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1 INTRODUCTION

The escalating global prevalence of obesity poses a significant public health risk, contributing to an alarming
number of premature deaths each year in both developed and rapidly developing countries. In the United States
alone, approximately 670,000 deaths annually are attributed to nutrition- and obesity-related diseases, including
heart disease, cancer, and diabetes. Moreover, maintaining a well-structured dietary pattern is crucial for the health
status of every individual. To address this health crisis, there has been a push for the development of innovative
sensor-based technologies and machine learning models aimed at monitoring food intake and analyzing collected
data. Among the various solutions, machine learning models using motion and acoustic sensors, often integrated
into wearable devices like smartwatches, earphones, and glasses, have shown promise [47]. Notable advancements
include the application of random forests [36] and neural networks [55] to model food typing.

However, a critical challenge emerges when models are trained on a collective dataset from various users—these
models struggle to generalize effectively across different sets of users. Table 1 illustrates the diminished perfor-
mance when predicting food types for unseen users, highlighting the limitation of existing machine learning
models. This generalization issue becomes a significant barrier to large-scale deployment, as users expect tech-
nologies to work seamlessly across diverse individuals. The variations in sensor locations and chewing habits
among different users hinder machine learning models from extracting robust user-oblivious signals, a problem
commonly referred to as the domain adaptation (DA) problem [5].

Table 1. Prior works’ low generalization performance. We referenced the original paper and re-implemented their works
to present seen and unseen users’ accuracy scores. The original implementations have data from the same user in training
and testing sets and achieved high accuracy. The accuracy scores are degraded to a great extent when the setting is changed
to predict the unseen user, i.e., split data from one user as the testing set exclusively.

Acc. of predicting

#U # Food t Model t
Sers 00C types odet type Seen users Unseen users
Mirtchouk et~al. [36] 6 40 Random forest 82.7% 29%
Wang et~al. [55] 15 11 Two-layer Perceptron 82.3% 23%

In this work, we specifically focus on the multi-source domain adaptation problem (MSDA) [34, 51, 61], where
labeled training data belongs to multiple domains, exacerbating the challenges associated with domain divergence.
Existing domain adaptation methods fall short when applied to the task of predicting food types for unseen
users. To address this, we propose a comprehensive pipeline that integrates a diverse set of techniques to combat
multiple interrelated subproblems (see Figure 4). Our contributions can be categorized into three main techniques:

Domain-invariant features: These features refer to data representations that remain consistent across differ-
ent domains. While end-to-end neural networks aim to automatically extract features unaffected by distribution
variations, such approaches prove ineffective in our setting. CoDATs [57], for example, work on long-range
muscle motions (e.g., sitting down, walking), making it unclear how an end-to-end neural network can efficiently
extract food-type signals from fine-grained muscle movements (e.g., chewing different types of foods) across
diverse domains. To mitigate domain shifts, we propose to apply an “anti-wisdom” approach, leveraging hand-
crafted features to trade domain expertise and manual labor for a simplification in fitting the target function.
Additionally, we introduce stratified normalization, inspired by stratified sampling in statistics, to control feature
variations across domains. These techniques, relying on different principles, work synergistically to enhance
signal extraction.

Source-source domain adaptation: This technique aims to align models trained on different source domains
to control dissimilarity, facilitating effective generalization across diverse sources. While existing works [45, 56,
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57, 60] primarily concentrate on adapting multiple source domains to the target domain, they often overlook
the inherent divergence among the source domains themselves. It is essential to recognize that the multiple
source domains not only differ from the unseen target domain but also exhibit variations among each other to
varying extents. Therefore, the complexity of domain divergence is growing with the number of source domains.
Consequently, mitigating source-source domain divergence becomes crucial when training a reliable classifier for
the target domain, otherwise, the model will struggle to learn from multiple domains with different distributions.
In our work, we renovate a multi-branch neural network where each branch independently adapts one source
domain to the target. This adaptation process incorporates a consensus regularizer [33] to guide all branches,
encouraging them to learn common features and effectively reduce source-source domain divergence.

Adaptive ensemble weight: This technique addresses the challenge of static ensemble weights, which can
be suboptimal, leading to accuracy degradation when incorporating data or models from irrelevant domains.
Inspired by a theoretical work [34], we introduce a two-stage adaptive ensemble method that dynamically adjusts
ensemble weights for different users. Notably, our solution employs source-source similarities to filter out useless
or harmful models prone to mispredicting food types for unseen users.

While domain adaptation challenges are prevalent in many machine learning applications, existing techniques
are often tailored to specific domains and lack generalizability. This limitation becomes more pronounced in our
context, where adapting to multiple domains becomes increasingly challenging with a growing number of users.
Previous approaches are frequently tested on a limited number of domains/(e.g., up to four domains [7, 16, 18, 26,
30, 40, 44, 54]) or synthetic data [39], rendering them less suitable for our multi-domain scenario. In contrast, our
solution stands out as a “cocktail” flavor, offering a pipeline in which each stage is either robust or effective to
adapt various numbers of domains. The first stage employs hand-crafted features and stratified normalization
for each domain independently, ensuring effectiveness regardless of the number of domains. The second stage
employs a multi-branch structured neural network with consensus regularization to control domain similarities.
In the final stage, our adaptive ensemble scheme further enhances robustness across different domain scales.

In summary, our contributions are as follows:

e A Multi-Source Domain Adaptation (MSDA) pipeline with renovated algorithm components is proposed
to address the generalization issue in the food type recognition task.

e A new set of techniques and principles is introduced, incorporating consensus regularizer, stratified
normalization, and domain knowledge-guided feature extraction, to address the more severe domain
divergence problem caused by the growing number of domains.

e A two-stage adaptive ensemble method is designed to automatically assign weights to relevant domains
and prune off irrelevant ones. This method is robust to parameter settings and further improves accuracy.

e Extensive empirical evaluation is conducted. We experimentally verified the importance of hand-crafted
features in the food typing task with multiple domains. Besides, the evaluation shows that our method
achieved 1.33X to 2.13X higher accuracy than other baselines.

The rest of the paper is organized as follows: Section 2 explains the research effort closely related to this work.
Section 3 presents the challenges of performing domain adaptation on food typing. Section 4 demonstrates the
overall solutions. Section 5 describes experiments to evaluate our methods. Finally, a conclusion remark is given
in Section 6.

2 RELATED WORK

Domain adaptation. The main challenge of domain adaptation was to reduce the domain discrepancy between
different domains, which was approached from multiple perspectives: 1) Data manipulation and feature
engineering. Several existing works selected a subset of training samples or assigned weights to them based on
the distance of one training sample to the test set [21, 31, 41]. Similarly, Nikolaidis et al. [37] iteratively selected
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subset training samples with high confidence scores and fine-tuned the classifier with the selected data and
predicted labels. An et al. [4] used labeled target samples to fine-tune specific layers of a neural net that produced
user-specific features. In contrast, our approach prunes and assigns weights to the trained sub-models where the
information of the dataset had been learned so that labeled data were not wasted. TCA [38] and CORAL [49]
learned matrix mappings to align the features of different domains. Instance Normalization [15, 28] and AdaBN
[29] designed domain-adapted normalization layers to transform intermediate feature maps in a neural net. These
methods were not straightforward to integrate into our framework but were more suitable for other tasks or
training methodologies. 2) Neural network innovation. Maximum mean discrepancy (MMD) [48] measured
the discrepancy between two domains and was applied to train various neural nets to reduce distribution shift
[17, 32, 53, 64, 65]. Inspired by MMD-based solutions, various neural nets coupled with domain discrepancy
measurement functions were proposed, including Deep-CORAL [50] and GAN-based solutions [13, 52, 59]. These
approaches could be seamlessly extended to multi-source domain adaptation [51, 61] by combining multiple
source domains into one; however, they were susceptible to accuracy degradation [14, 29, 57] because the learning
procedure was interfered with by quadratically increased domain divergences [42]. Our method instead learned
data from different domains through multi-branch model training [9, 43]. Finally, Luo et al. [33] proved that
the disagreement between multiple sources was the upper bound for classification errors, so optimizing the
consensus regularizer led to better prediction performance [27, 39, 64]. 3) Ensemble learning. It was proven that
the target distribution could be represented as a weighted combination of source distributions [34]. Accordingly,
many existing efforts trained one model or multiple sub-models and late-fused the prediction confidence scores
with uniform weights [46, 64] or fine-tuned weights based on various metrics. Peng et al. [39] assigned source-
only accuracy weights to sub-models. Xu et al. [58] calculated a perplexity score during the adversary training
procedure as a weight. Guo et al. [19] designed a point-to-set metric based on Mahalanobis distance to re-weight
domain experts. Zhao et al. [62] re-weighted trained distilled source classifiers using Wasserstein distance. Our
method updates the mask weights (w,,) and the similarity weights (ws) based on the entropy of # distances
between domain-specific models and MMD metrics. Another category of ensemble schemes was to update
weights during training. In contrast, our-method updates weights after training without interfering with the
learning procedure.

Domain adaptation and Food type recognition. Recognizing food types through sensor signals achieved
promising results in recent years. Oliver Amft’s team achieved 80 ~ 100% accuracy in classifying four food types
using earbud-embedded microphone sensors [2]. Later, they produced two prototypes that achieved 80% and 86.6%
accuracy, respectively, in classifying 19 food types [1, 3]. Yin et al. [6] proposed a prototype for recognizing seven
types of food using two microphones embedded in a neckband. The microphone could also be placed near the
mouth to classify six types of food [20]. Besides microphones, a smart utensil containing an array of LEDs could
recognize twenty food types{[22]. An intraoral sensor placed in the mouth while eating classified nine food types
based on temperature and jawbone movement [8]. However, the current state-of-the-art is the work combining
microphones with other sensor types. Samantha’s team identified 40 different types of food with an accuracy of
82.7% [36], combining a microphone-embedded earbud, Google Glass, and two smartwatches. Although these
food type recognition methods achieved acceptable accuracy, none considered the domain adaptation problem.
Therefore, their recognition accuracy could significantly decrease when the application environment or scenario
changed (see Table 1). Although prior works have applied domain adaptation to sensor signals in other tasks, they
are not suitable for the food-type recognition task for various reasons. For example, Zheng et al. [63] generated
fake labels for the target domain based on MMD [48] to recognize daily behaviors utilizing sensors scattered in
an apartment. Mathur et al. [35] studied the domain adaptation problem caused by different sensor deployment
locations. Jiang et al. [23] adopt an adversary training approach to recognize human activities for single subject on
WiFi signals. These methods are not effective in recognizing food types without incorporating domain knowledge.
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Fig. 1. Per-user feature distribution. The left figure illustrates the feature distribution of chewing frequency, while the
right figure depicts chewing force. Two classes are visualized with different markers and colors. Generally, users chew gum
more slowly and with more force than nuts.

3 PROBLEM SETUP, MOTIVATION, AND CHALLENGES.

This section describes the problem definition, reviews standard techniques, and performs preliminary experiments
to motivate our solutions.

Problem setup. Figure 1 illustrates the chewing habits of different users for two types of foods: gum candy
and nuts. Users generally chew nuts faster and with less force than gum candy due to the properties of the
foods—gum is chewy, while nuts are crispy. However, the distributions among different users vary significantly,
leading to potential misclassification of food types. For instance, user 6 and user 8 exhibit completely different
chewing forces, with the minimum chewing force of user 6 being greater than the maximum chewing force of
user 8. This indicates distinct marginal distributions. Consequently, using a model trained on data from user
8 to predict data from user 6 could result in all instances being misclassified as gum candy, which requires a
stronger chewing force. Similarly, user 2 and user 12 chew gum candy and nuts at a similar frequency, leading to
similar conditional distributions of chewing speed. However, this differs from other users, who chew nuts at a
higher frequency. These distribution divergences contribute to poor generalizability to unseen users, as shown in
Table 1. Additionally, determining which labeled users are similar to a new, unlabeled user is challenging. To
address the domain divergence issues in recognizing food types for unseen users, we first formalize this challenge
as a multi-source domain adaptation (MSDA) problem. We then analyze the performance of prior solutions to
motivate our designs.

In an MSDA scenario, there exist n source domains and a target domain T, corresponding to different individuals.
We observe features and labels (x’s and y’s) from source domains and only features (x’s) from the target. Our goal
is to build a classifier for predicting labels in the target domain using the available labeled data from n users and
unlabeled data from the target user. Let s; be the number of observations from domain i and S; = {(x{ , y{ )} jelsi]
be the set of observations, each of which is independent and identically distributed (i.i.d.) sampled from the
distribution 9;. Similarly, we assume that the data (yr, xr)’s are sampled from distribution Dr (note that yr’ are
the ground truth and not observed). Let also X; = {X{}je[s,-] (i € [n]) be the set of features, and Xt = {XJT. Yiele]
be the features of the target, where ¢ is the total number of (unlabeled) observations from the target domain.
Finally, let D;(X) and Dr(X) be the feature distribution in domains i and T, respectively.

When y; = yr, meaning each domain has the same set of labels, the problem is defined as the closed set
MSDA. If this condition does not hold, but for at least one y;, y; N yr C yr, the problem is defined as open set
MSDA [61]. We describe and evaluate our method primarily using the closed set MSDA setting, similar to prior
approaches [27, 39, 45, 56, 57, 60]. To test whether our method can adapt to the more challenging scenario where
the target domain can only learn partial labels from each source domain, we also evaluate our method under the
open set MSDA configuration in Section 5.4.
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A simple experiment for the breakdown of “more data is bet-
Fig. 2. Prior solutions’ accuracy. Comparing existing do- ter,” we use the standard ensemble learning method to build
main adaptation algorithms to the upper bound (where a forecast based on a linear combination of source models’
labels from the target domain are available). We consider forecasts. x-axis is the number of used source domains,
two variants of each existing solution: Type | variants use and y-axis is the achieved accuracy. Each point represents
data from all domains to train one single model, whereas the performance of the best-aggregated models subject to
Type Il variants train a model from each domain and run the source number constraint. One can see that the per-
ensemble learning algorithms over multiple model predic- formance of the consolidated model first improves, then
tions. degrades as the number of sources increases.

Prior Solutions and Performance. Domain adaptation appears widely in many areas. Different downstream
applications possess different distribution structures, so generic domain adaptation building blocks may not
always be effective. To motivate our work, we review standard techniques and perform preliminary experiments
to highlight their inefficacy. As aforementioned in Section 2, existing works develop or use techniques from one
or more of the following categories: A1. Data manipulation and feature engineering. A2. Neural network
innovation. A3. Ensemble learning. For example, CORAL [49] and TCA [38] use A1, DANN [14] uses A2,
Schweikert et al [46] use A1 and A3, CoDATS [57] uses A2 and A3. Note that A1 and A2 usually do not appear
together because there is a strong belief that properly designed neural network models can automatically learn
representations from raw data and do not need heavy feature engineering. Therefore, no work simultaneously
uses A1-A3.

Figure 2 showcases the results of our preliminary experiments on these techniques. The Upper bound refers to a
setting, in which labels in the target domain are accessible. Colored bars depict the performance of existing MSDA
algorithms. Rigorous tuning efforts were applied to these algorithms, exploring two variants: Type I, utilizing data
from all sources to train a single model, and Type II, training a model for each source and generating forecasts for
the target through a linear combination of source models. The upper bound achieves over 80% accuracy, while all
MSDA techniques fall below 35%. This performance gap underscores the need for substantial advancements in
techniques, and intriguingly, Type II variants, employing ensemble learning, tend to outperform their Type I
counterparts—an observation we will revisit and leverage in our algorithm design.

Reasoning about the performance. A salient challenge we face here is that the interactions between sources
and target, and between domains grow quadratically in the number of users and the source-source and source-
target divergences are uniformly high. Specifically, a model tuned for a specific target requires us to control the
divergences between each source and the target, and between sources, the latter of which is quadratic in the
number of users. When divergences between sources are weak, source-source interaction can be suppressed in a
model. All existing techniques in Figure2 focus on the source-target interaction and ignore the source-source
interaction so they have reasonable performance only when the divergences between each pair of source domains
are moderate, and quickly deteriorate when divergences are significant.

Compounding a large source number and large divergences further amplify the weakness of existing tech-
niques/solutions: (i) Use Al (or A1 & A3) without A2. TCA [38] and CORAL [49] focus on designing specialized

ACM Trans. Comput. Healthcare



Towards Recognizing Food Types for Unseen Subjects « 7

| Hand-crafted feature extraction Y ¢ C2. Multi-source domain adaptor A ‘C3. Adaptive ensemble A
-
«()» = " T1.oss \
O2 [y @ — :: TR /
. Sensors—>Time series—> Feature | 41 Py " Las 0.3
) 3 i C A {1, p1), -, | & {00 -8
C1. Stratified normalization, | : , (@n,Pn)} > Lnma ', -
N\ %% > :j i | Target h
g() qn Pn {‘h L qn} > Lcon :l—» domain
Original  _ Stratified Shared layers d,(y i / gourcf:
distribution normalized > Doman-specific adaptors; omams/

Fig. 4. Overview of our solution.

procedures to transform features x’s from different domains and pipe the transformed x with a standard neural
net, which is usually sub-optimal because neural network architecture/loss functions arenot optimized toward the
structure of the MSDA problem. (ii) Use A2 (or A2 & A3) without A1. While deep architectures (e.g., CoDATS [57])
are more flexible in learning feature representations, they cannot be fully automated to perform representation
learning from the raw data effectively. We observe that deep architectures’ inability to use raw features directly is
a generic problem for wearable ML problems and is not tied to a specific downstream prediction task (in our case
food type prediction). Section 4.6 elaborates further our observations. (iii) Problems of A3. Ensemble learning
assumes that each weak learner delivers sufficiently “orthogonal” and useful predictions. This assumption also
breaks. Specifically, we notice that sometimes having more ensembles in fact can harm (see Figure 3). This result
shows that increasing the number of ensembles first improves the prediction capability, and then degrades
it [14, 29, 57]. This highlights a delicate interaction among ensembles and the challenges in weighting (and
pruning) them.

4 OUR APPROACH

This section explains our solution. Our key observation is that we need to innovate a broad set of techniques
across all A1-A3 (feature engineering/normalization, model architecture, and ensemble weighting) and integrate
them to collectively tackle the source-source and source-target divergence problems. Changes in one component
(e.g., feature engineering) can result in complex interactions with other components, so it is important to design
a “pipelined” system consisting of loosely interacting components. Each component in the pipeline addresses a
specific ML subproblem and can be implemented using one or more techniques. This pipeline articulates and
restricts the search space, defining the possible ways to integrate different techniques. By doing so, we can
allocate most of our computational resources to explore combinations of more promising techniques and limit the
resources spent on tuning less effective ones. We first provide an overview, and then describe each component in
detail.

4.1 Overview

Figure 4 provides a visual representation of our pipeline. Initially, raw time-series instances undergo processing
in the feature extractor, generating 65-dimensional hand-crafted features. This process yields target features
i]T = h(xJT.) and source features 5({ = h(x{ ), with i € [n]. Our domain adaptation algorithm is structured around
three key components (C1-C3): C1. Stratified Normalization: This component, vital for Multi-Source Domain
Adaptation (MSDA), normalizes features from diverse domains to a consistent scale. This step is particularly
crucial for datasets exhibiting significant shifts in marginal distributions across domains.C2. Multi-Source
Domain Adaptor: Comprising a shared layer g(-) and a set of n classifiers {d;(-),...,dn(+)}, this component
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(a) Vanilla normalization (b) Stratified normalization

Fig. 5. Visualization (t-SNE) of normalized data. Points in @ and A are observations from two different users. Different
colors represent different classes. Centroids of blue points from different users are highlighted (by bolder marks). (a) uses

vanilla normalization, whereas (b) uses stratified normalization (S-Norm). Both Pr[X;] (points in the same shape) and
Pr[X; | Y] (i.e., the cloud of points in the same color from the same user) get much closer for two users using S-Norm.

manages the delicate balance between model robustness and diversity. The shared layer, g(-), extracts robust
features across domains, minimizing divergence. Each classifier, d;(-), is individually optimized to learn labels
from its respective source domain. Specifically, each branch d;(-) outputs p; for the source domain, feeding it
into cross-entropy loss £, to train the classifier. Simultaneously, g; is produced from the target domain, and
the pairs (q;, p;) are utilized in the maximum mean discrepancy loss L4 to reduce source-target divergence.
Independence among the branches ensures diverse predictions, crucial for effective downstream ensembling.
Furthermore, p; outputs contribute to the consensus regularization L., to mitigate source-source divergence.
C3. Adaptive Ensemble Learner: Treating each output from d; as an ensemble, this component determines
suitable ensemble weights by leveraging £,,mqs and L,,. These weights are dynamically adjusted, assigning
greater significance to sources more akin to the target.

4.2 Hand-crafted feature extraction

We follow the approach [55] to construct a total collection of 65 features optimized for building food-type
recognition models. See Table 2. We let h(-) be the feature engineering procedure so that h(x) € R®. Recall
that X = h(x), and we also let X; = {h(x{)j} (i€ [n]U{T}, and j € [s;] U {T}). Our pipeline critically relies on
hand-crafted features, which are more robust for food-typing tasks and departs from a recent “fashionable” trend
that aims to use a neural network to learn features automatically [57]. See also Section 4.6.

4.3 Stratified normalization

Machine learning algorithms often assume that the data in training and test sets are from the same distribution,
which is severely violated in our setting. First, each user could wear devices in slightly different ways. Second,
people have different chewing habits. For example, when user i eats faster than user j, i’s chewing time will be
shorter, but his‘or her chewing force will be stronger. Therefore, D; and D; could be drastically different.

Traditional normalization re-scales the input features across sources to have uniform standard deviations and
means, which is ineffective in our setting. Figure 5a shows data collected from two domains, i and j (users). After
normalizing the training data, the data still shift between D; and D;. The problem will become more pronounced
when the number of sources grows.

To address this challenge, we introduce a simple yet effective domain adaptation technique named stratified
normalization (S-Norm). S-Norm draws inspiration from stratified sampling, a method developed for sampling
from multiple subpopulations. It performs normalization independently for each X = {Xj, ..., X,,, X7 }. S-Norm
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serves two primary purposes: (i) aligning features from different domains to the same scale, ensuring Pr(X)
is well-aligned (see Figure 5b). (ii) enhancing the alignment and ease of learning of conditional distributions
Pr[%;|y;] for i € [n] U {T} across different domains. For instance, users often chew nuts faster than ice-creams,
making it simpler to extract this signal under stratified normalization.

4.4  Multi-source domain adaptation

The multi-source domain adaptation takes re-scaled features as input and outputs a total number of n predictions
(ensembles). It possesses a branching structure, consisting of a “root” component g(-) and a total number of n
branches d;(-) (i € [n]). Each d;(-)’s and g(+) has the linear-ReLu-linear structure. All the training data from
different domains first flow into g(+) simultaneously, and afterward, they are branched out to different d;(-)’s. A
d; () consumes labeled data from source domain i and unlabeled data from the target domain. Intuitively, g(-)
aims to extract features that are robust across all domains, whereas d;(-) aims to train an augmented model for
Pr[y; | %;] that approximates Pr[yr | Xr], i.e., learning the link function for the target based on link function for
the source i as well as unlabeled target data.

Next, we explain how we implement this idea. We view the domain adaptor as sending X; and X7 to an
embedded space. We apply two techniques to learn g(-) and d;(-)’s.

o Technique 1. Properly construct embedded space. Intuitively, we aim to make sure after we apply g;(-) to
s(X;)’s and g(Xr)’s, these two “clouds” have similar distribution in the embedded space.

o Technique 2. Shrinking towards the mean. For a fixed target T, we hope to set d; (g(i{’f))’s for different i to
be “similar” so that the total “function complexity” across all the models we learned becomes smaller,
which improves bias-variance tradeoff.

We also note that both techniques provide methods for measuring similarities (or distances) between pairs
of models trained from different source domains, as well as between a source domain and the target domain.
The distance measures derived from these techniques will be used in the ensemble learning component, which
operates outside the deep learning loop (see Section 4.5).

Construction of embedded space. Our goal is to bring the following two sets of points closer to the embedded
space:

{di(9(x) : % ~ D;(X)} and  {di(9((Xr)) : X7 ~ Dr(X)}.
We use the maximum mean discrepancy to measure the statistical distance.

DEeFINITION 4.1. Let P = {p1,...,pu} and Q = {q1, ..., qn}. The maximum mean discrepancy (MMD) between
PandQ is

LomaP.Q) == Y 9(0) =3 D 4(a)|

peP q€Q H
where H is the reproducing kernel Hilbert space (RKHS), and the ¢ (-) denotes a feature map to map the inputs to the
H, which is achieved by a kernel k(P, Q) = (¢(P), $(Q))

Our algorithm uses the Gaussian RBF kernel: k(u,v) = exp(—Allu — 0]|?) for H . Also, let p; = {d;(g(%:)) }ien
be the feature representations for domain i at branch i, and q; = {d;(g(Xr) }ien be the feature representations for
the target at branch i. We let

1
-£mmd = ; Z med(pb Ql)
ie[n]
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L,umaq aggregates the distance of each pair source-target domain. By minimizing the £,,,,4, each domain-specific
adaptor d;(-) would be able to map the X; and Xt into similar representations.

Shrink towards the mean. We impose global constraints over d;(+)’s. We want that d;(-)’s to shrink towards
the same function to achieve improved bias-variance tradeoffs. Specifically, if models shrink towards the same
one, data would be sufficient to train a model, but the model will not be expressive enough to have reasonable
forecasting power. If we do not shrink at all, there are way too many models to be learned to reduce bias and
increase variance.

We leverage the consensus regularization [33] based on L1 distance to achieve this target.

DEFINITION 4.2. The L., measures the L1 distance between the outputs of each pair of domain-specific adaptors,
which can be formulated as:

Lcon = ﬁ nz_l zn: Z |dl(g()~(T)) - d](g(iT)N

J=1 i=j+1 %7€ Dr(X)

The effectiveness of consensus regularization in alleviating over-fitting is analyzed in Section 5.3.2. In an
alternative view, the consensus regularization reduces the domain divergence of each pair of the source-source
domain, and the MMD reduces the domain divergence of each pair of the source-target domain.

We use Lmqg and L., developed above together with the standard cross-entropy loss L5 to construct the
final loss function. Recall that

1N & A )
Las =~ > JC@ilg&N).y).
i=1 j=1
where C(-) is the Softmax function, and J(., -) is the cross-entropy loss function. Our final goal is to minimize the
following loss function:

L= A—Emmd + (1 - A)Lcon + Lclm

where A is a constant value to balance two loss functions and we set it to 0.5. We remark that specific details of
our cost function can be tweaked. For example, £,,,,4 can be replaced by CORAL [49, 50] or GAN-based loss,
whereas £,-loss can replace Lg,,. Our experiments find that making these minor changes does not result in
additional performance gain.

4.5 Adaptive ensemble learning

4.5.1 Ensemble learning. This section explains our ensemble learning procedure. Our consolidated forecast is a
linear combination of n ensembles

(xr) = ) oidi(g(kr)), (1)
i=1

where w;’s are uniform weights, i.e., 0; = % for i € n, or adaptive weights. Uniform weighted consolidated
prediction is the default option for ensemble learning. We develop an adaptive weight assignment technique to
achieve better prediction consolidation. Note also that we use a standard convention to represent the output
of classifiers, i.e., d;(x) outputs a probability measure in R™, where m is the number of categories and the j-th
coordinate/component in the output represents the probability that the output is in category j (estimated by
d;). Therefore, () € R™. In evaluation, we assume that §(-) picks up the category with the highest probability
estimate.
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Entropy-Driven representative election Adaptive ensemble prediction
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Fig. 6. The adaptive ensemble learning procedure. (a) Distance Matrix A: A is symmetric. Each element A; j represents
the L1 distance between d;(g(Xr)) and d;(g(X7)). Note that when i = j, A; ; = 0. (b) Entropy Vector: Each element is the
entropy of the corresponding row of A. The displayed values are min-max standardized: (c) Mask Vector wp,: Element
1’s represent the corresponding domain-adaptors as representatives. 0’s represent redundancy. (d) Similarity Vector ws:
ws is transformed from the outputs of Lypp to measure the similarity of each source domain‘to the target domain. (e)
Confidence Matrix: Each row is produced by the C(d;(g(%X;))) to represent the prediction confidence over the labels.

4.5.2  Adaptive Weight Assignment. Source domains have different approximations of the target domain. Assigning
a higher weight w; to a domain-specific model i benefits consolidated forecasting. Therefore, our goal is to learn
w; without labels from the target domain.

Design intuition. Our algorithm for determining w;’s need to (i) utilize the observation that having more
ensembles is not always better, and (ii) ensure that w;’s dynamically change according to the target; using static
target-oblivious weights is ineffective.

When labels are available, estimating w; is a simple regression problem. Here, we build our solution by
unwinding key intuitions of solving a (possibly over-parametrized) linear regression and “re-implement” these
intuitions in the no-label setting by using information-theoretic tools. Let us first briefly review the linear
regression problem. Recall that the (ordinary least squares) OLS coefficient estimator is (XX 1) ~'XTy, which
consists of a feature-feature interaction (source-source interaction in our setting) component (XX)™!, and a
feature-response (source-target) interaction component X y. Commonly used regularizations often “shrink” XX T
to control variance-bias tradeoffs. For example, ridge regression shrinks XXT towards identity, whereas principal
component regression (PCR) shrinks XX T towards low-rank matrices.

We mimic the linear regression and design two subroutines to capture source-source interactions and source-
target interactions. The component using source-source interactions prunes away ineffective models, resembling
pruning away inconsequential subspaces in PCR, whereas the component using source-target interactions further
fine-tunes model weights.

1. Source-source interaction: entropy-driven representative election. Here, our goal is to identify a subset
of orthogonal signals that resemble variable selections in PCR. Recall that PCR selects a subset of orthogonal
vectors as regressors. We aim to generalize the notion of orthogonality but the models d;(-)’s are non-linear so
standard PCR techniques do not work. Instead, we re-utilize the consensus regularization measures introduced in
Section 4.4. Recall that the consensus regularization defines the distance between each pair of d;(g(Xr))’s, which
outputs a n X n symmetric similarity matrix A (Figure 6 (a)), where

A= Y, ldig(r) - di(g(x).

iTEDT(X)

ACM Trans. Comput. Healthcare



12« Jiexiong Guan, Junjie Wang, Wei Niu, Zhen Peng, Shuangquan Wang, Zhenming Liu, Gang Zhou, and Bin Ren

We prefer a model i whose distances to other models are uniform (i.e., generalizing orthogonality), and we use
entropy to measure the orthogonality. Specifically, let the entropy associated with model i be 3’ ;c(,)] —A; j log A;j,
which is maximized when A;; are the same for different j’s. We then choose the models with the largest
entropy (either using the top-k rule or through thresholding after min-max standardization). A mask vector
wm € R" is generated to indicate whether each individual model is selected. See Figure 6 (b) and (c). Both top-k
and thresholding rules require a pre-defined hyper-parameter that controls the aggressiveness of the pruning
operation. Section 5.3.3 presents a parameter sensitivity analysis to show the robustness of our method.

2. Source-target interaction: adaptive ensemble prediction. We next explain how we use source-target
interaction. The MMD distance measures the distances d;(g(x;)) and d;(g(xr)) in the RKHS. Le., the distance
between the i-th source domain to the target domain. We leverage the MMD distance to generate the similarity
vector w; to assign more weights to the more similar domain-specific adaptor (Figure 6 (d)). Compounding with
the w,,, we obtain the weight vector w = w,, - ws. Then the confidence matrix (Figure 6 (e)) is retrieved to forecast
the label for X7 according to Equation 1.

We remark that (i) our procedure depends on the target’s features (both w,, and @;) so the final weights
dynamically adapt to the structure of the target features. (ii) Existing adaptive ensemble methods require an
additional parameter that is updated during the training phase [27], whereas ours does not interfere with the
training procedure. Instead, it is a post-training method that directly adjusts the w; based on the loss function.

4.6 Discussions

Our algorithm incorporates a function h(-) crafted by domain experts to transform features, utilizing manually
built features. In contrast, existing works [57, 64] often leverage deep learning to autonomously learn h(-). This
design decision is not arbitrary; rather, it stems from a discerned universal phenomenon prevalent in classification
problems involving the analysis of fine-grained muscle movements. Our conjecture posits that deep learning
models face challenges in learning semantically meaningful intermediate features crucial for accurate responses in
our domain. This conjecture is substantiated by comparing our problem with vision/NLP problems. In vision/NLP
tasks, deep learning models excel at identifying interpretable local patterns in lower layers, which are then
utilized for making predictions. For instance, convolutional layers in vision models extract local texture patterns,
while NLP models discern words/tokens with similar meanings. However, in our setting, deep learning proves
less effective in learning useful ’local’ features from raw time-series sensor data [11].

To validate our conjecture, we design additional experiments where we task neural networks with predicting a
set of seemingly ’simpler’ tasks using raw data. If our conjecture held true, deep learning models would struggle to
predict these tasks. We define the "simple tasks” as manually built features, including simple statistics such as the
number of chews or the duration of each chew. We select two deep-learning models to predict the 65-dimensional
hard-crafted features. The first model comprises two LSTM layers with a dropout rate of 0.5, followed by a fully

Table 2. We examine the ability of DL models to learn all 65 features. Left/right gyroscope and accelerometer sensors
are abbreviated to LG, RG, LA, and RA. Features 1-7 are statistics of chewing speed and duration; 8-9 are the magnitude of
translation and rotation; 10-23 are the number of mean-crossing, entropy/energy of frequency spectrum, maximum frequency
component, and statistics of spectrum component, 24-27, 38-51, and 52-65 extract the same features as 10-23 but on different
sensors.

Target features 1-7 8 9 10-23  24-37  38-51  52-65  1-65
Sensors LG,RG LA,RA LGRG LA RA LG RG All

LSTMAvg.RZ 0.197 0.003 0.002 0.261 0.374 0418 0.349 0.372
CoDATsAvg.R2 0.263 -0.038 -0.004 0.6231 0.6138 0.5549 0.5324 0.482
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connected layer for prediction. The second model, CoDATs, mirrors the original implementation but adjusts the
last fully connected layer based on the number of features. Both models employ mean squared error (MSE) loss
and the Adam optimizer [24] with a learning rate of 0.5e-3. We split the dataset into 2100 training samples and
608 test samples. We fix each time-series sample to a length of 1024 by padding zeros or truncating and use a
batch size of 128. We use R? metric to measure the regression performance.

Table 2 illustrates that deep learning models struggled to accurately predict hand-crafted features, even with
meticulous parameter tuning. While it might be feasible to fine-tune a neural network for predicting specific
features, using a single neural network architecture to predict a substantial portion of hand-crafted features
appears challenging. This underscores a fundamental difference between our problem and vision/NLP problems,
where a single architecture can typically extract a diverse set of ’local features’ such as various textures or the
meanings of many words”

Conclusion: The features X;’s and X7 originate from vastly different distributions, presenting a formidable
challenge even for simple responses, such as the 65 extracted features. In light of this, mastering effective transfer
learning in the food typing task remains a complex endeavor. Our investigation strongly suggests that, given the
current landscape, relying on manually-built features proves to be a more efficacious appreach. This observation
aligns with recent empirical findings [11], further emphasizing the ongoing difficulty in leveraging automated
methods to bridge the gap between diverse feature distributions.

5 EVALUATION
5.1 Evaluation Methodology

This section evaluates our proposed domain adaptation method for the task of food typing. Specifically, we show
that our algorithm outperforms state-of-the-art baselines significantly. We also perform extensive experiments
including ablation studies to analyze the roles and efficacy of different components in our pipeline. Moreover, we
perform open set MSDA evaluations to test the extensibility of our methods.

In our experimentation, we employ a rigorous evaluation technique known as LOOCYV, which stands for Leave
One User Out Cross-Validation. LOOCYV is a specialized form of cross-validation where the model is trained on
all users except one, and the excluded user serves as the target domain for validation. This process is iteratively
repeated until each user has been left out exactly once. LOOCV provides a robust assessment of the model’s
generalization performance, especially in scenarios where user-specific characteristics play a significant role.

Table 3. Data distribution of food-15. The dataset includes 15 users and spans 11 food categories, comprising a total of
2708 samples. Individual users contributed samples ranging from 144 to 197, and each food type has 63-544 samples. Notably,
User10 lacks samples for vegetables, and User11 has no samples for gum.

Nuts Gum Dry Fruit Fruits Pretzel Corn/Fry Cookie Vegetable Bread Meat Cream Total

Userl - 30 10 30 38 10 30 10 10 10 10 8 196
User2 30 10 29 30 10 21 10 10 10 10 1 171
User3 30 10 30 40 10 30 10 10 10 10 4 194
User4 30 10 30 39 10 28 10 10 10 9 8 194
User5 29 10 29 38 6 24 10 9 10 9 4 178
User6 30 10 30 40 10 27 9 9 8 10 4 187
User7 30 10 30 30 10 29 10 9 10 10 2 180
User8 30 10 30 40 10 27 10 10 10 10 8 195
User9 29 10 30 36 9 29 10 10 10 10 3 186
User10 29 10 30 36 10 30 10 0 10 10 6 181
User1ll 10 0 27 39 10 28 10 10 10 10 2 156
User12 28 8 27 38 9 21 10 10 10 1 1 163
Userl3 30 6 18 23 9 18 10 9 10 10 1 144
User14 29 10 30 37 10 28 10 10 9 10 3 186
Userl5 30 10 30 40 10 30 10 10 9 10 8 197
Total 424 134 430 544 143 400 149 136 146 139 63 2708
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5.1.1 Dataset. We use a standard benchmark human chewing datasets introduced in [55], namely food-15.
Comprising data from 15 participants, each engaging with up to 20 distinct types of food, this dataset captures
chewing activities via gyroscope and accelerometer sensors. For consistency and improved interpretability, we
adopt the categorization scheme proposed in [55], condensing the 20 food types into m = 11 categories. The
data summary is detailed in Table 3. This categorization proves advantageous for two primary reasons. Firstly,
from a clinical perspective, predicting food categories is often more meaningful than predicting individual types.
Secondly, the variation in participants’ dietary habits, such as one individual consuming almonds while another
opts for peanuts. Both almonds and peanuts, fall under the “Nuts” category. Predicting unseen labels (food types)
for the target users is a non-scope in this work.

Table 4. Comparison of our method (Ours) and nine state-of-the-art baselines. A1.Data represents manipulating data
to align to different domains without innovating model architecture/loss function, and A2.Model represents a method that
has innovated model architecture/loss function, see Section 3. Domain knowledge-guided feature extraction means a baseline
using hand-crafted features. Data-driven feature extraction methods use neural nets to learn representations on raw time
series data.

. Domain-invariant .
Work Feature extraction Adaptation target Ensemble scheme
feature transform

Single-source domain adaptation

1.CORAL [49] Domain knowledge  Al. Data Source-Target Source-combined
2.TCA [38] Domain knowledge  Al. Data Source-Target Source-combined
3.DANN [14] Domain knowledge  A2. Model Source-Target Uniform weight

Multi-source domain adaptation

4.DARN [56] Domain knowledge  A2. Model Source-Target Dynamic weight
5.MDMN [27] Domain knowledge  A2. Model Source-Target, Source-Source Dynamic weight
6.M3SDA [39] Domain knowledge  A2. Model Source-Target, Source-Source Model accuracy weight
7.MDAN [60] Domain knowledge  A2.Model Source-Target Dynamic weight
8.MuLANN [45] Domain knowledge  A2. Model Source-Target Source-combined
9.CoDATs [57] Data-driven A2. Model Source-Target Source-combined

Ours Domain knowledge  Al. Data, A2. Model Source-Target, Source-Source Dynamic weight

5.1.2  Baseline Methods. We examine a wide range of baselines, including a domain expert model without domain
adaptation [55], marked as No-Ada, three single-source domain adaptation methods: CORAL [49], TCA [38],
DANN [14], and six multi-source domain adaptation methods: DARN [56], MDMN [27], M3SDA [39], MDAN [60],
MuLANN [45], CoDATs [57]. Section 2 reviews these baselines. Table 4 also compares their key characteristics
against our algorithm. CoDATs [57] distinguishes itself by utilizing raw time series datasets from sensors. In
contrast, the remaining baselines were originally devised for recognition problems other than food type, such as
vision and natural language processing. It is not obvious how we can effectively pipe an architecture for time
series with these solutions. Thus, we feed the 65-dimensional hand-crafted features to these baselines. To maintain
consistency in our experiments, we employ the same set of neural network hyperparameters (e.g., number
of hidden nodes, number of layers) for both baselines and our proposed method. This practice enables us to
control the impact of model complexity, mitigating concerns of overfitting or underfitting. Adapting single-source
domain adaptation methods to the multi-source setting introduces additional challenges. For No-Ada, CORAL,
and TCA, we merge all source data to create a large joint source dataset as the training data. In the case of
DANN, we adhere to its single-domain scheme by training individual models on each source-target pair and
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Fig. 7. Evaluating accuracy of our method (Ours) and nine state-of-the-art baselines. Here, the upper bound (MLP
model trained with labeled target domain data) is 82.3%, and the lower bound (LSTM model learns source-combined data
without domain knowledge) is 9% on average, drawn as two horizontal dashed red lines.

subsequently ensembling the models with uniform weights. This approach aligns with methodologies applied in
prior works [39, 56, 60].

5.1.3 Lower and upper bounds. To put the numbers into context, we also present lower and upper bounds of
domain adaptation performance for this dataset. The lower bound is defined as the performance of a “strawman”
model, in which all data from different sources are used to train one single model, and the model is used to predict
data from an unseen target, a.k.a., a “no adaptation” solution. This s the default approach for ML modeling. The
upper bound is constructed as training a model with the knowledge of the target’s labels (i.e., a “target only”
model). The upper bound represents the behavior of typical ML models in an (excessively) ideal world, whereas
the lower bound represents the performance of a model one would expect from a typical practitioner. The gap
between the lower and upper bounds reflects the performance surprise and is a good indicator of the “difficulties”
of our domain adaptation problem.

The lower bound trains an LSTM model on source-combined data without domain knowledge. The upper
bound approximation uses the MLP model from Wang et al. [55] because it outperforms other model families.

5.2 Overall accuracy

Figure 7 compares the average accuracy of our method and baseline methods on each target domain of the
food-15 dataset, respectively. Our method outperforms baseline methods in each target domain with a 1.33X to
2.13% accuracy improvement. We also note while in general domain adaptation in food-type prediction problems
is remarkably difficult, performance on certain targets (e.g., participant 3) is quite close to the upper bound (a
promising sign). It remains an interesting open problem to understand when a participant is easy to predict.
The two methods that do not utilize source adaptation techniques, No-ada and LSTM, perform 22.8% and
38.5% worse than our approach, respectively, confirming the effectiveness of domain adaptation in predicting
food types for unseen users. The LSTM learns features from raw time-series data, while No-Ada relies on do-
main expert features, highlighting the robustness of manually extracted features in handling domain shifts.
Moreover, compared with CoDATS [57] (CNN on raw time series), our method extracts features with expert
knowledge and is 25.2% better on average, confirming the intuition of preferring not to use raw data (Section 4.6).
TCA [38] and CORAL [49] use only standard neural net (NN), and are 19.2% and 23.8% worse than us, respectively.
Therefore, engineering NN is essential. MDMN [27] and M3SDA [39] originally designed for computer visions,
optimize source-source and source-target divergence simultaneously and are the best baselines, also confirm-
ing the importance of reducing source-source divergences (Section 3). They are nevertheless 11.8% and 12.7%
worse than us, respectively. They do not have stratified normalization or adaptive ensemble learning. The cost
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functions and architectures in our NN are also different.
We are 13.9% and 23.7% better than DANN [14] and
MuLANN [45], which do not directly address source-
source divergence. We are also 14.7% and 22% better
than DARN [56] and MDAN [60], respectively, which
couple ensemble-weight learning with deep learning
(i.e., ensemble weights are part of the network, which
could potentially impact DL training in an adversarial
manner), whereas we take a two-staged approach (i.e.,
learning the ensemble weights after training the multi-
source domain adaptor).

To delve deeper into the performance of the pro-
posed food typing methods in the face of domain di-
vergence challenges, we analyze the confusion matrix
as depicted in Fig. 8. Notably, certain classes exhibit a
high degree of ease in being classified into each other.
For instance, classes such as 'Nuts’ and ’Dry Fruit’
or ‘meat’ and ’bread’ seem to be easily confused, as
evidenced by the relatively high numbers in the cor-
responding off-diagonal elements. This suggests a po-

Nuts Dry Fruit Pretzel Cookie Bread Cream

|
215

Ground truth

Predicted food types

Fig. 8. Sum of the confusion matrix over the 15 users. Each
row in the matrix represents the true class, and each column
represents the predicted class, the prediction and ground truth
labels are annotated. The diagonal elements represent the cor-
rectly classified instances for each class, while off-diagonal
elements indicate misclassifications.

tential similarity or overlap in the features that the model uses for classification between these pairs of classes.
Recognizing food types through chewing behavior across different users remains a challenging task. However,
the presented work represents a significant stride toward a promising solution.

Our average accuracy is 47.5%, insufficiently close to the “productization” level. Note also that there are a
total number of 11 classes, so a “null” model has a 9% accuracy. The problem we face appears to resemble model
development for ImageNet [10], which requires multi-year effort to engineer a fully effective model (the most
accurate model three years after ImageNet’s inception is only slightly over 60%. [25]). We remark that strawman’s
(lower bound) performance is 9%, the best baseline is 35.7% (after substantial hyper-parameter tuning), and ours is
47.5%, which represents a 5.28 multiplicative improvement. Our “delta” with the strawman is 1.44 times stronger

than the delta of the best baselines and the strawman.

5.3 Ablation Study
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Fig. 9. Ablation study of our methods.
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Three components are vital to our model, including strat-
ified normalization, architectures with multi-source do-
main adaptation (including consensus regularizer), and
adaptive ensembling. This section performs ablation stud-
ies to examine each component’s effect. Note that the
maximum mean discrepancy (MMD) technique handles
source-target interaction and is widely deployed in mod-
ern DA algorithms so we do not specifically examine this
component for conciseness.

Overview. Figure 9 presents a bird’s eye view of model
performance after progressively adding each of the com-
ponents. Specifically, the red line represents the perfor-
mance evolution on average after adding the components,
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Fig. 10. Normalized accuracy comparison with and without S-Norm, Ensemble, MSD-Adaptor, and CR.

whereas dots in different colors represent the performance of individual users. After adding S-Norm, the model
improves by 9.66% on average. Then we add uniform ensemble learning (Ensem. ), which multi-source domain
adaptation techniques assume, the model further improves by 2.8%. Next we add multi-source domain adaptation
(MSD-adaptor), which consists of two steps, including first adding all techniques except for the consensus regu-
larization (CR), and then adding consensus regularization. We can see that the gross performance improvement is
11.55% whereas the consensus regularization on its own contributes 6.85% improvement. Finally, we add adaptive
weights (Ada.weights) to replace uniform weights in ensemble learning. We can see that while the average
performance improvement is moderate, they are more powerful for some targets (and never result in worse
performance). The next part further examines/interprets each individual technique in detail.

5.3.1 Interplay between Stratified Normalization and Ensemble Learning. Ensemble learning is the de facto design
to address the MSDA problem [51]. To study the interplay between S-Norm and ensemble learning, we compare
the following settings: uniform weight ensemble learning with or without S-Norm, and combining data from
multiple domains to train one model, a.k:a., a “source-combined” model, with or without S-Norm. Figure 10a
shows the comparison results. It proves that S-Norm substantially improves model accuracy by 1.3X even without
being integrated with ensemble learning. Integrating S-Norm with ensemble learning further enhances the
accuracy by 1.41x. It is interesting that applying ensemble learning only without S-Norm results in an accuracy
that is slightly worse than the non-ensemble version.

5.3.2  Multi-source Domain Adaptor and Consensus Regularizer. All other techniques without consensus
regularizer. A substantial body of prior works has demonstrated the efficacy of multi-branch architecture
(i.e., hard parameter sharing layers reduce risks of overfitting [9, 43]) and the MMD [48, 53] cost function.
Thus, it may not be surprising that these techniques con-

1 ¢ Reduced train-test acc. gap tinue to work in our problem. The more worthwhile point
s is that these techniques are additive, i.e., they can be inte-

5‘ 0.8- grated seamlessly with other innovations in our pipeline. To

§ study the effectiveness of a multi-branch structure, we com-

g ' ' pare it with a sequential MLP model. As Figure 10b shows,
0.6 w/CR  w/oCR

o the multi-branch structure model achieves higher accuracy
Training acc. — —
Test acc. — —

than the sequential model. Most importantly, a multi-branch
5 10 model facilitates the integration of other domain adaptation
# Iterations [K] designs, i.e. consensus regularize.

0.4

Consensus regularization. We further perform conver-

Fig. 11. The efficacy of CR in alleviating overfitting. o, ce analysis for training and test sets to inspect the impact
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Fig. 12. Parameter sensitivity analysis of adaptive weight selection in ensemble learning. (a) AE1 selects top-k repre-
sentatives that have the largest entropy value, where k € {1,...,n}. (b) AE2 selects the representatives through thresholding.
The domain-specific adaptors that have a larger entropy value than the threshold will be elected as representatives. The
left and right axes show the interaction between the threshold and the number of representatives. We iteratively set the
threshold parameter from 0.05 to 0.95 with a step of 0.05 to test the accuracy. Both methods are robust to hyper-parameter
settings and have accuracy over the default ensemble method that assigns uniform weights to all domain-specific adaptors.

of consensus regularizers. See Figure 11 for the training and test accuracy using models with and without consen-
sus regularizer. One can see that (i) the consensus regularizer slows down the training process but eventually
coincides with the model without the regularizer. (ii) the test performance continues to improve over time even
when the training errors stall. These observations resemble behaviors of AdaBoost [12], and it is an interesting
open problem to understand how they are connected. In addition, the reduction in the training-test gap highlights
the consensus regularizer’s efficacy in alleviating the overfitting problem.

5.3.3 Adaptive Weights Assignment in Ensemble Learning. The ensemble learning module includes an optimization
that adaptively assigns a weight to each domain-specific adaptor. Each adaptive weight consists of a 0-1 mask
vector w,, that decides if this domain-specific model is included in the ensemble and a fine-tuning vector s that
measures the similarity between a source domain and the target domain in the embedded space. As aforementioned
(in Section 4.5.2), our method offers two ways to determine the value of w,,: either a top-k strategy (AE1, AE is
short for Adaptive Ensemble) or a threshold-based strategy (AE2).

Figure 12a shows that our top-k strategy (i.e., AE1) consistently outperforms the default uniform weight
assignment and random selection in accuracy by an average value of 0.28% and 0.6%, respectively, for each eligible
parameter setting. Figure 12b studies the interaction between threshold value selection (in AE2) and the number
of representatives (i.e., selected domain-specific models). As Figure 12 shows, a higher threshold results in more
aggressive pruning, i.e. fewer representatives participate in predicting. This result also shows that selecting a
middle-range value of the threshold achieves the optimal improvement (1%) over the uniform weight assignment.
Users can select either AE1 or AE2 for their application (and dataset) based on a similar empirical study.

5.4 Open Set Multi-source Domain Adaptation

Prior experiments assumed an ideal condition where each domain consumes the same type of food (except for
user 10 and user 11, refer to Table 3). This setting is commonly used by the research community [51, 61]. However,
such a condition may not always exist in the real world. In this section, we address a more challenging scenario
where each source domain only provides partial food types. This is formally defined as the open set MSDA
problem [61], where y; N yr C yr. This setting is more challenging because the total amount of labeled data is
reduced, and the target domain can only learn a few food types from one specific user and other food types from
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Fig. 13. Evaluating the accuracy of our method (Ours) and baselines under the open set configuration. Each user
provides approximately 50% of the labels.

different users. Such a situation could occur in real-world applications when extending the model to recognize
more food types, as new data may need to be provided by different users.

To validate our methods in this setting, we modify
the dataset so that each user provides partial labels. For
.6- Il Best of Baselines example, user 1 provides labels with odd IDs, and user
Bl Ours 2 provides labels with even IDs, meaning the model
can only learn approximately 50% of the food types
from each user. Figure 13 compares the average accu-
racy of our model with baseline methods under this

<
=2}

Accuracy
[
23

.2r
’ setting: Ourmethod outperforms the baseline methods
0.0 with a 1.39% to2.40X improvement, indicating that our
33% 50% 80% 100% approach is extensible to incorporate more food types.
Labels provided by each user Figure 14 presents a detailed analysis by varying the

percentage of food types provided by each source do-
Fig. 14. Breakdown study of the open set problem. Use main. Our method surpasses the best baseline by a
different proportions of labeled data to compare our method " range of 1.37X to 1.82x. Although our method expe-
with the best-performing baseline method. riences accuracy losses, these are attributable to the

reduced data size under the open set configuration.

6 CONCLUSION AND FUTURE WORK

This work develops the first multi-source domain adaptation (MSDA) method for food typing recognition, which
consists of a pipeline with three main components. First, the stratified normalization aligns the conditional and
marginal distributions of features to adapt to different domains, improving accuracy by 9.66% compared with a
no-adaptation baseline. Second, a multi-source domain adaptor is trained on the domain-aligned features to learn a
generalizable classifier for recognizing food types, incorporating a consensus regularizer and the maximum mean
discrepancy. This component further increases accuracy by 11.55%. Finally, the adaptive ensemble weight selection
prunes irrelevant sub-models of the multi-source domain adaptor and fine-tunes the weights for ensembling,
contributing anadditional 0.68%-1% accuracy improvement. Our evaluation empirically validates the importance
of the consensus regularizer and domain knowledge in providing generalizable forecasting through sensor signals.
We compare our method with nine state-of-the-art baselines to evaluate accuracy improvements in both closed
set and open set MSDA problems, demonstrating that our method achieves 1.33% to 2.13%x and 1.39X to 2.40%
accuracy improvements, respectively.

Based on the current study, our future work includes: 1) improving the model to achieve higher accuracy and
recognize a greater variety of food types in both closed set and open set MSDA problems, 2) extending our method
to more challenging problems, such as zero-shot MSDA, where target data are not available during training.
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