
Opportunities and Challenges in Service Layer Tra�ic
Engineering

Gangmuk Lim∗

UIUC
Aditya Prerepa∗

UIUC

Brighten Godfrey
UIUC and Broadcom

Radhika Mittal
UIUC

ABSTRACT
Optimizing request routing in large microservice-based ap-
plications is di�cult, especially when applications span mul-
tiple geo-distributed clusters. In this paper, inspired by ideas
from network tra�c engineering, we propose Service Layer
Tra�c Engineering (SLATE), a new framework for request
routing in microservices that span multiple clusters. SLATE
leverages global knowledge of cluster states and multi-hop
application graphs to centrally control the �ow of requests
in order to optimize end-to-end application latency and cost.
Realizing such a system requires tackling several technical
challenges unique to service layer, such as accounting for
di�erent request tra�c classes, multi-hop call trees, and ap-
plication latency pro�les. We identify such challenges and
build a preliminary prototype that addresses some of them.
Preliminary evaluations of our prototype show how SLATE
outperforms the state-of-the-art global load balancing ap-
proach (used by Meta’s Service Router and Google’s Tra�c
Director) by up to 3.5⇥ in average latency and reduces egress
bandwidth cost by up to 11.6⇥.
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1 INTRODUCTION
Modern cloud-native applications are built as a large collec-
tion of functional modules called microservices that carry
out narrow roles. Microservice-based applications may easily
have tens or hundreds of individual microservices and an
even larger number of endpoints within the services; Uber
has ⇡4,000 microservices and ⇡40,000 unique RPC endpoints
[17, 27]. Serving any particular request may result in a tree of
tens or hundreds of endpoint API calls across many microser-
vices, interleaving network communication and application-
level computation (Fig. 1). Increasingly, these microservices
are being deployed across multiple geo-distributed clusters,
in order to reduce the blast radius of failures, improve latency
by locating services close to users, and utilize multiple cloud
providers.
Such multi-cluster deployments of microservices intro-

duce a new dimension for optimizing performance: which
cluster should a request for a given microservice be directed
to? The default option is to use a local replica, in the same
cluster where the request arrives. But there are several rea-
sons why a given request might need to be redirected to a
remote cluster, such as when the local cluster is overloaded
or a service is not available in the local cluster. Today, de-
ployed systems generally use simple rules that extend basic
load balancing. The state-of-the-art systems, Google’s Tra�c
Director [9] and Meta’s Service Router [22], spill requests
over to a nearby cluster when the local cluster’s load exceeds
a threshold.
Our starting point is the observation that making multi-

cluster request routing decisions is actually a much more
subtle problem than load balancing or simple modi�cations
thereof. Optimal request routing must account for tradeo�s
between multiple resource types (cluster compute and la-
tency, and inter-cluster network latency and cost), global
allocation constraints, trees of dependent microservices, and
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more. This paper proposes Service Layer Tra�c Engineer-
ing (SLATE), a new architectural framework for optimizing
request routing in complex microservice-based applications
that span multiple clusters. Intuitively, global request-level
route optimization becomes a tra�c engineering problem, akin
to network-layer TE. Unlike traditional TE, which operates
at the packet processing level, SLATE controls the �ow of
requests that dictates service-level utilization, which leads
to a very di�erent set of considerations.
Our goal in this paper is to explore the space of opportu-

nities and challenges that result from the above perspective.
To do so, we built an initial SLATE prototype with a hierar-
chical design having three components: Global Controller,
Cluster Controller, and SLATE-proxy (data plane). SLATE
operates in the “service” layer (e.g. as part of the service
mesh infrastructure) that is separate from the application.
We evaluate SLATE in a multi-cluster K8S environment

with a real topology from Google Cloud Platform (GCP)
and di�erent microbenchmark applications under various
deployment scenarios. The evaluation shows there are signif-
icant opportunities to optimize request routing by carefully
considering how much to o�oad to remote clusters given
the application’s latency pro�le; which clusters to route to;
where in the application’s call topology to route cross-cluster;
and which subset of requests is most e�cient and e�ective
to route remotely. These considerations allow the prototype
to outperform the state-of-the-art approach taken by Tra�c
Director and Service Router by up to 3.5 times in latency and
reduce egress cost by up to 11.6 times.
While our initial prototype shows the promise of our ap-

proach, several challenges remain open for future research,
which are distinct to the service layer and do not appear in,
e.g., network-layer TE.
• Latency prediction: End-to-end latency of microservice-
based applications depends on not only individual services
but also where the request �ows in the application call tree
and invocation patterns between caller and callee services.
• Di�erence in requests: Requests that �ow into a single ser-
vice may have very di�erent compute and network resource
usage and call graphs. This results in di�erent implications
for routing, and the need for tra�c classi�cation.
• Robustness to misprediction: If latency predictions or tra�c
classi�cation are inaccurate, the system should realize it and
react appropriately.
• Scalability and fast reaction: Complexity of optimization
increases with the number of clusters, services, and tra�c
classes.
• Interaction with other systems: Routing requests to di�erent
clusters can a�ect the behavior of autoscalers. Also, ideal
request routing should consider application caching layer
and data locality for stateful services.
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Figure 1: An example call tree of a microservice-based ap-
plication deployed in multiple clusters. Nodes indicate mi-
croservices and edges indicate request �ows. Some services
are replicated in all clusters (e.g. B, C, D); others might be
partially replicated (e.g., A, E, F, G). Solid and dotted edges
indicate local and remote routing, respectively.

We discuss these in more detail in §5. In summary, we
believe service layer TE o�ers signi�cant opportunities for
optimization and technical challenges to explore.

2 BACKGROUND & MOTIVATION
Multi-cluster Deployment of Microservices. Microser-

vices are increasingly operated in multiple Kubernetes (K8S)
clusters – ranging from tens to almost thousands of clus-
ters [4, 6] – in many di�erent regions and data centers. Multi-
cluster deployments have several bene�ts: isolating failures
of individual clusters; improving latency with proximity to
di�erent populations of users; reducing reliance on a sin-
gle cloud provider; and taking advantage of price or feature
di�erences across cloud providers. Microservices in a multi-
cluster setup could be replicated in all clusters, or in only
a subset of clusters due to various reasons such as security,
data locality, or temporary service failure or decommission-
ing. A call tree of a single user request can cut across multiple
clusters for performance reasons (e.g., if the local cluster is
overloaded) or can be forced to do so due to partial replica-
tion (Fig. 1).

Cluster Autoscalers. To improve resource utilization and
latency, there is an active line of work on job scheduling [10,
18] and autoscaling [2, 16, 20, 23, 24, 26], adjusting the num-
ber of service replicas or nodes as needed. While this work
is making progress, it addresses resource allocation at the
level of applications or containers. It has two disadvantages
relevant for the focus of this paper. (1) It is too slow to react
to sudden load changes that can happen at � 1000⇥ faster
timescales than autoscaling. Common autoscalers operate
over seconds to minutes [14] including resource monitoring
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period, autoscaler interval period, and scaling overhead in-
cluding container image pull and application initialization be-
fore starting serving requests. (2) Regardless of timescale, au-
toscaling has no direct control over how requests are routed
among microservice instances, which in multicluster envi-
ronments can signi�cantly a�ect request latency and band-
width cost. Our work deals with the complementary problem
that happens at much �ner granularity after provisioning
the containers – the handling of individual requests.

Service Meshes and Load Balancing. As microservices
result in more distributed applications, they require many
network-related features – such as service discovery, encryp-
tion, telemetry, load balancing among replicas, and bridging
multi-cluster deployments. Instead of implementing these
features within the application, the application can utilize a
service mesh such as Istio [11], Linkerd [15], or Cilium [5].
The service mesh is a separate layer from the application
itself, with a centralized control plane and a distributed data
plane. The data plane elements are typically “sidecar” con-
tainers (often the Envoy proxy [7]) paired with each mi-
croservice instance. Today, load balancing of requests among
service replicas is done locally at each sidecar and uses rela-
tively simple policies like round-robin, consistent hashing, or
least outstanding requests. This can perform well under the
assumption that all server hosts are within the same cluster.
However, these assumptions do not hold in a multi-cluster
environment where requests can span the clusters.
Current Global Load Balancing. Some providers and

planet-scale deployments have global load balancing strate-
gies which enable cross-region load balancing – speci�cally,
Google’s Tra�c Director [9] and Meta’s ServiceRouter [22].
However, both systems are manually-con�gured capacity-
based heuristics, which make local, greedy decisions for
server choice and only consider the latency and cost impli-
cations of a single RPC hop (more details about the existing
global load balancing system will be explained in § 4). We
�nd that there are a rich set of scenarios where global knowl-
edge and optimization can yield substantially better latency
and cost results.
Surveying Cluster Operators. We surveyed1 the Istio

community, one of the most widely adopted service meshes,
on their Kubernetes multi-cluster deployment patterns to
understand the need for optimizing request routing. Full
results are available at [8]. The respondents2 ran a median
of ten to nineteen production clusters. 53% of respondents

1Our institution’s IRB reviewed the survey and determined that it is not
human subjects research and did not require IRB approval.
2The total number of responses is 31. Four of them were excluded since
they do not run multi-cluster and have less than 10 nodes. The respondents
of the survey were from a variety of internet businesses at varying scales,
from 2 clusters and a few nodes to over 50 clusters and thousands of nodes.
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Figure 2: SLATE system architecture

deployed at least one service in multiple clusters (called a
multi-cluster service). In these responses, 48% of services
deployed are multi-cluster services. Among the multi-cluster
service responses, most stated that they are su�ering from
considerable load imbalance between clusters – 50% of re-
spondents said this occurs for hours or longer, and 20% for
seconds or minutes. Out of our respondents, 81% utilized
cross-cluster routing, and cited various reasons (general load
balancing, minimizing latency, absence of a certain service
in clusters, data locality, etc.). However, all of them only rely
on simple load balancing (i.e., round robin, least response
time, consistent hashing), static load distribution [13], or
locality-based failover [12]. None of the respondents claim
to directly optimize for request latency or cost. The large
majority of the respondents (90%) reported that cross-cluster
routing optimization among multi-cluster services would be
useful for reasons such as optimizing application request la-
tency (67% of respondents), reducing bandwidth costs (62%),
reacting to load bursts (48%), and optimizing cloud compute
costs (33%). None of the respondents claim to use any sort
of global load balancing system.

3 PRELIMINARY DESIGN FOR SLATE
The overarching goal of SLATE is to globally optimize the
routing of requests to minimize latency and cost. To achieve
this, SLATE employs a hierarchical architecture (Fig. 2) where
SLATE-proxy is running in service meshes collecting �ne-
grained per-request stats, which are aggregated at cluster
level controller and then sent to Global Controller to run
end-to-end request routing optimization.
As mentioned in §2, routing in existing systems mostly

focuses on load balancing, with some enhancements, but
these only begin to scratch the surface of the problem which
we argue is a deeper tra�c engineering problem, that must
simultaneously handle four key aspects:
(1) What portion of inbound requests should be routed away

from the local cluster when local cluster is overloaded?
(2) Which cluster should we route those requests to?
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Figure 3: Limitation in capacity-based o�loading missing
better load-to-latency tradeo� opportunities.

(3) Where in the application topology should requests make
the cut when routing to remote clusters?

(4) Which subset (tra�c classes) of requests should be routed
to remote clusters?

SLATE is designed to tackle this problem space. We describe
our prototype design below, before presenting preliminary
results in §4 and open technical challenges in §5.

3.1 Data Plane
The SLATE-proxy is the data plane element in SLATE – it is
attached to each application instance as a sidecar extension
as per the service mesh architecture. (Other realizations of
the data plane, like a library-based sidecar within the ap-
plication process, are compatible with our design.) Its two
main jobs are (1) telemetry and (2) request routing policy en-
forcement. SLATE-proxy monitors and reports telemetry in
each microservice replica to the Global Controller, including
the load on the service, request speci�c information, latency,
trace information, and request tra�c classes. As a policy
enforcer, it executes request routing at per-request level for
each tra�c class based on the policies given by Global Con-
troller. The routing execution logic should be simple and
heavily optimized since it is in the critical path of request
processing.

3.2 Cluster Controller
The Cluster Controller acts as a metrics aggregator for a
certain region, to avoid the scaling limitations of having
every individual service connect to a global controller. The
Cluster Controller has the responsibility of aggregating and
relaying relevant per-service metrics to the Global Controller,
as well as attaching the cluster ID of the metrics, as each
service instance does not have the notion of which cluster
it belongs to. Additionally, when the Global Controller has
new rules for services in a cluster, those rules are pushed to
the Cluster Controller, which then redistributes those rules
to every relevant service.
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Figure 4: Empirical Cross-cluster routing threshold calcu-
lated by SLATE over di�erent network latency and loads.
The red dotted line indicates 100% local serving. Load in east
cluster is constant (100 RPS).

3.3 Global Controller
Request routing optimizer. The Global Controller per-

forms the global request routing optimization to minimize
latency and cost, which is formulated as a Mixed Integer Lin-
ear Program. Our formulation uses the concept of a tra�c
class, which is a subset of requests at a service; the partition-
ing of requests into classes can be chosen by the controller
(we return to this later). For each tra�c class, the formula-
tion speci�es the load-to-latency relationship, call tree, and
demand. Additionally, the formulation models clusters, inter-
cluster network latency, and egress bandwidth costs. It then
optimizes the speci�ed objective, such as minimizing mean
latency and/or cost, and generates optimized routing rules
for each service, tra�c class, and cluster, which are then
pushed to the corresponding Cluster Controller. Each rout-
ing rule speci�es the fraction of requests of a certain tra�c
class that should be sent to a certain cluster; standard load
balancing will then select the server within the cluster. The
execution of a rule may look something like the following:
“When a request matches class X, send 60% of requests to
the local cluster, 30% of requests to remote cluster B and
the remaining 10% to remote cluster C”. Notice how such
an output addresses all four aspects of the problem space
identi�ed at the start of this section.

Deriving Classes. We de�ne a request tra�c class based
on an arbitrary set of characteristics on a request. The overall
goal is for tra�c classes to allow more �ne-grained tra�c en-
gineering decisions based on di�erent resource implications
(compute, bandwidth, and call graph) of each class. Deriving
tra�c classes heavily depends on the application behavior,
along with the set of request attributes available to di�eren-
tiate them. We �nd that a signi�cant amount of di�erences
in requests can be captured by classi�cation using two broad
request attributes: (1) The service being called and (2) The
action being invoked on that service (i.e. RPC name). With
the HTTP-based applications that SLATE operates on, we
use the attributes of (1) service, (2) HTTP Method, and HTTP
Path. This is not a perfect heuristic by any measure. However,
applications are fundamentally potentially nondeterministic,
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and limiting the number of classes is required to have enough
observations to accurately characterize average behavior of
the class, and to scale the optimizer.

Latency Modeling. Accurately modeling application per-
formance is extremely di�cult especially at per-request level.
However, with appropriate request classi�cation, the average
behavior can be predicted. Based on software architecture
in common application serving frameworks, SLATE models
latency of each tra�c class in each service as a function of
load with a variation of a M/M/1 queuing model.

4 OPPORTUNITIES IN SLATE
We use the prototype of §3 to show there are signi�cant
opportunities for SLATE’s tra�c engineering perspective to
improve global request routing.

Baselines. We compare SLATE with the most advanced
global load balancing systems we could �nd: Google’s Traf-
�c Director [9] and Meta’s ServiceRouter [22], which both
use a greedy, static capacity-based o�oading policy. In both
systems, each service has a prede�ned capacity, which is in
terms of requests (of any type) per second or CPU utiliza-
tion. Requests beyond this capacity are greedily o�oaded
to the nearest region with available capacity. We note that
these systems are algorithmically roughly equivalent, de-
pending on how they are con�gured; in what follows, we
refer to this scheme as theWaterfall algorithm, using [9]’s
terminology. We compare SLATE with Waterfall in the con-
text of how well they tackle di�erent aspects of the request
routing problem space described in §3. We experimentally
study these schemes, with an application composed of three
microservices with ingress gateway chained linearly. Each
microservice in the application used for �g. 6a, �g. 6b, and
6d performs simple �le write operations. For �g. 6c, we used
anomaly detection application which is described in § 4.4 in
more detail. The applications are run in multi-node K8S clus-
ter with inter-cluster network latency added using Linux’s
tc command to emulate the network latency.

4.1 How much to route to remote clusters?
When one cluster receives more load than it can handle,
how much load needs to be routed to remote regions? Water-
fall routes all extra load beyond the con�gured static RPS
threshold to the nearest regions with available capacity. Fig. 3
illustrates the consequences of using a static threshold. In
the left graph, a conservative threshold forgoes opportuni-
ties to keep more tra�c local, o�oading to a remote cluster
too early, paying more network latency unnecessarily. On
the other hand, in the right graph, an aggressive threshold
forces tra�c to stay local when it may be better to o�oad
that tra�c to a remote cluster if the expected latency is lower.
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Figure 5: Example routing optimization cases in SLATE v.s.
global load balancing algorithm in the existing tra�c man-
agement systems (waterfall, and locality failover). We show
the examples for each of the four questions but note that they
are closely interlinked and should be considered together.
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Figure 6: Prototype experiments. Each experiment uses the
scenario described in § 5.
The optimal threshold changes with (1) load conditions

in every cluster, (2) inter-region network RTT, and (3) indi-
vidual services’ load-to-latency relationship. Fig. 4 shows the
empirical optimal routing threshold under di�erent inter-
cluster network latency and load conditions. In this scenario,
there are two clusters (West and East), and the load (RPS)
in West varies from 100 to 1000, while the other cluster is
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held at constant load (RPS=100). Fig. 6a shows the latency
CDF of each system when West is overloaded. SLATE out-
performs Waterfall by o�oading only until it improves the
latency. The optimal threshold would become more dynamic
as the load in the East cluster starts to vary, the number
of clusters grows, and application call tree becomes more
complex. In addition, cost is another dimension that should
be considered by an optimal solution. For example, if an
administrator values cost over latency, an optimal request
routing system (jointly optimizing latency and cost) should
re�ect it by keeping more tra�c local.

4.2 Which clusters to route to?
In deciding which cluster to o�oad requests to, Waterfall
uses a simple heuristic: choose the closest cluster with avail-
able capacity. However, this is greedy and prone to sub-
optimality, since Waterfall does not consider load globally.
In our example, we will use a real GCP topology consist-
ing of clusters in OR (Oregon), UT (Utah), IOW (Iowa), SC
(South Carolina). We have our emulator replicate the ob-
served median latency of inter-region VM-to-VM tra�c –
OR-UT: 30ms, UT-IOW: 20ms, IOW-SC: 35ms, OR-SC: 66ms,
and OR-IOW: 37ms. In the scenario of Fig. 5b where OR and
IOW are overloaded, they greedily o�oad to UT, which is
the closest to both overloaded regions and technically has
available capacity; they route nothing to SC since it is located
further with higher network latency than UT. However, due
to this greedy decision, UT is running at capacity and thus
requests incur higher average latency. A latency-optimal
solution would utilize the SC cluster. One might think of
tweaks to Waterfall for some cases, but fundamentally, opti-
mal request routing involves a matching problem for which
greedy algorithms can perform poorly [3]. Fig. 6b shows the
latency CDF in the aforementioned application for the same
load conditions where OR and IOW are overloaded.

4.3 Where in the topology to route?
Most conventional load balancing algorithms (including Wa-
terfall) are single-hop, meaning the load balancing decision
for a request only depends on the state of the corresponding
service’s replica pool. However, a single call to a microser-
vice can spawn entire trees of subsequent calls. Therefore,
the e�ect of a load balancing decision early in the call tree
can have ripple e�ects throughout the rest of the call tree.
Fig. 5c shows an anomaly detection application deployed in
multiple clusters. �' is the frontend, "% is a metrics pro-
cessor running an anomaly detection algorithm, and ⇡⌫ is
a database storing metrics (e.g., Prometheus [21])."% pulls
large amount of metrics data from ⇡⌫. In the us-west cluster,
⇡⌫ service is degraded or does not exist due to security con-
straints, regulation (e.g., GDPR), or a failure. In this scenario,
Waterfall and existing service meshes will do locality failover

load balancing, where requests will cross the cut between
clusters at"%!⇡⌫ (red arrow in Fig. 5c).
This is not optimal in terms of egress cost, since the re-

sponse size for ⇡⌫ ! "% is roughly ten times larger than
"% ! �'. If a request routing algorithm had the foresight
that this would occur, requests could have been routed earlier
across clusters in the topology at"%!�' (green arrow in
Fig. 5c). In our experiment, SLATE achieves 11.6⇥ less egress
cost. In addition, routing with knowledge of multiple future
hops is essential for latency minimization. With multi-hop
knowledge, requests destined for an overloaded service can
be routed to remote clusters before they run into those ser-
vices. In �g. 6c, Waterfall shows high latency since it only
starts to o�oad at "% in West whereas SLATE o�oads at
both at �' and"% .

4.4 Which subset of requests to route?
Existing load balancers treat the inbound requests at a service
as a homogeneous pool. While it is possible to make deci-
sions for the “average” request, this ignores potentially large
di�erences in the behavior of requests. Requests at a single
service may have dramatically di�erent load (in terms of
compute, disk, or network usage), and completely di�erent
call trees which in turn cause di�erent load on other ser-
vices. SLATE’s tra�c class technique gives a way of de�ning
smaller granularities which allow it to discover substantially
more optimal routing opportunities.
In Fig. 5d, each service has two request classes: ! and � ,

where � is signi�cantly more expensive than !. The ser-
vice is overloaded by high volumes of � requests. Waterfall
evenly o�oads the same fraction of requests in each request
class, whereas SLATE can account for di�erences in com-
putational load between the request classes and o�oad a
smaller number of just � requests. Fig. 6d shows the latency
result of the real application in the same set up. There are
many other scenarios with even more dramatic di�erences –
e.g., one request class could spawn sub-requests that need
to query a database in the origin cluster, whereas another
request class performs only stateless compute and o�oading
it is much cheaper and lower latency.

Summary. The examples above have some common themes
– request routing is a non-local problem (across global clusters,
and across multi-hop call graphs), and it is a rich problem
(involving tradeo�s between service’s latency pro�les and
network latency, request classes with diverse behavior, and
more). Instead of baking heuristics into limited load balanc-
ing decisions, fundamentally viewing request routing as a
tra�c engineering problem (and explicitly modeling the opti-
mization problem) yields signi�cant potential bene�ts even
with our relatively simple prototype.
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5 TECHNICAL CHALLENGES
Several technical challenges remain unresolved in Service
Layer Tra�c Engineering. We describe them below to pro-
mote future research.

Tra�c classi�cation. Finding the right tra�c classes is
critical to e�ectively steer request tra�c. The simplest op-
tion is to treat all requests homogeneously as a single class
(similar to Waterfall), but as we have seen in Fig. 6d, such
routing will miss large opportunities for optimization. At
the other end of the spectrum, an extremely large number of
classes could more accurately characterize tra�c in princi-
ple, but makes it hard to get enough samples of each class to
predict its behavior, and worsens performance of the central-
ized optimizer. Finding the right tradeo� with “just enough”
meaningful classes is the key. The majority of requests in
a meaningful tra�c class should spawn the same child call
graph and consume similar type and amount of resources in
each microservice. As a potential future research direction,
more advanced techniques, such as machine learning, could
be applied to derive a small yet precise set of classes based
on various request features, including service name, method,
URL, and request headers.
Latency prediction. Our prototype showed that even a

relatively simple model of latency can yield signi�cant gain
over the state of the art. A highly accurate latency model
would improve SLATE’s decisions, but is nontrivial due to
several considerations. First, it is desirable to learn latency
pro�les dynamically in production, rather than pro�ling
o�ine, where it may be di�cult to replicate production con-
ditions. Second, latency at a service ( is a function of not only
utilization at ( , but also of the latency of back-end services
that ( depends on. This is important because SLATE’s ac-
tions may modify those back-end latencies, creating complex
dependencies on modeling ( ’s latency. Third, di�erentiating
performance by tra�c class brings additional complexities:
each class can have a di�erent latency pro�le due to dif-
ferent call tree or di�erent execution path within the same
service. Fourth, latency will depend on resources on the spe-
ci�c machine, including its hardware and dynamic resource
allocation among workloads sharing a machine.

Resilience to prediction error. SLATE leverages the pre-
dictions discussed earlier, but it must account for inherent
unpredictability. Inaccuracies can stem from various sources,
such as limited expressiveness in the latency model, noisy
neighbors, changes in resource allocation, etc. These inac-
curacies could cause SLATE to shift tra�c in clearly sub-
optimal ways or even degrade performance rather than im-
prove it. A promising design approach would be to use the
optimizer’s output as a guideline, without fully relying on it.
For instance, if the optimizer suggests increasing the fraction
of requests routed to a certain cluster by 50%, SLATE could

implement incremental increases of, say, 10%, evaluate the
system objectives (latency and cost) using real-time teleme-
try, and proceed only if the objectives improve as predicted.
Any observed discrepancies would signal the need for re-
pro�ling or active adjustments to the routing rules. However,
how to handle such inaccuracies while still achieving the
optimization objectives robustly remains an open question.
Making the routing system resilient to these inaccuracies is
an interesting direction for future research.

Scalability & Fast reaction. The request routing system
for user-facing, latency-sensitive applications must be able to
react to microbursts, so an optimization time on the order of
seconds for large-scale deployments is desirable. To achieve
this, two key components are required: (1) a scalable control
plane and (2) a low-overhead data plane. The optimization
problem run by SLATE’s controller expands with the number
of clusters, services, and tra�c classes. Although heuristics
have been developed for network-layer TE (multicommodity
�ow) [1, 19] and might provide useful inspiration, ours is a
richer problem involving trees, multiple resource types, and
nonlinear latency functions that would need a di�erent set
of acceleration techniques.
Interaction between request routing and autoscaler.

Request routing decisions in the service layer can a�ect the
autoscaler’s behavior since cross-cluster request routing in-
creases resource utilization in remote clusters. Co-designing
the request routing layer and container resource allocation
layer is an interesting area to explore.

Caching & data locality. Application layer caching and
data locality are not explicitly considered in SLATE. Since
internal application logic is not externally observable (and in
particular to SLATE-proxy), it is hard to infer this behavior.
Caching systems in microservice-based applications [25] is
an orthogonal technique used to improve latency. Caching-
aware request routing framework can further optimize the
performance. It would be an interesting future research topic.

6 CONCLUSION
Microservice architectures e�ectively introduce a network
among application instances. We have argued that this cre-
ates a rich problem space, elevating what was once simple
load balancing into a tra�c engineering problem requiring
network-wide optimization. SLATE has shown, with a run-
ning implementation in the Envoy data plane, that this can
bring signi�cant bene�ts to applications in terms of lower
latency, lower bandwidth cost, and less need for overprovi-
sioning.
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