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THE BIGGER PICTURE Molecular anions and cations are important organizing elements for creating self-as-
sembled materials. Typically, only one of the two (either anions or cations) is used to direct assembly into an
organized structure, leaving the other as a minor spectator. This situation narrows the types of building
blocks used for self-assembly and suggests that there might be new opportunities to create diverse supra-
molecular architectures by involving both anions and cations. We present a simple strategy to activate di-
verse ammonium cations to co-assemble via salt bridges with various phosphate anions stabilized inside cy-
anostar macrocycles. Acid-base chemistry is used to generate the ionic building blocks, and with 3,000
amines available commercially, the scope is vast.We screened 19 nitrogen bases, discovered 13 assemblies,
and connected them to fluorophores, catalysts, drugs (Cipralex and Zytiga), and ionic liquids. This approach
holds promise for producing functional supramolecular materials.
SUMMARY
We expand the diversity of building blocks available for ionic assembly by introducing tertiary (3�) ammonium
cations into anion complexes. We use proton transfer between 3� amines and organo-phosphoric acids to
generate H-bonding cations (R3NH

+) and anions (RHPO4
�) that co-assemble with cyanostar macrocycles

into assemblies with 2:2:2 stoichiometry. At the heart is a supramolecular dimer where phosphate anions
form salt bridges by H-bonding with cations. Unlike conventional 4� ammonium cations, 3,000 commercial
amines provide diversity for high-throughput screening of 72 combinations (9 nitrogen bases and 8 acids),
producing 13 privileged partners for quantitative assembly. Yields depend on the solvent and sterics of
salt bridge formation. Ten more nitrogen bases connect to fluorophores (pyrene), photocatalysts (quinoline),
drugs (Cipralex, Zytiga), and ionic liquids (imidazole). The synthesis and examination of 82 new salts exem-
plify how acid-base chemistry can open a pipeline to a diversity of building blocks for exploring hierarchical
ionic assembly.
INTRODUCTION

Cations are emerging as functional and active partners in the hi-

erarchical assembly of anion-driven architectures.1,2,3,4 Exam-

ples include use of cations as templates in phosphate-driven

cages,5,6 fluorescent cations in optical materials,7,8,9,10 and as

structural partners in chemically driven crystallization.11 At the

heart of these assemblies is a receptor-anion complex. They

serve as the primary structure upon which higher levels of struc-

tural order are layered.12,13,14,15 Charge-balancing organic and

inorganic3,4,16 cations are a potential source of higher or-

der17,18,19,20 with crystal structures hinting at what might be
All rights are reserved, including those
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possible (Figure 1A). Most studies of anion-driven assembly

use quaternary (4�) ammonium as inert cations, and tetra-n-bu-

tylammonium cation (TBA+)21,22,23,24,25,26,27,28,29,30 is typical.

The N-substitution with four alkyl chains turns off specific inter-

actions,31 e.g., H-bonds, and structural ordering to help disfavor

ion pairing and liberate the anions for binding.32,33,34 Although

this approach has been successful, it comes at the expense

of diversity with few exceptions.3,33 To expand the chemical di-

versity, we explore use of tertiary (3�) ammonium cations that

are easy to make using acid-base chemistry. This strategy

also turns on directional H-bonding with the potential for salt

bridge formation in the assembly (Figure 1B),35,36 which is
Chem 10, 1–13, December 12, 2024 ª 2024 Elsevier Inc. 1
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Figure 1. Formation of hierarchical ionic assembly by leveraging proton transfer between acid and amine for forming salt bridges

(A and B) (A) Crystal structure of cyanostar, phenyl phosphate, and 4� TBA+ cations (CCDC# 2312047) providing inspiration for (B) replacing 4� cations with

H-bonding 3� cations to form salt bridges.

(C and D) (C) Cyanostar mixed with phenyl phosphoric acid and dicyclohexyl-methyl amine undergoes (D) proton transfer to form the anion and cation capable of

hierarchical formation of a 2:2:2 assembly (CCDC# 2312046) showing (1) NH, (2) OH, and (3) CH H-bonding.
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common in solids37,38,39,40 but rare41 in solution. The H-bonding

also turns on ion pairing in the building blocks (Figure 1D). It

is not clear; therefore, whether the NH H-bonds will favor
2 Chem 10, 1–13, December 12, 2024
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or disfavor product assembly. We explore these ideas by

docking 3� ammonium cations with the privileged 2:2 com-

plexes42 that are formed between cyanostar macrocycles and
3
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organo-phosphate/-phosphonate anions. We find that the 2:2

complex is stable enough to support salt bridges with the cati-

ons and that the yield of assembly is controlled by solvent and

sterics. We show how mixing bases, acids, and cyanostar al-

lows the formation of 2:2:2 assemblies (Figures 1C–1E) and

that the 82 examples explored herein open access to a new

layer of diversity and structural ordering in hierarchical ionic

assembly.

Use of 3� ammonium cations offers simplicity and scope to hi-

erarchical anion assembly. The cations and associated anions

can be made by proton transfer43,44 upon adding 3� amines to

acids with pKa differences exceeding 4,45 e.g., mixing 3� amines

(pKa�11) with phenyl phosphoric acid (pKa1�2) allows prepara-

tion of the ionic assembly partners. Diversity arises from the va-

riety of 3� amines available, �3,000 from commercial suppliers

alone. Generation of the same diversity with 4� cations using

synthetic preparation46,47 is a bottleneck for studying self-as-

sembly. By contrast, use of proton transfer between amine and

acid allows the numbers of salts to increase both quickly and re-

liably, e.g., mixing 9 amines and 8 acids reliably produces 72

combinations in quantitative yields. These numbers also allow

use of high-throughput screening, which remains rare in the

study of supramolecular systems.48,49,50,51,52 These screens

have the potential for identifying building blocks that form as-

semblies in high yield from a broad chemical space and help

probe the underlying features controlling assembly.

Use of acid-base reactions tomake ions and provide ionic sta-

bilization to molecular recognition53 and assembly54 is not new.

Early studies in anion recognition using polyaza receptors41,55

formed complexes with ammonium H-bonds to anions. Salt

bridges53,56 that were studied early on,57,58 e.g., amidinium car-

boxylate,32 have now been extended to assembly.59,60 Topical

uses61 involve CO2 capture where its conversion to carbonic

acid promotes proton transfer to an N-basic receptor rendering

it cationic for binding HCO3
� and crystallization. The inverse has

been used for amine recognition. Therein, pre-incorporation of

carboxylic acids into hosts facilitates proton transfer to amine

guests and formation of an ionic complex.53,62,63 Pre-incorpora-

tion of acidic or basic sites is believed53 to be a simple way to as-

sociate two ionic partners rather than trying to assemble three

components while avoiding competition from ion pairing. The

rarity of examples where acid, base, and receptor are mixed to

assemble into a single ionic species attests to this sentiment.

We present 82 examples where three charge-neutral compo-

nents (receptor, acid, and amine) are mixed to undergo proton

transfer and assemble into a 2:2:2 receptor-anion-cation spe-

cies. We were inspired to replace the TBA+ cations observed

in crystal structures64,65 formed between p-stacked cyanostars

and a dimer of phenyl phosphates (Figure 1A) with 3� ammonium

cations. We reasoned that the exposed oxygen atoms from the

phosphate dimers could serve as docking sites for the cations

(Figure 1B), but only if the 2:2 complex at the core was retained.

Therein, phosphate dimers are partially stabilized by OH,,,O
H-bonds.65,66,67,68,69 These are described as anti-electrostatic

H-bonds70 on account of bringing two anions together against

the dictates of Coulomb’s law. A potential failure mode of as-

sembly is therefore competition from stable, Coulomb-compli-

ant ion pairs (Figure 1C).43,44,53,71,72,73,74 This account describes
CHEMPR
both types of outcomes and how the simple preparation of di-

verse anions and cations allows for screening to identify privi-

leged partners that undergo quantitative assembly.We screened

19 N-bases (12 amines, 7 heterocycles; Figure 2) including di-

topics for polymerization,75 piperidine and analogs common in

drugs,76 as well as the antidepressant Cipralex (escitalopram,

ranked #188 by sales in 2022)77 and prostate cancer therapeutic

Zytiga (abiraterone acetate, ranked #51 by sales in 2022),77 fluo-

rescent compounds, quinolines used in photocatalysis,78 and

imidazoles used in ionic liquids73 and as a buffer (pKa 6.95).

We contrast these outcomes to conventional 4� ammonium cat-

ions, like TBA+, which have more reliable assembly and can also

offer a source of diversity but only after clearing synthetic bottle-

necks.46 This work outlines howboth anions and cations, instead

of just one of them, can be tuned to enable the creation of de-

sired assemblies by high-throughput screening as well as tradi-

tional synthetic design.

RESULTS AND DISCUSSION

To test our idea, we mixed cyanostar with phenyl phosphoric

acid and dicyclohexyl-methyl amine in a stochiometric amount.

The amine was selected because its protonated cation is soluble

in a variety of organic solvents. The acid was selected based on

our confidence in its ability to form a 2:2 complex.65 A crystal

structure (Figure 1E) shows formation of the 2:2:2 hierarchical

assembly held together with three types of hydrogen bonds. At

the center is the anion dimer connected by a pair of strong and

self-complementary OH,,,O hydrogen bonds (dO,,,O = 2.5 Å).

The cyanostar dimer stabilizes the doubly charged anion dimer

with 20 non-traditional CH,,,Ohydrogen bond donors. The third

layer of organization involves the charge-balancing ammonium

cations that are connected to the accessible oxygen atoms of

the anion dimer by N+–H,,,O� salt bridges (dN,,,O = 2.7 Å).

The H-bonded anion-cation contacts are classified as salt

bridges.56 These bridges involve a hydrogen bond between the

specific atoms believed to serve as the seat of the formal ionic

charges. In the crystal structure we used for inspiration,65 the

oxygen atom in question is sp2 hybridized and participates in a

P=O double bond. Consistently, this bond is shorter (1.46 Å)

than the P–O� single bond (1.52 Å) involved in OH,,,O� hydro-

gen bonding. However, in the 2:2:2 assembly formed with the 3�

cation (Figure 1E), the phosphorous-oxygen bond lengths ap-

proach each other at 1.48 and 1.50 Å, respectively. These

changes indicate that the 3� ammonium cation polarizes the

phosphate, shifting charge density away from the center of

the anion dimer such that it is now shared more evenly across

the two oxygen atoms. The charge on the accessible oxygen ac-

ceptor atom is close to�0.5, and we can classify the association

with the cation as a H-bonded salt bridge.

A key test for stability is whether the assembly remains intact

when dissolved in solution. This stability is observed when the

three components are mixed together in deuterated dichlorome-

thane in an equimolar ratio (Figure 3). Specifically, signatures for

the CH, OH, and NH H-bonds are observed in the 1H NMR spec-

tra (Figure 3).

Signatures of the receptor-anion pair at the heart of the as-

sembly are observed in the 1H NMR spectrum. The four aromatic
Chem 10, 1–13, December 12, 2024 3
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Figure 2. Diverse N-bases used in this work
Variety of 19 amines and N-heterocyclic bases tested in this study to explore a diverse set of building blocks. The pKa values are listed in green and yields of co-

assembly with phenyl phosphate anion and the cyanostar are listed in red.

Please cite this article in press as: Chen et al., Diversifying hierarchical ionic assembly by docking cations to anions as salt bridges, Chem (2024),
https://doi.org/10.1016/j.chempr.2024.07.005

Article
ll
peaks of the cyanostar double to generate an eight-line pattern

characteristic of the p-stacked cyanostar dimer as described

elsewhere.65 These eight peaks correspond to the emergence

of diastereomers defined by meso (68%) and chiral (32%) com-

binations of pairs of cyanostars. Formation of CH H-bonds from

the cyanostar to the anion dimer is seen in the �0.7-ppm down-

field shifts of cavity protons Ha and Hd. We also observe the pro-

tons at the center of the anti-electrostatic hydrogen bond65 in

their typical position around 15 ppmand split into diastereomeric

combinations. Their 15.1-ppm position is upfield relative to the

2:2:2 assembly formed with the TBA+ cation (15.4 ppm),65,79 in-

dicating that the OH,,,O H-bond is slightly weaker when as-

sembled with the 3� cation. This interpretation is consistent

with the longer O,,,O distance seen with the 3� ammonium

(2.50 Å) comparedwith the 4� TBA+ cation (2.45 Å) and the equal-

ization of charge across the phosphate that is induced by the

cation.

Direct evidence for the NH hydrogen bond in the salt bridge is

observed from the peak at 9.2 ppm. This peak was seen across

many of the acid-amine combinations examined (Figures S1–

S16). It is often shifted upfield relative to those seen in the spec-
4 Chem 10, 1–13, December 12, 2024
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tra of the ion pairs alone (12.0 ppm, Figure S4). The chemical shift

positions of the OH, NH, and CH hydrogen-bonded protons in

the 2:2:2 assembly follow a rank order expected for their relative

strengths (strong, medium, weak).47

The diffusion NMR (Figures 3 and S20) provides independent

verification that the ternary assembly is formed in solution.

Therein, all three components have the same diffusion coeffi-

cient (D = 5.4 ± 0.3 3 10�10 m2 s�1). Thus, the 2:2:2 assembly

seen in the crystals is the single unitary species present in

solution.

Although these studies emphasize the amines, the underlying

reliance on the acid-base reaction required for salt formation

also adds diversity to the anion. To explore this idea, we exam-

ined organo-phosphonic acids in place of phosphoric acid

(Figures S5–S16). We used 4-trifluoromethylphenyl vinyl phos-

phonic acid (CF3-phenyl-VPA).
30 Its corresponding phospho-

nate co-assembles with cyanostar as a TBA+ salt to form a cen-

tral complex in which the oxygen atoms are exposed and

available for H-bonding to 3� ammonium cations. It has a com-

parable acidity (pKa1 = 2.1) to facilitate the requisite proton trans-

fer. Despite these similarities, an equimolar mixture of the three
3



Figure 3. NMR characterization of 2:2:2 assembly
1H NMR spectra of 2:2:2 ternary assembly formed from an equimolar mixture of phenyl phosphoric acid, dicyclohexyl-methyl amine, and cyanostar. Diffusion

ordered spectroscopy (DOSY) data of the ternary assembly. (10 mM, CD2Cl2, 600 MHz, 298 K).
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ingredients using the triisopentylamine instead generates a mix-

ture of product and non-assembled starting materials

(Figure 4A). We observe signals for the 2:2:2 species (black

dots) corresponding to a 41% yield. Signals for the reactants in-

clude four aromatic peaks for the free cyanostar (black open

circles) and weak peaks for the ion pair stemming from the phos-

phonate at 7.45 ppm (red open circles). Addition of excess ion

pairs (2.5 equiv) helps drive formation of the 2:2:2 assembly.

We also observe the H-bond signal at 12.25 ppm (blue open

circle) for the excess ion pair. The presence of unique spectral

signatures for the product and reactants provides the opportu-

nity to better understand the equilibrium between ion pair and

assembly (Figure 4B).

For direct comparison with the exemplary phosphate assem-

bly (Figure 1), we combined the phosphonic acid with dicyclo-

hexyl-methyl amine and cyanostar. We found that several

factors change the position of equilibrium including tempera-

ture, concentration, addition of tetrabutylammonium chloride

(TBACl), and solvent (Figures S25–S35). Among these, solvent

has the most dramatic impact, allowing us to tune the yield be-

tween 0% and 100%. Changing the solvent from dichlorome-

thane to a 3:1 mixture of dichloromethane and acetonitrile in-

creases the proportion of 2:2:2 species from 52% to 100%

(Figure S30), whereas use of tetrachloroethane decreases the

yield to 0% in favor of the ion pair (Figure S27). Addition of

small amounts of water, e.g., 0.5 mL, to the 3:1 mixture of di-

chloromethane and acetonitrile (540 mL) led to formation of

the 2:2:2 complex with the cation dissociated in solution

(Figure S30).
CHEMPR
As a result of these sensitivity studies, we find that the phos-

phates regularly form stable 2:2:2 assemblies in dichlorome-

thane whereas the phosphonates require a more polar solvent

mixture (56:44 dichloromethane-to-acetonitrile)80 to achieve

similar outcomes.

High-throughput screening
In order to access the diversity represented by the �3,000 com-

mercially available 3� amines, we conducted high-throughput

screening. We limit these studies to a proof-of-concept demon-

stration to prototype themethod and evaluate its viability. We ex-

amined 72 combinations formed by mixing 9 commercially avail-

able amines and N-bases (a–i, Figure 5) with 8 acids of

commercial or synthetic origins (1–8, Figure 5) and combining

them with cyanostar in equimolar ratios. The four phosphoric

acids and four phosphonic acids we selected cover a range of

steric profiles65 and include two ditopic acids capable of forming

supramolecular polymers79 (Figure S36). Pure dichloromethane

is used with phosphoric acids to maximize the opportunity for

identifying acid-amine partners that support high-fidelity assem-

bly. Similarly, a 56:44 dichloromethane-acetonitrile mixture (vide

supra) is used for the phosphonic acids. The 9 bases were se-

lected to include diverse aliphatic amines and aromatic skele-

tons, a range of pKa values spanning 2.9–11.1, and different

steric profiles (Figures S37 and S38).

Across the 72 combinations (Figures S39–S110), we assign

the yields of formation of the 2:2:2 assembly using NMR spectra

(Figures S111–S190) and color code them accordingly. Of the 72

entries, the 50 colored green correspond to a heatmap for the
Chem 10, 1–13, December 12, 2024 5
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Figure 4. Equilibrium between reactants and

the 2:2:2 assembly products

(A) 1H NMR titration of the ion pair formed between

triisopentyl ammonium and 4-trifluoromethylphenyl

vinyl phosphonate into cyanostar (1 mM, CD2Cl2,

298 K, 600 MHz). Black solid circles are cyanostar

dimers, empty circles are the free cyanostar. Red

solid circles indicate OH H-bond and red empty

circles indicate signals of excess phosphonate. Blue

solid circles indicate NH H-bond in 2:2:2 assembly

and the empty blue circle indicates H-bond in ion

pair.

(B) Equilibrium between reactants composed of the

ammonium-phosphonate ion pair and free cyanos-

tar and the 2:2:2 assembly products.
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degree of formation of the 2:2:2 species. Dark through light green

corresponded to 100% through to low degrees of assembly

(16%–74%). We used intensities of the OH,,,O signal (�15

ppm) and/or the 8-line signature of the CH,,,Oprotons in the ar-

omatic region as indicators of the 2:2:2 species. This product

signature is inversely correlated with the reactants, which are re-

flected in the four lines for the free cyanostar peaks. The NH peak

for the 2:2:2 assembly has variable intensity, suggesting it is not

a reliable marker for either the assembly or ion pair.

The 12 yellow entries are classified from the observation of

100% free cyanostar peaks. The 10 gray entries show either

some degree of precipitation or ambiguous proton patterns not

associated with either cyanostar dimers or free cyanostar.

We observe 13 combinations with quantitative formation of the

target ternary assembly, indicating a 19% success rate. Phos-

phates favor assembly more than phosphonates and have a

higher success rate of 28%. These 13 high-fidelity combinations

represent a privileged set of receptor-anion-cation assembly

partners. They include rigid cyclohexyl and flexible isopentyl

substituents as well as bulky but rigid quinoline and acridine ar-

omatics. Their structural and functional diversity providemultiple

avenues for further exploration (vide infra).

In this screen, preparation of the salts and assemblies (2 days)

took about the same time as the collection and analysis (2 days)

of the 1H-NMR spectra. By contrast, we estimate46 that 72 salts
6 Chem 10, 1–13, December 12, 2024

CHEMPR 2243
using 4� ammonium cations would take

3–5 months to prepare. Thus, expedient

acid-base preparation removes synthetic

bottlenecks to reveal a bottleneck involv-

ing interpretation of the results, which is

ongoing. Our preliminary findings are given

next.

Interpretation of the screening
results for ionic assembly
From the yellow entries composed of p-tri-

fluoromethylpyridine (column I, pKa =

2.92), the difference in acidity is not large

enough to allow proton transfer with any

of the acids (pKa1 �2).45 Success with pyr-

idines (pKa 5–6) show that pKa differences

exceeding 3 are viable for assembly.
The ditopic phosphate (row 4) displays the signature of the

2:2:2 assembly with several cations to help lay a foundation for

formation of supramolecular polymers. The ditopic amine (col-

umn E) also has the potential for polymerization; however, it

yields precipitation, and further investigation is warranted.

We also observe the OH,,,O H-bond signature from a 3:2 cy-

anostar:anion assembly present as a minor species when com-

bining alkyl-phosphoric acid 1 with amines C and D. This obser-

vation is consistent with a previous account65 that the small size

of the alkyl substituent on the phosphate allows generation of a

triple stack of macrocycles. The extra macrocycle stabilizes the

anion dimer and introduces steric bulk that will disfavor further

assembly with cations. Despite this situation, this and other spe-

cies may be alternative targets of optimization using acid-base

screening.

Some combinations indicate that the amine’s sterics play a

role in controlling the yield of assembly. For instance, tribenzyl

amine (B) and dicyclohexyl-methyl amine (C) display different

degrees of assembly in the presence of phosphonic acid 6.

When combined with dichloromethane, we observe 0% and

75% yields of the corresponding 2:2:2 assemblies (Figure S33).

To investigate the steric origin of these differences, we gener-

ated molecular models of the 2:2:2 complexes. For this purpose,

we used molecular mechanics as an expedient way to evaluate

the idea. Briefly, we used the 2:2 complex formed between anion



A D

B C

Figure 5. High-throughput experimentation using 72 different combinations of acids and amines

(A and B) (A) Amines and N-heterocyclic bases listed A to I and (B) acids numbered 1 to 8.

(C) The dark green indicates 100% yield of ternary assembly, other gradations of green indicate varying degrees of assembly (16%–74%), the yellow indicates

100% free cyanostar and gray indicates precipitation or ambiguous NMR spectra. All samples at 1.6 mM in dichloromethane (1–4) or 54:44 dichloromethane-

acetonitrile (5–8).

(D) Combination of the 4� TBA+ cation with anions 1–8.
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6� and cyanostar and then froze the geometry in the one ob-

tained from the crystal structure.30 We docked the two cations,

BH+ and CH+, to the 2:2 complex and constrained the NH,,,O
bond distance (2.7 Å) to the one observed in the crystal of the

2:2:2 assembly (Figure 1E). In both cases, the three substituents

on the cation need to be rotated away from the NH donor to ex-

pose it for H-bonding and to minimize steric contacts. The con-

formation of this H-bonded cation was optimized subject to

these constraints, excised from the assembly, and its energy cal-

culated. The geometry of the ion pair was also optimized but

without constraints. The cation was again excised, and the en-

ergy of its conformation calculated (Figures S34 and S35). We

evaluated the strain energy associated with changing the geom-

etry of the cation in the ion pair (reactant) to the one in the 2:2:2

assembly (product). Consistent with a lower degree of assembly,

we observed that a greater strain energy (102 kJmol�1) is neces-

sary with cation BH+ compared with cation CH+ (55 kJ mol�1).

Similar effects were noted by McNally et al.81,82 looking at the

stabilities of ion pairs between ammonium and various anions.

These experiments also revealed cross-dependencies such

that 100% assembly depends not only on the structure of the

cation but also on its combination with specific anions. Combi-

nations C6 and D7 have 100% yields, suggesting C7 and D6
CHEMPR
would also favor assembly. However, their yields are 50% or

less. Cooperativity between assembly partners must also be

at play.

For the fluorescent acridinium cation (H) formed after proton

transfer, we observe different fluorescence outcomes (pale

green, yellow, green, and turquoise) when changing from acid

1 to acid 4 and examined under UV (Figure S191). These obser-

vations indicate the potential for environmentally responsive be-

haviors in the future.

We also examined triethylamine (TEA, Figure 2) on account

of the simplicity with which the diethylamine moiety [�NEt2]

can be introduced into various building blocks by

alkylation.83,84,85,86,87,88,89 TEA also supports high-fidelity for-

mation of the ternary assembly when combined with phenyl

phosphate and cyanostar (Figure S24). Inspired by this example,

we synthesized a diethylamino-functionalized pyrene (N) using

N-alkylation. This amine was observed to co-assemble with phe-

nyl phosphoric acid and cyanostar to afford the ternary assembly

(85%). This promising result opens a pathway to deliver various

functionalities to these 2:2:2 assemblies by synthetic design.

We took advantage of observations obtained from high-

throughput experiments as well as the molecular skeletons to

expand the diversity of amines (Figure 2) for ternary assembly.
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Figure 6. Crystal structure of the 2:2:2 assembly consisting of

1-methyl imidazolium, phenyl phosphate and cyanostar (CCDC#

2352315)

Green dashed lines indicate OH and NH hydrogen bonds.
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To simplify assessments, we used phenyl phosphoric acid in all

cases (Figures S219–S237). We expanded the scope of the

amines to cyclic ones that are ubiquitous in pharmaceutical

chemistry76 including 1-methylpyrrolidine (J), 1-methylpiperi-

dine (K), and 4-methylmorpholine (L) with assembly yields of

91%, 93%, and 90%, respectively. Triallylamine M, bearing

free alkene groups ready for further modification using olefin

metathesis, undergoes assembly (94%). We used a reported

quinoline photocatalyst78 O and found that it forms a high-fidel-

ity ternary assembly (100%). We observed that imidazole, with

wide use across various areas of ionic liquids, N-heterocyclic

carbene synthesis, and as pH buffers, also assembles with

100% yield. The 2:2:2 crystal structure shows the imidazolium

p stacking with the cyanostar at a distance of �3.75 Å and titled

21� from the macrocycle’s mean plane (Figure 6). Finally, drug

molecules escitalopram (R) and abiraterone acetate (S) bearing

trimethylamine or pyridine moieties, respectively, support the

ternary assembly with 87% and 67% yields. The lower yield

from S likely originates from its large steroidal structure. Thus,

we have explored the diversity of options to include 10 unique

compound classes offering broad access to areas spanning

chemistry, materials, and biology. This demonstration of diver-

sity shows the promising future of this simple assembly

methodology.

Our studies with 1� and 2� amines show that they do not cur-

rently support formation of 2:2:2 species (Figures S192–S200).

For these tests, we selected phenyl phosphoric acid (2) and

the CF3-phenyl-VPA (6) for combination with 1� and 2� amines,

respectively. After acid-base reaction, the salts have poor solu-

bility in dichloromethane as noted by Shinkai31 Amines with lon-

ger alkyl chains, e.g., changing the alkyl from dibutylamine to di-

dodecylamine, show modest improvements. We attribute these

observations to stronger ion pairing and multiple NH hydrogen

bonds.43,72 The highest percentage of assembly is �20%

when the soluble salt of phenyl phosphate and didodecyl ammo-

nium is combined with cyanostar. These observations suggest
8 Chem 10, 1–13, December 12, 2024
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that two or more H-bonds in the ion pair are sufficient to outcom-

pete formation of the assembly.

Comparison and scope for assembly with 4� ammonium
cations
Motivated by these studies, we re-examined the aprotic 4� TBA+

cation and compared it with the 3� cations formed by acid-base

chemistry. Previous work with organophosphates65 had found

the TBA+ to be dissociated from the 2:2 assemblies, but we rec-

ognized that use of a more polar medium (2:1 CD2Cl2:CD3CN)

likely promoted that outcome.65 The diffusion ordered spectro-

scopy (DOSY, Figure S251) of the assembly formed upon mixing

cyanostar with phenyl phosphate as the TBA+ salt in dichlorome-

thane show each component has the same diffusion coefficient.

Thus, the 2:2:2 species is also formed with the 4� TBA+ cation in

dichloromethane.

The TBA+ cation is routinely used to disfavor ion pairing and

promote anion complexation. Thus, we expect its 2:2:2 assem-

bly to be more stable relative to the ion pairs than what is possi-

ble with 3� ammonium cations. Using a competition study

(Figure S243) with a 1:1 mixture of dicyclohexyl-methyl ammo-

nium and TBA+ as phenyl phosphate salts, we observe 1H-

NMR peak shifts that slightly favor assembly with the 4� TBA+

cation. The resulting 60:40 ratio indicates a small energy differ-

ence of 1 kJ mol�1 (Figure S248).

These findings promote consideration of 4� ammonium and

other aprotic cations as additional sources of chemical diversity.

Our exploration of small-molecule, ionic isolation lattices9

(SMILES) and the charge-by-charge assemblies7,10 of Maeda

using anion salts of cationic dyes also suggests the scope for

ionic assembly is broader than considered with the 3� ammo-

nium cations alone. To this end, we added a new column to

the screen (Figure 5D) to highlight this possibility.

One key difference between 3� and 4� ammonium cations is

their synthetic preparation. Use of 3� ammonium cations allows

acid-base chemistry to add new combinations reliably and with-

out fuss. The salts produced by acid-base chemistry do not re-

quire any special synthetic methods and rely on simple mixing

and vacuum drying. Although they may be recrystallized to re-

move any residual acid or amine and raise purities, they are

not necessarily any different than most commercial supplies

that offer >98% purity. By contrast, the synthesis of 4� cations46

requires N-alkylation of 3� amines and metathesis to access di-

verse combinations. The time investments needed for identifying

reaction and purification conditions inhibit screening and inves-

tigations of how the cation’s structure impacts the final assem-

bly. However, these investments need not be prohibitive. Rather,

the development of diverse 4� ammonium cations, possibly lev-

eraging efforts in catalyst design90 and the elaboration of other

aprotic N+-based cations, is expected to be a fruitful area of

exploration.

Energetics of assembly
According to the different yields of 2:2:2 assembly when using

the 3� and 4� ammonium cations, we can estimate the form of

an energy profile of the system (Figure 7). The full energy land-

scape has been described with HSO4
� forming 2:2:2 species.64

In the present case; however, we are using the following
3



Figure 7. Schematic energy profile for as-

sembly

Curves show estimates of the potential wells that

describe the assembly of cyanostar with combi-

nations of different organophosphate anions and

nitrogen-based cations (blue curves). These are

compared with the estimated curve for assembly

with TBA-phenyl phosphate (gray curve). The re-

action-free energies (DGrxn/kJ mol�1) are listed for

B1 and C2while relative ordering is provided for F3

and H2.
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estimates and assumptions. First, we measured the ion pairing

(Figures S241 and S242) between TBA+ and phenyl phosphate

at �44 kJ mol�1 to help provide one anchor point for the energy

profile for this cation (gray line, Figure 7). Second, ion pairing is

believed to be stronger for the 3� ammonium cations31 and de-

pends on the identity82 of anion and cation, leading to the energy

spread shown in the bluewells for the salts ofB1,C2, F3, andH2.

Third, the 2:2:2 assembly using dicyclohexyl-methyl ammonium

with phenyl phosphate (C2) is only slightly weaker (1 kJ mol�1)

than with TBA+. Fourth, we use the 0%–100% populations to

generate reaction-free energies DGrxn (Figures S238–S240).

These span from less than 0 kJ mol�1 to more than �115 kJ

mol�1.91

We observe a large range in the reaction-free energies of as-

sembly. We believe that the variations in the energies of the

products are bigger than in the reactants. One source of the dif-

ference between the reactants (ion pair and cyanostar) and prod-

uct (2:2:2) is the additional strain energy in the cation needed for

formation of the assembly (vide supra). We used the calculated

strain energies on bulky BH+ and compact CH+ to situate the

bottom of the energy wells of their 2:2:2 assemblies �40 kJ

mol�1 apart from each other. In addition, a competition study

(Figure S252) suggests the 2:2:2 with aliphatic ammonium C2

is more stable than aromatic H2 by 3 kJ mol�1. We believe that

the strain energy is the biggest source of variation in both reac-

tion-free energies and overall stabilities of the 2:2:2 assemblies.

It follows; therefore, that stability depends on the identity of the

3� cation.

Conclusions
We used simple acid-base chemistry and stable anion-receptor

complexes to provide access to chemically diverse ammonium

cations for hierarchical ionic assembly. The 3� ammonium cati-
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ons are observed to dock with the primary

2:2 cyanostar-anion assembly where the

cations serve as a secondary layer of

structural ordering in the hierarchical as-

sembly. The ternary 2:2:2 assembly is in

a competitive equilibrium with the simple

1:1 ion pair plus free cyanostar. This equi-

librium depends on the stability of the

anion-receptor complex at the core. Phos-

phates show a greater number of high-

yield assemblies relative to phosphonates.

The position of equilibrium is highly sensi-
tive to the solvent used, with changes in polarity capable of turn-

ing assembly both on and off by favoring either the 2:2:2 assem-

bly or ion pair. A high-throughput screen of 72 combinations was

used to evaluate a diverse set of acids and bases and their corre-

sponding ionized forms as anions and cations. We used the

screening to rapidly identify 13 partners that produce the assem-

bly in quantitative yields. We identified the diethylamine

moiety,�NEt2, as a functional group that can be conveniently in-

troduced using high-yielding covalent chemistry, e.g., N-alkyla-

tion. Diversity was extended to cationic forms of photocatalysts,

drugmolecules, fluorophores, andacomponent of ionic liquids to

demonstrate straightforward integration with other sub-fields of

chemistry. The simplicity of preparation allows a manual NMR

screening process to be conducted. The NMR output affords in-

sight into the structural state of assembly and aids our under-

standing of molecule-level details, e.g., the effect of sterics and

strain on yield. These studies also identified 4� ammonium cati-

ons as potential sources of diversity to explore in the future after

removing synthesis bottlenecks. The systems presented are

exemplary of the benefits accruing when diverse cations and

anions are combined into a simple assembly pipeline to produce

hierarchicalmolecules andmaterials. Future applications include

the use of fluorescent materials and supramolecular polymers.

EXPERIMENTAL PROCEDURES

Resource availability
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edu).

Materials availability

The experimental dataset and materials generated are available from the lead

contact upon reasonable request.
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Data and code availability

All data is available from the lead contact upon reasonable request.

Accession codes

CCDC 2312046, 2312047, and 2352315 contain the supplementary crystallo-

graphic data for this paper. These data can be obtained free of charge via

www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.

cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre,

12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
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