stopping expectancy (yellow box), where top-down modulation can influence SSRT. (B) Factor
analysis results showing how seven key PRAD parameters load onto three distinct factors
corresponding to these subprocesses — proactive control, basic reactive control, and attentional
modulation — demonstrating the model's ability to dissociate different aspects of inhibitory
control.
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Figure 4. Debiasing of stop-signal reaction time (SSRT) estimates. Comparison of PRAD-
inferred SSRT with traditional non-parametric integrated SSRT (iSSRT) across various
conditions. (A-E) Conditions known to bias SSRT estimates, including high RT skewness, RT
slowdown, stop success rates, go omission rates, and context independence violations. (F-I)
Additional conditions revealed by PRAD, such as high RT variability and kurtosis, high SSRT
variability, and low SSD-SFR correlations. Higher PRAD SSRT estimates in these conditions
demonstrate the model's ability to compensate for known biases and reveal new insights into
SSRT estimation.
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Figure 5. Model fit comparisons. (A-F) Aggregate behavior patterns for stop-failure rates
(SFR) across different stop-signal delays (SSD) and number of trials since last stop signal
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(nSSD), comparing actual data with predictions from PRAD and control models (RVM and
FSM). PRAD uniquely accounts for subgroup differences in SFR-SSD and SFR-nSSD
relationships. (G) Root mean square error (RMSE) comparisons across models for various
behavioral measures, showing PRAD's superior fit. RMSE computed based on the distance
between binned aggregate curves (actuals vs model posterior generated values). (H)
Improvements in individual-level fit correlations using PRAD compared to control models
across multiple behavioral measures. Dark green — actuals, Light green — PRAD, dark blue —
RVM, light blue — FSM. RVM = Random Variability control model; FSM = Fixed SSRT control
model.
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A. lllustration of dynamic mechanisms on stop trials B. Comparison of 3 stop trials
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Figure 6. Illustrative single-participant dynamics on stop trials. (A) Trial-by-trial
fluctuations in stopping expectancy, SSRT, SSD, PDR, and RT, illustrating the complex
interplay of these variables. (B) Comparison of three specific stop trials (16, 19, and 39)
demonstrating how different combinations of SSD, SSRT, and PDR lead to successful stops or
failures, highlighting the model's ability to capture nuanced trial-level dynamics. On stop trial
16, SSD is low (easy trial), but it still results in a stop-failure as there is no proactive delaying of
the go process (PDR ~ 0), and RT < (SSD+SSRT). On stop trial 19, SSD is higher (difficult
trial), but SSRT is much lower because stopping expectancy is higher (attentional modulation of
SSRT), resulting in a successful stop. On stop trial 39, SSD is even higher (very difficult), and
stopping expectancy is not very high, resulting in a high SSRT. However, in spite of SSD+SSRT
being higher than stop trial 16, this trial does not result in a stop-failure because of the influence
of proactive delay of the go process (high PDR).
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A. Mean experienced SSD B. Reaction Time
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Figure 7. Evidence for nonergodicity in cognitive dynamics. Comparison of within-subject
(green) and between-subject (blue) correlations for various pairs of observed and latent variables.
Differences between these correlations, especially sign changes, indicate nonergodic processes.
Notable nonergodic effects are observed in some of the relationships between mean experienced
SSD, SFR, SSRT, RT, PDR, and probability of proactive state. The between-subjects values
plotted are based on average values for individuals and bootstrapping the sample. SFR: Stop
failure rate, SSRT: Stop-signal reaction time, RT: Reaction time, PDR: Proactive delayed
responding, ppro: probability of proactive cognitive state. Error bars reflect 2.5" to 97.5™
percentiles for within subject correlations and 2.5" to 97.5" percentiles based on bootstrapped
samples for between subject correltions.
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A. Distribution of median PDR and RT B. |SSDactuaI - SSDtrackedI
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Figure 8. Proactive Delayed Response (PDR) dynamics. (A) Distribution of median PDR and
RT across individuals, showing the range of proactive control strategies. (B) Relationship
between persistence in belief updating (i) and SSD tracking errors, illustrating maladaptive
effects of high persistence. (C) Differences in post stop-failure proactivity between 0,
subgroups. (D) Relationship between error monitoring adaptivity 8, and differences in proactive
delaying probability following stop-failures vs. go trials.
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A. Latent: Stopping bias
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Figure 9. Attentional Modulation of Stopping (AMS) dynamics. (A-C) Evolution of stopping
dynamics (expectancy, SSRT, and SFR) with increasing trials since last stop signal (nSSD) for
different attentional modulation subgroups (y;> 0 vs y;< 0), showing adaptive and maladaptive
patterns. (D) Relationship between stopping expectancy and proportion of high SSRT trials,
differentiated by basic reactive process strength. (E) Distribution of median SSRT and RT across
individuals. (F) Log-Ratio of SSRT/RT as a function of stopping process drift rate and threshold,
illustrating parameter interactions.
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Figure 10. Illustration of variability in PDR and AMS processes across four representative

participants. Comparison of trial-by-trial fluctuations in PDR, RT, stopping expectancy, and
SSRT, demonstrating how similar overall performance can arise from different underlying

cognitive dynamics. This figure highlights how the PRAD model can dissociate different sources

of intra-individual variability that may be indistinguishable using traditional measures.
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A. Fit: Adjusted R?

B. Fit: Correlations
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Figure 11. Predictive power of PRAD for NIH Toolbox cognitive tasks. Comparison of

model fit and cross-validated performance using traditional SSRT (iSSRT) versus PRAD model
parameters. Results show superior predictive power of PRAD for task-distal cognitive measures,
with higher adjusted R? and correlations between predicted and actual values in both model fit

and cross-validated analyses. Error bars show the 2.5" to 97.5" percentiles across 10-fold cross-
validation.
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