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Recognizing food types through sensor signals for unseen users remains remarkably challenging, despite extensive recent
studies. 吀栀e e昀케cacy of prior machine learning techniques is dwarfed by giant variations of data collected from multiple
participants, partly because users have varied chewing habits and wear sensor devices in various manners. 吀栀is work treats
the problem as an instance of the domain adaptation problem, where each user represents a domain. We develop the 昀椀rst
multi-source domain adaptation (MSDA) method for food-typing recognition, which consists of three major components:
strati昀椀ed normalization, a multi-source domain adaptor, and adaptive ensemble learning. New techniques are developed for
each component. Using a real-world dataset comprised of 15 participants, we demonstrate that our method achieves 1.33× to
2.13× improvement in accuracy compared with nine state-of-the-art MSDA baselines. Additionally, we perform an in-depth
ablation study to examine the behavior of each component and con昀椀rm their e昀케cacy.
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1 INTRODUCTION
吀栀e escalating global prevalence of obesity poses a signi昀椀cant public health risk, contributing to an alarming
number of premature deaths each year in both developed and rapidly developing countries. In the United States
alone, approximately 670,000 deaths annually are a琀琀ributed to nutrition- and obesity-related diseases, including
heart disease, cancer, and diabetes. Moreover, maintaining a well-structured dietary pa琀琀ern is crucial for the health
status of every individual. To address this health crisis, there has been a push for the development of innovative
sensor-based technologies and machine learning models aimed at monitoring food intake and analyzing collected
data. Among the various solutions, machine learning models using motion and acoustic sensors, o昀琀en integrated
into wearable devices like smartwatches, earphones, and glasses, have shown promise [47]. Notable advancements
include the application of random forests [36] and neural networks [55] to model food typing.

However, a critical challenge emerges when models are trained on a collective dataset from various users—these
models struggle to generalize e昀昀ectively across di昀昀erent sets of users. Table 1 illustrates the diminished perfor-
mance when predicting food types for unseen users, highlighting the limitation of existing machine learning
models. 吀栀is generalization issue becomes a signi昀椀cant barrier to large-scale deployment, as users expect tech-
nologies to work seamlessly across diverse individuals. 吀栀e variations in sensor locations and chewing habits
among di昀昀erent users hinder machine learning models from extracting robust user-oblivious signals, a problem
commonly referred to as the domain adaptation (DA) problem [5].

Table 1. Prior works’ low generalization performance.We referenced the original paper and re-implemented their works
to present seen and unseen users’ accuracy scores. The original implementations have data from the same user in training
and testing sets and achieved high accuracy. The accuracy scores are degraded to a great extent when the se琀琀ing is changed
to predict the unseen user, i.e., split data from one user as the testing set exclusively.

# Users # Food types Model type Acc. of predicting
Seen users Unseen users

Mirtchouk et∼al. [36] 6 40 Random forest 82.7% 29%
Wang et∼al. [55] 15 11 Two-layer Perceptron 82.3% 23%

In this work, we speci昀椀cally focus on the multi-source domain adaptation problem (MSDA) [34, 51, 61], where
labeled training data belongs to multiple domains, exacerbating the challenges associated with domain divergence.
Existing domain adaptation methods fall short when applied to the task of predicting food types for unseen
users. To address this, we propose a comprehensive pipeline that integrates a diverse set of techniques to combat
multiple interrelated subproblems (see Figure 4). Our contributions can be categorized into three main techniques:

Domain-invariant features: 吀栀ese features refer to data representations that remain consistent across di昀昀er-
ent domains. While end-to-end neural networks aim to automatically extract features una昀昀ected by distribution
variations, such approaches prove ine昀昀ective in our se琀琀ing. CoDATs [57], for example, work on long-range
muscle motions (e.g., si琀琀ing down, walking), making it unclear how an end-to-end neural network can e昀케ciently
extract food-type signals from 昀椀ne-grained muscle movements (e.g., chewing di昀昀erent types of foods) across
diverse domains. To mitigate domain shi昀琀s, we propose to apply an “anti-wisdom” approach, leveraging hand-
cra昀琀ed features to trade domain expertise and manual labor for a simpli昀椀cation in 昀椀琀琀ing the target function.
Additionally, we introduce strati昀椀ed normalization, inspired by strati昀椀ed sampling in statistics, to control feature
variations across domains. 吀栀ese techniques, relying on di昀昀erent principles, work synergistically to enhance
signal extraction.

Source-source domain adaptation: 吀栀is technique aims to align models trained on di昀昀erent source domains
to control dissimilarity, facilitating e昀昀ective generalization across diverse sources. While existing works [45, 56,
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57, 60] primarily concentrate on adapting multiple source domains to the target domain, they o昀琀en overlook
the inherent divergence among the source domains themselves. It is essential to recognize that the multiple
source domains not only di昀昀er from the unseen target domain but also exhibit variations among each other to
varying extents. 吀栀erefore, the complexity of domain divergence is growing with the number of source domains.
Consequently, mitigating source-source domain divergence becomes crucial when training a reliable classi昀椀er for
the target domain, otherwise, the model will struggle to learn from multiple domains with di昀昀erent distributions.
In our work, we renovate a multi-branch neural network where each branch independently adapts one source
domain to the target. 吀栀is adaptation process incorporates a consensus regularizer [33] to guide all branches,
encouraging them to learn common features and e昀昀ectively reduce source-source domain divergence.
Adaptive ensemble weight: 吀栀is technique addresses the challenge of static ensemble weights, which can

be suboptimal, leading to accuracy degradation when incorporating data or models from irrelevant domains.
Inspired by a theoretical work [34], we introduce a two-stage adaptive ensemble method that dynamically adjusts
ensemble weights for di昀昀erent users. Notably, our solution employs source-source similarities to 昀椀lter out useless
or harmful models prone to mispredicting food types for unseen users.

While domain adaptation challenges are prevalent in many machine learning applications, existing techniques
are o昀琀en tailored to speci昀椀c domains and lack generalizability. 吀栀is limitation becomes more pronounced in our
context, where adapting to multiple domains becomes increasingly challenging with a growing number of users.
Previous approaches are frequently tested on a limited number of domains (e.g., up to four domains [7, 16, 18, 26,
30, 40, 44, 54]) or synthetic data [39], rendering them less suitable for our multi-domain scenario. In contrast, our
solution stands out as a “cocktail” 昀氀avor, o昀昀ering a pipeline in which each stage is either robust or e昀昀ective to
adapt various numbers of domains. 吀栀e 昀椀rst stage employs hand-cra昀琀ed features and strati昀椀ed normalization
for each domain independently, ensuring e昀昀ectiveness regardless of the number of domains. 吀栀e second stage
employs a multi-branch structured neural network with consensus regularization to control domain similarities.
In the 昀椀nal stage, our adaptive ensemble scheme further enhances robustness across di昀昀erent domain scales.

In summary, our contributions are as follows:
• A Multi-Source Domain Adaptation (MSDA) pipeline with renovated algorithm components is proposed

to address the generalization issue in the food type recognition task.
• A new set of techniques and principles is introduced, incorporating consensus regularizer, strati昀椀ed

normalization, and domain knowledge-guided feature extraction, to address the more severe domain
divergence problem caused by the growing number of domains.

• A two-stage adaptive ensemble method is designed to automatically assign weights to relevant domains
and prune o昀昀 irrelevant ones. 吀栀is method is robust to parameter se琀琀ings and further improves accuracy.

• Extensive empirical evaluation is conducted. We experimentally veri昀椀ed the importance of hand-cra昀琀ed
features in the food typing task with multiple domains. Besides, the evaluation shows that our method
achieved 1.33× to 2.13× higher accuracy than other baselines.

吀栀e rest of the paper is organized as follows: Section 2 explains the research e昀昀ort closely related to this work.
Section 3 presents the challenges of performing domain adaptation on food typing. Section 4 demonstrates the
overall solutions. Section 5 describes experiments to evaluate our methods. Finally, a conclusion remark is given
in Section 6.

2 RELATED WORK

Domain adaptation. 吀栀e main challenge of domain adaptation was to reduce the domain discrepancy between
di昀昀erent domains, which was approached from multiple perspectives: 1) Data manipulation and feature
engineering. Several existing works selected a subset of training samples or assigned weights to them based on
the distance of one training sample to the test set [21, 31, 41]. Similarly, Nikolaidis et al. [37] iteratively selected
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subset training samples with high con昀椀dence scores and 昀椀ne-tuned the classi昀椀er with the selected data and
predicted labels. An et al. [4] used labeled target samples to 昀椀ne-tune speci昀椀c layers of a neural net that produced
user-speci昀椀c features. In contrast, our approach prunes and assigns weights to the trained sub-models where the
information of the dataset had been learned so that labeled data were not wasted. TCA [38] and CORAL [49]
learned matrix mappings to align the features of di昀昀erent domains. Instance Normalization [15, 28] and AdaBN
[29] designed domain-adapted normalization layers to transform intermediate feature maps in a neural net. 吀栀ese
methods were not straightforward to integrate into our framework but were more suitable for other tasks or
training methodologies. 2) Neural network innovation. Maximum mean discrepancy (MMD) [48] measured
the discrepancy between two domains and was applied to train various neural nets to reduce distribution shi昀琀
[17, 32, 53, 64, 65]. Inspired by MMD-based solutions, various neural nets coupled with domain discrepancy
measurement functions were proposed, including Deep-CORAL [50] and GAN-based solutions [13, 52, 59]. 吀栀ese
approaches could be seamlessly extended to multi-source domain adaptation [51, 61] by combining multiple
source domains into one; however, they were susceptible to accuracy degradation [14, 29, 57] because the learning
procedure was interfered with by quadratically increased domain divergences [42]. Our method instead learned
data from di昀昀erent domains through multi-branch model training [9, 43]. Finally, Luo et al. [33] proved that
the disagreement between multiple sources was the upper bound for classi昀椀cation errors, so optimizing the
consensus regularizer led to be琀琀er prediction performance [27, 39, 64]. 3) Ensemble learning. It was proven that
the target distribution could be represented as a weighted combination of source distributions [34]. Accordingly,
many existing e昀昀orts trained one model or multiple sub-models and late-fused the prediction con昀椀dence scores
with uniform weights [46, 64] or 昀椀ne-tuned weights based on various metrics. Peng et al. [39] assigned source-
only accuracy weights to sub-models. Xu et al. [58] calculated a perplexity score during the adversary training
procedure as a weight. Guo et al. [19] designed a point-to-set metric based on Mahalanobis distance to re-weight
domain experts. Zhao et al. [62] re-weighted trained distilled source classi昀椀ers using Wasserstein distance. Our
method updates the mask weights (l<) and the similarity weights (lB ) based on the entropy of ℓ1 distances
between domain-speci昀椀c models and MMD metrics. Another category of ensemble schemes was to update
weights during training. In contrast, our method updates weights a昀琀er training without interfering with the
learning procedure.

Domain adaptation and Food type recognition. Recognizing food types through sensor signals achieved
promising results in recent years. Oliver Am昀琀’s team achieved 80 ∼ 100% accuracy in classifying four food types
using earbud-embedded microphone sensors [2]. Later, they produced two prototypes that achieved 80% and 86.6%
accuracy, respectively, in classifying 19 food types [1, 3]. Yin et al. [6] proposed a prototype for recognizing seven
types of food using two microphones embedded in a neckband. 吀栀e microphone could also be placed near the
mouth to classify six types of food [20]. Besides microphones, a smart utensil containing an array of LEDs could
recognize twenty food types [22]. An intraoral sensor placed in the mouth while eating classi昀椀ed nine food types
based on temperature and jawbone movement [8]. However, the current state-of-the-art is the work combining
microphones with other sensor types. Samantha’s team identi昀椀ed 40 di昀昀erent types of food with an accuracy of
82.7% [36], combining a microphone-embedded earbud, Google Glass, and two smartwatches. Although these
food type recognition methods achieved acceptable accuracy, none considered the domain adaptation problem.
吀栀erefore, their recognition accuracy could signi昀椀cantly decrease when the application environment or scenario
changed (see Table 1). Although prior works have applied domain adaptation to sensor signals in other tasks, they
are not suitable for the food-type recognition task for various reasons. For example, Zheng et al. [63] generated
fake labels for the target domain based on MMD [48] to recognize daily behaviors utilizing sensors sca琀琀ered in
an apartment. Mathur et al. [35] studied the domain adaptation problem caused by di昀昀erent sensor deployment
locations. Jiang et al. [23] adopt an adversary training approach to recognize human activities for single subject on
WiFi signals. 吀栀ese methods are not e昀昀ective in recognizing food types without incorporating domain knowledge.
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Fig. 1. Per-user feature distribution. The le昀琀 figure illustrates the feature distribution of chewing frequency, while the
right figure depicts chewing force. Two classes are visualized with di昀昀erent markers and colors. Generally, users chew gum
more slowly and with more force than nuts.

3 PROBLEM SETUP, MOTIVATION, AND CHALLENGES.
吀栀is section describes the problem de昀椀nition, reviews standard techniques, and performs preliminary experiments
to motivate our solutions.
Problem setup. Figure 1 illustrates the chewing habits of di昀昀erent users for two types of foods: gum candy
and nuts. Users generally chew nuts faster and with less force than gum candy due to the properties of the
foods—gum is chewy, while nuts are crispy. However, the distributions among di昀昀erent users vary signi昀椀cantly,
leading to potential misclassi昀椀cation of food types. For instance, user 6 and user 8 exhibit completely di昀昀erent
chewing forces, with the minimum chewing force of user 6 being greater than the maximum chewing force of
user 8. 吀栀is indicates distinct marginal distributions. Consequently, using a model trained on data from user
8 to predict data from user 6 could result in all instances being misclassi昀椀ed as gum candy, which requires a
stronger chewing force. Similarly, user 2 and user 12 chew gum candy and nuts at a similar frequency, leading to
similar conditional distributions of chewing speed. However, this di昀昀ers from other users, who chew nuts at a
higher frequency. 吀栀ese distribution divergences contribute to poor generalizability to unseen users, as shown in
Table 1. Additionally, determining which labeled users are similar to a new, unlabeled user is challenging. To
address the domain divergence issues in recognizing food types for unseen users, we 昀椀rst formalize this challenge
as a multi-source domain adaptation (MSDA) problem. We then analyze the performance of prior solutions to
motivate our designs.

In anMSDA scenario, there exist= source domains and a target domain) , corresponding to di昀昀erent individuals.
We observe features and labels (x’s and ~’s) from source domains and only features (x’s) from the target. Our goal
is to build a classi昀椀er for predicting labels in the target domain using the available labeled data from = users and
unlabeled data from the target user. Let B8 be the number of observations from domain 8 and (8 = {(x

9
8 , ~

9
8 )} 9∈[B8 ]

be the set of observations, each of which is independent and identically distributed (i.i.d.) sampled from the
distribution D8 . Similarly, we assume that the data (~) , x) )’s are sampled from distribution D) (note that ~) ’ are
the ground truth and not observed). Let also -8 = {x

9
8 } 9∈[B8 ] (8 ∈ [=]) be the set of features, and -) = {x

9
)
} 9∈[C ]

be the features of the target, where C is the total number of (unlabeled) observations from the target domain.
Finally, let D8 (- ) and D) (- ) be the feature distribution in domains 8 and ) , respectively.

When ~8 = ~) , meaning each domain has the same set of labels, the problem is de昀椀ned as the closed set
MSDA. If this condition does not hold, but for at least one ~8 , ~8 ∩ ~) ⊂ ~) , the problem is de昀椀ned as open set
MSDA [61]. We describe and evaluate our method primarily using the closed set MSDA se琀琀ing, similar to prior
approaches [27, 39, 45, 56, 57, 60]. To test whether our method can adapt to the more challenging scenario where
the target domain can only learn partial labels from each source domain, we also evaluate our method under the
open set MSDA con昀椀guration in Section 5.4.
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Fig. 2. Prior solutions’ accuracy. Comparing existing do-
main adaptation algorithms to the upper bound (where
labels from the target domain are available). We consider
two variants of each existing solution: Type I variants use
data from all domains to train one single model, whereas
Type II variants train a model from each domain and run
ensemble learning algorithms over multiple model predic-
tions.

Fig. 3. Ablation study of Multi-source domain adaptor.
A simple experiment for the breakdown of “more data is bet-
ter,” we use the standard ensemble learning method to build
a forecast based on a linear combination of source models’
forecasts. G-axis is the number of used source domains,
and ~-axis is the achieved accuracy. Each point represents
the performance of the best-aggregated models subject to
the source number constraint. One can see that the per-
formance of the consolidated model first improves, then
degrades as the number of sources increases.

Prior Solutions and Performance. Domain adaptation appears widely in many areas. Di昀昀erent downstream
applications possess di昀昀erent distribution structures, so generic domain adaptation building blocks may not
always be e昀昀ective. To motivate our work, we review standard techniques and perform preliminary experiments
to highlight their ine昀케cacy. As aforementioned in Section 2, existing works develop or use techniques from one
or more of the following categories: A1. Data manipulation and feature engineering. A2. Neural network
innovation. A3. Ensemble learning. For example, CORAL [49] and TCA [38] use A1, DANN [14] uses A2,
Schweikert et al [46] use A1 and A3, CoDATS [57] uses A2 and A3. Note that A1 and A2 usually do not appear
together because there is a strong belief that properly designed neural network models can automatically learn
representations from raw data and do not need heavy feature engineering. 吀栀erefore, no work simultaneously
uses A1-A3.

Figure 2 showcases the results of our preliminary experiments on these techniques. 吀栀e Upper bound refers to a
se琀琀ing, in which labels in the target domain are accessible. Colored bars depict the performance of existing MSDA
algorithms. Rigorous tuning e昀昀orts were applied to these algorithms, exploring two variants: Type I, utilizing data
from all sources to train a single model, and Type II, training a model for each source and generating forecasts for
the target through a linear combination of source models. 吀栀e upper bound achieves over 80% accuracy, while all
MSDA techniques fall below 35%. 吀栀is performance gap underscores the need for substantial advancements in
techniques, and intriguingly, Type II variants, employing ensemble learning, tend to outperform their Type I
counterparts—an observation we will revisit and leverage in our algorithm design.
Reasoning about the performance. A salient challenge we face here is that the interactions between sources
and target, and between domains grow quadratically in the number of users and the source-source and source-
target divergences are uniformly high. Speci昀椀cally, a model tuned for a speci昀椀c target requires us to control the
divergences between each source and the target, and between sources, the la琀琀er of which is quadratic in the
number of users. When divergences between sources are weak, source-source interaction can be suppressed in a
model. All existing techniques in Figure2 focus on the source-target interaction and ignore the source-source
interaction so they have reasonable performance only when the divergences between each pair of source domains
are moderate, and quickly deteriorate when divergences are signi昀椀cant.

Compounding a large source number and large divergences further amplify the weakness of existing tech-
niques/solutions: (i) Use A1 (or A1 & A3) without A2. TCA [38] and CORAL [49] focus on designing specialized
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Fig. 4. Overview of our solution.

procedures to transform features x’s from di昀昀erent domains and pipe the transformed x with a standard neural
net, which is usually sub-optimal because neural network architecture/loss functions are not optimized toward the
structure of the MSDA problem. (ii) Use A2 (or A2 & A3) without A1. While deep architectures (e.g., CoDATS [57])
are more 昀氀exible in learning feature representations, they cannot be fully automated to perform representation
learning from the raw data e昀昀ectively. We observe that deep architectures’ inability to use raw features directly is
a generic problem for wearable ML problems and is not tied to a speci昀椀c downstream prediction task (in our case
food type prediction). Section 4.6 elaborates further our observations. (iii) Problems of A3. Ensemble learning
assumes that each weak learner delivers su昀케ciently “orthogonal” and useful predictions. 吀栀is assumption also
breaks. Speci昀椀cally, we notice that sometimes having more ensembles in fact can harm (see Figure 3). 吀栀is result
shows that increasing the number of ensembles 昀椀rst improves the prediction capability, and then degrades
it [14, 29, 57]. 吀栀is highlights a delicate interaction among ensembles and the challenges in weighting (and
pruning) them.

4 OUR APPROACH
吀栀is section explains our solution. Our key observation is that we need to innovate a broad set of techniques
across all A1-A3 (feature engineering/normalization, model architecture, and ensemble weighting) and integrate
them to collectively tackle the source-source and source-target divergence problems. Changes in one component
(e.g., feature engineering) can result in complex interactions with other components, so it is important to design
a “pipelined” system consisting of loosely interacting components. Each component in the pipeline addresses a
speci昀椀c ML subproblem and can be implemented using one or more techniques. 吀栀is pipeline articulates and
restricts the search space, de昀椀ning the possible ways to integrate di昀昀erent techniques. By doing so, we can
allocate most of our computational resources to explore combinations of more promising techniques and limit the
resources spent on tuning less e昀昀ective ones. We 昀椀rst provide an overview, and then describe each component in
detail.

4.1 Overview
Figure 4 provides a visual representation of our pipeline. Initially, raw time-series instances undergo processing
in the feature extractor, generating 65-dimensional hand-cra昀琀ed features. 吀栀is process yields target features
x̃
9
)
= ℎ(x

9
)
) and source features x̃98 = ℎ(x

9
8 ), with 8 ∈ [=]. Our domain adaptation algorithm is structured around

three key components (C1-C3): C1. Strati昀椀ed Normalization: 吀栀is component, vital for Multi-Source Domain
Adaptation (MSDA), normalizes features from diverse domains to a consistent scale. 吀栀is step is particularly
crucial for datasets exhibiting signi昀椀cant shi昀琀s in marginal distributions across domains.C2. Multi-Source
Domain Adaptor: Comprising a shared layer 6(·) and a set of = classi昀椀ers {31 (·), . . . , 3= (·)}, this component
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(a) Vanilla normalization (b) Stratified normalization

Fig. 5. Visualization (t-SNE) of normalized data. Points in • and 4 are observations from two di昀昀erent users. Di昀昀erent
colors represent di昀昀erent classes. Centroids of blue points from di昀昀erent users are highlighted (by bolder marks). (a) uses
vanilla normalization, whereas (b) uses stratified normalization (S-Norm). Both Pr[-̃8 ] (points in the same shape) and
Pr[-̃8 | .8 ] (i.e., the cloud of points in the same color from the same user) get much closer for two users using S-Norm.

manages the delicate balance between model robustness and diversity. 吀栀e shared layer, 6(·), extracts robust
features across domains, minimizing divergence. Each classi昀椀er, 38 (·), is individually optimized to learn labels
from its respective source domain. Speci昀椀cally, each branch 38 (·) outputs ?8 for the source domain, feeding it
into cross-entropy loss L2;B to train the classi昀椀er. Simultaneously, @8 is produced from the target domain, and
the pairs (@8 , ?8 ) are utilized in the maximum mean discrepancy loss L<<3 to reduce source-target divergence.
Independence among the branches ensures diverse predictions, crucial for e昀昀ective downstream ensembling.
Furthermore, ?8 outputs contribute to the consensus regularization L2>= to mitigate source-source divergence.
C3. Adaptive Ensemble Learner: Treating each output from 38 as an ensemble, this component determines
suitable ensemble weights by leveraging L<<3 and L2>= . 吀栀ese weights are dynamically adjusted, assigning
greater signi昀椀cance to sources more akin to the target.

4.2 Hand-cra昀琀ed feature extraction
We follow the approach [55] to construct a total collection of 65 features optimized for building food-type
recognition models. See Table 2. We let ℎ(·) be the feature engineering procedure so that ℎ(x) ∈ R

65. Recall
that x̃ = ℎ(x), and we also let -̃8 = {ℎ(x

9
8 ) 9 } (8 ∈ [=] ∪ {) }, and 9 ∈ [B8 ] ∪ {) }). Our pipeline critically relies on

hand-cra昀琀ed features, which are more robust for food-typing tasks and departs from a recent “fashionable” trend
that aims to use a neural network to learn features automatically [57]. See also Section 4.6.

4.3 Stratified normalization
Machine learning algorithms o昀琀en assume that the data in training and test sets are from the same distribution,
which is severely violated in our se琀琀ing. First, each user could wear devices in slightly di昀昀erent ways. Second,
people have di昀昀erent chewing habits. For example, when user 8 eats faster than user 9 , 8’s chewing time will be
shorter, but his or her chewing force will be stronger. 吀栀erefore, D8 and D9 could be drastically di昀昀erent.

Traditional normalization re-scales the input features across sources to have uniform standard deviations and
means, which is ine昀昀ective in our se琀琀ing. Figure 5a shows data collected from two domains, 8 and 9 (users). A昀琀er
normalizing the training data, the data still shi昀琀 between D8 and D9 . 吀栀e problem will become more pronounced
when the number of sources grows.

To address this challenge, we introduce a simple yet e昀昀ective domain adaptation technique named strati昀椀ed
normalization (S-Norm). S-Norm draws inspiration from strati昀椀ed sampling, a method developed for sampling
from multiple subpopulations. It performs normalization independently for each -̃ = {-̃1, ..., -̃=, -̃) }. S-Norm
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serves two primary purposes: (i) aligning features from di昀昀erent domains to the same scale, ensuring Pr(-̃ )

is well-aligned (see Figure 5b). (ii) enhancing the alignment and ease of learning of conditional distributions
Pr[G̃8 |~8 ] for 8 ∈ [=] ∪ {) } across di昀昀erent domains. For instance, users o昀琀en chew nuts faster than ice-creams,
making it simpler to extract this signal under strati昀椀ed normalization.

4.4 Multi-source domain adaptation
吀栀e multi-source domain adaptation takes re-scaled features as input and outputs a total number of = predictions
(ensembles). It possesses a branching structure, consisting of a “root” component 6(·) and a total number of =
branches 38 (·) (8 ∈ [=]). Each 38 (·)’s and 6(·) has the linear-ReLu-linear structure. All the training data from
di昀昀erent domains 昀椀rst 昀氀ow into 6(·) simultaneously, and a昀琀erward, they are branched out to di昀昀erent 38 (·)’s. A
38 (·) consumes labeled data from source domain 8 and unlabeled data from the target domain. Intuitively, 6(·)
aims to extract features that are robust across all domains, whereas 38 (·) aims to train an augmented model for
Pr[~8 | x̃8 ] that approximates Pr[~) | x̃) ], i.e., learning the link function for the target based on link function for
the source 8 as well as unlabeled target data.

Next, we explain how we implement this idea. We view the domain adaptor as sending -̃8 and -̃) to an
embedded space. We apply two techniques to learn 6(·) and 38 (·)’s.

• Technique 1. Properly construct embedded space. Intuitively, we aim to make sure a昀琀er we apply 68 (·) to
B (x̃8 )’s and 6(x̃) )’s, these two “clouds” have similar distribution in the embedded space.

• Technique 2. Shrinking towards the mean. For a 昀椀xed target ) , we hope to set 38 (6(x̃9) ))’s for di昀昀erent 8 to
be “similar” so that the total “function complexity” across all the models we learned becomes smaller,
which improves bias-variance tradeo昀昀.

We also note that both techniques provide methods for measuring similarities (or distances) between pairs
of models trained from di昀昀erent source domains, as well as between a source domain and the target domain.
吀栀e distance measures derived from these techniques will be used in the ensemble learning component, which
operates outside the deep learning loop (see Section 4.5).
Construction of embedded space. Our goal is to bring the following two sets of points closer to the embedded
space:

{38 (6(x̃8 )) : x̃8 ∼ D8 (- )} and {38 (6((x̃) )) : x̃) ∼ D) (- )}.

We use the maximum mean discrepancy to measure the statistical distance.

Definition 4.1. Let % = {?1, . . . , ?=} and& = {@1, . . . , @=}. 吀栀emaximummean discrepancy (MMD) between
% and & is

L<<3 (%,&) =
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∑
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q (?) −
1
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q (@)
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,

whereH is the reproducing kernel Hilbert space (RKHS), and the q (·) denotes a feature map to map the inputs to the
H , which is achieved by a kernel : (%,&) = 〈q (%), q (&)〉

Our algorithm uses the Gaussian RBF kernel: : (D, E) = exp(−_‖D − E ‖2) for H . Also, let ?8 = {38 (6(x̃8 ))}8∈=
be the feature representations for domain 8 at branch 8 , and @8 = {38 (6(x̃) )}8∈= be the feature representations for
the target at branch 8 . We let

L<<3 =

1

=

∑

8∈[=]

L<<3 (?8 , @8 ).
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!<<3 aggregates the distance of each pair source-target domain. Byminimizing theL<<3 , each domain-speci昀椀c
adaptor 38 (·) would be able to map the x̃8 and x̃) into similar representations.
Shrink towards the mean. We impose global constraints over 38 (·)’s. We want that 38 (·)’s to shrink towards
the same function to achieve improved bias-variance tradeo昀昀s. Speci昀椀cally, if models shrink towards the same
one, data would be su昀케cient to train a model, but the model will not be expressive enough to have reasonable
forecasting power. If we do not shrink at all, there are way too many models to be learned to reduce bias and
increase variance.

We leverage the consensus regularization [33] based on L1 distance to achieve this target.

Definition 4.2. 吀栀e L2>= measures the L1 distance between the outputs of each pair of domain-speci昀椀c adaptors,
which can be formulated as:

L2>= =

1

= × (= − 1)

=−1
∑

9=1

=
∑

8=9+1

∑

x̃) ∈D) (- )

|38 (6(x̃) )) − 3 9 (6(x̃) )) |.

吀栀e e昀昀ectiveness of consensus regularization in alleviating over-昀椀琀琀ing is analyzed in Section 5.3.2. In an
alternative view, the consensus regularization reduces the domain divergence of each pair of the source-source
domain, and the MMD reduces the domain divergence of each pair of the source-target domain.

We use L<<3 and L2>= developed above together with the standard cross-entropy loss L2;B to construct the
昀椀nal loss function. Recall that

L2;B =
1

=

=
∑

8=1

B8
∑

9=1

� (� (38 (6(x̃
9
8 ))), ~

9
8 ),

where� (·) is the So昀琀max function, and � (·, ·) is the cross-entropy loss function. Our 昀椀nal goal is to minimize the
following loss function:

L = _L<<3 + (1 − _)L2>= + L2;B ,

where _ is a constant value to balance two loss functions and we set it to 0.5. We remark that speci昀椀c details of
our cost function can be tweaked. For example, L<<3 can be replaced by CORAL [49, 50] or GAN-based loss,
whereas ℓ2-loss can replace L2>= . Our experiments 昀椀nd that making these minor changes does not result in
additional performance gain.

4.5 Adaptive ensemble learning
4.5.1 Ensemble learning. 吀栀is section explains our ensemble learning procedure. Our consolidated forecast is a
linear combination of = ensembles

6̃(x̃) ) =

=
∑

8=1

l838 (6(x̃) )), (1)

where l8 ’s are uniform weights, i.e., l8 =
1
=
, for 8 ∈ =, or adaptive weights. Uniform weighted consolidated

prediction is the default option for ensemble learning. We develop an adaptive weight assignment technique to
achieve be琀琀er prediction consolidation. Note also that we use a standard convention to represent the output
of classi昀椀ers, i.e., 38 (x) outputs a probability measure in R

< , where< is the number of categories and the 9-th
coordinate/component in the output represents the probability that the output is in category 9 (estimated by
38 ). 吀栀erefore, 6̃(·) ∈ R

< . In evaluation, we assume that 6̃(·) picks up the category with the highest probability
estimate.
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××ó ó

Fig. 6. The adaptive ensemble learning procedure. (a) Distance Matrix �: � is symmetric. Each element �8, 9 represents
the L1 distance between 38 (6(x̃) )) and 3 9 (6(x̃) )). Note that when 8 = 9 , �8, 9 = 0. (b) Entropy Vector: Each element is the
entropy of the corresponding row of �. The displayed values are min-max standardized. (c) Mask Vector l< : Element
1’s represent the corresponding domain-adaptors as representatives. 0’s represent redundancy. (d) Similarity Vector lB :
lB is transformed from the outputs of L""� to measure the similarity of each source domain to the target domain. (e)
Confidence Matrix: Each row is produced by the � (38 (6(x̃C ))) to represent the prediction confidence over the labels.

4.5.2 AdaptiveWeight Assignment. Source domains have di昀昀erent approximations of the target domain. Assigning
a higher weight l8 to a domain-speci昀椀c model 8 bene昀椀ts consolidated forecasting. 吀栀erefore, our goal is to learn
l8 without labels from the target domain.
Design intuition. Our algorithm for determining l8 ’s need to (i) utilize the observation that having more
ensembles is not always be琀琀er, and (ii) ensure that l8 ’s dynamically change according to the target; using static
target-oblivious weights is ine昀昀ective.

When labels are available, estimating l8 is a simple regression problem. Here, we build our solution by
unwinding key intuitions of solving a (possibly over-parametrized) linear regression and “re-implement” these
intuitions in the no-label se琀琀ing by using information-theoretic tools. Let us 昀椀rst brie昀氀y review the linear
regression problem. Recall that the (ordinary least squares) OLS coe昀케cient estimator is (--T)−1-T~, which
consists of a feature-feature interaction (source-source interaction in our se琀琀ing) component (--T)−1, and a
feature-response (source-target) interaction component -T~. Commonly used regularizations o昀琀en “shrink” --T

to control variance-bias tradeo昀昀s. For example, ridge regression shrinks --T towards identity, whereas principal
component regression (PCR) shrinks --T towards low-rank matrices.

We mimic the linear regression and design two subroutines to capture source-source interactions and source-
target interactions. 吀栀e component using source-source interactions prunes away ine昀昀ective models, resembling
pruning away inconsequential subspaces in PCR, whereas the component using source-target interactions further
昀椀ne-tunes model weights.
1. Source-source interaction: entropy-driven representative election. Here, our goal is to identify a subset
of orthogonal signals that resemble variable selections in PCR. Recall that PCR selects a subset of orthogonal
vectors as regressors. We aim to generalize the notion of orthogonality but the models 38 (·)’s are non-linear so
standard PCR techniques do not work. Instead, we re-utilize the consensus regularization measures introduced in
Section 4.4. Recall that the consensus regularization de昀椀nes the distance between each pair of 38 (6(x̃) ))’s, which
outputs a = × = symmetric similarity matrix � (Figure 6 (a)), where

�8, 9 =

∑

x̃) ∈D) (- )

|38 (6(x̃) ) − 3 9 (6(x̃) )) |.
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We prefer a model 8 whose distances to other models are uniform (i.e., generalizing orthogonality), and we use
entropy to measure the orthogonality. Speci昀椀cally, let the entropy associated with model 8 be

∑

9∈[=] −�8, 9 log�8, 9 ,
which is maximized when �8, 9 are the same for di昀昀erent 9 ’s. We then choose the models with the largest
entropy (either using the top-: rule or through thresholding a昀琀er min-max standardization). A mask vector
l< ∈ R

= is generated to indicate whether each individual model is selected. See Figure 6 (b) and (c). Both top-:
and thresholding rules require a pre-de昀椀ned hyper-parameter that controls the aggressiveness of the pruning
operation. Section 5.3.3 presents a parameter sensitivity analysis to show the robustness of our method.
2. Source-target interaction: adaptive ensemble prediction. We next explain how we use source-target
interaction. 吀栀e MMD distance measures the distances 38 (6(G8 )) and 38 (6(G) )) in the RKHS. I.e., the distance
between the 8-th source domain to the target domain. We leverage the MMD distance to generate the similarity
vector lB to assign more weights to the more similar domain-speci昀椀c adaptor (Figure 6 (d)). Compounding with
the l< , we obtain the weight vector l = l< ·lB . 吀栀en the con昀椀dence matrix (Figure 6 (e)) is retrieved to forecast
the label for x̃) according to Equation 1.

We remark that (i) our procedure depends on the target’s features (both l< and lB ) so the 昀椀nal weights
dynamically adapt to the structure of the target features. (ii) Existing adaptive ensemble methods require an
additional parameter that is updated during the training phase [27], whereas ours does not interfere with the
training procedure. Instead, it is a post-training method that directly adjusts the l8 based on the loss function.

4.6 Discussions
Our algorithm incorporates a function ℎ(·) cra昀琀ed by domain experts to transform features, utilizing manually
built features. In contrast, existing works [57, 64] o昀琀en leverage deep learning to autonomously learn ℎ(·). 吀栀is
design decision is not arbitrary; rather, it stems from a discerned universal phenomenon prevalent in classi昀椀cation
problems involving the analysis of 昀椀ne-grained muscle movements. Our conjecture posits that deep learning
models face challenges in learning semantically meaningful intermediate features crucial for accurate responses in
our domain. 吀栀is conjecture is substantiated by comparing our problem with vision/NLP problems. In vision/NLP
tasks, deep learning models excel at identifying interpretable local pa琀琀erns in lower layers, which are then
utilized for making predictions. For instance, convolutional layers in vision models extract local texture pa琀琀erns,
while NLP models discern words/tokens with similar meanings. However, in our se琀琀ing, deep learning proves
less e昀昀ective in learning useful ’local’ features from raw time-series sensor data [11].

To validate our conjecture, we design additional experiments where we task neural networks with predicting a
set of seemingly ’simpler’ tasks using raw data. If our conjecture held true, deep learning models would struggle to
predict these tasks. We de昀椀ne the ’simple tasks” as manually built features, including simple statistics such as the
number of chews or the duration of each chew. We select two deep-learning models to predict the 65-dimensional
hard-cra昀琀ed features. 吀栀e 昀椀rst model comprises two LSTM layers with a dropout rate of 0.5, followed by a fully

Table 2. We examine the ability of DL models to learn all 65 features. Le昀琀/right gyroscope and accelerometer sensors
are abbreviated to LG, RG, LA, and RA. Features 1-7 are statistics of chewing speed and duration; 8-9 are the magnitude of
translation and rotation; 10-23 are the number of mean-crossing, entropy/energy of frequency spectrum, maximum frequency
component, and statistics of spectrum component, 24-27, 38-51, and 52-65 extract the same features as 10-23 but on di昀昀erent
sensors.

Target features 1-7 8 9 10-23 24-37 38-51 52-65 1-65
Sensors LG, RG LA, RA LG, RG LA RA LG RG All

LSTM Avg. '2 0.197 0.003 0.002 0.261 0.374 0.418 0.349 0.372
CoDATs Avg. '2 0.263 -0.038 -0.004 0.6231 0.6138 0.5549 0.5324 0.482
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connected layer for prediction. 吀栀e second model, CoDATs, mirrors the original implementation but adjusts the
last fully connected layer based on the number of features. Both models employ mean squared error (MSE) loss
and the Adam optimizer [24] with a learning rate of 0.5e-3. We split the dataset into 2100 training samples and
608 test samples. We 昀椀x each time-series sample to a length of 1024 by padding zeros or truncating and use a
batch size of 128. We use '2 metric to measure the regression performance.

Table 2 illustrates that deep learning models struggled to accurately predict hand-cra昀琀ed features, even with
meticulous parameter tuning. While it might be feasible to 昀椀ne-tune a neural network for predicting speci昀椀c
features, using a single neural network architecture to predict a substantial portion of hand-cra昀琀ed features
appears challenging. 吀栀is underscores a fundamental di昀昀erence between our problem and vision/NLP problems,
where a single architecture can typically extract a diverse set of ’local features’ such as various textures or the
meanings of many words.”
Conclusion: 吀栀e features x̃8 ’s and x̃) originate from vastly di昀昀erent distributions, presenting a formidable

challenge even for simple responses, such as the 65 extracted features. In light of this, mastering e昀昀ective transfer
learning in the food typing task remains a complex endeavor. Our investigation strongly suggests that, given the
current landscape, relying on manually-built features proves to be a more e昀케cacious approach. 吀栀is observation
aligns with recent empirical 昀椀ndings [11], further emphasizing the ongoing di昀케culty in leveraging automated
methods to bridge the gap between diverse feature distributions.

5 EVALUATION

5.1 Evaluation Methodology
吀栀is section evaluates our proposed domain adaptation method for the task of food typing. Speci昀椀cally, we show
that our algorithm outperforms state-of-the-art baselines signi昀椀cantly. We also perform extensive experiments
including ablation studies to analyze the roles and e昀케cacy of di昀昀erent components in our pipeline. Moreover, we
perform open set MSDA evaluations to test the extensibility of our methods.

In our experimentation, we employ a rigorous evaluation technique known as LOOCV, which stands for Leave
One User Out Cross-Validation. LOOCV is a specialized form of cross-validation where the model is trained on
all users except one, and the excluded user serves as the target domain for validation. 吀栀is process is iteratively
repeated until each user has been le昀琀 out exactly once. LOOCV provides a robust assessment of the model’s
generalization performance, especially in scenarios where user-speci昀椀c characteristics play a signi昀椀cant role.

Table 3. Data distribution of food-15. The dataset includes 15 users and spans 11 food categories, comprising a total of
2708 samples. Individual users contributed samples ranging from 144 to 197, and each food type has 63-544 samples. Notably,
User10 lacks samples for vegetables, and User11 has no samples for gum.

Nuts Gum Dry Fruit Fruits Pretzel Corn/Fry Cookie Vegetable Bread Meat Cream Total
User1 30 10 30 38 10 30 10 10 10 10 8 196
User2 30 10 29 30 10 21 10 10 10 10 1 171
User3 30 10 30 40 10 30 10 10 10 10 4 194
User4 30 10 30 39 10 28 10 10 10 9 8 194
User5 29 10 29 38 6 24 10 9 10 9 4 178
User6 30 10 30 40 10 27 9 9 8 10 4 187
User7 30 10 30 30 10 29 10 9 10 10 2 180
User8 30 10 30 40 10 27 10 10 10 10 8 195
User9 29 10 30 36 9 29 10 10 10 10 3 186
User10 29 10 30 36 10 30 10 0 10 10 6 181
User11 10 0 27 39 10 28 10 10 10 10 2 156
User12 28 8 27 38 9 21 10 10 10 1 1 163
User13 30 6 18 23 9 18 10 9 10 10 1 144
User14 29 10 30 37 10 28 10 10 9 10 3 186
User15 30 10 30 40 10 30 10 10 9 10 8 197
Total 424 134 430 544 143 400 149 136 146 139 63 2708
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5.1.1 Dataset. We use a standard benchmark human chewing datasets introduced in [55], namely food-15.
Comprising data from 15 participants, each engaging with up to 20 distinct types of food, this dataset captures
chewing activities via gyroscope and accelerometer sensors. For consistency and improved interpretability, we
adopt the categorization scheme proposed in [55], condensing the 20 food types into< = 11 categories. 吀栀e
data summary is detailed in Table 3. 吀栀is categorization proves advantageous for two primary reasons. Firstly,
from a clinical perspective, predicting food categories is o昀琀en more meaningful than predicting individual types.
Secondly, the variation in participants’ dietary habits, such as one individual consuming almonds while another
opts for peanuts. Both almonds and peanuts, fall under the “Nuts” category. Predicting unseen labels (food types)
for the target users is a non-scope in this work.

Table 4. Comparison of our method (Ours) and nine state-of-the-art baselines. A1.Data represents manipulating data
to align to di昀昀erent domains without innovating model architecture/loss function, and A2.Model represents a method that
has innovated model architecture/loss function, see Section 3. Domain knowledge-guided feature extraction means a baseline
using hand-cra昀琀ed features. Data-driven feature extraction methods use neural nets to learn representations on raw time
series data.

Work Feature extraction Domain-invariant
feature transform Adaptation target Ensemble scheme

Single-source domain adaptation

1.CORAL [49] Domain knowledge A1. Data Source-Target Source-combined
2.TCA [38] Domain knowledge A1. Data Source-Target Source-combined
3.DANN [14] Domain knowledge A2. Model Source-Target Uniform weight

Multi-source domain adaptation

4.DARN [56] Domain knowledge A2. Model Source-Target Dynamic weight
5.MDMN [27] Domain knowledge A2. Model Source-Target, Source-Source Dynamic weight
6.M3SDA [39] Domain knowledge A2. Model Source-Target, Source-Source Model accuracy weight
7.MDAN [60] Domain knowledge A2. Model Source-Target Dynamic weight
8.MuLANN [45] Domain knowledge A2. Model Source-Target Source-combined
9.CoDATs [57] Data-driven A2. Model Source-Target Source-combined
Ours Domain knowledge A1. Data, A2. Model Source-Target, Source-Source Dynamic weight

5.1.2 Baseline Methods. We examine a wide range of baselines, including a domain expert model without domain
adaptation [55], marked as No-Ada, three single-source domain adaptation methods: CORAL [49], TCA [38],
DANN [14], and six multi-source domain adaptation methods: DARN [56], MDMN [27], M3SDA [39], MDAN [60],
MuLANN [45], CoDATs [57]. Section 2 reviews these baselines. Table 4 also compares their key characteristics
against our algorithm. CoDATs [57] distinguishes itself by utilizing raw time series datasets from sensors. In
contrast, the remaining baselines were originally devised for recognition problems other than food type, such as
vision and natural language processing. It is not obvious how we can e昀昀ectively pipe an architecture for time
series with these solutions. 吀栀us, we feed the 65-dimensional hand-cra昀琀ed features to these baselines. To maintain
consistency in our experiments, we employ the same set of neural network hyperparameters (e.g., number
of hidden nodes, number of layers) for both baselines and our proposed method. 吀栀is practice enables us to
control the impact of model complexity, mitigating concerns of over昀椀琀琀ing or under昀椀琀琀ing. Adapting single-source
domain adaptation methods to the multi-source se琀琀ing introduces additional challenges. For No-Ada, CORAL,
and TCA, we merge all source data to create a large joint source dataset as the training data. In the case of
DANN, we adhere to its single-domain scheme by training individual models on each source-target pair and
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Fig. 7. Evaluating accuracy of our method (Ours) and nine state-of-the-art baselines. Here, the upper bound (MLP
model trained with labeled target domain data) is 82.3%, and the lower bound (LSTM model learns source-combined data
without domain knowledge) is 9% on average, drawn as two horizontal dashed red lines.

subsequently ensembling the models with uniform weights. 吀栀is approach aligns with methodologies applied in
prior works [39, 56, 60].

5.1.3 Lower and upper bounds. To put the numbers into context, we also present lower and upper bounds of
domain adaptation performance for this dataset. 吀栀e lower bound is de昀椀ned as the performance of a “strawman”
model, in which all data from di昀昀erent sources are used to train one single model, and the model is used to predict
data from an unseen target, a.k.a., a “no adaptation” solution. 吀栀is is the default approach for ML modeling. 吀栀e
upper bound is constructed as training a model with the knowledge of the target’s labels (i.e., a “target only”
model). 吀栀e upper bound represents the behavior of typical ML models in an (excessively) ideal world, whereas
the lower bound represents the performance of a model one would expect from a typical practitioner. 吀栀e gap
between the lower and upper bounds re昀氀ects the performance surprise and is a good indicator of the “di昀케culties”
of our domain adaptation problem.

吀栀e lower bound trains an LSTM model on source-combined data without domain knowledge. 吀栀e upper
bound approximation uses the MLP model from Wang et al. [55] because it outperforms other model families.

5.2 Overall accuracy
Figure 7 compares the average accuracy of our method and baseline methods on each target domain of the
food-15 dataset, respectively. Our method outperforms baseline methods in each target domain with a 1.33× to
2.13× accuracy improvement. We also note while in general domain adaptation in food-type prediction problems
is remarkably di昀케cult, performance on certain targets (e.g., participant 3) is quite close to the upper bound (a
promising sign). It remains an interesting open problem to understand when a participant is easy to predict.

吀栀e two methods that do not utilize source adaptation techniques, No-ada and LSTM, perform 22.8% and
38.5% worse than our approach, respectively, con昀椀rming the e昀昀ectiveness of domain adaptation in predicting
food types for unseen users. 吀栀e LSTM learns features from raw time-series data, while No-Ada relies on do-
main expert features, highlighting the robustness of manually extracted features in handling domain shi昀琀s.
Moreover, compared with CoDATS [57] (CNN on raw time series), our method extracts features with expert
knowledge and is 25.2% be琀琀er on average, con昀椀rming the intuition of preferring not to use raw data (Section 4.6).
TCA [38] and CORAL [49] use only standard neural net (NN), and are 19.2% and 23.8% worse than us, respectively.
吀栀erefore, engineering NN is essential. MDMN [27] and M3SDA [39] originally designed for computer visions,
optimize source-source and source-target divergence simultaneously and are the best baselines, also con昀椀rm-
ing the importance of reducing source-source divergences (Section 3). 吀栀ey are nevertheless 11.8% and 12.7%
worse than us, respectively. 吀栀ey do not have strati昀椀ed normalization or adaptive ensemble learning. 吀栀e cost

ACM Trans. Comput. Healthcare

 



16 • Jiexiong Guan, Junjie Wang, Wei Niu, Zhen Peng, Shuangquan Wang, Zhenming Liu, Gang Zhou, and Bin Ren

Fig. 8. Sumof the confusionmatrix over the 15 users. Each
row in the matrix represents the true class, and each column
represents the predicted class, the prediction and ground truth
labels are annotated. The diagonal elements represent the cor-
rectly classified instances for each class, while o昀昀-diagonal
elements indicate misclassifications.

functions and architectures in our NN are also di昀昀erent.
We are 13.9% and 23.7% be琀琀er than DANN [14] and
MuLANN [45], which do not directly address source-
source divergence. We are also 14.7% and 22% be琀琀er
than DARN [56] and MDAN [60], respectively, which
couple ensemble-weight learning with deep learning
(i.e., ensemble weights are part of the network, which
could potentially impact DL training in an adversarial
manner), whereas we take a two-staged approach (i.e.,
learning the ensemble weights a昀琀er training the multi-
source domain adaptor).

To delve deeper into the performance of the pro-
posed food typing methods in the face of domain di-
vergence challenges, we analyze the confusion matrix
as depicted in Fig. 8. Notably, certain classes exhibit a
high degree of ease in being classi昀椀ed into each other.
For instance, classes such as ’Nuts’ and ’Dry Fruit’
or ’meat’ and ’bread’ seem to be easily confused, as
evidenced by the relatively high numbers in the cor-
responding o昀昀-diagonal elements. 吀栀is suggests a po-
tential similarity or overlap in the features that the model uses for classi昀椀cation between these pairs of classes.
Recognizing food types through chewing behavior across di昀昀erent users remains a challenging task. However,
the presented work represents a signi昀椀cant stride toward a promising solution.

Our average accuracy is 47.5%, insu昀케ciently close to the “productization” level. Note also that there are a
total number of 11 classes, so a “null” model has a 9% accuracy. 吀栀e problem we face appears to resemble model
development for ImageNet [10], which requires multi-year e昀昀ort to engineer a fully e昀昀ective model (the most
accurate model three years a昀琀er ImageNet’s inception is only slightly over 60%. [25]). We remark that strawman’s
(lower bound) performance is 9%, the best baseline is 35.7% (a昀琀er substantial hyper-parameter tuning), and ours is
47.5%, which represents a 5.28 multiplicative improvement. Our “delta” with the strawman is 1.44 times stronger
than the delta of the best baselines and the strawman.

5.3 Ablation Study

Fig. 9. Ablation study of our methods.

吀栀ree components are vital to our model, including strat-
i昀椀ed normalization, architectures with multi-source do-
main adaptation (including consensus regularizer), and
adaptive ensembling. 吀栀is section performs ablation stud-
ies to examine each component’s e昀昀ect. Note that the
maximum mean discrepancy (MMD) technique handles
source-target interaction and is widely deployed in mod-
ern DA algorithms so we do not speci昀椀cally examine this
component for conciseness.

Overview. Figure 9 presents a bird’s eye view of model
performance a昀琀er progressively adding each of the com-
ponents. Speci昀椀cally, the red line represents the perfor-
mance evolution on average a昀琀er adding the components,
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(a) Ensemble and S-Norm. (b)Multi-branch and Consensus regularize (CR).

Fig. 10. Normalized accuracy comparison with and without S-Norm, Ensemble, MSD-Adaptor, and CR.

whereas dots in di昀昀erent colors represent the performance of individual users. A昀琀er adding S-Norm, the model
improves by 9.66% on average. 吀栀en we add uniform ensemble learning (Ensem.), which multi-source domain
adaptation techniques assume, the model further improves by 2.8%. Next we add multi-source domain adaptation
(MSD-adaptor), which consists of two steps, including 昀椀rst adding all techniques except for the consensus regu-
larization (CR), and then adding consensus regularization. We can see that the gross performance improvement is
11.55% whereas the consensus regularization on its own contributes 6.85% improvement. Finally, we add adaptive
weights (Ada.weights) to replace uniform weights in ensemble learning. We can see that while the average
performance improvement is moderate, they are more powerful for some targets (and never result in worse
performance). 吀栀e next part further examines/interprets each individual technique in detail.

5.3.1 Interplay between Stratified Normalization and Ensemble Learning. Ensemble learning is the de facto design
to address the MSDA problem [51]. To study the interplay between S-Norm and ensemble learning, we compare
the following se琀琀ings: uniform weight ensemble learning with or without S-Norm, and combining data from
multiple domains to train one model, a.k.a., a “source-combined” model, with or without S-Norm. Figure 10a
shows the comparison results. It proves that S-Norm substantially improves model accuracy by 1.3× even without
being integrated with ensemble learning. Integrating S-Norm with ensemble learning further enhances the
accuracy by 1.41×. It is interesting that applying ensemble learning only without S-Norm results in an accuracy
that is slightly worse than the non-ensemble version.

5.3.2 Multi-source Domain Adaptor and Consensus Regularizer. All other techniques without consensus
regularizer. A substantial body of prior works has demonstrated the e昀케cacy of multi-branch architecture
(i.e., hard parameter sharing layers reduce risks of over昀椀琀琀ing [9, 43]) and the MMD [48, 53] cost function.

Fig. 11. 吀栀e e昀케cacy of CR in alleviating over昀椀tting.

吀栀us, it may not be surprising that these techniques con-
tinue to work in our problem. 吀栀e more worthwhile point
is that these techniques are additive, i.e., they can be inte-
grated seamlessly with other innovations in our pipeline. To
study the e昀昀ectiveness of a multi-branch structure, we com-
pare it with a sequential MLP model. As Figure 10b shows,
the multi-branch structure model achieves higher accuracy
than the sequential model. Most importantly, a multi-branch
model facilitates the integration of other domain adaptation
designs, i.e. consensus regularize.
Consensus regularization. We further perform conver-
gence analysis for training and test sets to inspect the impact
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Fig. 12. Parameter sensitivity analysis of adaptive weight selection in ensemble learning. (a) AE1 selects top-: repre-
sentatives that have the largest entropy value, where : ∈ {1, . . . , =}. (b) AE2 selects the representatives through thresholding.
The domain-specific adaptors that have a larger entropy value than the threshold will be elected as representatives. The
le昀琀 and right axes show the interaction between the threshold and the number of representatives. We iteratively set the
threshold parameter from 0.05 to 0.95 with a step of 0.05 to test the accuracy. Both methods are robust to hyper-parameter
se琀琀ings and have accuracy over the default ensemble method that assigns uniform weights to all domain-specific adaptors.

of consensus regularizers. See Figure 11 for the training and test accuracy using models with and without consen-
sus regularizer. One can see that (i) the consensus regularizer slows down the training process but eventually
coincides with the model without the regularizer. (ii) the test performance continues to improve over time even
when the training errors stall. 吀栀ese observations resemble behaviors of AdaBoost [12], and it is an interesting
open problem to understand how they are connected. In addition, the reduction in the training-test gap highlights
the consensus regularizer’s e昀케cacy in alleviating the over昀椀琀琀ing problem.

5.3.3 Adaptive Weights Assignment in Ensemble Learning. 吀栀e ensemble learning module includes an optimization
that adaptively assigns a weight to each domain-speci昀椀c adaptor. Each adaptive weight consists of a 0-1 mask
vector l< that decides if this domain-speci昀椀c model is included in the ensemble and a 昀椀ne-tuning vector lB that
measures the similarity between a source domain and the target domain in the embedded space. As aforementioned
(in Section 4.5.2), our method o昀昀ers two ways to determine the value of l< : either a top-k strategy (AE1, AE is
short for Adaptive Ensemble) or a threshold-based strategy (AE2).

Figure 12a shows that our top-k strategy (i.e., AE1) consistently outperforms the default uniform weight
assignment and random selection in accuracy by an average value of 0.28% and 0.6%, respectively, for each eligible
parameter se琀琀ing. Figure 12b studies the interaction between threshold value selection (in AE2) and the number
of representatives (i.e., selected domain-speci昀椀c models). As Figure 12 shows, a higher threshold results in more
aggressive pruning, i.e. fewer representatives participate in predicting. 吀栀is result also shows that selecting a
middle-range value of the threshold achieves the optimal improvement (1%) over the uniform weight assignment.
Users can select either AE1 or AE2 for their application (and dataset) based on a similar empirical study.

5.4 Open Set Multi-source Domain Adaptation
Prior experiments assumed an ideal condition where each domain consumes the same type of food (except for
user 10 and user 11, refer to Table 3). 吀栀is se琀琀ing is commonly used by the research community [51, 61]. However,
such a condition may not always exist in the real world. In this section, we address a more challenging scenario
where each source domain only provides partial food types. 吀栀is is formally de昀椀ned as the open set MSDA
problem [61], where ~8 ∩ ~) ⊂ ~) . 吀栀is se琀琀ing is more challenging because the total amount of labeled data is
reduced, and the target domain can only learn a few food types from one speci昀椀c user and other food types from
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Fig. 13. Evaluating the accuracy of our method (Ours) and baselines under the open set con昀椀guration. Each user
provides approximately 50% of the labels.

di昀昀erent users. Such a situation could occur in real-world applications when extending the model to recognize
more food types, as new data may need to be provided by di昀昀erent users.

Fig. 14. Breakdown study of the open set problem. Use
di昀昀erent proportions of labeled data to compare our method
with the best-performing baseline method.

To validate our methods in this se琀琀ing, we modify
the dataset so that each user provides partial labels. For
example, user 1 provides labels with odd IDs, and user
2 provides labels with even IDs, meaning the model
can only learn approximately 50% of the food types
from each user. Figure 13 compares the average accu-
racy of our model with baseline methods under this
se琀琀ing. Our method outperforms the baseline methods
with a 1.39× to 2.40× improvement, indicating that our
approach is extensible to incorporate more food types.
Figure 14 presents a detailed analysis by varying the
percentage of food types provided by each source do-
main. Our method surpasses the best baseline by a
range of 1.37× to 1.82×. Although our method expe-
riences accuracy losses, these are a琀琀ributable to the
reduced data size under the open set con昀椀guration.

6 CONCLUSION AND FUTURE WORK
吀栀is work develops the 昀椀rst multi-source domain adaptation (MSDA) method for food typing recognition, which
consists of a pipeline with three main components. First, the strati昀椀ed normalization aligns the conditional and
marginal distributions of features to adapt to di昀昀erent domains, improving accuracy by 9.66% compared with a
no-adaptation baseline. Second, a multi-source domain adaptor is trained on the domain-aligned features to learn a
generalizable classi昀椀er for recognizing food types, incorporating a consensus regularizer and the maximum mean
discrepancy.吀栀is component further increases accuracy by 11.55%. Finally, the adaptive ensemble weight selection
prunes irrelevant sub-models of the multi-source domain adaptor and 昀椀ne-tunes the weights for ensembling,
contributing an additional 0.68%-1% accuracy improvement. Our evaluation empirically validates the importance
of the consensus regularizer and domain knowledge in providing generalizable forecasting through sensor signals.
We compare our method with nine state-of-the-art baselines to evaluate accuracy improvements in both closed
set and open set MSDA problems, demonstrating that our method achieves 1.33× to 2.13× and 1.39× to 2.40×

accuracy improvements, respectively.
Based on the current study, our future work includes: 1) improving the model to achieve higher accuracy and

recognize a greater variety of food types in both closed set and open set MSDA problems, 2) extending our method
to more challenging problems, such as zero-shot MSDA, where target data are not available during training.
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