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ABSTRACT

In recent years, ionic microgels have garnered much attention due to their unique properties, especially their stimulus-sensitive swelling
behavior. The tunable response of these soft, permeable, compressible, charged colloidal particles is increasingly attractive for applications
in medicine and biotechnologies, such as controlled drug delivery, tissue engineering, and biosensing. The ability to model and predict
variation of the osmotic pressure of a single microgel with respect to changes in particle properties and environmental conditions proves
vital to such applications. In this work, we apply both nonlinear Poisson-Boltzmann theory and molecular dynamics simulation to ionic
microgels (macroions) in the cell model to compute density profiles of microions (counterions, coions), single-microgel osmotic pressure,
and equilibrium swelling ratios of spherical microgels whose fixed charge is confined to the macroion surface. The basis of our approach is
an exact theorem that relates the electrostatic component of the osmotic pressure to the microion density profiles. Close agreement between
theory and simulation serves as a consistency check to validate our approach. We predict that surface-charged microgels progressively deswell
with increasing microgel concentration, starting well below close packing, and with increasing salt concentration, in qualitative agreement
with experiments. Comparison with previous results for microgels with fixed charge uniformly distributed over their volume demonstrates
that surface-charged microgels deswell more rapidly than volume-charged microgels. We conclude that swelling behavior of ionic microgels
in solution is sensitive to the distribution of fixed charge within the polymer-network gel and strongly depends on bulk concentrations of
both microgels and salt ions.
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I. INTRODUCTION

Microgels are soft colloidal particles, made of a cross-linked
polymer network gel, that become swollen in a good solvent.' *
Depending on the procedure for their chemical synthesis,” microgels
can be designed to swell/deswell in response to external parameters,
such as temperature, pH, and ionic strength.” Swelling behavior
depends on mechanical (elastic) properties of the gel and polymer-
solvent interactions.”” When microgels are dispersed in a polar
solvent (e.g., water), dissociation of counterions from the poly-
mer chains can turn the particles into colloidal macroions with a
fixed (immobile) charge.”'” Swelling behavior of ionic microgels is
influenced by electrostatic interactions between fixed charge, coun-
terions, and coions (from added salt).!' Microgels and, in particular,
ionic microgels have been extensively investigated due to their
applications in biomedical, food, pharmaceutical, and petroleum
industries.'” '

The swelling behavior of microgels, in contrast to that of bulk
gels,”” * is fundamentally determined by the single-particle osmotic
pressure, defined as the difference in pressure between the inte-
rior and exterior regions.”””> In thermodynamic equilibrium, this
single-particle osmotic pressure must vanish, achieved only through
a delicate balance between electrostatic, elastic, and mixing entropic
contributions. In concentrated suspensions of microgels, equilib-
rium particle sizes respond also to self-crowding, as each particle
adjusts its internal degrees of freedom to the local environment, with
relevance for macroscopic phase behavior.

Swelling properties of microgels (ionic and nonionic)
have been investigated by several complementary experimental
methods, including light scattering,” *° neutron scattering,””
osmometry,””” and dielectric spectroscopy.”> Compressible micro-
gels and suspensions thereof have been modeled by a variety of

theoretical methods, including mean-field theories,”* ** integral-
and cell

. . 3G . . . . 40-43
equation theories,” effective interaction theories,"
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model-based theories.”"*** Simulation studies have applied various
molecular dynamics” * and Monte Carlo"””"’*’ methods. From
past work, swelling behavior is known to depend sensitively on
single-particle properties, including the distribution of cross-links
in the polymer network comprising the gel.”*”” In general, the lower
the cross-link concentration, the softer and more compressible
the particles, although the spatial distribution of cross-links is also
relevant.

Less well understood is the connection between swelling and
the distribution of fixed charge on the polymer network. In chemical
synthesis protocols developed to produce ionic microgels, the fixed
charge distribution can be controlled, to some extent, by adjusting
the concentration and chemical species of the initiator for the poly-
merization reaction in the synthesis. In some microgel systems, ini-
tiator molecules themselves are charged and tend to deposit near the
particle’s periphery, yielding a surface-localized fixed charge.”””*
How in detail the fixed charge distribution affects osmotic pressure
and equilibrium swelling of ionic microgels is a largely unresolved
question.

To address the question of how fixed charge distribution influ-
ences swelling of microgels, we have developed theoretical and
computational modeling methods for ionic microgels and applied
them to macroions with fixed charge confined to their surface.
Comparison of predictions for this idealized model with corre-
sponding results from our earlier studies of microgels with fixed
charged uniformly distributed throughout their volume’"”* con-
trasts the sensitivity of swelling to fixed charge distribution between
two extreme distributions. Our approach is based on fundamen-
tal statistical mechanical relations for the electrostatic component
of the single-microgel osmotic pressure that accurately account for
counterion and coion correlations. Building on our previous work,
this paper describes the swelling of ionic microgels as a competition
between electrostatic and gel contributions to the osmotic pres-
sure and demonstrates the sensitivity of swelling to the fixed charge
distribution.

In Sec. II, we define the primitive and cell models of ionic
microgels, which are the foundation for our study. In Sec. III,
we review our theory of microgel swelling, deriving the electro-
static component of the single-microgel osmotic pressure from a
partition function and approximating the gel contribution using
the Flory-Rehner theory of polymer networks. Section IV out-
lines our computational implementation of the swelling theory via
Poisson-Boltzmann theory and molecular dynamics simulation.
Section V presents numerical results for counterion density profiles,
single-microgel osmotic pressure, and equilibrium swelling ratios of
surface-charged microgels. We compare and contrast the swelling
behavior with that of volume-charged microgels and discuss the
influence of added salt. Finally, Sec. VI summarizes our results and
concludes with suggestions for future work.

)

1. MODELS
A. Primitive model

Theoretical descriptions of polyelectrolyte solutions and
charge-stabilized colloidal suspensions are often based on the
primitive model, which approximates the solvent as an implicit
medium - a dielectric continuum characterized entirely by a
dielectric constant € - and considers explicitly only the charged
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species.”””" Within this coarse-grained model, we consider an

aqueous suspension of N,, ionic microgels, each composed of a
microscopic cross-linked network of polymer chains, dispersed in
a solvent (water) of volume V at temperature T, as depicted in
Fig. 1.

We model ionic microgels as spherical macroions of dry radius
ao, swollen radius a, and fixed charge —Ze, resulting from dissocia-
tion of Z monovalent counterions (of charge e) from the polymer
chains. The swollen microgels are assumed to be permeable to
solvent, counterions, and coions (see Fig. 1). Assuming that a micro-
gel in its dry (unswollen) state comprises randomly close-packed
spherical monomers, the number of monomers per microgel is
related to the monomer radius rmon by Nmon = 0.63(a0/7mon ).

In experiments, the distribution of fixed charge can be
controlled, to some extent, via the chemical synthesis protocol. In
some systems, e.g., poly-N-isopropilacrylamide (pNIPAM) micro-
gels, the fixed charges originate from the initiator species for the
polymerization reaction in the synthesis, which are believed to end
up localized near the particle surface.”” ™’ We consider here the ideal
case that the fixed charge is strictly confined to and uniformly dis-
tributed over the particle surface, with number density described by
a Dirac delta-function,

Z
ne(r) = W&(r—a), (1)

where Z is the microgel valence and r is the radial distance from
the microgel center. Elsewhere,””"’ we investigated swelling of ionic

FIG. 1. Schematic drawings of (top) primitive model of a suspension of spherical
ionic microgels (large cyan spheres) and microions (small red and blue spheres)
dispersed in a dielectric continuum solvent and (bottom) cell model of a surface-
charged microgel of swollen radius a confined to a spherical cell of radius R with
counterions (red) and coions (blug).
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microcapsules, whose fixed charge is spread throughout a spherical
shell of a hollow microgel. In contrast, the microgels studied here are
not hollow, but are completely filled with hydrogel. The microions
are modeled as monovalent point charges of valence z, = +1. In
Donnan equilibrium with a 1:1 electrolyte (salt) reservoir, the sus-
pension contains N; dissociated salt ion pairs, which contribute
equal numbers of coions and additional counterions to the solu-
tion. Electroneutrality of the suspension dictates the total numbers
of counterions and coions as N1 = Z + Nyand N_ = Ny, respectively,
for a total of N, = Z + 2N microions.

B. Cell model

The cell model, originally proposed by Wigner and Seitz to
calculate electronic properties of solids,”""" can also be applied to
polyelectrolyte solutions, as first recognized by Marcus,*® charge-
stabilized colloidal suspensions,”’ and hydrogels.” In this context,
the cell model reduces a system of many macroions dispersed in
an electrolyte solution to a single macroion confined to a cell of
like shape, along with stoichiometric numbers of counterions and
coions (Fig. 1). This relatively simple model, by explicitly includ-
ing microions, retains microion-microion and microion-macroion
interactions, but sacrifices macroion-macroion interactions and
correlations, aside from a mean-field contribution to the total
electrostatic energy.

In the cell model of an ionic microgel suspension, a swollen,
spherical microgel (macroion) of radius a, with radially symmetric
fixed charge density ns(r), is centered in a spherical cell of radius R,
which determines the suspension volume fraction ¢ = (a/R)’. From
spherical symmetry, the electrostatic potential and microion densi-
ties n. (r) depend on only the radial distance r from the center of the
cell. Further, electroneutrality requires that the electric field vanishes
at the cell boundary (r = R).

The model system is governed by a Hamiltonian H, which we
assume can be separated,’’ according to

H = Hy + H,, )

into a “gel” Hamiltonian Hy, associated with mutual interactions
among monomers of the cross-linked polymer chains and the
solvent molecules, and an “electrostatic” Hamiltonian H., which
includes the Coulomb energies of interaction between ions (fixed
and mobile). The gel Hamiltonian incorporates elastic and mix-
ing degrees of freedom of a polymer network in solution. The
electrostatic Hamiltonian further decomposes, according to

H, = Un(a) + Uni({r};a) + Upu({r}), ®)

whose three terms account, respectively, for the electrostatic self-
energy of a microgel and macroion-microion and microion-
microion pair interaction energies, which depend on the microion
coordinates, {r} = {ri,..., Iy, }. Note that the first two terms on the
right side of Eq. (3) are functions of the microgel radius, and thus
vary with swelling of the polymer network.

A surface-charged spherical macroion has electrostatic self-
energy, in thermal (kzT) units,

ZAB

BUn(a)=Z 2 (4)
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where the Bjerrum length, A = Bé?/e, is the distance at which two
elementary charges e have a Coulomb energy equal to the thermal
energy kgT = 1/B. The microgel-microion interaction energy can be
expressed as

N, N
Uni({r};0) = > vms (ri30) + > vm-(risa), (5)
i1 i1

where v,y are the macroion-counterion and macroion-coion
electrostatic pair potentials:

FZzAg[r, r>a

Boms(r;a) = { (6)

FZzAgla, r<a.

The fact that the macroion-microion pair potentials depend on the
microgel radius a has direct implications for swelling of ionic micro-
gels, as discussed below in Sec. III. In passing, we note that, in the
full primitive model of a suspension of many microgels, the electro-
static Hamiltonian would include, in addition to the three terms in
Eq. (3), a fourth term accounting for microgel-microgel electrostatic
interactions,

Nin

U”"m(a) = Z 'Umm(rij;a). (7)

i<j=1

For spherical microgels, however, the dependence of the bare
Coulomb microgel-microgel pair potential vyum(r; a) on microgel
radius arises only when the microgels overlap. For other shapes
of microgels, pair interactions do not have this symmetry prop-
erty, and would depend on the orientations of the particles at all
separations.

In the cell model, microgel-microgel electrostatic interactions
are implicitly accounted for through the boundary condition that
the electric field vanishes at the cell edge. The focus on a single
microgel of course necessitates neglect of microgel-microgel corre-
lations. In an alternative approach, microion degrees of freedom are
averaged over (traced out of the partition function), reducing the
multi-component mixture to an effective one-component model of
pseudo-macroions that interact via an effective screened-Coulomb
(Yukawa) pair potential."”"** In this multi-centered model, effec-
tive pair interactions influence swelling at densities well below
close packing, corresponding to nearest-neighbor separations com-
parable to the Debye screening length. Remarkably, as shown in
Ref. 42 for volume-charged microgels, the cell and one-component
models predict very similar swelling behavior up to close-packing
densities.

I1l. THEORY OF MICROGEL SWELLING

Swelling of microgels is governed by the single-microgel
osmotic pressure 7, defined as the difference in pressure between
the interior and exterior of the microgel. This single-microgel prop-
erty is to be distinguished from the osmotic pressure of a microgel
suspension 75, which is a bulk (macroscopic) property. In a canon-
ical ensemble description, in which the suspension is assumed to
be closed (i.e., has a fixed number of particles), the single-microgel
osmotic pressure is thermodynamically defined as a derivative of the
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Helmbholtz free energy per microgel F with respect to the microgel
volume v, = 4na’ /3. Within the spherical cell model,

=~ )y~ (30) ®
"o Ovm NM’R’T7 47m2 Oa NH,R>T)

revealing the connection between 7, and the variation of the free
energy with swollen radius. In contrast, the suspension osmotic pres-
sure depends on the variation of the free energy with cell volume or

radius,
OF 1 OF
)
OV )yt 4nR*\OR)y, 1
The cell theorem®®®® further relates 7, to the total microion density
at the cell boundary:

Brs = nie(R) + n—(R). (10)

In passing, we note that the results derived below can be equally well
obtained within the semi-grand canonical ensemble, in which the
suspension is free to exchange microions with a salt reservoir, which
describes the condition of Donnan equilibrium.”"**

Separation of the Hamiltonian into electrostatic and gel terms
[Eq. (2)] implies that the canonical partition function Z factorizes,
according to Z = Z, Zg, into electrostatic and gel factors. Within
the spherical cell model, the electrostatic partition function takes the
form

Ny R 2 _8H.
ZE(N#,Q,R’ T) oc H /0 dt’,'rie B < (11)
i1

where the position integrals cover possible configurations of all
microions within the cell. Factorization of the partition function
implies decomposition of the free energy,

F=—kTIn Z=F+F, (12)

into (1) a gel contribution, Fy = —kpT In Z,, associated with short-
range monomer-monomer interactions, mixing entropy of the
polymer-solvent mixture, and conformational entropy of the poly-
mer chains, and (2) an electrostatic contribution, F. = —kgT In
Z., due to long-range (Coulomb) ion-ion interactions. Correspond-
ingly, the single-microgel osmotic pressure separates, via

(o) = mg () + 7e(at), (13)

into gel and electrostatic contributions, 77; () and 7. («), both being
functions of the microgel linear swelling ratio « = a/aj.

In thermodynamic equilibrium, a microgel swells until its
osmotic pressure vanishes, i.e., 7, («) = 0. As we showed in previous
work,”” this condition ensures continuity of the radial component of
the total pressure tensor across the microgel surface in equilibrium.
Note that the individual contributions to 7r,, may be nonzero, as long
as their sum vanishes in equilibrium.

As an approximation for the gel contribution to the free
energy, we adopt the mean-field Flory-Rehner theory of poly-
mer networks,””””” which combines polymer-solvent interactions
and mixing entropy with elastic free energy of the network. For
a microgel of swollen radius a and dry radius ag, composed of
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Nmon monomers and N, distinct chains (cross-linked into a
network) in a solvent, the gel free energy takes the form

BF(@) = Nmon[ (o’ = 1) In (1 =) + y(1 - a™)]
+%Nch(oc271nocfl), (14)
where y is the Flory solvency parameter, associated with polymer-
polymer, polymer-solvent, and solvent-solvent interactions. The

corresponding gel contribution to the single-microgel osmotic
pressure can be written as

Brig(a)vm = ~Nmon[o@ In(1-a ) + ya > +1]
- Nan (o - 1/2). (15)

The electrostatic contribution to the single-microgel osmotic
pressure can be derived in principle from the electrostatic contri-
bution to the free energy via®

1 (aFe

e = . 16
- (5 )N”)R)T (16)

- 4mra

However, this expression is only as accurate as the approximation
for the free energy. Alternatively, from Egs. (4) and (5), 7. can be
expressed as

_ 1 2((9Um(a) +(8Um,4(a)>) ) (17)
4ma Oa Oa NRT
where angular brackets denote an ensemble average over config-
urations of the microions. Applying the latter approach to ionic
microgels requires specifying a model for the fixed charge distribu-
tion. Assuming a surface-charged microgel and using the appropri-
ate macroion-microion interaction potentials [Eq. (7)], the second
term on the right side of Eq. (17) takes the explicit form

R PR

a i(r;<a)

where the sum over i (i = + for counterions or coions) includes only
microions inside the microgel. Finally, substituting the self energy
[Eq. (4)] and the expression from Eq. (18) into Eq. (17), we obtain
the electrostatic component of the single-microgel osmotic pressure:

Z\g (Z
Bricvm = T;(E—(N+)+(N_)), (19)
where
(N2} = dm [ drrm () (0)

represent mean numbers of counterions and coions inside the
microgel, ensemble averaged over microion configurations.”” The
first term on the right side of Eq. (19) derives from the microgel self-
energy, while the remaining terms are associated with the microion
distribution. Equations (13), (15), and (19), combined with the con-
dition 7, () = 0, determine a microgel’s equilibrium swollen size.
In previous work,”” we showed that our expression for the electro-
static component of the single-microgel osmotic pressure in the cell
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model is equivalent to the jump at the microgel surface in the radial
component of the electrostatic pressure tensor.” "’

Note that Eq. (19), akin to the cell theorem for the suspen-
sion osmotic pressure [Eq. (10)], is an exact theorem within the cell
model, fully accounting for microion correlations. In multi-center
models of microgel suspensions, these theorems cease to be exact, as
they neglect osmotic pressure contributions from microgel-microgel
pair interactions and correlations. Nevertheless, since these pair
interactions depend on microgel size only for overlapping micro-
gels, Eq. (19) gives a reasonable approximation for dilute suspen-
sions, and should be accurate even for concentrations approaching
close-packing.*

IV. COMPUTATIONAL METHODS
A. Poisson-Boltzmann theory in the cell model

Practical implementation of the theory described in Sec. I1I to
model equilibrium swelling of ionic microgels requires estimates
for the mean numbers of counterions and coions inside a microgel.
Within the cell model, a convenient method for computing (N. ) is
Poisson-Boltzmann (PB) theory. Based on a mean-field approxima-
tion that neglects microion-microion correlations, this theory can
be rigorously derived, e.g., via calculus of variations*” and classical
density-functional theory.”

Defining y(r) = Be¢(r) as the reduced (dimensionless) form of
the electrostatic potential ¢(r), where r is the radial distance from
the center of the cell, the Poisson equation can be expressed as

VZI[/(I‘) = —4mAg[ne(r) —n_(r) - nf(r)], (21)

where the right-hand side includes the total charge density, includ-
ing the mobile microions and the fixed charge on the microgel. For
a suspension in Donnan equilibrium with a salt reservoir of aver-
age salt density no, the mean-field Boltzmann approximation for the
microion equilibrium densities takes the form

n(r) = no exp [Fy(r)] (22)
Combining Egs. (21) and (22) vyields the (nonlinear)
Poisson-Boltzmann equation:
v'(r) + %W'(r) = «* sinh y(r) +4mpng(r), (23)
r

where x = \/87mAgny is the Debye screening constant. For a closed,
salt-free suspension, with fixed counterion density, the PB equation
takes the alternate form

2
V/”(’) + ;1//,(7) — exp [-y(r)] + 47T)L3nf(r), (24)
where & = \/4mAp#1s is the effective screening constant within the
suspension and 74 is the counterion number density at y = 0.

In the case of a microgel with fixed charge confined to its
surface, we substitute Eq. (1) into Eq. (23) to obtain

v (r) + %V/(r) = sinh y(r) + Z—/\ZBé(r— a), (25)
a

which is the PB equation in the spherical cell model for a suspension
of surface-charged microgels in Donnan equilibrium. This equation
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is subject to the boundary conditions that the electric field must van-
ish at the center of the cell, y’(0) = 0 (by symmetry), and on the cell
boundary, ¥’ (R) = 0 (by electroneutrality). Applying these bound-
ary conditions, we numerically solved Eq. (25) for y(r) inside and
outside the microgel and matched the solutions in the two regions
at the microgel surface to ensure continuity of the potential and the
correct discontinuity of the electric field at r = a:

’ ’ ZA
lim [y'(a+0) - y/(a-8)] = =7, (26)

From our solution for y(r), we computed the microion den-
sity profiles from Eq. (22) and the electrostatic component of the
single-microgel osmotic pressure from Egs. (19) and (20).

Previously, we showed”” that a careful analysis of the pressure
tensor within the cell model implementation of PB theory relates
the electrostatic component of the single-microgel osmotic pres-
sure to the discontinuity in the radial component of the electrostatic
pressure tensor at the microgel surface:

z lim|y'(a+8) +y'(a-6)| (27)

87{(12 8—0

B =

We further showed that this expression is equivalent to our exact
statistical mechanical relation [Eq. (19)].

B. Molecular dynamics simulations

An independent means of computing the microion density
distributions is molecular simulation. To validate our PB theory
predictions, we implemented and performed canonical ensemble
molecular dynamics (MD) simulations to compute (N.) within the
cell model. Using the large-scale atomic/molecular massively par-
allel simulator (LAMMPS) package,””’” we simulated a collection
of counterions (and coions), interacting via a hybrid pair potential,
combining a long-range Coulomb pair potential with a short-range,
repulsive, cut-off Lennard-Jones pair potential. To mimic the influ-
ence of a central, spherical ionic microgel, we applied a radial
“external” force,”!

(28)

3
zé | rla’, r<a,
4me

Fexe(r) =¥ —
et (1) l/rz, r>a,

which is attractive/repulsive (F) for counterions/coions.

The microions were initialized on the sites of an FCC lattice
with random velocities consistent with a constant temperature, and
confined to a spherical region by a repulsive Lennard-Jones wall
force. During the simulations, trajectories of the mobile microions
were computed by numerically integrating Newton’s equations of
motion using the velocity-Verlet algorithm. The average tempera-
ture was held constant via a Nosé~Hoover thermostat. After equili-
brating the system for 10° time steps (fs), we continued each run for
another 10° steps, during which time we collected statistics.

In all MD simulations and PB calculations, the following
system parameters were kept fixed: Bjerrum length A3, cell radius R,
microgel dry radius ao, cross-link fraction, dry volume fraction ¢,,
valence Z, and Flory solvency parameter x. For a given value of Z, the
total number of dissociated monovalent counterions was Ny = Z to
maintain electroneutrality. Figure 2 shows a typical snapshot from
one of our simulations of an ionic microgel and counterions.
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FIG. 2. Snapshot from MD simulation of an ionic microgel (cyan sphere) and mobile
counterions (red spheres).

V. RESULTS AND DISCUSSION

To explore the dependence of equilibrium swelling behavior
of ionic microgels on fixed charge distribution, we implemented
the models, theory, and computational methods described in Secs.
[I-IV. We consider here aqueous suspensions at temperature
T =293 K, with a uniform Bjerrum length, Ap = 0.714 nm, assum-
ing equal dielectric constants inside and outside of the microgels. As
representative system parameters, we chose a dry microgel radius of
ao = 10 nm, corresponding to Nmon = 2 X 10° monomers of radius
Tmon =~ 0.15 nm; number of chains Ng, = 100, corresponding to
average cross-link fraction x = 0.5N¢/Nmon = 2.5 x 107%; valence
Z =1000; and Flory solvency parameter y = 0.5.

In previous work,”! we developed a similar modeling approach
and applied it to spherical ionic microgels carrying fixed charge uni-
formly distributed over their volume. We numerically solved the
PB equation and performed MD simulations to compute average
microion number density profiles, and thus average numbers of inte-
rior microions (N. ). From the resulting electrostatic component of
the single-microgel osmotic pressure 7., we determined equilibrium
swelling ratios. Here, we apply a comparable approach to microgels
with fixed charge uniformly distributed over their surfaces.

Figure 3 shows our results for average counterion number den-
sity profiles inside and outside of a surface-charged microgel of
swollen radius a = 25 nm (swelling ratio o = 2.5) in the spherical
cell model with no salt. Excellent agreement between predictions
of PB theory and data from our MD simulations over a range of
dry volume fractions serves to validate our implementations of both
methods. Consistent with the boundary conditions on the PB equa-
tion for the electrostatic potential, the counterion density profiles
are relatively flat near the microgel center (r = 0) and the cell edge
(r = R), where the electric field vanishes. Furthermore, the counte-
rion density peaks at the surface of the microgel, where the electric
field is highest. The cusp in the . (r) curve at r = a is a consequence
of the strict confinement of the fixed charge to the particle surface.

With increasing dry volume fraction, the maxima of the n. (r)
curves (at r =a) increase. This trend is to be expected, since
the counterion density closely tracks the electrostatic potential
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FIG. 3. Counterion number density profiles around a surface-charged ionic micro-
gel of dry radius ay = 10 nm, swollen radius a = 25 nm, and valence Z = 1000
in a salt-free aqueous solvent at room temperature (Ag = 0.714) in the spheri-
cal cell model. For dry volume fractions ¢ = 0.01, 0.02, and 0.03, predictions of
PB theory (solid curves) agree closely with MD simulation data (symbols). The
corresponding swollen volume fractions are ¢ = 0.156 25, 0.3125, and 0.468 75.

[Eq. (22)], whose magnitude |y(r)| attains a maximum at the sur-
face and whose surface value |y(a)| increases with increasing ¢,
This increase in peak height reflects a stronger attraction of coun-
terions to the surface at higher microgel volume fractions. Further-
more, the average number of interior counterions (N.) [Eq. (20)]
also increases with increasing ¢, a trend that results largely from
the corresponding decrease in exterior volume. Interestingly, inside
and away from the microgel surface, the counterion density profile
changes relatively little. This behavior is expected, as the environ-
ment of the interior counterions is weakly affected by a change in
volume outside of the microgel as ¢, changes. Note that at low
volume fractions (dilute conditions) the counterion density near
the microgel center is higher than at the cell edge, while at higher
volume fractions this relation is reversed. In previous work,”* we
found that distributing the fixed charge over the shell thickness
of a spherical microcapsule smooths and broadens the counterion
density profile.

As discussed in Sec. IV, the electrostatic component of the
single-microgel osmotic pressure 7, involves contributions both
from the self-energy of the microgel fixed charge and from the den-
sity distributions of the mobile microions. Numerically integrating
the microion density profiles over the volume of the swollen micro-
gel yields the average numbers of interior microions (N ) [Eq. (20)].
In the salt-free case, substituting the average number of interior
counterions (N,) into Eq. (19) gives 7. for a microgel of a given
swollen radius. Repeating these calculations for different swollen
radii, we computed 7. over a range of microgel swelling ratios and
dry volume fractions. Figure 4 shows our results for 7, vs « for
several values of ¢, together with the gel component of the single-
microgel osmotic pressure [Eq. (15)], which is independent of ¢,.
Again, our predictions from PB theory are in very close agreement
with our simulation data, as is to be expected, since 7. is directly
determined by the value of (N. ).

For a given microgel swollen radius, as the dry volume fraction
increases (from ¢, = 0.01 to 0.05), the electrostatic component of
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FIG. 4. Electrostatic and gel components of single-microgel osmotic pressure vs
swelling ratio « for surface-charged microgels in salt-free aqueous suspensions
of dry volume fraction ¢, = 0.01-0.05 in the spherical cell model for same sys-
tem parameters as in Fig. 3. The electrostatic component 7, from PB theory
(solid red curves) agrees closely with MD simulation data (open red symbols). The
gel component 74 (dashed black curve) is computed from Flory-Rehner theory
[Eq. (15)]. At equilibrium swelling, the total microgel osmotic pressure vanishes:
7m = e + 1g = 0 (filled symbols).

the single-microgel osmotic pressure steadily decreases (red curves
and symbols in Fig. 4). This trend can be attributed to the progres-
sive neutralization of ionic microgels with increasing concentration
of the suspension, as counterions become increasingly confined
within the microgel, i.e., as (N.) increases. (Note that in the cell
model, increasing ¢, implies decreasing cell radius R.) Further-
more, for these system parameters, at a given concentration, 7. also
monotonically decreases with increasing swelling ratio (i.e., with
increasing swollen radius for a fixed cell radius). At sufficiently large
a, the self-energy and counterion contributions to the electrostatic
osmotic pressure balance and 7. = 0. Thus, concentrating the sus-
pension (increasing ¢,) or enlarging the microgels (increasing «)
weakens electrostatic effects (lowering 7.), which tends to promote
deswelling and expulsion of solvent. Conversely, decreasing ¢, or
o enhances electrostatic effects, which favors swelling and absorp-
tion of solvent.

The gel component of the single-microgel osmotic pressure
mg [Eq. (15)], associated with mixing entropy and elasticity, coun-
ters the electrostatic component. Recall that the total single-microgel
osmotic pressure 7, — the sum of the electrostatic and gel compo-
nents [Eq. (13)] - vanishes when a microgel attains its equilibrium
swollen size. An uncharged (nonionic) microgel is in equilibrium
when g (dashed black curve in Fig. 4) itself vanishes (at o ~ 2.3
in this case). With increasing swelling ratio, 7, monotonically
decreases, becoming negative when « > 2.3, but with a qualitatively
different o dependence. While a nonionic microgel would be out of
equilibrium beyond this swelling ratio, an ionic microgel can be sta-
bilized by the electrostatic component of the osmotic pressure, here
arising from the fixed surface charge. The red dots in Fig. 4 mark
the equilibrium size of the microgel, at which 7, () + 7. («) = 0, for
different dry radii.

The resulting equilibrium swelling behavior is summarized in
Fig. 5, which shows progressive deswelling with increasing ¢,. Over
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FIG. 5. Equilibrium swelling ratio « vs dry volume fraction ¢, for salt-free aqueous
suspensions of surface-charged (red circles) and volume-charged (blue squares)
microgels in the spherical cell model for same system parameters as in Fig. 3, illus-
trating stronger deswelling of surface-charged microgels. Over this range of ¢, the

swollen volume fraction, ¢ = ¢x3¢0, varies (nonlinearly) from about 0.28-0.67 for
surface-charged microgels.

this range of dry volume fraction, the swollen volume fraction,
¢ = oc3¢o, varies (nonlinearly) from about 0.28-0.67 for surface-
charged microgels, remaining below close-packing of spheres.
Thus, the deswelling of these ionic microgels is driven mainly
by electrostatic effects, rather than by steric interparticle interac-
tions. With increasing ¢,, increasingly more counterions reside,
on average, inside the microgel, lowering the contribution of
microgel-counterion electrostatic interactions to the osmotic pres-
sure [Eq. (18)], and thus inducing deswelling.

Our predictions of progressive deswelling of ionic micro-
gels with increasing concentration are qualitatively consistent
with experimental observations of deswelling, e.g., of pNIPAM
and poly(vinylpyridine) microgels.”"">**? In particular, pNIPAM
microgels, whose fixed charge is localized near the particle periph-
ery, similar to our surface-charged model, exhibit such a deswelling
response.”’ " A direct quantitative comparison between theory and
experiment may be possible, but is complicated by the challenge of
precisely measuring the fixed charge and by the neglect in our model
of any variation of fixed charge with microgel concentration.

Scotti et al.”* *® have suggested a model of ionic microgels in
which counterions that are closely associated with fixed charge, i.e.,
quasi-bound to the surface with an electrostatic potential energy
2 kT, may, at sufficiently high microgel concentration, be released
(i.e., become free) and thereby contribute to the osmotic pressure
of the suspension. Such a release of counterions would alter the
effective fixed charge of the microgels. Since our coarse-grained, cell-
model-based approach focuses, for simplicity, on a single microgel
carrying a fixed charge that is independent of system properties,
it does not directly describe release of quasi-bound counterions
in response to changes of concentration. A multi-center model of
microgel suspensions that includes microgel-microgel interactions
may be a basis for incorporating a concentration-dependent fixed
charge, using concepts of charge renormalization with a thermal
definition of effective fixed charge.”* While such an approach is
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beyond the scope of the present study, it may be worth exploring
in future. Nevertheless, our theoretical predictions and simulations
do indicate stronger aggregation of counterions near the charged
microgel surface with increasing concentration (Fig. 3), which might
be related to quasi-binding of counterions in a more molecular-
scale model. Figure 3 further shows that the counterion number
density at the cell edge increases with concentration, suggesting
increasing overlap of the counterion clouds surrounding neighbor-
ing microgels, consistent with the conceptual picture presented in
Refs. 56-58.

We note that our results for counterion number density pro-
files are qualitatively similar to those reported in a related study
of surface-charged ionic microgels,”® in which the PB equation
was numerically solved in the cell model. However, our con-
clusions regarding equilibrium swelling differ significantly from
those in Ref. 58, where the electrostatic component of the single-
microgel osmotic pressure was determined from the microion
number density at the center of the cell, implying [from Eq. (22)]

Bre = n(0) + n—(0) = 2ng cosh [y(0)]. (29)

The latter approximation, although valid in planar geometry
(e.g., for a flat film), neglects nonuniformity of the elements of the
pressure tensor in curvilinear geometry. In spherical geometry, for
example, the normal (radial) element of the pressure tensor, P, (),
varies with radial distance. As described in detail elsewhere,”””""
this property follows from the requirement that the divergence of
the pressure tensor vanish in mechanical equilibrium. In particular,
for a surface-charged microgel in the spherical cell model, the nor-
mal element of the electrostatic pressure tensor, P.(r), is higher at
the microgel surface than at the center (see Fig. 14 of Ref. 22). As a
consequence, Eq. (29) actually represents the normal element of the
electrostatic pressure at the microgel center, P.(0), rather than the
electrostatic component of the single-microgel osmotic pressure 7.
Furthermore, P.(0) is generally significantly lower than 7..

In equilibrium, the normal element of the gel contribution to
the pressure tensor, Pg(r), must counteract the electrostatic con-
tribution, P.(r), to mechanically stabilize the fixed charge against
the electric field (—y”). For a fixed charge density n;(r), a simple
mechanical argument yields the gel contribution as*

Py(r) = —erdunf(u)u/'(u). (30)

In general, Py (r) = 0 outside the microgel, where 75 = 0, and is spa-
tially varying inside. For our particular model of a surface-charged
microgel, with ns(r) given explicitly by a Dirac delta-function
[Eq. (1)], Eq. (30) yields*

Pe(r) = -

Slim[y'(a+0) +y'(a-90)] = 7. (31)
8ma” §-0
Thus, for a surface-charged microgel, Pg(r) jumps discontinuously
at the surface from zero to a value equal to the negative of the
electrostatic component of the single-microgel osmotic pressure,
and remains constant at that value inside the microgel. In con-
trast, P.(r) and P,,(r) vary with radial distance due to the spherical
geometry.

To illustrate the difference between our approach and that of
Ref. 58, Fig. 6 plots the normal element of the pressure tensor in
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FIG. 6. Normal (radial) element of pressure tensor, Pr(r), and electrostatic and
gel contributions, Pe(r) and Py (r), respectively, where Pr (r) = Pe(r) + Pg(r),
for a surface-charged microgel in the spherical cell model with dry volume fraction
¢y = 0.01, swelling ratio & = 2.5, and dry and swollen radii (a) ap = 10nm, a = 25
nm and (b) ao = 40 nm, a = 100 nm. Thick red and blue vertical lines have lengths
representing the value of 7z, predicted, respectively, by Eq. (29) 5¢ and our Eq. (19)
or, equivalently, (27).

the spherical cell model for the case ¢, = 0.01, a = 2.5, separately
showing the electrostatic and gel contributions, computed using the
methods from Ref. 22. Panel (a) is for the case of microgels with
dry and swollen radii ap = 10 nm and a = 25 nm, respectively; panel
(b) is for ap = 40 nm and a = 100 nm, which is closer to the exper-
imental system studied in Ref. 58. The thick blue vertical line has
a length equaling our result for 7., while the thick red vertical line
length represents the value predicted by Eq. (29). Evidently, the two
approaches make substantially different predictions. In fact, when
we use Eq. (29), instead of our Eq. (19) [equivalently, Eq. (27)] to
compute equilibrium swelling ratios for the case of a9 = 10 nm, we
find that a varies only slightly with ¢, actually increasing from 2.355
at ¢, = 0.01 to 2.358 at ¢, = 0.05. In contrast, our approach, which
is consistent with nonuniformity of the pressure tensor,”” predicts
« decreases from 3.03 at ¢ = 0.01 to 2.37 at ¢, = 0.05 for this system
(Fig. 5).

J. Chem. Phys. 159, 184901 (2023); doi: 10.1063/5.0161027
Published under an exclusive license by AIP Publishing

159, 184901-8

9Z:€€:1Z €20 49qUISAON 1


https://pubs.aip.org/aip/jcp

The Journal

of Chemical Physics

Of particular interest here is a direct comparison between
equilibrium swelling of surface- and volume-charged micro-
gels. As illustrated in Fig. 5, with increasing concentration,
surface-charged microgels deswell significantly more rapidly than
volume-charged microgels that have otherwise the same particle
properties. This trend can be attributed in part to the lower self-
energy of surface-charged microgels, BU, = Z*As/(2a), compared
with U, =3Z*Ag/(5a) for volume-charged microgels.”’ How-
ever, the counterion density distribution also clearly plays a role
in lowering the electrostatic osmotic pressure, which suppresses
swelling.

Intermediate between the extremes of surface- and volume-
charged microgels are microgels with the same fixed charge uni-
formly distributed over the volume of a peripheral spherical shell.
In previous work on ionic microcapsules (hollow microgels),””*’ we
derived an expression for the self-energy of a charged spherical shell
with inner and outer radii R; and R,, respectively:

37°Ap 2-5y° +3y°
10R, (1-9°)

BUn(Rory) = , (32)

where y = Ri/R, < 1. With increasing shell thickness (i.e., decreasing
), U from Eq. (32) increases, exceeding Uy, for a surface-charged
microgel [Eq. (4)], and approaching the result for a volume-charged
microgel as y — 0. Thus, spreading the fixed charged over the vol-
ume of a spherical shell would increase electrostatic self-energy and
thereby tend to promote swelling.

Finally, we explore the response of ionic microgels to changes
in salt concentration. For two different system salt concentrations,
¢ = 10 and 20 mM, we numerically solved the PB equation [Eq. (23)]
for both counterion and coion density profiles n.(r), from which
we computed the electrostatic component of the single-microgel
osmotic pressure from Eq. (19) and equilibrium swelling ratios
from Eq. (13). Figure 7 shows the resulting variation of equilib-
rium swelling ratio with microgel concentration for the same system

3
2 eC_=0mM
© s |
o « C =10 mM
£128 N s .
Fo) ac =20mM
; S
[77] [ ]
% 2.6 R : -
8 | z=1000 . ’
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FIG. 7. Equilibrium swelling ratio & vs dry volume fraction ¢, for surface-charged
microgels of valence Z = 1000 and dry radius ap = 10 nm in aqueous suspen-
sions with system salt concentrations ¢s = 0 (red circles), 10 mM (green squares),
and 20 mM (black triangles). Over this range of ¢, the swollen volume fraction,
¢ = oc3¢>0, varies (nonlinearly) from about 0.28-0.67 for surface-charged microgels
and the fixed charge concentration c varies from about 4-20 mM.
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parameters as in Fig. 3. Over this range of dry volume fraction,
0.01 < ¢, < 0.05, the average concentration of fixed charge,

32 ¢o 1mM
cf=— ,
77 4 (ap[nm])’ 6.022x 10" nm >

(33)

varies from about 4-20 mM. Since ¢ £ and thus also the counterion
concentration, is comparable in magnitude to the salt concentra-
tion, some significant response of swelling to variation of ¢; may
be expected. At higher salt concentrations, the nonlinear PB equa-
tion becomes so numerically stiff that our differential equation
solver unfortunately fails. However, even for ¢; < 20 mM, we already
observe a significant influence of added salt on microgel swelling.

In relatively dilute suspensions (¢, < 0.03), microgels typi-
cally respond to increasing salt concentration by deswelling. This
response is conventionally attributed to enhanced screening of the
microgel fixed charge upon increasing the overall concentration
of microions and the attendant suppression of electrostatic-driven
swelling. Another interpretation is suggested, however, by close
inspection of the expression for the electrostatic component of the
single-microgel osmotic pressure [Eq. (19)]. Adding salt ion pairs to
the suspension leads on average to microgels preferentially absorb-
ing counterions over coions (i.e., (N ) rises more than (N_)). Dilute
suspensions provide ample free volume outside of the microgels in
which coions can minimize their energetically costly interactions
with microgel surfaces. With the electrostatic component of the
osmotic pressure being thus weakened, the gel component favors a
lower swelling ratio.

In more concentrated suspensions (¢, > 0.03), we observe an
interesting reversal in the swelling response, with crowded microgels
swelling slightly upon adding salt. This unusual response implies
that highly crowded microgels, which already harbor a significant
concentration of counterions, tend to engulf more of any added
coions than added counterions. This trend is perhaps not surprising,
considering that in crowded suspensions, where free volume out-
side of the microgels is limited, exterior coions are constrained to
be relatively close to the like-charged microgel surfaces, where they
must pay a higher energetic cost of interaction. In contrast, by mov-
ing inside a microgel, a coion can avoid the charged surface, while
also reducing energy by gaining proximity to oppositely-charged
counterions. Swelling of microgels further favors coions remain-
ing inside the microgels. This result illustrates the complex nature
of the electrostatic component of the single-microgel osmotic pres-
sure, which involves a delicate balance between the mean numbers
of counterions and coions inside the microgels.

Whether the swelling trend observed with increasing salt con-
centration would continue to higher microgel concentrations is
an interesting question. Unfortunately, our cell-model approach is
unable to provide a clear answer, since ¢, = 0.05 already approaches
a swollen volume fraction at which elastic interactions between
neighboring microgels would start to become important. This ques-
tion could be addressed, however, within a multi-center model
that includes microgel-microgel interactions.*” Finally, we note that,
despite the qualitatively different swelling behavior of ionic micro-
gels as compared with that of bulk ionic gels, our approach has in
common with theories of bulk gels'”* that it associates swelling
with osmotic pressure — albeit that of a single microgel - which is
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intimately related to microion distributions inside and outside of
the gel.

VI. CONCLUSIONS

Within the primitive and cell models of permeable, com-
pressible, ionic microgels, we investigated the dependence of
single-particle osmotic pressure and equilibrium swelling on the
distribution of fixed charge over the cross-linked polymer net-
work making up the particles. Applying an exact theorem for the
electrostatic component of the single-particle osmotic pressure —
implemented within Poisson-Boltzmann theory and validated via
molecular dynamics simulations — and modeling the gel component
using Flory-Rehner theory of polymer networks, we computed equi-
librium swelling ratios of microgels (with monovalent counterions)
whose fixed charge is confined to and uniformly distributed over
their surfaces.

Our study demonstrates that the osmotic pressure and swelling
properties of ionic microgels are strongly dependent on the fixed
charge distribution through its influence on the microgel electro-
static self-energy and the microion density profiles. Our results
further indicate that surface-charged microgels deswell significantly
more strongly with increasing concentration (i.e., crowding) than
microgels that carry a fixed charge uniformly distributed over their
volume. Results for these two idealized models may serve to bracket
the swelling behavior to be expected of ionic microgels with inter-
mediate fixed charge distributions. Finally, we found that, with
increasing salt concentration, swelling of surface-charged microgels
in dilute suspensions is suppressed, due to enhanced screening of
bare Coulomb electrostatic interactions, but that the effect is weaker,
or can even invert, in more concentrated suspensions.

Although our study is restricted to suspensions of relatively
idealized model microgels with uniform cross-link densities and
fixed charges evenly distributed over their surfaces or volumes, our
results vividly reveal the importance of fixed charge distribution
for single-particle osmotic pressure and equilibrium swelling. Fur-
ther increasing the salt concentration or varying counterion and
microgel valences may significantly modify electrostatically-driven
swelling. Steric interactions associated with nonzero microion size
also may be important. While such effects are beyond the scope of
the present mean-field modeling approach, they would be well worth
exploring in future.

Our conclusions regarding the influence of fixed charge dis-
tribution on swelling are qualitatively consistent with experimental
measurements of ionic microgels and can be further tested in exper-
iments (e.g., light or neutron scattering) on microgels produced via
synthesis protocols that yield varying distributions of fixed charge.
Thus, our results may provide insights into swelling behavior and
guide practical approaches to controlling swelling of microgels for
practical applications. In future work, we will explore structural
properties of bulk suspensions of surface-charged ionic microgels
and of mixtures thereof with size and charge asymmetry.
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