
The Journal

of Chemical Physics
ARTICLE pubs.aip.org/aip/jcp

Effective interactions, structure, and pressure
in charge-stabilized colloidal suspensions:
Critical assessment of charge renormalization
methods

Cite as: J. Chem. Phys. 159, 204904 (2023); doi: 10.1063/5.0180914

Submitted: 12 October 2023 • Accepted: 30 October 2023 •

Published Online: 28 November 2023

Mariano E. Brito,1,a) Gerhard Nägele,1,b) and Alan R. Denton2,c)

AFFILIATIONS

1 Institute of Biological Information Processing, IBI-4, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
2Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA

a)Current address: Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.

mariano.brito@icp.uni-stuttgart.de
b)g.naegele@fz-juelich.de
c)Author to whom correspondence should be addressed: alan.denton@ndsu.edu

ABSTRACT

Charge-stabilized colloidal suspensions display a rich variety of microstructural and thermodynamic properties, which are determined by
electro-steric interactions between all ionic species. The large size asymmetry between molecular-scale microions and colloidal macroions
allows the microion degrees of freedom to be integrated out, leading to an effective one-component model of microion-dressed colloidal
quasi-particles. For highly charged colloids with strong macroion–microion correlations, nonlinear effects can be incorporated into effective
interactions by means of charge renormalization methods. Here, we compare and partially extend several practical mean-field methods of
calculating renormalized colloidal interaction parameters, including effective charges and screening constants, as functions of concentration
and ionic strength. Within the one-component description, we compute structural and thermodynamic properties from the effective inter-
actions and assess the accuracy of the different methods by comparing predictions with elaborate primitive-model simulations [P. Linse, J.
Chem. Phys. 113, 4359 (2000)]. We also compare various prescriptions for the osmotic pressure of suspensions in Donnan equilibrium with a
salt ion reservoir and analyze instances where the macroion effective charge becomes larger than the bare one. The methods assessed include
single-center cell, jellium, and multi-center mean-field theories. The strengths and weaknesses of the various methods are critically assessed,
with the aim of guiding optimal and accurate implementations.
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NOMENCLATURE

CM cell model
CT contact theorem
DFT density-functional theory
DH Debye–Hückel
DLVO Derjaguin–Landau–Verwey–Overbeek (potential)
EPC extrapolated point charge with PBCM
HS hard sphere
JA jellium approximation
JM jellium model
LRT linear response theory

MC Monte Carlo
MSA mean spherical approximation
OCM one-component model (of dressed macroions)
PB Poisson–Boltzmann
PBCM Poisson–Boltzmann cell model
PM primitive model
RJM renormalized jellium model
RLRT renormalized linear response theory
RY Rogers–Young (integral equation scheme)
SC surface charge with PBCM
SDHA shifted Debye–Hückel approximation
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I. INTRODUCTION

Charge-stabilized colloidal suspensions consist of mesoscopic
particles (macroions), typically a few nanometers to micrometers in
size, suspended in a polar, low-molecular-weight solvent (e.g., water)
and carrying ionizable chemical groups, which can dissociate, releas-
ing oppositely charged counterions into solution. In the presence of
salt in the solution, the charged colloids and released counterions
coexist with solvent-dissolved counterions and coions (microions).
As first explained by the Derjaguin–Landau–Verwey–Overbeek
(DLVO) theory,1,2 surrounding each colloid is an electric double
layer, resulting from the buildup of an inhomogeneous mobile cloud
of microions, which carries a charge of the opposite sign to that of
the colloidal particles and tends to screen their electrostatic poten-
tial.3 The overlap of the double layers of two neighboring colloids
generates a repulsive force, which stabilizes the particles against
aggregation.4 Charge-stabilization is important in many practical
applications, including water purification and the stability of clays,
foods, pharmaceuticals, and consumer products.

By taking advantage of the large size and charge asymme-
tries between macroions and microions, the electrostatic part of the
corresponding effective pair potential can be derived from themean-
field Poisson–Boltzmann (PB) theory, where microion–microion
correlations are neglected.5–7 The nonlinear PB equation for the
electrostatic potential can be solved analytically only in certain
geometries (planar and cylindrical). Linearizing the PB equation
allows for an analytical solution in spherical geometry as well.
Within the linear Debye–Hückel (DH) approximation,8 in which
the Boltzmann factor for the electrostatic potential is linearized, one
obtains an effective macroion–macroion pair potential of Yukawa
(screened-Coulomb) form, characterized by the bare valence of
the macroions Z and a screening constant κ (inverse screening
length), which depends on the concentrations of microions. The DH
approximation is most accurate for weakly charged species, where
themacroion–microion interaction energy is low compared with the
thermal energy.7

With increasing charge, when the characteristic Coulomb
energy rivals the thermal energy in magnitude, nonlinear screening
effects grow, and the DH approximation becomes increasingly
inaccurate.9 These nonlinear effects arise from a strong electro-
static coupling between oppositely charged colloids and counterions,
inducing a significant accumulation of counterions in the vicin-
ity of the macroion surfaces.9–12 Even though the nonlinear PB
equation for the electrostatic potential cannot be solved analyti-
cally in spherical geometry, the concept of charge renormalization
allows for the incorporation of nonlinear effects in a linear DH-like
treatment. Numerical simulations also indicate that the electro-
static potential far from colloidal particles saturates as a function
of the bare colloidal charge,13 suggesting that the thermodynamics
of highly charged colloidal systems can be based on a linear
treatment.6

The basic premise of charge renormalization theories is that
a colloidal particle and its cloud of quasi-condensed counterions
may be treated as a composite particle that carries a charge much
lower than the bare charge,5,9 thereby redefining the screening
constant of the system. Renormalization methods thus map a
highly charged macroion suspension with significant nonlinear
electrostatic effects onto an equivalent linearly behaving system

characterized by renormalized effective interaction parameters,
namely the renormalized valence Zeff and screening constant κeff.
These renormalized parameters are used in the effective DLVO
electrostatic pair potential in order to summarily account for
nonlinear effects in the macroion–macroion interactions.

While the concept of renormalized (effective) charge has
proven very useful for modeling systems beyond the DH approxi-
mation, the absence of a general and precise definition9 has led to
a wide variety of proposals. Different charge renormalization meth-
ods, distinguished by their underlying physical assumptions, predict
different dependences of the renormalized interaction parameters,
Zeff and κeff, on the bare parameters,Z and κ, as well as on colloid and
salt concentrations. All methods necessarily rely on approximations
(sometimes uncontrolled), which affect their efficacy in describing
nonlinear electrostatic screening and their accuracy in predicting
system properties.14

Many charge renormalization methods have been proposed
and independently tested within the context of Poisson–Boltzmann
theory. Only a few previous studies, however, have aimed to assess
the relative strengths and weaknesses of the different methods.9,15,16

The purpose of this work is to thoroughly analyze and partially
extend a selection of the most commonly used and easily imple-
mented renormalization methods and to assess their performance
and applicability over broad ranges of particle charge and ionic
strength. We consider only methods applicable to systems in the
weak-coupling limit, where microion–microion correlations are
negligible and nonlinear PB theory is a valid starting point. We
further restrict our study to methods of the simplest forms—those
that do not require the recursive calculation of distribution func-
tions for computing effective interaction parameters.16,17 By taking
advantage of the effective one-component model of colloidal
suspensions, we quantitatively evaluate the performance of the
various methods by testing the accuracy of their predictions of
structural and thermodynamic properties.

We focus here on charge renormalization methods based on
mean-field PB approximations, including surface charge and extrap-
olated point charge methods within the spherical cell model with
edge and mean potential linearizations, the renormalized jellium
model, and the renormalized linear response theory. These meth-
ods provide the effective interaction parameters, Zeff and κeff, which
we use as input to the effective macroion pair potential for comput-
ing pair correlation functions. The latter characterize the structure
of colloidal suspensions. We explore and compare the predictions
of the different approaches for thermodynamic quantities, including
the suspension pressure and the osmotic compressibility.

Special attention is devoted to analyzing different prescriptions
for calculating the pressure. In particular, we discuss the importance
of the different pressure contributions arising from the renormal-
ized, density-dependent, effective macroion pair potential. We also
examine concentrated suspensions of weakly coupled macroions,
for which some approaches predict an effective macroion valence
larger than the bare valence. Our study is restricted to impermeable,
rigid, spherical colloidal particles, disregarding methods designed
to describe ion-permeable macroions,18,19 colloidal mixtures,20 or
different colloidal architectures.19 With this work, we aim not only
to provide a guide for optimal and accurate implementations of the
analyzed methods but also to bring some clarity to their underlying
theoretical foundations.
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In the discussed PB mean-field theory methods, the microions
are described only by their concentration profiles. The discrete
nature of the microions and their correlations, particularly, those
induced by their nonzero sizes, are here disregarded. This approach
excludes the discussion of macroion overcharging and like-
charge attraction effects induced by strongly correlated polyvalent
counterions and of microion nonzero-size effects relevant to nano-
sized colloidal macroion systems and protein solutions. PB-based
methods are applicable in the so-called weak-coupling regime of
monovalent microions, relatively large macroion-to-microion size
ratios, and low to moderately high macroion surface charge densi-
ties. For a salt-free suspension of spherical macroions of radius a
and, say, negative surface charge −Ze, this regime is roughly delin-
eated by low values, Γcc < 1, of the counterion Coulomb coupling
parameter, defined as Γcc = λBz

2
+�lc. Here, z+e is the charge of a

counterion (cation) released from the macroion surface, with e > 0
the proton elementary charge, and λB is the Bjerrum length of the

polar solvent (typically water). Moreover, lc = a
�
(8π�√3)z+��Z�

is the characteristic nearest-neighbor distance between counterions
quasi-condensed on the macroion surface and taken to reside on
the vertices of a triangular lattice.21,22 For monovalent microions
and macroions of radius a� λB, PB methods work quite well up to
very high macroion surface charge densities.22 Prominent examples
of charge-stabilized colloidal systems amenable to a PB mean-field
treatment are polystyrene or silica spheres of radius a � 50 nm
with monovalent, ionizable surface groups that are suspended in an
aqueous 1:1 electrolyte solution.

The paper is organized as follows. In Sec. II, we first review the
primitive and effective one-component models of charge-stabilized
colloidal suspensions. In Sec. III, we then describe several charge
renormalization methods, detailing their underlying assumptions
and outlining their practical implementations. Next, in Sec. IV,
we discuss predictions of the various methods for structural and
thermodynamic properties of suspensions of charged macroions
interacting via an effective pair potential in the one-component
model. In Sec. V, we assess the performance of the different methods
by comparing their predictions against data from simulations of the
primitive model. Finally, in Sec. VI, we summarize our results and
conclude with a discussion of the relative strengths and weaknesses
of the various renormalization methods.

II. MODELS

A. Primitive model

A wide variety of soft materials, including polyelectrolyte solu-
tions, charge-stabilized colloidal suspensions, and globular protein
solutions, can be reasonably described by the primitive model
(PM). In this idealized model, all ions interact via Coulomb and
excluded-volume forces and are immersed in a structureless sol-
vent. Specific properties of the solvent are neglected, except for its
static dielectric constant ε and its shear (Newtonian) viscosity η0.
Here, we also neglect image-charge effects, which can give rise to
many-body dielectric interactions caused by differences in the
dielectric properties of the ions and the solvent.

Consider a three-component PM system consisting of Nm

negatively charged macroions (species α = m) of negative charge
number zm = −Z, with macroion valence Z > 0, and Nα microions

of valence zα, with α = ±, in a macroscopic suspension of
volume V and temperature T. The three ion species are modeled
as spherical particles of monodisperse radius aα and mass mα, with
α = m,±. Here, (+) and (−) label the positively charged counteri-
ons (cations) and negatively charged coions (anions), respectively,
collectively referred to as microions. The counterion species (+)
of valence z+ > 0 includes both the salt counterions and coun-
terions released from the macroion surfaces, which are taken as
chemically identical for simplicity. The macroion mean number
density, nm = Nm�V , determines the macroion volume fraction,
ϕ = 4πa3mnm�3. The Hamiltonian of the system can be expressed in
the general form

H = Hmm +H++ +H−− +H+− +Hm+ +Hm−, (1)

where Hαα is the Hamiltonian of the ion species α, i.e.,

Hαα({r
Nα
α }) = Kα +

1

2

Nα

�
i=1

Nα

�
j=1

′

uαα(rij), (2)

and the prime denotes the restriction that i ≠ j. The first term on the
right side of Eq. (2) is the kinetic energy,

Kα =
1

2mα

Nα

�
i=1

p
2
αi, (3)

where pαi is the momentum of the α-type ion i. The second
term is the potential energy of interaction between particles of the
same species α, described by the bare pair potential uαα(rij), with
rij = ri − rj and ri denoting the center position of the ith α-type
particle. The terms H+−, Hm+, and Hm− in Eq. (1) correspond to
the potential energies due to the bare interactions between particles
of different species α ≠ β, i.e.,

Hαβ =

Nα

�
i=1

Nβ

�
j=1

uαβ(rij). (4)

The pair-interaction potential between two impermeable ions
of species α and β, with hard-core radii aα and aβ, whose center

distance is r, is of the form uαβ(r) = u
hs
αβ(r) + u

C
αβ(r). Here,

excluded-volume interactions are modeled by the hard-sphere pair
potential,

u
hs
αβ(r) =

�������
∞, r < aα + aβ,

0 otherwise,
(5)

and electrostatic interactions by the Coulomb pair potential,

u
C
αβ(r) = kBTλB

zαzβ

r
, r > aα + aβ, (6)

where λB = e
2�(εkBT) is the Bjerrum length of the solvent, expressed

here in Gaussian cgs units, and kB is the Boltzmann constant. The
Bjerrum length is a length scale defined as the distance between two
unit charges at which the Coulombic potential energy equals the
thermal energy kBT. For water at room temperature, λB ≈ 7.1 Ω.
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The PM system is subject to the global electroneutrality
condition

�
α={m,±}

nα zα = 0, (7)

where nα = Nα�V is the mean number density of species α. In equi-
librium, the condition of local electroneutrality for the macroion
species m can be stated as

�
α={±}

nαzα � d
3
r gmα(r) = −zm, (8)

where gmα(r) is the partial radial distribution function for ion
species m and α. The partial radial distribution functions gαβ(r)

and partial pair correlation functions hαβ(r) ≡ gαβ(r) − 1 are deter-

mined by the partial pair interaction potentials uαβ(r), which are
symmetric, i.e., uαβ(r) = uβα(r). This symmetry is inherited by the
partial static (and dynamic) pair correlation functions.

In addition to structural properties, the PM also describes
thermodynamic properties, such as the suspension pressure. From
simulations of the PM with its pairwise additive interactions, the
suspension pressure p can be obtained from the many-component
virial equation of state.23 Using proper regularization of the
Coulomb pair potential parts in conjunction with global electroneu-
trality expressed in Eq. (7), the PM suspension pressure is as
follows:23,24

β
pPM

n
= 1 +

2πn

3
�

α,γ={m,±}

xαxγσ
3
αγgαγ(σ

+

αγ)

−
πnλB
3

�
α,γ={m,±}

xαxγzαzγσ
2
αγ

+

2πnλB
3

�
α,γ={m,±}

xαxγzαzγ�
∞

σαγ
dr r hαγ(r). (9)

Here, xα = nα�n is the molar fraction of α-type ions, and n = ∑γ nγ
= nm + n+ + n− is the total ion number density. Moreover,
σαγ = aα + aγ. The contact values, gα,γ(σ

+

αγ), of the three partial radial
distribution functions differ from those of neutral hard spheres
because of the influence of the Coulomb interactions. The pressure
contribution involving the square of σαγ results from the property,
hαγ(r < σαγ) = −1.

For systems with relatively small size and charge asymmetries
between ionic species, bulk properties can be extracted from the
PM, usually only by computer simulations, except in the dilute
limit. With increasing asymmetry and concentration, however,
simulations rapidly become computationally more expensive,
especially when dynamic properties are considered. Fortunately,
if the asymmetries are sufficiently large, approximations become
possible based on exploiting the wide separation of length and time
scales of different ionic species. Owing to the large size difference
between macroions and microions, the dynamics of the microions
is much faster than that of the macroions. If the structure and
dynamics of the macroions are of most interest, this asymmetry
allows for integrating out the degrees of freedom of the microions,
giving rise to structural and dynamic equations for a system of
effective (“microion-dressed”) macroions only. (Although this

coarse-graining procedure can be formally applied to any species
in a classical system, it is of practical utility only when applied
to the smaller species.) The price to pay for this reduction is the
introduction of three-body and higher-order effective interactions
not present in the PM, as well as the occurrence of a one-body
contribution to the volume (grand) free energy associated with
microion entropy and macroion–microion interactions.

B. Effective one-component model

For simplicity, we now restrict the discussion to monovalent
microions (a± = 0, z± = ±1) and macroions that are monodisperse
in size (am = a) and of negative charge, zme = −Ze, with bare valence
Z > 0. We consider the suspension to be in osmotic (Donnan) equi-
librium with a 1:1 electrolyte reservoir of ion concentration 2nres,
which is separated from the suspension by an ideal membrane that is
permeable only to microions and solvent. For simplicity, we assume
the bare macroion valence Z to be constant, independent of ion
concentrations and ionic strength. Therefore, we neglect possible
chemical charge regulation effects. The condition of global elec-
troneutrality can be rewritten as ZNm = �N+� − �N−�, where �N−�
denotes the equilibrium number of (monovalent) coions in the
system, which equals the number Ns of salt ion pairs, and �N+�
is the equilibrium total number of (monovalent) counterions, con-
sisting of Ns salt counterions and ZNm counterions released from
the macroion (colloid) surfaces. The equilibrium number density
of salt ion pairs, ns = Ns�V , in the suspension is determined by
the chemical equilibrium between the suspension and the reservoir,
specifically by the equality, �

±
= �res, of the chemical potentials of

cations and anions, �
±
, in the suspension and the microion chemical

potential, �res = kBT ln �Λ3
0nres�, in the reservoir, assuming that all

microions have the same thermal de Broglie wavelength Λ0. There-
fore, a suspension in Donnan equilibrium has an equilibrium salt
concentration that is determined by the salt concentration of the
reservoir. A closed suspension, which does not exchange microions
with a reservoir with a given fixed salt concentration, can be directly
mapped to an equivalent system in Donnan equilibrium with a
reservoir of salt concentration nres ≥ ns.

In this McMillan–Mayer implicit solvent model, the semi-
grand canonical partition function of the suspension can be
expressed as

Ξ = ��e−βH���m, (10)

where β ≡ 1�(kBT). The angular brackets denote a canonical
trace over macroion (m) center-of-mass coordinates and a grand-
canonical trace over microion (�) coordinates. By tracing out the
microion degrees of freedom for a fixed configuration of macroions,
one obtains the formally exact relation

Ξ = �e−βHeff�m, (11)

with the effective Hamiltonian of pseudo-macroions

Heff = Km + Evol(nm) +Ueff({r
Nm},nm), (12)

where Km accounts for the translational kinetic energy of the
macroions, Evol(nm) is the macroion configuration-independent
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volume energy, and Ueff({r
Nm},nm) is the configuration-dependent

effective N-particle interaction energy of the macroions in an
equivalent one-component model (OCM) of microion-dressed
macroions. The latter describes the interactions among macroions
mediated by microions, and can be written as25,26

Ueff =
1

2

Nm

�
i≠j=1

u
(2)
eff (rij) +

1

3!

Nm

�
i≠j≠k=1

u
(3)
eff (rij , rik) + ⋅ ⋅ ⋅, (13)

where u
(n)
eff , with 2 ≤ n ≤ Nm, represents the different n-body

effective interactions.
Denoting the semi-grand free energy of the suspension in the

OCM by� = −kBT lnΞ, the suspension pressure, p = −(@��@V)res,
is then given by the generalized virial equation in the OCM,7,25

p = pvol + nmkBT −
1

3V
�Nm

�
i=1

ri ⋅
@Ueff

@ri
�
eff

− �@Ueff

@V
�
eff
, (14)

including the contribution to the pressure from the volume
energy, pvol = −@Evol�@V , and an extra volume derivative term
due to the density dependence of Ueff�{rNm};nm�. Here, the
angular brackets �⋅ ⋅ ⋅�eff denote the canonical ensemble average
with respect to the equilibrium distribution function, Peq({r

Nm})

∝ exp [−βUeff({r
Nm})], of pseudo-macroions, which should not be

confused with the canonical macroion trace �⋅ ⋅ ⋅�m over macroion
positions and momenta. Note that the volume derivative of Ueff in
Eq. (14) is taken for fixed reservoir ion chemical potentials and,
hence, for fixed nres. It is important to emphasize that the gener-
alized virial equation does not suffer from ambiguities introduced
when state-dependent effective pair potentials are combined in an
ad hoc manner with the compressibility and virial equation of state
expressions for one-component simple liquids.27,28

For sufficiently weakly charged macroions, with electro-
static coupling constant ZλB�a < O(10), and sufficiently weakly
correlated, monovalent microions, the effective potential energy
Ueff({r

Nm};nm) is well-approximated by including only up to
two-body contributions in Eq. (13) with effective macroion pair
interaction,7,29

βueff(r) = λBZ
2� exp (κa)

1 + κa
�2 exp (−κr)

r
, r > σ, (15)

where σ = 2a is the macroion diameter. The screening constant
(inverse screening length) is given by

κ =

�
4πλB
1 − ϕ

(Znm + 2ns), (16)

with ns ≤ nres. Depending on the analytical treatment, the excluded-
volume factor 1�(1 − ϕ) may appear29 or not.30 In the salt
dominated regime (nres � Znm),

κ �
�
8πλBnres. (17)

We note that the basic approximation underlying the effective
pair potential ueff(r) [Eq. (15)] between macroions is a linearized

mean-field Poisson–Boltzmann description of the microions, which
neglects all but long-range mutual correlations between free
microions, including those due to their nonzero size. This mean-
field approximation is most accurate for monovalent microions, a
low microion–macroion size ratio, and a relatively low macroion
valence. We note further that defining from Eq. (16) a released-

counterion screening constant, κc ≡
�
4πλBZnm�(1 − ϕ), and a

salt-ion screening constant, κs ≡
�
8πλBns�(1 − ϕ), identifies the

counterion-dominated regime with the condition κc � κs and the
salt-dominated regime with κc � κs.

It should be noted that ZλB�a < O(10) is a criterion for the
negligible nonlinear response of monovalent microions in a mean-
field description, i.e., for the validity of linearized PB-based theories
without charge renormalization. The criterion has been confirmed,31

e.g., by comparing it with MC data in the PM.32 For monovalent
microions and a� λB, PB-based mean-field theories are applicable
even for strong nonlinear response, where Zeff is significantly lower
than Z, since microion correlations are still very weak.22

When Ueff may be assumed to be pairwise additive, the
generalized virial equation for the suspension pressure [Eq. (14)]
reduces to23

p = pvol + pvir + pden, (18)

where the contribution

pvir = nmkBT −
2π

3
n
2
m�

∞

0
dr r

3
g(r)

@ueff(r)

@r
, (19)

corresponding to the second and third terms on the right side of
Eq. (14), represents the virial pressure of the OCM system with-
out consideration of the density dependence of ueff(r) and the
contribution

pden = 2πn
3
m�

∞

0
dr r

2
g(r)

@ueff(r)

@nm
, (20)

corresponding to the last term on the right side of Eq. (14), accounts
for the density dependence of ueff(r).

Within the mean-field Poisson–Boltzmann-type description of
charge-stabilized colloidal suspensions, different theories predict
different expressions for ueff and Evol, which are generally accurate
only when ZλB�a < O(10), in which case the microion distribu-
tions are relatively weakly perturbed by the macroion charges.29,30

For more strongly coupled suspensions, linearized theories can be
extended by renormalizing the bare macroion valence Z and sus-
pension screening constant κ to incorporate the nonlinear response
of the microions to the strong electric field of the macroions. Essen-
tially, charge renormalization maps the highly charged nonlinear
system onto an equivalent linear one that accounts for the higher-
order nonlinear contributions. The latter are subsumed into an
effective screening constant κeff, describing the weakly associated
(linearly responding) microions, and an effective macroion valence
Zeff, describing the mean effect of the colloids and the strongly
associated (nonlinearly responding) microions (see Fig. 1). This
approach leads to an effective pairwise interaction potential between
macroions similar to that in Eq. (15), but with the replacements
κ→ κeff and Z → Zeff,
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FIG. 1. Schematic illustration of charge renormalization: Surrounding a colloidal
macroion of radius a = σ�2 and charge −Ze < 0, some counterions become
strongly associated and quasi-condense on the macroion surface, reducing the
bare valence Z > 0 to an effective valence Zeff < Z.

βueff(r) = λBZ
2
eff� exp (κeffa)1 + κeffa

�2 exp (−κeffr)
r

, r > σ. (21)

This newly defined ueff(r) allows calculating the
macroion–macroion radial distribution function g(r) and
static structure factor S(q), which characterize pair correlations
in real and Fourier space, respectively, of highly charged colloidal
suspensions.

In Sec. III, we briefly outline the most prominently used
charge renormalization methods that we have assessed. We restrict
our study to methods of the simplest form, those that do not
require recursive calculation of distribution functions for comput-
ing effective interaction parameters. We focus on two main classes
of methods, based on (1) single-center models, where the system is
represented by a singled-out colloid, and (2) multi-center models,
which include all colloids interacting via effective pair potentials. In
the first class, we study cell-model-based methods and renormalized
jellium models. In the second class, we analyze renormalized
linear response theory and shifted Debye–Hückel approximation
methods. We focus especially on the appropriate linearization of the
suspension mean-field electrostatic potential Φ.

III. CHARGE RENORMALIZATION METHODS

A. Cell model approximations

Commonly used charge renormalization schemes are based
on a simplified cell model (CM) representation of the suspension.
These schemes exploit the observation that, for strongly repelling
spherical colloids, each colloid is surrounded by a region that is

devoid of other colloids.17 On assuming a crystalline-like struc-
ture, a Wigner–Seitz cell tessellation can be applied, where each
Wigner–Seitz cell is approximated by a spherical cell containing
a single colloid at its center. Each cell is treated identically and
independently (no inter-cell correlations) and is considered to be
in Donnan equilibrium with a 1:1 strong electrolyte reservoir of
monovalent microions of fixed concentration, 2nres. The only bulk
property of the colloid environment is the volume fraction ϕ, related
to the radius R of the spherical cell via R = a�ϕ1/3. Considering
Boltzmann distributions for the microion number densities, the
total electrostatic suspension potential in the cell region a < r < R
is determined by the nonlinear PB equation

Φ
′′(r) +

2

r
Φ
′(r) = κ2res sinh [Φ(r)], (22)

where Φ(r) = βeψ(r) is the reduced form of the total electrostatic
potential ψ(r), and κres =

√
8πλBnres is the reservoir electrostatic

screening constant. The inner and outer boundary conditions for
ion-impermeable macroions are given by

Φ
′(a) =

ZλB

a2
, Φ

′(R) = 0 (23)

at the colloid surface and cell edge, respectively. The inner boundary
condition dictates that the radial electric field on the colloid surface
obeys Gauss’s law, while the outer one ensures that the cell is over-
all electroneutral. The suspension salt ion pair concentration, ns, is
calculated by integrating the coion (anion) number density profile
n−(r) over the volume of the cell, i.e.,

ns =
4π

Vc
�

R

0
n−(r) r

2
dr =

4πnres
V f
c

(1 − ϕ)�
R

a
e
Φ(r)

r
2
dr, (24)

thus relating ns to the reservoir salt concentration. Here, Vc

= 4πR3�3 is the cell volume, and V f
c = Vc(1 − ϕ) is the free volume

of the cell (unoccupied by the macroion). Since Φ < 0 for negatively
charged macroions, then ns ≤ nres(1 − ϕ), expressing the Donnan
salt-expulsion effect. The CM discussed here is also referred to as
the nonlinear Poisson–Boltzmann cell model (PBCM) approxima-
tion since it involves the nonlinear, Boltzmann-distributedmicroion
density profiles.

For defining effective interaction parameters characterizing the
effective macroion pair potential with charge renormalization effects
included, we expand the nonlinear term in Eq. (22) up to first order
around a yet undetermined reference potential Φ̃, leading to a PB
equation for the linearized electrostatic potential Φl(r), i.e.,

Φ
′′

l (r) +
2

r
Φ
′

l(r) = κ
2
eff[Φl(r) − Φ̃ + γ], (25)

where γ = tanh (Φ̃) and

κ2eff = κ
2
res cosh (Φ̃) (26)

is a new renormalized (effective) screening constant. In order to
make further progress, we need to specify the reference potential
Φ̃. Two convenient choices are the (nonlinear) electrostatic poten-
tial value at the cell edge, i.e., Φ̃ = Φ(R), and the volume-averaged,
mean (nonlinear) electrostatic potential, Φ̃ = Φ̄ = 4π

V f
c
∫ R
a dr r2Φ(r).

The first choice, which linearizes the potential with respect to its
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edge value, is referred to as “edge linearization” for short. The
second choice, which linearizes the potential with respect to its
mean value, is called “mean linearization” for short. For either
choice, one boundary condition that Φl(r)must fulfill is Φ′l(R) = 0,
which ensures the electroneutrality of the cell. The second bound-
ary condition, required to uniquely determine Φl(r), depends on
the choice of linearization. For edge linearization, Φl(R) = Φ(R),
equating the linearized and nonlinear potentials at the cell
edge. For mean linearization, 4π

V f
c
∫ R
a dr r2Φl(r) = Φ̄, equating the

free-volume-averaged mean values of the linear and nonlinear
potentials. The general solution of Eq. (25) has the form

Φl(r) = c+
eκeffr

r
+ c−

e−κeffr

r
+ Φ̃ − γ, (27)

where c± are constants determined by the boundary conditions.
Note that since the cell radius is finite for ϕ > 0, the positive
exponential term must also be retained.

We now proceed to discuss the renormalized (effective)
macroion valence, Zeff, and screening constant, κeff, which together
determine the renormalized effective pair potential. For a sufficiently
weak bare macroion charge, where Zeff = Z, the linear electrostatic
part of the DLVO potential is recovered [Eq. (15)]. For a specified
linearization reference potential Φ̃, the corresponding renormal-
ized screening constant follows from Eq. (26). For specified Φ̃ and
hence Φl(r), the renormalized valence is then consistently defined
by the electrostatic boundary or surface charge (SC) condition in the
PBCM,

Zeff ∶=
Φ
′

l(a) a
2

λB
(28)

on the surface of the macroion sphere based on the linearized poten-
tial. This definition of Zeff was first introduced in the pioneering
work of Alexander et al. using edge linearization.13 Depending on
the choice of Φ̃, different values for Zeff and κeff are obtained.

Following Boon et al.,33 an alternative effective valence can be
defined by analytically extrapolating Φl(r) to the center of the cell
by assuming a pointlike colloid with effective valenceQeff defined by

Qeff ∶= lim
r→0

Φ
′

l(r)r
2

λB
. (29)

The quantity Qeff is called the extrapolated point charge (EPC), and
its definition is motivated by noting that Φl(r ≈ 0) = QeffλB�a, since
no screening is operative at r = 0. In order to directly compare the
two renormalized valence definitions, one needs to account for the
geometric factor in the renormalized DLVO potential. Therefore,
the renormalized valence Zeff in the EPC scheme is actually defined
as

Zeff =
1 + κeffa

eκeffa
Qeff. (30)

This EPC definition of Zeff in Eq. (30) differs from the SC definition
of Zeff in Eq. (28) even though the same Φl(r) is used. The
difference can be evaluated fully analytically in the DH regime,

where �ϕ(a)�� 1 and counterion quasi-condensation is absent.
Here, Φl(r) = ΦDH(r) reduces to the solution of the two-point
boundary value problem in Eqs. (22) and (23) for ϕ = ϕDH(r) and
sinh (ϕDH) = ϕDH. In the DH regime, it holds that ZSC

eff = Z, indepen-
dent of κresa, whereas33

ZEPC
eff

Z
=

2(κa + 1)(κR cosh (κR) − sinh (κR))eκ(R−2a)

(1 − κa)(κR + 1) + (κa + 1)(κR − 1)e2κ(R−a)
, (31)

with κ = κres. In the low salinity limit, the EPC effective valence
in the DH regime reduces to ZEPC

eff = Z�(1 − ϕ) +O�(κresa)2�. As
further discussed in Sec. V B, the EPC definition allows for an effec-
tive valence exceeding the bare one (i.e., ZEPC

eff > Z). However, this
effect results from the exclusion of counterions from the macroion
core rather than from a nonlinear response. It is not due to counte-
rion quasi-condensation, which tends to decrease Zeff below its bare
value Z.

Depending on the choice of Φ̃ with according boundary con-
ditions and on the SC or EPC definitions of Zeff in Eqs. (28) and
(30), respectively, four different expressions for Zeff in terms of the
independent system variables κresa, ZλB�a, and ϕ are obtained,

ZeffλB
a
= γ Fi(κeffa,ϕ

−1�3). (32)

Recall here that ϕ−1/3 = R�a. The four functions Fi, with
i ∈ {1, . . . , 4}, are obtained from Φl(r) in Eq. (27) with appropri-
ately determined coefficients c±. For the SC definition of Zeff and
linearization with respect to the edge potential (SC edge) in the
PBCM,13

F1(x, y) =
1

x
{(x2y − 1) sinh [x(y − 1)] + x(y − 1) cosh [x(y − 1)]},

(33)

while for the SC definition of Zeff and linearization with respect to
the mean potential (SC mean) in the PBCM,

F2(x, y) =
x2(y3 − 1)

3
. (34)

Alternatively, the EPC definition of Zeff with edge linearization (EPC
edge) yields33

F3(x, y) = �1
x
+ 1�e−x[xy cosh (xy) − sinh (xy)], (35)

while the EPC definition of Zeff with linearization with respect to the
mean potential (EPC mean) gives

F4(x, y) = F2(x, y) ξ(x, y), (36)

with

ξ(x, y) =
1 + x

ex
� ex�1 + xy + e2xy(xy − 1)�
e2xy(1 + x)(xy − 1) + e2x(x − 1)(1 + xy)

�. (37)

Notice that, in all four cases, Zeff → Z for ZλB�a� 1 and ϕ→ 0. For
larger values of Z, nonlinear screening comes into play, triggered
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by a strong accumulation of counterions near the colloid surface,
so that Zeff < Z. With increasing Z, Zeff approaches a plateau value
Zsat
eff . This renormalized charge saturation is due to the invoked

mean-field PB approximation, which neglects discreteness and
nonzero sizes of microions, allowing for an arbitrarily high surface
concentration of counterions.34,35 The approach of Zeff to an (appar-
ent) plateau value, however, is a genuine physical effect for large
ZλB�a.

Using Eq. (22), one can show that �Φ(r)� is a strictly monotoni-
cally decreasing function with increasing radial distance r, implying
that �Φ̄� > �Φ(R)� and consequently that κeff(mean) > κeff(edge).
Therefore, there is a stronger effective screening for mean than for
edge linearization.

For given Φl(r), the linear microion number density profiles
inside the cell are given by

n
l
±(r) = nrese

∓Φ̃ [1 ± Φ̃ ∓Φl(r)]. (38)

Integrating the linear microion charge density, nl+(r) − n
l
−(r), and

the total microion density, nl+(r) + n
l
−(r), over the free volume V f

c

of a cell and using the definition of Zeff in Eq. (28), we obtain the
effective screening parameter under mean linearization,36

κ2eff =
4πλB
V f
c

�Zeff + 2N
eff
s � = 4πλB

1 − ϕ
�Zeffnm + 2n

eff
s �. (39)

Here, Neff
s = 4π∫ R

a dr r2 nl−(r) and neffs = N
eff
s �Vc are the mean

number and mean concentration, respectively, of free salt ion pairs
in the suspension. From Eq. (39), we obtain neffs as

n
eff
s a

3
=

a

8πλB
�(1 − ϕ)(κeff a)2 − 3ϕZeffλB

a
�. (40)

Alternatively, for edge linearization, where Φ̃ = Φ(R),

κ2eff =
4πλB
(1 − γ)V f

c

�Zeff +
2Neff

s

1 + γ
�

=

4πλB
(1 − ϕ)(1 − γ)

�Zeffnm +
2neffs
1 + γ

�, (41)

with the effective suspension salt concentration given by36

n
eff
s =

κ2eff
8πλB

(1 − ϕ)(1 − γ2) −
1

2
Zeffnm(1 + γ), (42)

where γ = tanh[Φ(R)]. We notice from Eqs. (39) and (41) that the
square of the effective screening constant consists of two additive
contributions, namely a contribution proportional to Zeffnm, arising
from the free (i.e., uncondensed) part of the macroion-surface-
released counterions, and a contribution due to free salt ion pairs.
When implementing the EPC scheme for incorporating nonlinear
effects, approximations for the effective suspension salt concentra-
tion are obtained by substituting the corresponding renormalized
interaction parameters into Eqs. (40) or (42) for mean or edge
linearization, respectively.

From a physical viewpoint, mean linearization is more consis-
tent than edge linearization, since in the former case the density

variations of the nonlinear potential around Φl are only of second
order, which is not so in the latter case. Moreover, only in mean
linearization is the Donnan expression for ns correctly recovered to
first order, where Zeff = Z +O([ZλB�a]2), and the correct expression
for κ2eff is also recovered for nres → 0. Different from Eq. (41), which
invokes the factors 1�(1 ± γ), Eq. (39) naturally splits into free coun-
terion and salt ion contributions. Using a proper pressure definition,
mean linearization further guarantees positive pressures.37 Another
convenient feature of mean linearization is that Zeff is directly
obtained from Φ̄, according to

ZeffλB
a
= �1 − ϕ

3ϕ
�(κresa)2 sinh (Φ̄). (43)

In the salt-free case, where nres = 0, the suspension is a closed
system since no counterions can leave the cell into the microion-
empty reservoir because of electroneutrality. For a system inDonnan
equilibrium, it holds that �Φ(R,nres)�→∞ for nres → 0. To recover
the salt-free system as a limiting case, one therefore redefines the
salt-free system potential by

Φ(r) = lim
nres→0

[Φ(r;nres) −Φ(R;nres)]. (44)

The salt-free potential satisfies the nonlinear PB-type equation for
negatively charged macroions,

Φ
′′(r) +

2

r
Φ
′(r) = −k20e

−Φ(r), a < r ≤ R, (45)

where k0 =
�
4πλBn

0
+ is the new electrostatic screening constant

and n+(r) = n
0
+ exp [−Φ(r)] is the nonlinear counterion number

density profile. In addition to the boundary conditions on Φ(r)
[Eq. (23)], electroneutrality dictates that

k
2
0 =

ZλB

∫ R
a dr r2 exp [−Φ(r)]

= −Φ
′′(R), (46)

since Φ(R) = 0. The present nonlinear boundary-value problem
can be solved self-consistently. Alternatively, it can be mapped
onto a boundary-value problem invoking a third-order differential
equation, following Ref. 38.

Linearization of Eq. (45) with respect to an arbitrary reference
value Φ̃ gives

Φ
′′

l (r) +
2

r
Φ
′

l(r) = −k
2
0 exp (−Φ̃)[1 −Φl(r) + Φ̃], a < r ≤ R,

(47)

with boundary conditions similar to systems with salt, and k0
determined from the nonlinear boundary-value problem. The
renormalized screening parameter in the salt-free case follows then
explicitly as

κ2eff = k
2
0 ×

�������
e
−Φ̄ , mean,

e
−Φ(R), edge.

(48)

Notice that e−Φ(R)
= 1 under salt-free conditions. Therefore, as

in the Donnan equilibrium case, κeff(mean) > κeff(edge). The
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renormalized macroion valence in the four considered cases follows
from Eq. (32) with γ = 1,

ZeffλB
a
= Fi(κeffa,ϕ

−1�3), (49)

for i ∈ {1, . . . , 4} with Fi(x, y) still given by Eqs. (33)–(37). For Zeff

in the SC mean model, it follows explicitly that

ZeffλB
a
(nres = 0) = �1 − ϕ

3ϕ
�(k0a)2e−Φ̃ . (50)

Since Φ̃ = Φ(R) = 0 in edge linearization and Φ̃ = Φ̄ in mean lin-
earization, with Φ̄ < 0 for negatively charged macroions, it fol-
lows that Zeff(mean) > Zeff(edge) under salt-free conditions. This
inequality holds empirically for salty systems as well.

In the salt-free case and in the dilute limit nm → 0 (R→∞),
when Zeff = Z and κeff = 0, we notice that Φ(r)→ ZλB�r. This limit
expresses the domination of the counterion entropy over the electro-
static energy of counterion–macroion attraction in an unbounded
three-dimensional space (a < r < R→∞), in which case the Z
counterions around the central macroion are randomly distributed
throughout space and thus do not contribute to screening.

B. Renormalized jellium model (RJM)

In contrast to the spherical CM, which is motivated by
the crystalline-like structure of the suspension, the renormalized
jellium model (RJM) presumes a fluid suspension. Based on the
jellium approximation (JA),39 this charge renormalization scheme
provides renormalized parameters, Zeff and κeff, as input to the
linear electrostatic part of the DLVO potential. In the JA, a spher-
ical macroion of radius a is singled out and placed at the origin
of the coordinate system. The remaining Nm − 1 macroions and
their quasi-condensed counterions are assumed to form a uniform
neutralizing background, called the jellium, smeared out in the
space r > a, where the uncondensed counterions and coions can
freely move.40 The RJM has also been generalized to polydisperse
suspensions of macroions.41 Assuming a Boltzmann distribution
for the monovalent free microions and a uniform, structureless
jellium for the remaining macroions, i.e., gmm(r) = 1 for r > a, the
resulting nonlinear PB equation for the total (reduced) electrostatic
potential Φ in Donnan equilibrium with a salt reservoir takes the
form14

Φ
′′(r) +

2

r
Φ
′(r) = κ2res sinh [Φ(r)] + 3ϕ

ZbackλB

a3
, r > a, (51)

where κ2res = 8πλBnres. The first term on the right side is the (reduced)
microion charge density contribution, while the second term is the
contribution from the (reduced) uniform jellium charge density
outside the central macroion, with Zback denoting the background
macroion valence. The latter is taken to be equal to Zeff and is self-
consistently determined. The boundary conditions guaranteeing
a unique solution are Φ

′(a) = ZλB�a2, with Z the bare macroion
valence, and Φ

′(r →∞) = 0, accounting for the electroneutrality of
the suspension with an asymptotically decaying electric field. The
electrostatic (Donnan) potential at infinity (r →∞),Φ∞, is nonzero
and related to Zback by

Φ∞ = arsinh�− 3ϕ

(κresa)
2

ZbackλB
a
�. (52)

This boundary-value problem can be solved numerically only. Lin-
earizing Eq. (51) with respect to Φ∞, we obtain the linearized
electrostatic potential, Φl(r), satisfying

Φ
′′

l (r) +
2

r
Φ
′

l(r) = κ
2
eff[Φl(r) −Φ∞], r > a, (53)

with effective screening constant κ2eff = κ
2
res cosh (Φ∞), which can be

alternatively written as

(κeffa)
4
= (κresa)

4
+ �3ϕZbackλB

a
�4. (54)

We see that (κeffa)
4 has two clearly distinguishable contribu-

tions: the first due to the salt microions involving the reservoir
salt concentration, and the second due to microion-dressed
macroions. The boundary conditions that uniquely determine Φl

are Φ
′

l(r →∞) = 0, expressing the overall electroneutrality of the
infinite jellium system, and Φl(r) ∼ Φ(r) for r →∞, demanding
asymptotic matching of the linear and nonlinear solutions. As
in the CM, the effective valence, Zeff, is obtained from Φl using
Eq. (28).14,40 The solution of Eq. (53) can be analytically expressed
in terms of Zeff as

Φl(r) −Φ∞ = λBZeff
eκeffa

1 + κeffa

e−κeffr

r
, r > a. (55)

Finally, by comparing Eq. (55) against the similarly exponential
asymptotic form of the nonlinear solution Φ(r), we obtain Zeff in
terms of Zback. In order to find Zeff, we demand self-consistency by
requiring that Zeff = Zback,14 from which Zeff is obtained iteratively
using a selected starting value Zback < Z.

Similarly to the CM, there is a relation between semi-open and
closed systems. This relation follows from the mean concentration
of the free co- and counterions inside the suspension,40

n± = nres exp (∓Φ∞). (56)

The effective suspension salt concentration, neffs , is thus obtained in
terms of nres and Φ∞ as

n
eff
s = n− = nres exp (Φ∞) ≤ nres, (57)

since Φ∞ < 0 holds for negatively charged colloids. Just as in the
CM, the renormalized valence, Zeff, in the RJM asymptotes to a satu-
ration value whenZ →∞. Likewise, typicallyZeff < Z, and it is found
that Zeff → Z and κeff → κres in the dilute limit ϕ→ 0 and the salt-free
limit nres → 0.

In the salt-free case, suspension electroneutrality requires that
n0+ exp (−Φ∞) = Zbacknm and Φ(r)→ 0 as r →∞. The nonlinear
PB equation [Eq. (51)] then acquires the form

Φ
′′(r) +

2

r
Φ
′(r) = −3ϕ

ZbackλB

a3
{exp [−Φ(r)] − 1}, r > a,

(58)
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with boundary conditions Φ
′(a) = ZλB�a2 and Φ(r →∞) = 0.

Linearizing the right side of Eq. (58) around Φ∞ = 0 yields

Φ
′′

l (r) +
2

r
Φ
′

l(r) = κ
2
effΦl(r), r > a, (59)

where

κ2eff = 4πλBZbacknm, (60)

and the boundary conditions are Φ′l(r →∞) = 0 and Φl(r) ∼ Φ(r)
for r →∞. With the effective valence defined by Eq. (28), the
solution of Eq. (59) has the form

Φl(r) = λBZeff
eκeffa

1 + κeffa

e−κeffr

r
, r > a. (61)

As for a system with added salt, Zeff is determined by asymptotically
matching the linearized potential Φl(r) to the nonlinear potential
for a selected Zback and self-consistently assuming Zback = Zeff.

A variant of the discussed non-penetrating RJM is the pen-
etrating RJM, where the neutralizing jellium is not only smeared
out across the volume r > a but also penetrates the volume of the
central colloid while the microions are still expelled. This leads to
the same PB equation [Eq. (51)] for r > a, but now with boundary
conditions

Φ
′(a) =

λB

a2
(Z + Zbackϕ), Φ

′(r →∞) = 0. (62)

The inner boundary condition states now that the electric field
on the surface of the central colloid is due to the bare valence,
Z, of the central colloid plus an additional contribution, Zbackϕ,
arising from the penetrating jellium charge inside the volume of
the central colloid. Charge renormalization is introduced identically
to the non-penetrating jellium case by linearizing with respect to
Φ∞. The inner boundary condition in Eq. (62) now involves the
modified self-consistency condition Zeff = Z + Zbackϕ, which implies
that Zeff = Z(1 + ϕ) +O(Z

2) for small Z. This is the same effective
charge as obtained from the high-temperature-limiting mean spher-
ical approximation (MSA) solution for the PM.42,43

C. Renormalized linear response theory (RLRT)

When applied to charge-stabilized colloidal suspensions, linear
response theory (LRT) provides analytic expressions for the one-
body volume energy Evol and the effective pair potential between
the microion-dressed macroions ueff(r) [Eq. (15)] in the effective
one-component Hamiltonian [Eq. (12)]. The screening constant
[Eq. (16)] accounts for the excluded volume of the macroion hard
cores through the factor 1�(1 − ϕ).

For coupling parameters ZλB�a � O(10), the LRT fails when
nonlinear screening effects associated with macroion–microion
correlations lead to a strong accumulation of counterions near the
macroion surface.31,44 However, the theory can be extended to more
strongly coupled macroion suspensions by explicitly distinguishing
between surface-associated (bound) microions and dissociated
(free) microions in the volume energy,31,44,45 according to

Evol = �free + Fbound. (63)

Here, �free is the grand free energy of the free microions, and
Fbound is the free energy of the bound microions. This approach
yields the same form of effective pair potential as in Eq. (15) but
with Z and κ replaced by a renormalized effective valence, Zeff ≤ Z,
and a renormalized effective screening constant, κeff, both depend-
ing on the state-dependent concentration of free microions. The
fraction of strongly associated (quasi-condensed) counterions is
related to an association shell of thickness δ surrounding a macroion
(a < r < a + δ), which is defined as the distance from the macroion
surface at which the electrostatic energy of attraction of a counterion
is comparable to its thermal energy, i.e.,

e�ψ(a + δ) − ψ̄� = CkBT, (64)

or in reduced form,

�Φ(a + δ) − Φ̄� = C, (65)

where Φ(r) is the (LRT-orbital) reduced electrostatic potential at
distance r from a macroion center, with mean (spatially averaged)
value

Φ̄ = βeψ̄ = −(ñ+ − ñ−)�(ñ+ + ñ−), (66)

and C is a constant of order unity. Here,

ñ± =
Ñ±

V(1 − ϕ̃)
(67)

are mean number densities of free microions, defined as the num-
bers of free (uncondensed) microions Ñ± in the effective free
volume, V(1 − ϕ̃), where ϕ̃ = ϕ(1 + δ�a)3 is the effective volume
fraction of the macroions including their (quasi-condensed)
counterion-association shells.

Combining the LRT with this approximate scheme for incor-
porating nonlinear microion responses yields the renormalized
electrostatic potential around a dressed macroion,

Φ(r) = −λBZeff
eκeff(a+δ)

1 + κeff(a + δ)

e−κeffr

r
, r ≥ a + δ, (68)

with κeff =
�
4πλB(ñ+ + ñ−) being the effective (renormalized)

screening constant. Notice that κeff can be rewritten as

κeff =

����4πλB�Zeff nm

1 − ϕ̃
+ 2ñeffs �, (69)

using electroneutrality and ñ− = ñ
eff
s , with ñeffs the renormalized salt

concentration of free microion pairs. Substituting Eq. (68) into
Eq. (65), the association shell thickness is determined by

� ZeffλB
[1 + κeff(a + δ)](a + δ)

+ Φ̄� = C, (70)

for given Zeff, ϕ, and C, on noting that κeff depends self-consistently
on δ. The physical requirement that the coion density be non-
negative dictates that C = 1, although numerical results prove to
be not strongly sensitive to variations of C within the range
1 ≤ C ≤ 2.31,44,45

The distinction between free and bound microions implies a
corresponding separation of the total grand free energy �. The free
microions are only weakly correlated with the macroions and are
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thus well described by linear-response theory. The volume energy
per macroion, εvol = Evol�Nm, has the form

εvol =�
i=±

Ñ i

Nm
�ln� ñi

nres
� − 1� − Z2

eff

2

κeffλB
1 + κeff(a + δ)

−
Zeff

2

ñ+ − ñ−

ñ+ + ñ−
+ fbound, (71)

with the bound counterion free energy per macroion being approx-
imated by

fbound ≈ (Z − Zeff)�ln�Z − Zeff

vs
Λ
3
0� − 1� + Z2

effλB
2a

. (72)

The first term on the right side is the ideal-gas free energy
of the bound counterions in the association shell of volume
vs = (4π�3)[(a + δ)3 − a3], and the second term accounts for the
self-energy of a dressed macroion of valence Zeff, assuming the
bound counterions to be localized near themacroion surface (r = a).

The effective macroion valence Zeff, and hence the association
shell thickness δ, can be determined then by equating the chemical
potentials of microions in the free and bound phases, which is
equivalent to minimizing the volume energy at a fixed temperature
and mean microion densities.44 For a given bare valence Z, the
effective valence is then obtained from the variational condition,

�@εvol
@Zeff

�
T,ñ±

= 0. (73)

Notice that Zeff and δ are inter-related by Eq. (70) and together
determine the effective screening constant κeff.

D. Shifted Debye–Hückel approximation (SDHA)

The SDHA method,33 like the RLRT method, is based on a
multi-colloid-center model and combines density-functional theory
(DFT) with PB-type approximations. Following Ref. 33, we present
its essential features for suspensions of impermeable colloids.

Assuming for the moment pointlike macroions, we formally
expand the DFT-PB grand-free energy functional �̂�(X) in the
presence of Nm (pointlike) macroions at positions X up to quadratic
order in the microion trial densities ρ

±
(r; X), measured relative to

yet-unknown constant densities n̄±.33 In Donnan equilibrium, the
densities n̄± are not independent, but are related by

n̄± = nrese
∓Φ̃ (74)

for a yet unspecified potential value, Φ̃, so that n̄+n̄− = n
2
res. On

minimizing �̂�(X), quadratically expanded with respect to the trial
microion densities ρ

±
(r; X), the linearized equilibrium microion

profiles

n±(r;X) = nres e
∓Φ̃ �1 ∓ �Φl(r;X) − Φ̃��, (75)

are obtained, with the linearized suspension potentialΦl(r; X). The
so-called shifted linearized potential, Φs

l (r;X), is defined by

Φ
s
l (r;X) = Φl(r;X) − Φ̃ + γ, (76)

for γ = tanh (Φ̃), fulfills the multi-colloid-center linearized PB
equation (shifted Debye–Hückel equation)

∇
2
Φ

s
l (r;X) = κ

2
eff Φ

s
l (r;X) − 4πλBq(r;X). (77)

Here,

q(r;X) =
Nm

�
j=1

δ(r − Rj)Qeff (78)

is the charge number density of pointlike macroions at positions
X = {R1, . . . ,RNm}, where charge renormalization (discussed below)
is accounted for in the effective macroion valence Qeff. Moreover,
κ2eff = κ

2
res cosh (Φ̃) is taken as the renormalized screening parameter

linked to Qeff. Fourier transformation straightforwardly yields the
solution

Φ
s
l (r;X) = λBQeff

Nm

�
j=1

e−κeff �r−Rj �

�r − Rj � (79)

for the shifted linearized potential, which is a superposition of
Nm Yukawa-type orbitals. Substitution of n±(r; X), according to
Eq. (75), into the quadratic-order expanded microion grand free
energy results in

β��(X) = βEvol + λBQ
2
eff

Nm

�
i<j

e−κeff �Ri−Rj �

�Ri − Rj � , (80)

with volume energy per macroion

βεvol = −
κ2eff

8πλBnm
�κ4res
κ4eff
+ 1� +Qeff(Φ̃ − γ). (81)

So far, we have not specified the value of Φ̃ and, hence, the
resulting value for κeff and Qeff. This is performed now using, for
simplicity, a spherical CM with Φ̃ identified as Φ(R) or Φ̄.33 The
macroion effective valence Qeff, defined using Eq. (29), is related to
the effective valence Zeff by Eq. (30), i.e., Zeff is obtained from Qeff

by multiplying the latter with a geometric factor due to the actually
nonzero radius of the macroions. The hard-core of the macroions
is reintroduced a posteriori by enforcing electroneutrality of the
individual orbitals, leading to the geometric factor in the relation
between ZEPC

eff and Qeff.
Interestingly, in contrast to the CM with SC definition of

the renormalized valence in Eq. (28), ZEPC
eff in the EPC definition

can exceed the bare colloid valence Z for sufficiently high colloid
concentration and small coupling parameter ZλB�a, where nonlin-
ear renormalization effects are negligible.

In the salt-dominated regime, where 2nres � Znm, one obtains
ZEPC
eff → Z, κeff → κres, and Φ̃ − γ→ 0. The volume energy reduces

then to minus the kinetic energy density, εvol → −2kBT nres, of
the reservior ions, and the effective pair potential to βueff(r)
→ λBZ

2 exp (2κres)�(1 + κresa)2 exp (−κresr)�r for r > 2a.46
In the present paper, we analyze the SDHA method for vol-

ume energy and effective pair potential in combination with the
EPC charge renormalization scheme originally introduced for edge
linearization only by Boon et al.33 Although the SDHA may also
be combined with SC for conciseness, we do not consider this
combination here. A study of the combined SDHA-SCmethod using
edge linearization is presented in Ref. 16.
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IV. THERMODYNAMICS AND STRUCTURE

Before comparing predictions from the various renormaliza-
tion methods for the thermodynamic and structural properties of
charge-stabilized colloidal suspensions, we first recall that the CM
approximates the bulk pressure p using the contact (cell) theorem
(CT) as47

βp ≈ βpCT = n+(R) + n−(R) + nm, (82)

where n±(R) are themicroion densities at the cell edge and the ideal-
gas contribution nm of the macroions is included. Since the CM
neglects contributions to the pressure due to macroion correlations,
in concentrated suspensions, pCT can differ significantly from the
actual suspension pressure p, except at low salt reservoir concentra-
tions, where the backbone-released counterions overwhelm salt ions
(ZNm � Ns) and make the dominant contribution.48

Similar to the CM, in RJM the bulk pressure is determined from
the microion concentrations in the electric field free region at the
edge of the system, reached here in the asymptotic limit r →∞,14

according to

βpjell = n+(∞) + n−(∞) + nm

=

�
(2nres)

2
+ (nmZeff)

2
+ nm. (83)

Here, n±(∞) are the microion densities infinitely far from the
central macroion, and again, the ideal-gas macroion contribution
is included. The first term on the right-hand side of Eq. (83) is the
microion contribution, resulting from salt ions of concentration nres
and non-condensed surface-released counterions. In the salt-free
case, Eq. (83) reduces to

βpjell = nm(1 + Zeff), (84)

which is of the same form as the ideal-gas pressure pid of macroions
and counterions,

βpid = nm(1 + Z), (85)

but with Z replaced by Zeff < Z, expressing that only free counterions
contribute directly to the pressure.

In the one-component model of a suspension of charged
colloids interacting via the effective pair potential in Eq. (21),
thermodynamic and structural properties can be computed once the
renormalized interaction parameters, κeff and Zeff, are determined
for given system parameters Z, nres, and ϕ. Comparing predictions
of these properties by the various renormalization methods against
data from simulations of the PM gauges the performance of the
different methods.

Since ueff(r) is purely repulsive, we can use the thermo-
dynamically self-consistent Rogers–Young (RY) integral-equation
scheme23 for calculating the static structure factor, S(q), of colloids
and the associated radial distribution function, g(r). This hybrid
integral-equation scheme, based on a mixing function that inter-
polates between the hypernetted chain (HNC) and Percus–Yevick
(PY) closures,23 is known from comparisons with computer simu-
lation data to accurately predict structural properties for a variety

of repulsive interaction potentials, including the screened-Coulomb
potential.49,50 The mixing parameter, α, in the RY mixing function
is determined self-consistently by enforcing equality of the sus-
pension osmotic compressibility derived from the one-component
compressibility and virial equation of states, respectively, i.e., by
demanding28,48

lim
q→0

1

S(q;α)
= β�@p(α)

@nm
�
ueff

, (86)

where S(q) and p are the static structure factor and pressure, respec-
tively, of the OCM system, and the density derivative of p is taken
at fixed ueff(r), i.e., disregarding any nm-dependence of the effective
macroion pair potential.

In general, the suspension pressure p can be calculated by
several methods. For instance, p can be determined from the
thermodynamic relation

p = −�@�
@V
�
res
= n

2
m� @ω

@nm
�
res
, (87)

provided the semi-grand suspension free energy per macroion,
ω = ��Nm, is known, including its volume energy contribution. In
practice, the renormalized interaction parameters (Zeff, δ, κeff) are
held constant when taking thermodynamic derivatives.45 Within
RLRT and SDHA, ω is obtained for impermeable, rigid macroions
as

ω = εvol + fm, (88)

where εvol = Evol�Nm is the volume energy per macroion and fm is
the macroion free energy per macroion. From Eqs. (87) and (88),
the total pressure correspondingly separates into

p = pvol + pm, (89)

where the contributions pvol and pm are associated with the vol-
ume energy and the effective macroion–macroion interactions,
respectively.

With renormalized interaction parameters, κeff and Zeff, as
input, the RLRT method predicts the pressure contribution arising
from the renormalized volume energy as31,44,45

βpvol = n
2
m�@βεvol

@nm
�
res
= ñ+ + ñ− −

Zeff(ñ+ − ñ−)κeffλB

4[1 + κeff(a + δ)]
2 , (90)

where ñ± are number densities of free (uncondensed) microions,
corrected for the effective excluded volume of the macroions plus
their (quasi-condensed) counterion-association shells [Eq. (67)]. In
taking the macroion density derivative in Eq. (90), the temperature
and reservoir salt concentration, nres, are held constant and system
electroneutrality is maintained for given Z. The bound counterions
make no direct pressure contribution, since the effective interaction
parameters are kept fixed in the concentration derivative.

In the salt-dominated regime, 2nres � Znm, where ñ± → nres
and κeffa→ κresa� 1, the RLRT volume pressure reduces to the
reservoir pressure, i.e., pvol → pres = 2nres. In the salt-free case
of vanishing coion density (ñ− = 0) and in the DH regime
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(ZλB�a� 1) of electrostatically weakly interacting macroions, the
volume energy-related pressure reduces in the RLRT to

βpvol = nmZ −
κ3

16π
Z +O�n2m�, (91)

where κ2 = 4πλBnmZ here involves only the counterions. Therefore,
the correct ideal-gas contribution to the volume pressure, kBTnmZ,
is recovered. The exact leading order non-ideal (DH limiting law)

volume pressure contribution, proportional to n
3�2
m , as obtained

from the DH limiting law (i.e., macroion size-independent) vol-
ume energy εvol for a salt-free system,51 differs from the RLRT
expression in Eq. (91) only in that the former has a factor (Z + 2�3)
instead of Z. The difference, however, is negligible for the com-
monly encountered case of Z � 1. The Appendix describes how the
pressure contribution, pm, due to effective macroion interactions is
determined in the RLRT method.

In the SDHA method, pvol = n
2
m(@εvol�@nm) is obtained

analytically from Eq. (81) by keeping constant the effective
interaction parameters, Zeff and κeff, and the linearization points,
n̄±, of the microion concentrations in the DFT-PB grand free energy
functional. The result is33

βpvol = −�@βEvol
@V

�
N,T,n̄±

=

κ2eff
8πλB

��κres
κeff
�4 + 1� (92)

for a suspension in osmotic equilibrium with a reservoir of microion
pair concentration 2nres. We have followed Boon et al.33 in holding
fixed the effective pair potential and the linearization points while
taking the volume derivative in Eq. (92). A thorough theoretical
study37 based on the linearized cell model has come to the
conclusion that, while treating the linearization points of the
microion concentrations as volume-dependent in calculating p is
admissible, there are advantages in treating them as independent
variables. In particular, in a linear approximation, the system pres-
sure remains always positive for a proper choice of the linearization
point.

In the salt-dominated regime, where κeff = κres, the reser-
voir pressure is recovered from the SDHA volume pressure, i.e.,
pvol = pres. In the salt-free case, where κres = 0, the volume pressure
in SDHA reduces to

βpvol =
κ2eff
8πλB

. (93)

For weakly interacting macroions, where ZλB�a� 1 and κ2eff
= 4πλBnmZ, the SDHA volume pressure reduces further to
βpvol = nmZ�2, which is only one-half of its exact ideal-gas value.
Moreover, no leading-order non-ideal pressure contribution is
predicted. Interestingly enough, there is a pressure contribution
nm(1 + Z�2) to first order in macroion concentration arising from
the macroion-related virial pressure contribution βpvir in the no-salt
DH regime, such that overall, the correct suspension ideal-gas
pressure limit, βpid = nm(1 + Z), is recovered in SDHA, where the
pressure contribution pden is not considered. Actually, the latter
gives, to linear order in concentration, the negative pressure contri-
bution, βpden = −nmZ�2 +O�n2m�, in the zero-salt DH regime, whose
inclusion in the SDHA would spoil again the recovery of the exact
ideal-gas suspension pressure. While interesting from a principal

viewpoint, the peculiarities of the SDHA method in the DH regime
are of minor concern in the present study, which focuses mainly
(with the exception of Sec. V B) on systems in which ZλB�a � O(10),
where counterion quasi-condensation is operative.

Since three-particle or higher-order effective interaction con-
tributions are neglected for the considered mean-field methods, the
suspension pressure p can be computed from the generalized virial
equation for pairwise-interacting systems [Eq. (18)], from which the
macroion pressure contribution can be expressed as

pm = pvir + pden, (94)

with pvir and pden given by Eqs. (19) and (20), respectively. Note
that, in taking the density derivative of the effective pair poten-
tial, @ueff�@nm, in Eq. (20) for pden, only the density dependence of
ueff(r; nm) arising from tracing out the microions should be consid-
ered, and not that due to the extra imposed charge renormalization.
Only the first density dependence is thermodynamically relevant
and is accordingly accounted for in the RLRT calculation of pden. In
contrast, in the SDHA calculation, the pressure contribution, pden,
is disregarded. This treatment is consistent with Eq. (92) for pvol
derived from the volume derivative of Eq. (81), keeping Zeff and κeff
fixed, and the recovery of the correct ideal-gas suspension pressure
limit in the zero-salt DH regime.

Assuming a semi-open system of macroions in Donnan
(osmotic) equilibrium with a microion reservoir, the osmotic com-
pressibility χosm of the suspension of macroions plus dispersed
microions is given by5

χosm =
1

nm
� @nm

@πosm
�
res
=

1

nm
�@nm

@p
�
res

, (95)

where πosm = p − pres is the osmotic pressure of the suspension rel-
ative to the reservoir pressure, pres = 2kBTnres. The leading order
non-ideal (limiting-law) contribution to the reservoir pressure is
negative and scales with the power of 3�2 of the reservoir salt
concentration, according to −kBTκ

3
res�(24π).52 Therefore, non-

ideality contributions to the reservoir pressure are negligible for the
considered reservoir ionic strengths of monovalent electrolyte
ions, which is consistent with the implemented PB description of
microions.

The macroion density derivative in Eq. (14) is taken for fixed
reservoir properties, i.e., for fixed T and �res (or, equivalently,
nres), summarily denoted by the subscript res. Quite remarkably,
in Donnan equilibrium, the osmotic compressibility χosm divided

by its ideal-gas value, χidosm = 1�(nmkBT), can be expressed via the
Kirkwood–Buff relation5,48,53

χosm

χidosm
= 1 + nm � d

3
r[gmm(r) − 1] = lim

q→0
Smm(q), (96)

solely in terms of the solvent-averaged macroion–macroion static
structure factor Smm(q) and its associated radial distribution
function, gmm(r), as defined in the PM for colloidal macroions
and microions. The Kirkwood–Buff relation remains valid in the
zero-salt limit (ns → 0) of a binary PMmixture, where πosm reduces,
due to global electroneutrality, to the system (osmotic) pressure
relative to a pure-solvent reservoir.

One can exploit here a theorem by Henderson54 asserting that
for an (effective) one-component model system with only pairwise
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interactions, for each thermodynamic state (density n and tempera-
tureT), there is a one-to-one correspondence between the associated
pair distribution function g(r; n) and an associated pair poten-
tial ueff(r), up to an irrelevant additive constant for the latter. As
discussed in Ref. 54, at given macroion density nm and tempera-
ture, the osmotic compressibility in Donnan equilibrium can thus be
obtained also from the density derivative of the suspension pressure
p of the fictitious OCM system with state-independent pair potential
ueff(r; nm,T), i.e.,48

� @p

@nm
�
res
= � @p

@nm
�
ueff

=

kBT

S(q→ 0)
, (97)

where S(q) is the static structure factor of the OCM system with
the radial distribution function g(r). The second equality expresses
the OCM compressibility equation in which, when taking the den-
sity derivative of p, any nm-dependence of the effective pair potential
ueff is disregarded. For a direct application, consider a salt-free sus-
pension at low macroion concentration, where p ≈ pjell can be used
as an analytic approximation for p, with pjell given in Eq. (84).
The OCM compressibility equation, where Zeff is kept constant
in the density derivative, leads here to S(q→ 0) ≈ 1�(1 + Zeff).
This expression is consistent with the DH limiting law result
Smm(q→ 0) = 1�(1 + Z) +O(√nm) for a binary Z : 1 PM system
with ZλB�a� 1.

For the exact validity of the OCM compressibility equation,
it is understood that ueff is determined such that g(r) = gmm(r)
and, hence, S(q) = Smm(q) is exactly valid, with no approxima-
tions involved in obtaining ueff. Of course, these premises are not
fulfilled, in particular, by the discussed PBCM approaches, which
per se do not provide an effective macroion pair potential expres-
sion, rendering the substitution of the PBCM-generated effective
interaction parameters into the Yukawa form in Eq. (19) arbi-
trary to some extent. An additional ambiguity arises from the
different PB-based charge renormalization schemes, which are not
uniquely defined. Based on the PM, a unique effective macroion pair
potential with uniquely defined interaction parameters can be
obtained, in principle, from the dressed ion theory (DIT) of
Kjellander and Mitchell.55,56 DIT, however, requires as input the
partial pair distribution functions of the PM, which can be obtained
only from elaborate simulations or accurate Ornstein–Zernike
integral-equation theory calculations, as performed, e.g., in Ref. 57.
Keeping in mind these facts, Eq. (97) is useful as a means of checking
the degree of internal consistency of an OCM charge renormal-
ization scheme by comparing its (approximate) prediction for the
suspension osmotic compressibility in Donnan equilibrium with
the (approximate) prediction of the zero-wavenumber limit OCM
static structure factor S(q) based on the (approximate) ueff(r) and
calculated using an (approximate) Ornstein–Zernike integral
equation scheme, such as RY.

V. RESULTS

For suspensions of spherical colloidal macroions in osmotic
equilibrium with a 1:1 electrolyte (salt) reservoir, the effective
one-component description in the weak-coupling limit is based on
three reduced parameters that uniquely determine the system: the
colloid concentration, quantified by the macroion volume fraction

ϕ; the reduced reservoir screening parameter κresa, related to the salt
reservoir concentration; and the electrostatic coupling parameter
ZλB�a, with Z denoting the bare macroion valence.

To assess the performance of the various renormalization
methods and directly compare their predictions for thermody-
namic and structural properties with PM computer simulation
data,32 we choose the following system parameters: solvent Bjer-
rum length λB = 0.714 nm (corresponding to water at T = 293 K),
bare macroion valence Z = 40, and macroion radius a correspond-
ing to λB�a = 0.0222, 0.0445, 0.0889, 0.1779, 0.3558, 0.7115, and cou-
pling parameter ZλB�a = 0.89, 1.78, 3.56, 7.12, 14.23, 28.5. The reser-
voir salt pair concentration, nres, is chosen such that κresa is in the
range of 0–18, which connects the counterion-dominated regime at
low κres with the salt-dominated regime at high κres. The selected
values of the volume fraction ϕ = (4π�3)nma3 are in the range of
1 × 10−4–3.75 × 10−1. We numerically solve the nonlinear PB
equation using the MATLAB routine bvp4c58 and the RY integral-
equation scheme using the same code as in Ref. 52.

A. Renormalized interaction parameters

We employ the charge renormalization methods discussed in
Sec. III to compute the renormalized interaction parameters, κeff
and Zeff, and use them as input to the effective macroion–macroion
pair potential, ueff(r) [Eq. (21)]. In the RJM and RLRT methods,
the renormalized interaction parameters are directly connected to
ueff(r), while in the CM-based methods, such as SDHA,33 only an
ad hoc connection can be established.

To explore predictions for the effective interaction para-
meters, we first consider the salt-free case. In this limiting case,
the suspension is closed since electroneutrality prevents counteri-
ons from leaving the suspension into the salt-free reservoir. The
parameter space is here two-dimensional only and spanned by ϕ
and ZλB�a.

Figure 2 shows predictions of the renormalization methods for
κeff as a function of ϕ and ZλB�a (inset) in the salt-free case. For
all considered methods, κeff increases with increasing ϕ and ZλB�a.
Notice that, for the CM-based SC and EPC methods, κeff differs
only by the invoked linearization. In the assessed mean-field meth-
ods, κeff depends only on the concentration of free (uncondensed)
microions. Therefore, κeff increases with increasing concentrations
of (surface-released) free counterions, triggered by increasing col-
loid volume fraction ϕ or bare valence Z. This trend follows clearly
from Eqs. (39) and (41) for the CM-based methods with edge and
mean linearization, respectively, from Eq. (60) for RJM, and from
Eq. (69) for RLRT. The potential linearization in RLRT is equivalent
to the potential linearization with respect to the (volume-averaged)
mean electrostatic potential. The screening constant comparison in
Fig. 2 allows for a distinction between methods that linearize with
respect to the mean electrostatic potential and those that linearize
with respect to the minimum absolute value of the potential at the
cell edge. Themethods based onmean potential linearization predict
a larger κeff, a distinguishing feature that becomes more pronounced
with increasing ϕ and ZλB�a.

Figure 3 shows predictions of the different methods for the
effective valence Zeff as a function of ϕ and ZλB�a (inset). Renormal-
ization arises from the interaction of the charged colloidal surfaces
with strongly (nonlinearly) associated counterions6,9,13 and from
the competition between a reduction in the electrostatic energy of
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FIG. 2. Reduced renormalized screening constant, κeffa, vs colloid volume frac-
tion, ϕ, for different renormalization methods as indicated. A salt-free suspension
(nres = 0) is considered with bare macroion valence Z = 40 and ZλB�a = 7.12
for λB = 0.714 nm. Inset: κeffa vs coupling parameter, ZλB�a, for the different
methods at ϕ = 0.01. In the inset, the SC/EPC results with edge linearization are
indistinguishable from the RJM result on the scale of the figure. The dotted gray

line represents the screening constant κa =
�

3ϕZλB�a without accounting for
charge renormalization.

quasi-condensed counterions and the gain in entropy of free coun-
terions spread across the system. In the considered zero-salt case
and for spherical macroions, Zeff = Z at ϕ = 0, since the gain in
entropy by dispersing the finite number of counterions over an infi-
nite (cell) volume outweighs here the electrostatic attraction energy
tending to confine the counterions near the macroion surface. With
ϕ increasing above 0, the entropy per counterion decreases since
the accessible volume decreases, and the initially zero fraction of

FIG. 3. Renormalized valence, Zeff�Z, in units of the bare valence, as a func-
tion of volume fraction ϕ for the indicated renormalization methods and a salt-free
suspension (nres = 0). The bare macroion valence is Z = 40 with the coupling
parameter ZλB�a = 7.12 for λB = 0.714 nm. Inset: ZeffλB�a vs coupling para-
meter, ZλB�a, at ϕ = 0.01. In the inset, the EPC edge and SC edge curves
coincide, and likewise, the EPC and SC mean potential linearization curves.

counterions subject to quasi-condensation (with electrostatic attrac-
tion energy >kBT) increases. This effect results in the steep initial
decline of Zeff at very small ϕ. With further increasing ϕ, elec-
trostatic screening becomes operative roughly when the effective
Debye length 1�κeff decreases below the geometric mean macroion

distance n−1�3m . The electrostatic potential difference, �Φ(a) −Φ(R)�,
decreases then at such a rate that the fraction of quasi-condensed
counterions decreases. As a result, Zeff has a minimum, roughly
here at ϕ ∼ 0.01, and it increases subsequently with increasing ϕ.
Notice further that Zeff tends asymptotically to Z for large val-
ues of ϕ. All considered renormalization methods share this qual-
itative behavior, except for the RJM, where Zeff increases only
weakly with increasing ϕ. The non-monotonic behavior of Zeff(ϕ)
becomes less pronounced with increasing salt content, where the
minimum turns more shallow and is shifted to larger volume
fractions.

The inset of Fig. 3 shows how Zeff depends on the bare valence
Z. For low values of Z, the potential difference between a colloid
surface and the bulk region of the suspension is small enough that
Z ≈ Zeff, implying no significant counterion condensation. As Z
increases, condensation sets in, leading to Zeff < Z. Notice that all
renormalization methods predict Zeff ≈ Z and κeff ≈ κ0 =

√
4πλBn+

for ZλB�a � 5 (cf. insets in Figs. 2 and 3). Charge renormalization
first becomes relevant for ZλB�a � 5, beyond which the predictions
for κeff and Zeff progressively differ from one another as the cou-
pling strengthens. For sufficiently high Z, most methods predict that
Zeff saturates to a value dependent on the invoked method. The
exception is RLRT, for which Zeff continues to grow gradually with
increasing Z.

All considered methods make comparable, though quantita-
tively different, predictions for Zeff and κeff. The only exception is
RJM, which predicts distinctly stronger counterion condensation
with accordingly lower Zeff. Comparing the CM-basedmethods only
shows that Zeff is higher for mean than for edge linearization. The
fact that Zeff(mean) > Zeff(edge) was discussed earlier in relation
to Eq. (50). It is important to realize, however, that Zeff and κeff
have physical significance only insofar as they affect predictions of
thermodynamic and structural properties.

We analyze next how salt concentration variation affects the
renormalized interaction parameters. Since we assume Donnan
equilibrium, results are presented as functions of the reservoir
screening constant, κres ∝

√
nres, which is proportional to the

square-root of the reservoir salt concentration. Figure 4 depicts how
Zeff and κeff (inset) vary with reservoir salt concentration. In the limit
of high salt concentration, all considered renormalization methods
predict that the Zeff curve flattens out and approaches a limiting
value of Zeff → Z. Most methods predict Zeff to grow monotonically
with increasing salt concentration. The exception is RLRT, which,
despite showing the correct limiting behavior for low and high salt
concentrations, is nonmonotonic for intermediate concentrations
and saturates at Zeff = Z above a critical value of κres. This unusual
behavior can be attributed to the property of the RLRT, described in
Sec. III C, by which counterion quasi-condensation ceases abruptly
when the counterion–macroion electrostatic energy of attraction
is comparable to the thermal energy [Eq. (65)]. In concert with
Zeff, the renormalized screening constant κeff (inset of Fig. 4) is
constant in the counterion-dominated regime and monotonically
grows with increasing salt concentration, tending to the reservoir
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FIG. 4. Predictions of different renormalization methods for ratio of renormalized
(effective) and bare macroion valence, Zeff�Z, as function of reduced reservoir
screening constant κresa (κres ∝

√
nres), for ϕ = 0.08, Z = 40, ZλB�a = 7.12,

and λB = 0.714 nm. Inset: reduced effective screening constant, κeffa, as a
function of κresa.

screening constant κres in the salt-dominated regime. Again, while
the various renormalization methods define the effective interac-
tion parameters differently, only the measurable thermodynamic
and structural properties are physically meaningful.

According to Eq. (16), κ2eff from the different mean-field
approaches has two additive contributions—one associated with free
(uncondensed) counterions, (κeffc )

2, and the other with salt ions,
(κeffs )

2, i.e.,

κ2eff = (κ
eff
c )

2
+ (κeffs )

2. (98)

From Eqs. (39), (41), (54), and (69), it follows that κeffc ∝
�
ϕZeff

for the CM-based methods and for RLRT and RJM, whereas κeffs
∝
√
nres for RJM. Equation (98) allows to specify two regimes: a

counterion-dominated regime for κeffc � κeffs , where κeff ≈ κ
eff
c , and

a salt-dominated regime for κeffc � κeffs , where κeff ≈ κ
eff
s . The major

differences in the predictions for Zeff and κeff between the various
renormalization methods are in the counterion-dominated regime,
where these parameters are insensitive to changes in salt con-
centration. In contrast, in the salt-dominated regime, all methods
converge to κeff → κres and Zeff → Z. Therefore, differences between
the methods tend to emerge at low salt concentrations.

In Donnan equilibrium, the suspension salt concentration, ns,
is determined by equating the microion chemical potentials in the
reservoir and suspension. In the nonlinear CM approximations, ns
is calculated from Eq. (24). When charge renormalization is oper-
ative, the renormalized suspension salt concentration, neffs , follows
from the renormalized interaction parameters and depends on the
concentration of free salt ion pairs. Explicit expressions for neffs
predicted by the various methods are given in Eqs. (40) and (42)
for SC (and EPC) with mean and edge linearization, respectively, in
Eq. (69) for RLRT, and in Eq. (57) for RJM. Figure 5 illustrates how
the suspension salt concentration, neffs , varies with the reservoir salt
concentration nres. The fact that n

eff
s < nres reflects the salt expulsion

FIG. 5. Predictions of different renormalization methods for effective suspension
salt concentration in units of reservoir salt concentration, neff

s �nres, as a function of

reduced reservoir concentration, nresa3, for ϕ = 0.08, Z = 40, ZλB�a = 7.12, and
λB = 0.714 nm. Results for the nonlinear (unrenormalized) cell model, according
to Eq. (24), are included for comparison (solid red curve). Inset: Magnification of
the transition region from the counterion-dominated to the salt-dominated regime.

effect for a colloidal suspension in Donnan equilibrium. Two limit-
ing plateau regions are observed: one in the counterion-dominated
regime, where neffs ≈ 0, and the other in the salt-dominated regime,
where neffs → (1 − ϕ)nres. The predictions for neffs by the different
methods tend to coincide in these limits. In the transition regime
at intermediate salt concentrations, the relative differences are at
most 20%. It is interesting to compare the various predictions for
neffs with ns obtained [from Eq. (24)] by integrating the coion density
profile into the nonlinear CM approximation (red curve). As seen,
ns is approximately equal to the RLRT prediction of neffs .

As previously noted, salt ions are expelled from the suspension
into the reservoir at low to intermediate reservoir salt concen-
trations, leading to neffs < (1 − ϕ)nres since the counterions make
here the largest contribution to the suspension chemical potentials.
According to Fig. 5, RJM predicts the weakest salt-expulsion effect,
while CM-based methods predict the strongest effect.

B. Case of effective valence exceeding bare valence

On comparing predictions by the various charge renormaliza-
tion methods in the (ϕ,nresa

3) parameter space, one notices that
the EPC methods predict an effective valence higher than the bare
valence (Zeff > Z) for sufficiently high colloid concentrations and
low Z. Since quasi-condensation of counterions at higher Z always
results in Zeff < Z, this observation is not a nonlinear renormaliza-
tion effect. Instead, it is due to a reduction in the linear microion
screening of a macroion caused by other nearby macroions. In the
context of the EPC method, Boon59 attributes this effect to the
creation of a spherical hole in the one-component plasma (coun-
terions plus neutralizing background) by the hard core of a central
macroion. Since the hole acts effectively as a region of charge density
opposite to that of the counterions, the pointlike effective macroion
particle in EPC attains an increased effective charge. The effective
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coupling parameter, ZeffλB�a, increases here with increasing volume
fraction.

In Fig. 6, Zeff and κeff are plotted for an exemplary, weakly
coupled system with ZλB�a = 1.52. Notice that Zeff > Z in EPC for
ϕ ≥ 0.075, with no noticeable difference between edge and mean
linearization. There is a remnant of quasi-condensation of coun-
terions visible for ϕ ≤ 0.075, where Zeff < Z. The inset displays the
expected monotonic increase of κeff, with the results for edge and
mean linearizations being qualitatively similar.

The EPC method is not the only method predicting Zeff > Z
for concentrated suspensions of weakly charged colloids. Another
method is the penetrating RJM, described in its simplest version in
Sec. III B, where, different from the non-penetrating (expelled) RJM,
the homogeneous neutralizing jellium also penetrates the macroion
core, as quantified by the boundary conditions in Eq. (62).

As noted earlier in Sec. III B, the RJM is based on the jellium
approximation (JA), widely used in solid state physics and originally
applied to charge-stabilized colloidal suspensions by Beresford-
Smith et al.39 The JA approximates the macroion radial distribution
function by gmm(r) = 1 for all r > 0. By combining this approxima-
tion with the linear MSA closure for the microion–microion direct
correlation functions of pointlike microions plus the MSA closure
for the macroion–microion direct correlation functions at r > a, the
effective macroion pair potential for weak macroion coupling and
high dilution is obtained in the linear penetrating JA as39

βueff(r) = λBZ
2(1 + ϕ)2� eκa

1 + κa
�2 e−κr

r
, (99)

with κ2 = 4πλB(n+ + n−) in the case of monovalent microions. Con-
trasting this pair potential with the one in Eq. (15), one notices
that they are identical apart from the factor (1 + ϕ)2, which is

FIG. 6. Effective macroion valence in units of the bare valence, Zeff�Z, as a function
of volume fraction ϕ for the indicated methods. Note that EPC and penetrating RJM
allow for Zeff > Z at sufficiently large ϕ and low coupling. Inset: Reduced effective
screening constant κeff�κres vs ϕ for the different methods. The solid black part of
the PM-MSA curve is for gMSA(σ

+
≥ 0), as physically demanded, while the red

part violates this condition. Other system parameters are Z = 80, ZλB�a = 1.52,
λB = 0.714 nm, and κresa = 1.327.

due to the macroion core penetration by the jellium. By combin-
ing the (penetrating) JA with the nonlinear HNC closure for the
macroion–microion direct correlation functions, nonlinear effects
can be included, leading to a description equivalent to the nonlinear
PB equation in Eq. (51), with associated boundary conditions for the
penetrating jellium in Eq. (62). Therefore, one can apply a charge
renormalization procedure similar to the one for the nonpenetrat-
ing case, resulting in renormalized valence and screening parameters
used as inputs to Eq. (99) in order to incorporate nonlinear screen-
ing effects. The effective pair potential derived within the nonlinear
penetrating JA approximation has proven to accurately describe the
pair structure of highly coupled suspensions for ZλB�a ≈ 13 up to
macroion concentrations of ϕ = 0.13.39

Another model predicting Zeff > Z at high concentration and
small ZλB�a is the PM-MSA scheme, which gives rise to the effective
pair potential,42,43

βueff(r) = λBZ
2
X
2
MSA

exp (−κr)

r
, r > 2a, (100)

with prefactor42

XMSA = cosh (κa) +U [κa cosh (κa) − sinh (κa)], (101)

and screening constant κ =
�
4πλB(Znm + 2ns) for monovalent

counterions and added 1:1 electrolyte of pair concentration ns.
Notice that κ here does not include the excluded-volume factor
1�(1 − ϕ).

The PM-MSA effective pair potential in Eq. (100) is of
the DLVO-type with effective macroion valence Zeff = XMSAZ.
The parameter U is determined by U = c�(κa)3 − γ�(κa), where
c = 3ϕ�(1 − ϕ) and γ = (c + ΓMSAa)�(1 + c + ΓMSAa). The MSA
screening parameter ΓMSA is the unique positive solution of the
biquadratic equation

(ΓMSAa)
2
= (κa)2 +

(q0a)
2

(1 + c + ΓMSAa)
2 , (102)

fulfilling ΓMSA > κ, where (q0a)
2
= 3λBϕZ

2�a. In the infinite dilu-
tion limit (nm → 0), one obtains XMSA → eκa�(1 + κa), recover-
ing hereby the standard DLVO potential. Within the considered
Donnan equilibrium, ns is given in PM-MSA by

ns

nres
= −

nmZ

2nres
+ �(1 − ϕ)2 exp [(ΓMSA − κres)λB] + � nmZ

2nres
�2�1�2,

(103)

which needs to be solved in conjunction with Eq. (102) for ΓMSA. The
above-mentioned expression for ns reduces, in the limit a→ 0, to the
standardDebye–Hückel limiting law result for the salt concentration
in Donnan equilibrium. In the infinite dilution limit of macroions
(nm → 0), XMSA tends to the geometric factor exp (κa)�(1 + κa) of
spheres.

Furthermore, in the high-temperature limit, where κa� 1, it
follows that

Z
MSA
eff = Z

1 + κa

exp (κa)
XMSA →

Z

1 − ϕ
≈ (1 + ϕ) Z +O(κa). (104)

Notice that ZMSA
eff differs from the linear effective valence Zeff

= Z(1 + ϕ) appearing in the penetrating JA pair potential of Eq. (99)
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only by small corrections of quadratic order in ϕ and linear order in
κ. An explicit calculation indeed shows that ZMSA

eff > Z.
Figure 6 depicts Zeff and κeff, predicted by the EPC meth-

ods and by the penetrating and non-penetrating (expelled) RJM,
for weakly coupled macroion suspensions with ZλB�a = 1.52 and
system parameters where the EPC-based g(r) calculated using RY is
of higher accuracy than that based on the SC methods.33 The curves
of κeff�κres, depicted in the inset, show the expected monotonic
increase with increasing ϕ for all cases. However, it is only in EPC
and penetrating RJM that Zeff > Z for ϕ � 0.1. The non-penetrating
(expelled) RJM predicts Zeff ≤ Z for all concentrations.

The solid black part of the PM-MSA curve in Fig. 6 represents
ZMSA
eff and κ obtained in linear PM-MSA for ϕ > 0.3, where the MSA

contact value g(σ+) is non-negative. As noted, ZMSA
eff is larger than Z

and approximately equal to Zeff, as predicted by the penetrating RJM
in its simplest version described in Sec. III B. According to Ref. 42,
ZMSA
eff > Z, or equivalently, XMSA > e

κa�(1 + κa), can be attributed
to a decreased screening ability of the microions around a given
macroion owing to a steric constriction by neighboring macroions,
leading to stronger effective macroion–macroion repulsion. Such
reduced screening occurs when neighboring electric double layers
overlap.

To examine how electric double layer overlap relates to the
EPC prediction of Zeff > Z, in Fig. 7(a), we compare the EPC
effective electrostatic screening length, λeff = κ

−1
eff , with the (reduced)

mean surface-to-surface distance of neighboring macroions,

ξ = n
−1�3
m �a − 2. This comparison reveals the volume fraction ϕ at

which the overlap of double layers sets in. As seen in Fig. 7(c),
Zeff becomes larger than Z at about the same concentration where
neighboring double layers begin to overlap, suggesting that Zeff > Z
is not a single-macroion effect. This linear screening effect should
play a role in concentrated solutions of weakly charged proteins.
At sufficiently large ϕ and strong electrostatic coupling, however,
Zeff < Z due to significant counterion quasi-condensation (charge
renormalization). Remnant charge renormalization is predicted
by all considered schemes (except MSA) and is noticeable in
Fig. 7(c) for ϕ < 0.05 when the electric double layers are practically
non-overlapping. The linear MSA does not account for counterion
quasi-condensation. Actually, the red part of the MSA curve in
Fig. 6 is in the regime ϕ < 0.3, where the MSA predicts unphysical
negative values of the macroion radial distribution function gmm(r)
at contact distance r = σ = 2a.

The prediction Zeff > Z by the EPC and penetrating RJM
mean-field methods for concentrated macroion dispersions, where
nonlinear microion response (counterion quasi-condensation) is
absent or weak, should be compared with the so-called macroion
charge amplification effect described by González-Mozuelos,
Guerrero-Garcia et al.57,60 The latter effect, predicted on the basis
of elaborate molecular dynamics and dressed ion theory calcula-
tions, where microion correlations are included, is found for dilute
dispersions of charged nano-sized particles at larger concentrations
of the suspending 1:1 electrolyte solution and for a small
macroion–counterion size ratio of 5:1. This effect likely originates
from microion correlations, in particular, from the non-negligible
size of the counterions and (to a lesser extent) coions close to
the macroion surface attenuating the electrostic shielding of the
macroion charge.57 Microion correlation effects are outside the
scope of the discussed PB mean-field methods, and a� λB is

FIG. 7. (a) Sketch of two spherical macroions (blue), labeled with relevant para-
meters. (b) Reduced effective screening length, λeff�a, with the red curve depicting

the reduced mean distance, ξ = n
−1�3
m �a − 2, between two macroion surfaces. (c)

Reduced effective valence, Zeff�Z, plotted vs ϕ as predicted by the EPC edge
method with system parameters from Fig. 6. Note Zeff > Z for sufficiently large ϕ.

implicitly assumed for their validity. In the PM-MSA method,
microion correlations are accounted for to reasonable accuracy only
for concentrated dispersions of weakly charged macroions, where
nonlinear microion response is negligible. The microions in PM-
MSA are taken here as pointlike for simplicity, allowing for an ana-
lytic expression for the effective macroion pair potential in Eq. (100)
of single-Yukawa form. While microion nonzero size effects are
excluded hereby, remaining electrostatic correlations between the
pointlike microions contribute in PM-MSA to an effective macroion
valence larger than the bare one.

C. Pair structure

Having discussed the renormalized interaction parameters,
κeff and Zeff, predicted by the considered renormalization methods,
we next compute structural suspension properties within the
OCM governed by the effective pair potential, ueff(r). Explicitly,
we compute the macroion–macroion radial distribution function,
g(r), and static structure factor, S(q), using the thermodynamically
self-consistent Rogers–Young (RY) integral-equation scheme,
which provides accurate results for dispersions with Yukawa-type
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repulsive interactions.50,61,62 We first consider salt-free systems, for
which differences in the renormalized parameters are largest (cf.
Fig. 4) and for which Monte Carlo (MC) simulation data based on
the PM are available from Linse.32

Figure 8 compares OCM-based theoretical predictions for g(r)
with PM-MC simulation data from Linse32 for ϕ = 0.01 for the two
highest considered coupling parameters, ZλB�a, where the renor-
malization methods show the greatest differences. Qualitatively, all
considered methods provide good results for g(r) in the explored
parameter range. With increasing ZλB�a, there is a gradual decrease
in the principal peak height, g(rm), and an increase in the peak
position, rm, as seen in the simulations. The analyzed renormal-
ization methods reproduce this behavior but slightly overestimate
g(rm), increasingly so with increasing coupling, with the exception
of RJM. In the simulation study,32 it is shown that stronger coupling
promotes macroion aggregation.

Figure 9(a) shows the principal peak height, g(rm), as a
function of ZλB�a, as predicted by the various renormalization
methods. Renormalization becomes relevant for ZλB�a � 5 (see
insets of Figs. 2 and 3). At weak coupling below the onset of
renormalization, all methods accurately reproduce the initial
increase of g(rm) visible in the PM-MC simulation data. This
agreement simply reflects the accuracy of the RY method for sus-
pensions with repulsive Yukawa-type interactions. The dotted curve

FIG. 8. Macroion–macroion radial distribution function, g(r), of a salt-free sus-
pension (nres = 0) at volume fraction ϕ = 0.01, for different coupling parameters,
ZλB�a. The curves are computed using the RY method with renormalized inter-
action parameters, Zeff and κeff, from the considered renormalization methods
inserted into the OCM ueff(r). Results from the EPC edge and mean methods
are omitted since these are close to the SC edge and mean results, respectively.
Green and yellow open symbols are PM-MC simulation data32 for ZλB�a = 7.12
and 14.23, respectively. The latter are vertically upshifted by 0.5 for better visibility.
Other system parameters are Z = 40 and λB = 0.714 nm.

FIG. 9. (a) Principal peak height, g(rm), of the macroion–macroion radial distri-
bution function, and (b) reduced effective pair potential at contact, βueff(σ

+), vs
bare coupling, ZλB�a. The indicated charge renormalization schemes describe a
salt-free suspension (nres = 0) of bare macroion valence Z = 40 at ϕ = 0.01 and
for λB = 0.714 nm. The SC edge and SC mean results are very close to the EPC
edge and EPC mean results, respectively (the latter, therefore, is not shown). The
dotted gray line in panel (a) is a prediction without charge renormalization. Curves
in panel (a) are OCM-RY results, while symbols are PM-MC data.32

in Fig. 9(a) illustrates that g(rm) is significantly overestimated
at stronger coupling if charge renormalization is neglected. It is
obtained by using the non-renormalized pair potential in Eq. (15)
in the RY calculation of g(r), for κ determined by Eq. (16),
but without invoking the 1�(1 − ϕ) free volume correction factor.
Provided renormalization is incorporated, the nonmonotonic
behavior of the MC data for g(rm) in panel (a) is qualitatively
captured by all renormalization methods. Consistent with its com-
paratively strong renormalization ofZeff (cf. Fig. 3), the RJM strongly
underestimates g(rm). In contrast, RLRT is more accurate, over-
estimating g(rm) only for the highest considered coupling. The
CM-based methods for mean and edge linearization reproduce the
PM-MC g(rm) most accurately at moderate coupling, with mean
linearization giving slightly better results than edge linearization.
Except for RJM, all methods overestimate g(rm) at the highest
coupling. The EPC and SC results for peak height are hardly distin-
guishable from each other when either edge or mean linearization is
used.

For salt-free suspensions, g(rm) has a dependence on the cou-
pling parameter similar to that of the contact value, ueff(σ

+), of
the effective pair potential. This similarity is evident from Fig. 9(b),
where βueff(σ

+) is plotted as a function of ZλB�a. The curves for the
contact value of the effective pair potential predicted by the different
renormalization methods qualitatively reflect the curves for g(rm)
in panel (a), with peaks located at the same respective coupling
parameter values. Notice that βueff(σ

+)∝ Z2
eff(1 + κeffa)

−2, with the
geometric factor (1 + κeffa)

−2 arising from the impermeability of the
macroion cores.

Figure 10 displays the concentration dependence of g(r) and
g(rm) for salt-free suspensions with ZλB�a = 7.12, for which g(rm)
in Fig. 9 is most structured. In Fig. 10(a), predictions made by
different renormalization methods are compared with PM-MC sim-
ulation data for ϕ = 0.04 and 0.08. With increasing ϕ, the suspension
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FIG. 10. (a) Macroion–macroion radial distribution function, g(r), for ϕ = 0.04 and
0.08. (b) Principal peak height, g(rm), vs ϕ for salt-free suspensions (nres = 0)
with ZλB�a = 7.12. The curves in panel (a) are obtained using the RY method with
renormalized interaction parameters from the indicated renormalization methods.
Open circles are PM-MC simulation data.32 In panels (a) and (b), the SC edge
and mean results for g(rm) are very close to those for the EPC edge and mean,
respectively (the latter is, therefore, not shown). The dotted gray line in panel (b)
is the result without charge renormalization. Other system parameters are Z = 40
and λB = 0.714 nm.

becomes more structured, reflected in a sharpening of the principal
peak of g(r), whose position rm shifts to smaller inter-particle dis-
tances. Moreover, the secondary peak becomes more pronounced,
reflecting the buildup of the second-neighbor shell. The posi-
tion of the principal peak is approximately equal to the macroion

next-neighbor distance, rm ≈ n
−1�3
m = [3ϕ�(4πa3)]−1�3, typical of

suspensions whose structure is determined by long-range repulsive
interactions,32 for which g(σ+) = 0. In Fig. 10(b), predictions of
g(rm) by the different methods are plotted as functions of ϕ. As
seen, g(rm) is underestimated by RJM and, to a lesser degree, also
by RLRT, while the CM-based methods give quite accurate results in
the full concentration range. Unlike the coupling variation depicted
in Fig. 9, the performance of the renormalization methods is
relatively insensitive to variations in colloid concentration. The red
and yellow open circles in Fig. 10(b) relate to the according g(r)
depicted in Fig. 10(a).

The static structure factor, S(q), characterizes pair correlations
in Fourier space. Its principal peak value, S(qm), at wavenumber
qm ≈ 2π�rm, allows to roughly identify the freezing transition of
suspensions of spherical particles with Yukawa-type repulsion, while
S(0) provides the osmotic compressibility factor of a monodisperse
suspension. We investigate next the effect of added salt on S(qm)
as predicted by the considered renormalization methods, focus-
ing on the largest concentration, ϕ = 0.08, to highlight structural
differences. Figure 11 shows the RY-generated principal peak height,
S(qm), as a function of the reduced reservoir screening constant,

κresa =
�
8πλBa

2nres, for salt concentrations (reservoir screening
parameter values) spanning the range from the counterion- to the
salt-dominated regimes. Two plateaus are visible at low and high
salt concentrations, reflecting the counterion- and salt-dominated
regimes, respectively. The largest differences in the S(qm) predic-
tions occur in the counterion-dominated regime, consistent with

FIG. 11. Static structure factor peak height, S(qm), vs reduced reservoir screening

constant, κresa (κ2
res ∼ nres), for different renormalization methods as indicated,

with ϕ = 0.08 and ZλB�a = 7.12. The horizontal dotted line is S(qm) of a
hard-sphere fluid from Eq. (105). Other system parameters are Z = 40 and
λB = 0.714 nm.

the observation regarding the renormalized parameters in Fig. 4.
RJM predicts the smallest S(qm) value at low salt content, consis-
tent with its overestimate of the renormalized charge (cf. Fig. 4),
followed by RLRT and CM-based methods. Regarding the SC and
EPC methods, S(qm) obtained for mean linearization is smaller
than for edge linearization, and this difference is more pronounced
for S(qm) than for g(rm). These distinguishing features are of key
relevance in estimating freezing transition concentrations based on
the Hansen–Verlet rule. This empirical rule states that S(qm) ≈ 3.1
at freezing of a charge-stabilized system with g(σ+) ≈ 0,52 as it
applies to salt-free systems. According to Figs. 9 and 10, Zeff and
κeff obtained from SC with mean potential linearization give the
most accurate prediction of the freezing concentration based on the
Hansen–Verlet rule.

In the transition region between counterion- and salt-
dominated regimes, S(qm) decreases with increasing nres, reflecting a
loss in structure. The different renormalization methods predict the
same S(qm) in the salt-dominated regime, where S(qm) approaches
the hard-sphere value, SHS(qm), for the considered ϕ. The horizon-
tal, dotted line in Fig. 11 indicates the hard-sphere fluid peak value
SHS(qm) ≈ 1.06, obtained from the expression

S
HS(qm) = 1 + 0.644 ϕ

1 − ϕ�2
(1 − ϕ)3

, (105)

provided by Banchio et al.,63 which quantitatively reproduces the
simulation data and Verlet–Weis corrected PY structure factor peak
height values for the hard-sphere fluid.

D. Osmotic pressure and compressibility

Having assessed the implications of different charge renormal-
ization methods for the structural properties, g(r) and S(q), we
address next their effect on various contributions to the pressure p
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and osmotic compressibility χosm of a suspension. We first consider
the salt-free case.

In the CM, p can be computed by solving the nonlinear PB
equation and using the contact theorem [Eq. (82)]. The results are in
reasonable agreement with PM-MC simulations for salt-free suspen-
sions.45 In the RJM, we compute p from Eq. (84), and in the RLRT
from the generalized virial equation [Eq. (94)], with pvol determined
according to Eq. (90). Details of the RLRT pressure calculation are
given in the Appendix). The latter method yields essentially the same
results for the pressure as the variational method in Refs. 31 and 44.
In the SDHA-EPC method, we compute p using Eq. (94), with pvol
according to Eq. (93) in the salt-free case, by holding the effective
pair potential and the potential linearization point fixed in taking
the macroion density derivative according to Ref. 33. We stress that
if p is determined in this way using the SDHA with EPC macroion
charge renormalization, the correct ideal-gas limit βp = nm(1 + Z)
is recovered to first order in nm.59 This procedure is equivalent to
computing the pressure of a suspension of pointlike macroions with
a fixed effective charge, Qeff [Eq. (29)], on neglecting the macroion
density-dependence of κeff in ueff(r).

In Fig. 12(a), we compare predictions for p vs ϕ by the
renormalization methods with one another and with PM-MC
simulation data32 over a range of coupling parameter values ZλB�a.
We normalize p by pid to reveal deviations from pid due to pair inter-
actions. Notice that p < pid, except for sufficiently weak couplings
and high volume fractions where charge renormalization ceases
and excluded-volume interactions play a role. At fixed ZλB�a, the
reduced pressure has a weakly nonmonotonic ϕ-dependence with
a shallow minimum, while at fixed ϕ, p decreases with increasing
ZλB�a. Analysis of the PM-MC data for p attributes devia-
tions from pid and its decrease with increasing coupling to the
strong accumulation of counterions near the macroion surfaces.32

This accumulation reduces the number of free counterions that
contribute to the pressure. As seen, p�pid displays a minimum at
ϕ ≈ 0.03, where the decrease in reduced pressure due to strength-
ening electrostatic interactions with increasing ϕ is balanced by an
increase in the excluded-volume pressure contribution.32

All considered effective one-component methods in Fig. 12
agree closely with the PM-MC data for p�pid, except for the RJM
pressure, pjell, at larger ϕ. In addition, shown in Fig. 12 [panel (b)],
is the effective valence, Zeff, divided by Z to reveal the influence of
charge renormalization. The similarity in shape between the reduced
pressure and effective valence curves shows that, without salt,
p�pid ≈ Zeff�Z is valid for relatively low values of ϕ, as suggested by
Eq. (84). In particular, the minima of p�pid and Zeff�Z are located at
roughly the same volume fraction.

We recall that the considered charge renormalization methods
are all based on linear screening and mean-field approximations.
The overall good agreement between the OCM-based pressure pre-
dictions and the PM-MC simulation data suggests that effective
many-body interactions and microion correlations have negligi-
ble impact on the thermodynamic properties of the considered
suspensions with monovalent microions. A more detailed compar-
ison of the different methods reveals that the PB contact theorem
and RLRT accurately predict the pressure, yielding nearly identical
curves on the scale of Fig. 12(a). SDHA with EPC methods (edge
and mean linearization) tends to overestimate p, particularly at large
ϕ and for strong coupling. Since SDHA-EPC determines p using

FIG. 12. (a) Reduced pressure, p�pid, with pid = nmkBT(1 + Z) and (b)
reduced renormalized valence, Zeff�Z, as functions of volume fraction ϕ
for salt-free suspensions (nres = 0) and coupling strengths ZλB�a = 0.89,
3.56, 7.12, 14.23, 28.46 (top to bottom), distinguished by different colors. The
curves correspond to different charge renormalization methods, while the symbols
are PM-MC simulation data.32 In panel (a), for ZλB�a = 0.89 and 3.56, the EPC
edge and mean curves practically overlap. The nonlinear CT and RLRT pressure
curves are also practically indistinguishable and, therefore, are represented by a
single curve. Other system parameters are Z = 40 and λB = 0.714 nm.

the generalized virial equation [Eq. (94)], which overestimates the
pair structure for strong coupling [cf. Fig. 9(a)], it is not surprising
that the predicted p is less accurate. On contrasting the differ-
ent linearizations within SDHA-EPC, one notices that p is larger
in mean than in edge linearization. This difference is understood
from the effective valence predictions in Fig. 12(b), showing that

Zmean
eff > Z

edge
eff , indicating that counterion condensation is less

pronounced for mean linearization. The strong effective coupling
predicted in mean linearization implies that pmean

> pedge. Even
though the RJM performs rather poorly in predicting structure, it
accurately predicts the pressure for strong coupling and underes-
timates p only mildly for weak coupling and high concentrations.
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According to Eq. (84), this behavior is consistent with the RJM
prediction of strong counterion condensation.

It is interesting to analyze the different pressure contributions
in the generalized one-component virial equation [Eq. (94)] for the
total suspension pressure. For the RLRT, in particular, we focus
on the contribution pden, defined in Eq. (20), resulting from the
macroion density dependence of ueff. Recall that this term is absent
from the calculation of p when using the SDHA method. For this
reason, we decompose the suspension pressure according to

p = pvol + pvir + pden, (106)

where pvol is the contribution associated with the volume energy
with renormalization included [Eq. (90)] and pvir is the virial con-
tribution for an effective one-component model system with the
state-dependence of ueff(r) disregarded, as defined in Eq. (19).
Figure 13(a) shows the RLRT-calculated pressure contributions for
the most structured suspension treated in the PM-MC simulations.

FIG. 13. (a) Reduced pressure, p�pid, and its additive contributions as functions of
ϕ, with ZλB�a = 7.12 for salt-free suspensions. (b) Reduced suspension pressure
and pressure difference, p − pden, vs ϕ for coupling strengths ZλB�a = 0.89, 7.12,
and 28.46 (top to bottom), distinguished by different colors. In both (a) and (b),
the generalized virial theorem in Eq. (94) is used in combination with the RLRT
renormalization method. Symbols are PM-MC simulation data.32 Other system
parameters are as in Fig. 12.

We observe that pvol is the dominant contribution in the considered
concentration range for the salt-free suspension. Note further that
pden is negative and practically compensates for the positive con-
tribution pvir for most ϕ values. At large ϕ, the macroion-induced
pressure contribution, pm = pvir + pden, becomes positive and non-
negligible. In fact, for ϕ > 0.1, pm contributes up to 20% of the total
pressure.

Figure 13(b) quantifies the contribution of pden to p for different
indicated couplings. The RLRT method predicts a non-negligible
(negative) contribution of pden with a larger relative contribution
for weaker coupling. Neglecting pden would result in an unphysically
large contribution of the macroion-induced pressure pm at low ϕ.

The influence of adding salt on the pressure and its constituent
contributions is analyzed in Fig. 14. For low salt concentrations in
the counterion-dominated regime (κresa � 1), p stays constant and is
practically equal to the pressure of a salt-free system.With increasing
reservoir salt concentration, p grows monotonically, approaching
the reservoir pressure pres = 2kBTnres in the salt-dominated regime,
where the Donnan effect is absent and Zeff ≈ Z holds with κeff ≈ κres.
As noted earlier in the salt-free case, pvol is the main contributor to
p, approaching pres in the high-salinity limit. Although pvol is domi-
nant throughout the counterion-dominated regime, pm = pvir + pden
gives a non-negligible positive contribution to p, visible even on the
depicted logarithmic scale. As seen in Fig. 14, the negatively valued
pden tends to compensate pvir for κresa � 1. Similarly to p and pvol, pvir
and pden are constant in the low-salt region. With further increasing
reservoir salinity, pvir tends to the hard-sphere pressure value (red
dashed horizontal line segment), while pden tends to zero.

Another thermodynamic quantity of interest is the osmotic
compressibility, χosm. As discussed at the end of Sec. IV, for a
semi-open system in osmotic equilibrium with a salt reservoir,
the (exact) reduced osmotic compressibility, χosm�χidosm, is equal
to the (exact) macroion–macroion static structure factor in the
long-wavelength limit, Smm(q→ 0). Provided no approximations
were involved in contracting out the microions and subsequently

FIG. 14. Reduced suspension pressure, 4πλBa2βp, and its additive constituents vs

κresa (κ2
res ∼ nres) for ϕ = 0.2. The pressure is calculated using the RLRT method.

The red dashed horizontal line segment represents the pressure of a hard-sphere
system, computed using the Carnahan–Starling equation of state at the same ϕ.
Other system parameters: ZλB�a = 7.12, Z = 40, λB = 0.714 nm.
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FIG. 15. (a) RY-calculated OCM zero-wavenumber limiting static structure factor
S(0) vs volume fraction ϕ, viewed as an approximation for the reduced osmotic

compressibility, χosm�χid
osm, and deduced from the EPC-mean renormalization

method for different coupling parameters, ZλB�a = 0.89, 1.78, 3.56, 7.12, 14.23,
and 28.46 (bottom to top), distinguished by different colors. (b) S(0) vs ϕ from
different renormalization methods, as indicated, and ZλB�a = 7.12. Open circles
are PM-MC data for χosm�χid

osm, obtained from a numerical derivative of the PM-MC
pressure data in Fig. 12. Other system parameters are as in Fig. 12.

calculating the OCM S(q), this structure factor would be identical
to Smm(q). Hence, the accuracy of the considered renormalization
methods in predicting thermodynamic properties is linked to their
respective accuracy in describing the pair structure. In Fig. 15(a),
the RY-calculated S(0) obtained using ueff(r) with EPC-mean input
for Zeff and κeff is plotted vs ϕ for different coupling parameters.
At fixed coupling, S(0) has a non-monotonic ϕ-dependence with
a maximum at ϕ ≈ 0.01 for all considered cases. The position of
this maximum coincides approximately with the volume concentra-
tion ϕ at which Zeff has its minimum [cf. Fig. 12(b)]. For fixed ϕ,
S(0) increases with increasing coupling, i.e., the suspension becomes
more compressible as Zeff decreases.

Figure 15(b) depicts the RY-calculated S(0) vs ϕ for
different renormalization methods with a fixed ZλB�a = 7.12.
Evidently, S(0) is larger for the methods predicting stronger charge
renormalization, i.e., smaller Zeff, except for the CM-based meth-
ods, for which this tendency is reversed using both edge and mean
linearizations. The simulation data for p from Fig. 12 32 allow us
to compute the compressibility factor from numerical differenti-
ation according to Eq. (95). While the non-monotonic shape of
the PM-MC data for χosm�χidosm is qualitatively reproduced by the
different methods, including the location of the maximum, there
are significant quantitative differences. The figure shows that the
methods using linearization around the mean potential give more
accurate results for the osmotic compressibility factor than those
using edge linearization.

VI. CONCLUSIONS

Suspensions of highly charged colloidal particles in which
nonlinear electrostatic screening is prevalent can be modeled
using charge renormalization theories based on linear screening

and mean-field approximations that predict effective interaction
parameters. In this work, we analyzed several commonly used
renormalization methods and identified conceptual differences
between them. Furthermore, we numerically evaluated the con-
sidered methods and assessed their pros and cons by comparing
the theoretical predictions for structural and thermodynamic
properties of salt-free suspensions in the cell model andmulti-center
one-component models with corresponding data from MC simu-
lations of suspensions in the primitive model.32 For simplicity, we
have restricted our analysis to spherical hard colloids dispersed in
solvents containing only monovalent microions, whose correlations
are neglected. Our results and conclusions can help guide the
selection of methods for modeling charge-stabilized suspensions of
impermeable colloids and for interpreting experiments based on,
e.g., light, x ray, and neutron scattering.

The charge renormalization methods examined here differ
from one another in how the Poisson–Boltzmann equation is
linearized and whether they are based on the cell model or the
one-component model. Methods invoking edge linearization
include those based on cell models that linearize the electrostatic
potential around its value at the cell edge and the RJM, which
linearizes around the asymptotic value of the potential. Methods
invoking mean linearization include those based on cell models that
linearize the potential around its value averaged over the cell volume
and the OCM-based RLRT, which linearizes around the poten-
tial averaged over the suspension volume. Regarding the resulting
effective interaction parameters predicted by edge and mean
linearization, we observe clear differences in the renormalized
screening parameters, with κeff(mean) > κeff(edge), but no clear
differences for the renormalized valence Zeff.

In analyzing the effect of added salt on the effective interaction
parameters, the largest differences between the renormalization
methods are observed at low salt concentrations in the counterion-
dominated regime. While in the explored parameter space, most
of the methods predict similar effective interaction parameters,
the RJM predicts notably lower values of Zeff and κeff than the
other methods. Consequently, the RJM predicts a distinctly stronger
counterion quasi-condensation on the colloid surfaces.

Interestingly, the EPC and penetrating RJMmethods predict an
effective valence, Zeff, larger than the bare one at comparatively low
coupling strengths and high macroion concentrations. According
to the PM-MSA, this unusual effect can be attributed to a reduced
electrostatic screening caused by the geometric exclusion of the
microion clouds by nearby colloids. The possibility that Zeff can
exceed Z in EPC33 renders this method the most accurate in
predicting the peak value of the radial distribution function, g(rm),
as we noticed from the comparison with PM-MC simulation data.

From comparing the macroion g(r) and S(q) calculated
using the RY scheme with the PM-MC simulation data, one
observes considerably improved agreement at high coupling values,
5 � ZλB�a � 30, if charge renormalization is incorporated. Most of
the considered renormalization methods predict radial distribution
functions with principal peak heights, g(rm), that deviate from the
MC data by less than 5% for ZλB�a < 15 and less than 10% for
ZλB�a < 30. While yielding significantly stronger counterion con-
densation, the RJM predicts peak heights with an error of less than
10% at high coupling values ZλB�a > 5. Consistent with predictions
for the renormalized interaction parameters, significant differences
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in S(q) are observed in the counterion-dominated regime. All renor-
malization methods yield the correct hard-sphere limit at high salt
concentrations.

To assess the performance of the renormalization methods in
predicting thermodynamic properties, we analyzed the suspension
pressure in the OCM, p, along with its constituent contributions and
the osmotic compressibility, χosm. Our analysis shows that nonlinear
electrostatic effects become relevant for coupling values ZλB�a > 5,
in accordance with the findings for the structural properties. We
further analyzed the contribution to p from the density derivative
of the pair potential, pden, which appears in the RLRT method for
computing p using the generalized virial equation [Eq. (94)].We also
analyzed the volume pressure contribution, pvol, and the macroion
virial pressure contribution, pvir, which must be included in both the
RLRT and the SDHA methods.

In calculating the suspension pressure in the OCM, one con-
sistently needs to account for the dependence of the effective pair
potential, ueff(r; nm), on macroion density nm. We emphasized the
importance of separating the macroion density dependence emerg-
ing from charge renormalization from the thermodynamic density
dependence. In this context, we showed that pden contributes essen-
tially to p in the RLRT method but needs to be excluded from
the SDHA-based pressure calculation in order to obtain the correct
ideal-gas suspension pressure at high macroion dilution.

While predictions of structural properties by the various renor-
malization methods deviate significantly from the PM-MC data for
coupling strengths ZλB�a � 15, the corresponding pressure predic-
tions remain in close agreement with simulation data (within 5%)
even up to ZλB�a ≈ 30. The higher accuracy for thermodynamic
properties is explained by the observation that for the considered
zero-salt systems in the PM-MC simulations, where ϕ ≤ 0.1, the
counterion-related pressure contributions, associated with the
volume energy-derived pvol in the RLRT and SDHA methods, and
pjell and pCT in the RJM and CM methods, respectively, give the
dominant contribution to p and are overall well approximated by
the considered renormalization methods.

Regarding the overall performance of the various methods, the
following comments are in order. The CM-SC method with edge
linearization has been widely used for impermeable colloids due
to its simple implementation. However, mean linearization is not
only conceptually preferable36 but also improves the predictions for
g(r) and S(q). Implementing this alternative linearization requires
merely an extra integration step to compute the mean potential in
the numerical solution of the nonlinear PB equation.

The SDHA combined with the EPC method provides the most
accurate structural description at low coupling and high concentra-
tions, where it predicts Zeff > Z. This method is as easy to implement
as the pure CM, but its validity extends to high concentrations and
salinities by using, e.g., the virial theorem for the pressure calcu-
lation. In this parameter range, macroion–macroion correlations
are relevant, and predictions for the pressure based on the contact
theorem become accordingly poor.

The originators of the RJM argue14 that the renormalized
valence predicted by this method is more appropriate than that
from CM-based methods since a DLVO-type ueff(r) arises naturally
within the JA by integrating the electrostatic stress tensor over the
colloid surfaces.6,64 However, we showed that the RJM significantly
underestimates the pair structure in comparison with the PM-MC

simulation data for g(r). Notwithstanding this property, RJM
accurately predicts the suspension pressure over a wide range of
colloid concentrations.

The RLRT is shown in our analysis to be quite accurate in
predicting both structural and thermodynamic properties. The ther-
modynamic basis of its counterion association mechanism offers a
clear conceptual framework for the phenomenology behind charge
renormalization. While its implementation requires some effort, the
RLRT has the advantage of predicting the suspension free energy,
including the contribution from macroion–macroion interactions.

In summary, we have provided a detailed analysis and
assessment of widely used charge renormalization methods for
charge-stabilized colloidal suspensions. With this work, we have
aimed to guide the selection of appropriate methods, document their
benefits and limitations, and outline their practical implementation
under conditions where nonlinear screening effects are important.
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APPENDIX: SUSPENSION PRESSURE FROM RLRT
METHOD

We explain in more detail here how the suspension pres-
sure, p = pvol + pm, with pm = pvir + pden, is calculated in the OCM
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using the RLRT method31,44,45 based on Eq. (18) with renormalized
effective pair potential,

βueff(r) =

�����������
∞, 0 ≤ r ≤ σ,

λBZ
2
eff� exp (κeffa)1 + κeffa

�2 exp (−κeffr)
r

, r > σ.
(A1)

The effective interaction parameters, κeff and Zeff, are calculated
as described in Sec. III C. The volume pressure contribution, pvol,
derived from the volume energy, is due to the free microions
outside of an association shell of thickness δ. On accounting for
charge renormalization, pvol is given by

βpvol = ñ+ + ñ− −
Zeff(ñ+ − ñ−)κeffλB

4[1 + κeff(a + δ)]
2 , (A2)

where ñ± = Ñ±�[V(1 − ϕeff)] and Ñ± are mean number densities
and numbers of free microions, ϕeff = ϕ(1 + δ�a)3 is an effective
macroion volume fraction that accounts for the volume of the
association shell, and κeff =

�
4πλB(ñ+ + ñ−).

The remaining two terms in Eq. (18) add up to the macroion
pressure contribution [Eq. (94)],

pm = pvir + pden. (A3)

The first term is the virial contribution for an OCM system with the
density dependence of pair interactions disregarded,

pvir = nmkBT −
2π

3
n
2
m�

∞

0
drr

3
g(r)

@ueff(r)

@r

=

2π

3
n
2
m�

∞

σ+
dr r

2
g(r)ueff(r)(κeff r + 1)

+ 4nmkBTϕ g(σ
+), (A4)

where, in the second equality, we have singled out the contribution
from the macroion hard cores involving the contact value of g(r).
The second term on the right side of Eq. (A3), involving the
macroion density derivative of ueff, is calculated by accounting
only for variations of ueff with nm that are thermodynamically
relevant, disregarding the nm-dependencies of κeff and Zeff due to
charge renormalization. Furthermore, in taking the derivative with
respect to nm, electroneutrality must be maintained. For simplicity,
in the canonical ensemble, in which ZeffNm = Ñ+ − Ñ−, one obtains
@Zeff�@ϕ = 0. Therefore, the effective pair potential in RLRT
depends on concentration only via the effective screening parameter.

Assuming δ to be independent of nm, it follows that

pden = 2πn
3
m�

∞

σ+
dr r

2
g(r)

@ueff
@nm

= 2πn2m�
∞

σ+
dr r

2
g(r)ueff(r)γ�α − r

a
�, (A5)

where

α =
2κeffa

1 + κeffa
(A6)

and

γ = ϕ
@κeffa

@ϕ
=

κeffa

2(1 − ϕeff)
. (A7)

For a charge-renormalized suspension, the bulk pressure from
Eq. (A3) agrees precisely with that obtained from the (Gibbs-
Bogoliubov) first-order thermodynamic perturbation expansion and
OCM-based MC simulations.45
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