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Abstract. The quantum approximate optimization algorithm (QAOA) has enjoyed 
increasing attention in noisy, intermediate-scale quantum computing with its application 
to combinatorial optimization problems. QAOA has the potential to demonstrate a quan-
tum advantage for NP-hard combinatorial optimization problems. As a hybrid quantum- 
classical algorithm, the classical component of QAOA resembles a simulation optimization 
problem in which the simulation outcomes are attainable only through a quantum com-
puter. The simulation that derives from QAOA exhibits two unique features that can have 
a substantial impact on the optimization process: (i) the variance of the stochastic objective 
values typically decreases in proportion to the optimality gap, and (ii) querying samples 
from a quantum computer introduces an additional latency overhead. In this paper, we 
introduce a novel stochastic trust-region method derived from a derivative-free, adaptive 
sampling trust-region optimization method intended to efficiently solve the classical opti-
mization problem in QAOA by explicitly taking into account the two mentioned character-
istics. The key idea behind the proposed algorithm involves constructing two separate 
local models in each iteration: a model of the objective function and a model of the variance 
of the objective function. Exploiting the variance model allows us to restrict the number of 
communications with the quantum computer and also helps navigate the nonconvex objec-
tive landscapes typical in QAOA optimization problems. We numerically demonstrate the 
superiority of our proposed algorithm using the SimOpt library and Qiskit when we con-
sider a metric of computational burden that explicitly accounts for communication costs.
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1. Introduction
Quantum computers have the potential to outperform their classical counterparts on numerous critical calcula-
tions. Diverse fields, including data science (Biamonte et al. 2017), quantum chemistry (Lanyon et al. 2010), con-
densed matter (Smith et al. 2019), nuclear physics (Cloët et al. 2019), and even finance (Orus et al. 2019), stand to 
benefit from quantum algorithms in various ways in the future. However, in the near-term, noisy, intermediate- 
scale quantum (NISQ) era (Preskill 2018), realizing these theoretical advantages is challenging. This is because 
canonical quantum algorithms used in many of these fields necessitate gate depths, the longest sequence of 
operations from the input (the initial state) to the output (the final measurement), that are only expected to be 
achievable with fault-tolerant, error-corrected quantum computers (Preskill 1998).
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Variational quantum algorithms (VQAs) aim to reduce gate depth requirements by exploiting classical 
computer-based optimization processes (Cerezo et al. 2021). These algorithms have demonstrated their effective-
ness on NISQ hardware in tasks such as dynamical evolution (Otten et al. 2019, Yuan et al. 2019), eigenvalue esti-
mation (O’Malley et al. 2016), machine learning (Mitarai et al. 2018, Otten et al. 2020), and various other problem 
domains (Cerezo et al. 2021). One of the primary challenges in VQAs lies in the optimization step, which is per-
formed on classical computers. The optimization step involves estimating the expected value of a cost function 
(and, potentially, its derivative information) derived from the problem being solved, using a limited number of 
samples—also referred to as “shots” in this context. The estimation of an expectation objective function ideally 
necessitates the employment of stochastic optimization algorithms. A straightforward way to quantify the over-
all complexity of a classical stochastic optimizer is by counting the total number of simulation oracle calls to 
achieve a zeroth or first order optimality gap of ✏. To estimate the cost function with a given a set of parameters 
(decision variables), multiple shots must be executed on a correspondingly parameterized quantum circuit. The 
estimation error is quantifiable analogous to Monte Carlo estimators. With this perspective, the optimization per-
formed on the classical computer can be seen as a form of simulation optimization (SO). For flexibility, we make 
no assumptions about the accessibility of (directional) derivatives in the VQA context; such a setting necessitates 
derivative-free SO solvers. Derivative-free SO solvers generate solution paths for simulations (stochastic oracles) 
that do not provide direct derivative observations—also known as zeroth order oracles. Before discussing SO in 
further detail, we begin by introducing a specific example of a VQA especially relevant to operations research.

1.1. Quantum Approximate Optimization Algorithm
The quantum approximate optimization algorithm (QAOA) is a particular and well-studied instance of a VQA, 
designed to solve a class of combinatorial optimization problems. In QAOA, once a combinatorial optimization 
problem (such as a max-cut problem with a given graph) is provided, a matrix HC—called the cost Hamiltonian—is 
specifically (and implicitly) constructed in such a way to ensure that its ground state (lowest eigenvalue) corre-
sponds to the optimal solution to the original combinatorial optimization problem. QAOA relies on what is known 
as the variational principle, which states hψ(x) |HC |ψ(x)i � E0, where E0 is the ground state energy, |ψ(x)i is a quan-
tum state vector parameterized by x, and hψ(x) | is the conjugate transpose of |ψ(x)i. We, thus, aim to solve the 
problem of the form

min
x2Rd

hψ(x) |HC |ψ(x)i: (1) 

Given that the quantum state vector collapses to a single state upon measurement, we must estimate 
hψ(x) |HC |ψ(x)i, which represents an expectation of a physical quantity by repeatedly measuring the quantum 
state and employing Monte Carlo sampling. For convenience of notation in discussing an optimization algo-
rithm, we let F(x,ξ) denote a stochastic objective function value (encoding all sources of stochasticity in the ran-
dom variable ξ), and rewrite (1) as

min
x2Rd

f (x) :à Eξ[F(x,ξ)]:

Figure 1 illustrates the steps of a QAOA. As in our discussion of general VQAs, the quantum computer in Figure 
1 can be viewed as a stochastic oracle that is iteratively queried by a classical computer. The parameters x 2 Rd 

that describe the state |ψ(x)i are updated by the classical computer based on the stochastic measurements (reali-
zations) of hψ(x) |HC |ψ(x)i using the quantum computer. After expending a maximum number of shots (budget) 
or reaching some other stopping criteria determined by the algorithm implemented in the classical computer, the 
best observed parameters xopt are measured one more time with a number of shots to yield an empirical discrete 
distribution on the (finite, but combinatorial, number of) possible bit strings feasible for the combinatorial opti-
mization problem. Near the optimal eigenstate solution to (1), state vectors have a high probability of collapsing 
to the optimal solution of the original combinatorial problem upon measurement. Therefore, the solution(s) of 
highest frequency is/are interpreted as candidates for the global optimizer of the combinatorial optimization 
problem.

1.1.1. Latency. The overall computational expense of executing a QAOA can be assessed in a similar way to 
how SO typically quantifies expense, which is by counting the number of shots needed to attain a sufficiently 
accurate solution. However, the current state of the art for quantum computers involves additional latencies that 
are less seriously considered when designing algorithms for state-of-the-art classical computers. Latencies can 
differ across various architectures. For instance, a superconducting quantum processor has measurement times 
in the range of a few microseconds; see Gambetta et al. (2007). In contrast, a trapped ion system can require 
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hundreds of microseconds to perform a measurement (Bruzewicz et al. 2019, Clark et al. 2021). These measure-
ment times are in addition to the duration of gate operations and system resets, all contributing to the time 
needed to acquire a single sample of shots. Moreover, many modern quantum computers operate in a cloud 
environment, leading to potential extra overhead from network latency. For perspective on the scale of latency 
costs, Sung et al. (2020) suggest that, whereas acquiring a single shot could take about 1:0 ⇥ 10�5 seconds in a 
supercomputing hardware environment, the overhead can be on the order of several seconds.

Hence, designing optimization algorithms that consider these latencies is crucial for efficiently using quantum 
resources in the near term. Making explicit latency considerations in the design of (theoretical) algorithms for 
VQAs was previously studied (Menickelly et al. 2023). The work that we present in this paper is meant to pro-
vide a slightly more heuristic, but practical, means to controlling latency within an adaptive sampling frame-
work; this is seen in our two-stage estimation approach.

1.1.2. State-Dependent Noise. Another distinction of the general VQA setting is that in problems of the form (1), 
it is well-known that an eigenstate should exhibit zero variance; see numerous references within Zhang et al. 
(2022). In this paper, we specifically define this characteristic as state-dependent noise, represented by the follow-
ing equation (for some constants C0, C1 � 0):

σ2(x)  C0 + C1(f (x)� fmin), (2) 
where σ2(x) :à Eξ[(F(x,ξ)� f (x))2] is the true variance function at x and fmin represents the optimal value. 
Whereas we do not practically require linearity in the optimality gap f (x)� fmin, as written in Equation (2), we 
coarsely imagine σ2(x) being bounded by some function of the optimality gap. In Figure 2, we demonstrate this 
phenomenon on a small-scale example of using a QAOA circuit for solving a max-cut problem on a toy graph. 
This zero-variance principle has been exploited recently in a quantum computer to self-verify whether a ground 
state for a given Hamiltonian was accurately prepared (Kokail et al. 2019). Recently, and also inspired by this 
phenomenon, Zhang et al. (2022) consider regularizing VQA cost functions with a measure of estimated variance.

We assume that f is bounded below and twice continuously differentiable in Rd and that the variance function 
is Lv-Lipschitz continuous, that is,

|σ2(x1)� σ2(x2) |  Lvkx1� x2k, ∀x1, x2 2 Rd:

The differentiability of f suggests that the distribution of solutions for the original combinatorial problem varies 
in proportion to perturbations in x. Therefore, we can expect the variance of the distribution to be continuous in 
x. This assumption is empirically justified in Section 6. We further remark that, in the VQA setting, there are no 

Figure 1. (Color online) Illustration of the QAOA 

Notes. Once a sufficiently good solution, xopt, is identified, a QAOA proceeds to obtain a probability distribution by measuring the quantum state 
|ψ(xopt)i. In this distribution, the solution with the highest frequency corresponds to the optimal solution for the original combinatorial problem, !⇤. In 
the context of a combinatorial optimization problem with cost Hamiltonian HC, a QAOA iteratively updates a parameter vector x to minimize the 
objective function value in (1).
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common random numbers that would allow for the faithful reproduction of a sample path, a feature that pre-
cludes the use of some techniques in SO (Ha et al. 2024b).

1.2. Adaptive Sampling
In derivative-free SO, stochastic trust-region optimization (TRO) has become increasingly popular as a methodol-
ogy for solving nonlinear and nonconvex optimization problems (Chang et al. 2013, Chen et al. 2018, Shashaani 
et al. 2018, Sun and Nocedal 2023, Cao et al. 2024). Stochastic TRO methods generate a random sequence of 
incumbents, denoted {Xk}, during a single run. Incumbent selection depends on approximations of the objective 
function by means of local objective models (OMs) and respective approximate minimizers of these models 
within dynamically sized neighborhoods. In the derivative-free setting, in which derivative information is 
assumed unavailable, these local OMs are typically computed via interpolation or regression techniques, 
employing objective value estimates at design points near the current incumbent. To ensure the accuracy of local 
OMs, it is imperative to have access to sufficiently accurate estimates of the objective values. In the stochastic 
optimization setting, sufficient accuracy can be achieved by averaging a sufficiently large number of samples. 
Thus, if an excessive number of simulation oracle calls (shots on a quantum computer) are required to attain this 
necessary precision, it becomes challenging to find a satisfactory approximate solution to the optimization prob-
lem within a reasonable time frame. Hence, for the purpose of judiciously determining a suitable sample size, 
Shashaani et al. (2018) introduce an adaptive sampling approach within the TRO framework: derivative-free, 
adaptive sampling trust-region optimization (ASTRO-DF). An adaptive sampling strategy dynamically deter-
mines the sample size by balancing the estimation error at each point with a measure of first order optimality 
error. This dynamic strategy produces a random sample size that is a stopping time with respect to the generated 
observations at the design point of interest. ASTRO-DF is shown to almost surely achieve optimal worst case effi-
ciency as measured by the expected total sample complexity (Ha et al. 2024b).

However, and as we set out to address in this paper, an adaptive sampling strategy requires repeated message 
passing between the optimization engine and the computer simulation, which may be prohibitive in latency- 
constrained settings. One of the key distinctions between the VQA setting and classical SO lies in the fact that in 
VQA, the simulation is entirely handled by the quantum computer. In the VQA setting, a quantum circuit is cali-
brated according to parameters x, which is then executed a number of times. Consequently, this process involves 
a nontrivial amount of communication between the quantum computer and the classical computer, adding an 
equally nontrivial computational burden to the overall optimization procedure. Thus, whereas an adaptive sam-
pling strategy can reduce the total number of replications by incrementally adding shots until the estimated 

Figure 2. (Color online) Optimality Gap and Population Variance of the Improving Sequence of Incumbents 

Notes. We used BOBYQA (Powell 2009) with the deterministic expectation statevector value for this toy problem and record the improving 
sequence of incumbent solutions returned. We illustrate, on the same log scale, the optimality gap of the incumbents found as well as the popula-
tion variance associated with the statevector value. As expected, population variance decays alongside the optimality gap but not necessarily 
monotonically. In this Plot, we simulate in Qiskit (Javadi-Abhari et al. 2021) a depth-10 QAOA circuit for solving a max-cut problem on a toy 
graph of six nodes for which the optimal solution is six.
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variance satisfies a particular condition, it may not necessarily alleviate the overall computational burden 
because of the communication costs.

We remark that, because ASTRO-DF requires an estimate of σ2(x) to compute the number of samples (shots) 
requested at a design point x, and because this number of shots scales linearly with the estimate of σ2(x), we 
anticipate that in state-dependent noise settings, decaying variance near optimality plays a mitigating role in the 
number of required shots as contrasted with the decreasing trust-region radius.

1.3. Our Contributions
Motivated by the particularities of VQA problems, we propose (i) a replacement for adaptive sampling in 
ASTRO-DF with a two-stage sampling strategy and (ii) a refinement for the local OM construction employed in 
ASTRO-DF. Both of these contributions hinge on a secondary local model that interpolates or regresses variance 
estimates of the stochastic objective function in order to locally approximate the variance of previously unevalu-
ated design points or incumbents. We term this secondary model the variance model (VM).

The proposed two-stage estimation approach ensures at most two communications between the optimization 
engine and the quantum computer for evaluation of each choice of parameters. The VM helps to achieve this by 
predicting the variance at previously unevaluated parameters. The two-stage estimation procedure, hence, 
begins with that initial prediction of variance from the local VM and then requests another set of shots through 
an additional communication with the quantum device only if further refinement of the objective estimate was 
deemed necessary. This alleviates the insistence, as in the usual adaptive sampling setting, on incremental 
sampling.

Predictions from the VM additionally aid in choosing interpolation points in new incumbent neighborhoods. 
In particular, when selecting design points for OM-building, we prioritize points that are predicted to exhibit 
lower variance. A particular advantage of this prioritization is that it provides a heuristic intended to escape local 
minima in objective functions exhibiting state-dependent noise.

We delve into the details of our proposed uses of a VM throughout the optimization process in Sections 3 and 
4, respectively.

2. Simulation Optimization with Trust Regions
Stochastic TRO is effective at solving zeroth order nonconvex stochastic optimization problems. Its salient feature 
is a natural ability to self-tune step sizes and facility for incorporating approximate curvature information. We 
provide a fairly generic framework that describes the vast majority of derivative-free stochastic TRO methods. A 
set of design points X k are evaluated in a neighborhood of the incumbent Xk. A local OM denoted by Mk : Rd !
R is fitted to those objective evaluations at X k. An approximate minimizer of Mk over a trust region of size �k, 
that is, B(Xk; �k), is computed and denoted X̃k+1. If X̃k+1 witnesses sufficient decrease over Xk in objective esti-
mates, then we set the next incumbent as Xk+1 à X̃k+1. ASTRO-DF is a variant of this class of algorithms that 
embeds adaptive sampling to determine a judicious lower bound on the number of oracle calls (shots) required 
at each design point to guarantee efficient optimization progress. The key element of this approach involves allo-
cating computational resources based on a measure of the optimality gap, such as krf (Xk)k, which ASTRO-DF 
consistently monitors by means of a positive power of the trust-region radius �k. As a result, it is typical that 
more computational effort is expended on points in closer proximity to first order critical regions. Before we 
expound on recent developments in ASTRO-DF, we begin by introducing the notation and definitions that are 
employed throughout this paper.

2.1. Notation and Definition
We use capital letters for random variables or random functions, bold fonts for vectors, script fonts for sets and 
random fields, and a sans serif font for matrices. For example, there are random sample sizes N, local models M, 
incumbents X, minimizers of local models X̃, and sets of design points X , each augmented with various super-
scripts and subscripts.

In addition to f (x) and F(x,ξ), we define a sample average estimate using N(x) samples

F(x, N(x)) à 1
N(x)

XN(x)

ià1
F(x,ξi), 

where ξi, i à 1, : : : , N(x) denote independent and identically distributed realizations of ξ.
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Definition 1 (Stochastic Interpolation Models). Let Φ(x) à (φ0(x),φ1(x), : : : ,φq(x)) form a linearly independent set of 
polynomials on Rd. With q à p + 1, X0

k :à Xk and the design set X k :à {Xj}p
jà0 ⇢ B(Xk; �k), consider the linear system

M(Φ,X k)"k à F(X k, N(X k)), (3) 
where

M(Φ,X k) à

φ1(X0
k) φ2(X0

k) ⋯ φq(X0
k)

φ1(X1
k) φ2(X1

k) ⋯ φq(X1
k)⋮ ⋮ ⋮ ⋮

φ1(X
p
k) φ2(X

p
k) ⋯ φq(X

p
k)

2

6666664

3

7777775
, F(X k, N(X k)) à

F(X0
k , N(X0

k))

F(X1
k , N(X1

k))⋮
F(Xp

k , N(Xp
k))

2

666664

3

777775
:

We say the set X k is poised with respect to Φ(x) if the matrix M(Φ,X k) is nonsingular, guaranteeing the existence 
of a solution "k à (βk, j, j à 0, 1, 2, : : : , p) to (3). In that case, the function Mk(x) à

Pp
jà0 βk, jφj(x) is a stochastic inter-

polation model of estimated values of f on B(Xk; �k).
We specialize Definition 1 to the case in which a diagonal model Hessian is employed.

Definition 2 (Stochastic Quadratic Interpolation Models with Diagonal Hessian). Let Φ(x) be the polynomial basis 
{1, x1, : : : , xd, x2

1, : : : , x2
d} so that p à 2d. Let X k be poised with respect to Φ(x) and let Mk(x) be a stochastic interpola-

tion model. Then, denoting Gk :à [βk, 1 βk, 2 ⋯ βk, d ]> and letting Hk be a d ⇥ d matrix with [Hk]j, j à βk, d+j and 
zeros off the diagonal, we refer to

Mk(x) à βk, 0 + (x�Xk)>Gk +
1
2 (x�Xk)>Hk(x�Xk) (4) 

as a stochastic quadratic interpolation model of f with a diagonal Hessian.
A particular utility of Definition 2 is that any coordinate stencil, such as X c

k à {Xk, Xk + e1�k, : : : , Xk + ed�k, Xk�
e1�k, : : : , Xk� ed�k}, where ei denotes the ith elementary basis vector of Rd, is clearly poised with respect to Φ(x); 
Definition 2 is, therefore, immediately nonvacuous.

Definition 3 (Filtration). A filtration {F k}k�1 over a probability space (⌦,P,F ) is an increasing sequence of random 
fields within F , where F k ⇢ F k+1 for every k, and all are subsets of F . The filtration F k roughly represents all 
available information when iteration k begins.

2.2. History-Informed ASTRO-DF
Recent augmentations to ASTRO-DF have aimed at boosting computational efficiency. We refer to ASTRO-DF 
with these collective augmentations as history-informed ASTRO-DF. History-informed ASTRO-DF includes a 
direct search (see, e.g., Ha and Shashaani 2023a, b) component in each iteration to increase the likelihood of find-
ing a new incumbent in each iteration without increasing the allotted budget. In cases in which X̃k+1, the approxi-
mate local OM minimizer, does not lead to a sufficient reduction in the estimated objective value, ASTRO-DF 
would declare the iteration as unsuccessful, immediately contracting the trust-region radius. This declaration of 
an unsuccessful iteration and trust-region contraction would occur even if some design points in X k yielded 
improvements over the incumbent. Electing to replace the next incumbent with the best design point from X k is 
tantamount to a direct search iteration. Practically, having fewer unsuccessful iterations because of the direct 
search feature amounts to a slower rate of decay in the trust-region radius �k; in turn, this slower rate keeps the 
sample size (which is proportional to ��4

k ; see (6)) from growing too quickly.
The efficiency of a TRO algorithm is closely tied to the geometry of the design set X k in each iteration because 

the choice of X k directly impacts the quality of the local OM. As an abstract example, if the design points in X k 
lie entirely in a single half-space intersected with the trust region, Mk is prone to having poor predictive accuracy 
on the complementary half-space. In addition to geometry, the quantity of design points contained in X k in each 
iteration plays a crucial role. Employing an excessive number of design points per iteration can lead to prolonged 
computation times. Conversely, if we use too few design points relative to the choice of basis Φ(x) in Definition 1
so that p + 1 < q, then System (3) is underdetermined, and local OMs need only satisfy error bounds for underde-
termined systems that are generally worse than the error bounds derivable for determined systems of Equation 
(3); see, for example, Conn et al. 2009, section 5). To address all of these issues, and based on practical experience, 
history-informed ASTRO-DF makes the explicit choice to select 2d + 1 design points per iteration and always 
employs a coordinate basis; see Definition 2. This choice of basis and X c

k allows us to capture some curvature 
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information within a reasonable computational time frame and simultaneously realizes a well-distributed place-
ment of design points within the trust region to faithfully approximate the objective function.

Moreover, history-informed ASTRO-DF consistently employs a (rotated) coordinate stencil like X c
k as the set of 

design points via a reuse strategy to conserve computational resources in each iteration. If there are previously 
evaluated design points located within the trust region in an iteration, the design point (denote it Y) that is far-
thest from the incumbent Xk is added to the design set X c

k, and the simulation results at that point are reused. 
The remaining members of the design set X c

k are selected deterministically by computing a set of mutually ortho-
normal vectors, all orthogonal to Y �Xk, and using these vectors to generate a rotated coordinate basis. The bene-
fit of employing a rotated coordinate basis is that we obtain a more precise gradient estimate at Xk than if we had 
used alternative bases (Ha and Shashaani 2023b); in fact, among all design sets satisfying |X k | à 2d + 1, a rotated 
coordinate basis is optimal in a precise sense (Ragonneau and Zhang 2023). As a practical matter, it is often the 
case that Y à Xk�1 after a successful iteration; therefore, this reuse strategy, in tandem with the direct search strat-
egy, extrapolate the search direction from the previous iteration. See Figure A.1 for an illustration of the rotated 
coordinate basis selection performed by history-informed ASTRO-DF.

Past empirical evidence demonstrates that history-informed ASTRO-DF is superior in performance to the older 
implementation of ASTRO-DF that makes a more general choice of basis (Ha and Shashaani 2023b) on a range of 
SO problems as measured by progress made within a simulation budget. Table 1 summarizes several key differ-
ences between the original ASTRO-DF and history-informed ASTRO-DF.

3. Point Selection
In this paper, we propose exploiting a previously discussed characteristic of VQAs, namely, the diminishing var-
iance with respect to the optimality gap. To harness the potential acceleration of ASTRO-DF through the utiliza-
tion of this distinctive property, we propose an extension of the point-selection strategy of history-informed 
ASTRO-DF. Central to the new point selection strategy is the construction of the VM: a local model that interpo-
lates or regresses variance estimates. Within ASTRO-DF, upon computation of sample average objective esti-
mates at each design point Xj

k 2 X k, we also estimate the variance, that is,

σ̂2(Xj
k, N(Xj

k)) à
1

N(Xj
k)
XN(Xj

k)

ià1
(F(Xj

k,ξi)� F(Xj
k, N(Xj

k)))
2, 

with no overhead incurred by the simulation oracle (quantum computer). Then, without additional oracle effort, 
we can construct a local VM by solving (3), in which we replace the right-hand side with estimated variance as 
opposed to estimated objective value. We denote this model by Mv

k : Rd ! R and its (approximate) minimizer 
within the trust region by X̃v

k . Coupled with the utilization of a direct search at each iteration in the history- 
informed ASTRO-DF, if the design set X c

k includes X̃v
k , then X̃v

k may be considered as a potential next incumbent 
Xk+1. Hence, X̃v

k can serve as the next incumbent with both predicted low variance and objective value despite 
not necessarily following the approximate gradient descent direction from Xk. Owing to this property and the 
correlation between variance and optimality gap frequently observed in VQAs, this proposed scheme provides a 
heuristic intended to drive the incumbents Xk to global optimality, particularly under specific variance structures 
such as convexity and Lipschitz continuity. We stress that this proposed scheme is indeed a heuristic because its 
utility is also a function of the trust-region radius, but it is a seemingly useful heuristic. Figure 3 demonstrates 
the effect of using two local models Mk and Mv

k in an example. We summarize one iteration of what we refer to 
as the two-model approach in Figure 3(b):

1. Construct Mv
k using variance estimates of previously evaluated design points and find its approximate mini-

mizer within the trust region, X̃v
k (steps 2–9 in Algorithm 5).

2. Determine the design set X k, containing X̃v
k (steps 1 and 10 in Algorithm 5) and estimate the function at each 

point in X k.

Table 1. Differences Between ASTRO-DF and HISTORY-INFOrmed ASTRO-DF

Algorithm ASTRO-DF History-informed ASTRO-DF

Selection of X k Random Rotated coordinate basis
|X k | (d + 1)(d + 2)=2 2d+ 1
Source of next incumbent Model Model and X k
|X k \ X k�1 | � 0 2

Ha, Shashaani, and Menickelly: Two-Stage Estimation and Variance Modeling for VQA 
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3. Construct Mk using objective estimates of design set X k and then find X̃k+1 that approximately minimizes Mk 
within the trust region (steps 3 and 4 in Algorithm 4).

4. Obtain an objective estimate at X̃k+1 and then utilize the direct search on all points in X k [ {X̃k+1} to determine 
the next incumbent Xk+1 (steps 5 and 6 in Algorithm 4).

We now demonstrate the efficacy of this two-model approach by performing some preliminary experiments 
designed to highlight the utility of seeking variance-minimizing design points. The test problem involves a sto-
chastic variant of the Himmelblau function. We intentionally design the stochastic noise to be state-dependent; 
in particular, we make the variance vanish at the global minimum of the Himmelblau function. The test problem 
is

F(x, ξ) à (x2
1 + x2 � 11)2 + (x1 + x2

2 � 7)2 + (x1 � x2)2 + |x1 � 3 | + ξ, (5) 

where ξ ~ N (0, | (x1� 3)(x2� 2) | ). The global minimum for the noiseless Himmelblau function is located at (3, 2); 
by construction, the variance at (3, 2) is zero, whereas the other local optima exhibit positive variance. Figure 4
depicts the expected objective function contours.

We begin our investigation by examining whether ASTRO-DF with a two-model approach, referred to as 
ASTRO-DF-2Model, can improve the likelihood of discovering the global optimum when compared directly 
with what we refer to as ASTRO-DF-1Model, which is history-informed ASTRO-DF. In Figure 5, we initialize 
ASTRO-DF-1Model and ASTRO-DF-2Model (and the Nelder–Mead algorithm for a baseline comparison) from 
various initial solutions and plot the best (estimated) objective values attained as a function of oracle calls, 
labeled as the simulation cost. To capture run-to-run variability of performance, each algorithm was executed 20 

Figure 3. (Color online) A Cartoon Illustrating the Effect of Using the Two Local Models 

(a) Original point selection strategy using Mk (b) New point selection strategy using both Mk and Mv
k

Notes. (a) The performance of the history-informed ASTRO-DF without the inclusion of Mv
k . In this case, X̃k+1 is further drawn to the basin of a 

local minimum. (b) The performance using two models, Mk and Mv
k . In this case, the point that minimizes Mv

k is used as a design point for inter-
polation, changing the shape of Mk. The minimizer of Mk in this case exhibits a global optimality-seeking behavior.

Figure 4. (Color online) Contour Plot of the Expectation of (5) 

Notes. Each labeled point corresponds to an initial solution shown in Figures 5 and 6. The global minimum is attained at (3, 2).
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times (macroreplications). This entailed generating 20 distinct sets of {Xk} until our predefined computational 
budget was exhausted.

From each initial point, ASTRO-DF-2Model exhibits a higher probability of identifying the basin of (3, 2) than 
ASTRO-DF-1Model. Notably, when the initial point is relatively far from any local minimum (Figure 5, (a) and 
(b)), it becomes evident that ASTRO-DF-2Model excels at discovering the global minimum. Furthermore, when 
the optimization process is initialized near a local optimum (Figure 5, (d)–(f)), whereas some runs of ASTRO-DF- 
2Model may be slower than others, the majority of them still manage to reach the global minimum eventually. 
Finally, when the initial point is placed relatively near the global minimum (Figure 6, (a) and (b)), the conver-
gence rate can be relatively slow, taking a while to make the trust region radius sufficiently small to identify a 

Figure 6. (Color online) Performance on (5) with 95% Confidence Interval 

(a) Small budget (b) Large budget

Notes. The y-axis is again on a logarithmic scale. The initial point, (3, 3), is relatively close to the global minimum.

Figure 5. (Color online) Performance of Solvers on (5) with Various Initial Points 

(a) Initial point = (−5, −5) (b) Initial point = (0, 0) (c) Initial point = (−2, −2)

(d) Initial point = (3, −3) (e) Initial point = (−3, −3) (f) Initial point = (−2, 3)

Notes. Translucent bands represent a 95% confidence interval over 20 macroreplications and solid lines represent mean performance. The y-axis 
is on a logarithmic scale.
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new incumbent; nonetheless, with a reasonably large budget, both variants of ASTRO-DF eventually find a 
decrease that is more stable across macroreplications compared with Nelder–Mead.

4. Sample Size Selection
In the original implementation of ASTRO-DF (Shashaani et al. 2018), the sample size at any design point x 2 Rd is 
determined by the formula

Nk(x) à min n � λk :
σ̂(x, n)ÇÇÇ

n
p  κ�2

kÇÇÇÇÇ
λk

p
� ⌧

, (6) 

where {λk} represents a deterministically increasing sequence with logarithmic growth that represents the mini-
mum sample size at iteration k and κ > 0 is a user-defined constant. The right-hand side of the inequality in (6) is 
a mildly deflated proxy for the first order optimality gap; without additional assumptions beyond smoothness, 
in a derivative-free setting, the true gradient norm kGkk is tracked by the trust-region radius if the error in objec-
tive estimates is bounded by a factor of �2

k—a Taylor-like error bound. Enforcing a lockstep between estimation 
error and optimization error (the left- and right-hand sides in Equation (6)) helps identify a sample size that is 
sufficiently large for the purpose of bounding errors but not so large as to unnecessarily hamstring algorithm 
efficiency. The ideal sample size (provided it is larger than λk) should satisfy the lower bound

Nk(x) � λk
σ2(x)
κ2�4

k
: (7) 

In practice, because σ2(x) is typically unknown, its most recent estimate is used to assess (7). If the sample size is 
too small to satisfy (7), then the sample size is increased by one (or a small batch size) until (6) is satisfied, render-
ing Nk(x) a stopping time learned on the fly (using the new observations) and adapting tightly to the stipulated 
precision in estimated quantities. In particular, Nk(x) is the first sample size satisfying

Nk(x) � λk
σ̂2(x, Nk(x))
κ2�4

k
: (8) 

As discussed, when faced with the issue of latency in accessing a quantum device in the VQA setting, this 
streaming approach to adaptive sampling becomes costly because each pass through the streaming loop incurs 
additional communication costs. To address this issue, we propose two-stage estimation strategies to restrict the 
number of communications with the quantum computer to at most two. We consider three distinct two-stage 
estimation strategies, each differing in how they select their first stage sample size.

4.1. Two-Stage Estimation Using First Stage Sample Size #k
In this case, irrespective of the actual variance at x, the first stage sample size is Nk, 1(x) à dλke (which slowly 
grows with k); the corresponding estimated variance becomes σ̂2(x,λk). Then, the second stage sample size is 
computed as

Nk(x) à
&

λkmax 1, σ̂
2(x,λk)
κ2�4

k

( )’

, (9) 

which is derived from (6). This two-stage process is summarized in Algorithm 1.
Algorithm 1 (NkÜxá$TwoStageLambda(%k , x, &,F k))

Require: trust-region radius �k, design point x, and minimum sample size λk. 
1: Set Nk, 1(x) à dλke and evaluate the estimate σ̂2(x, Nk, 1(x)):
2: Return Nk(x) using (9)

An obvious criticism of this strategy is the large estimation error that can result when λk is too small. If 
σ̂2(x,λk) greatly overestimates the true variance, then efficiency suffers from requiring an unnecessarily large 
Nk(x) in the second stage. On the other hand, if σ̂2(x,λk) greatly underestimates the true variance, then progress 
may be impeded; by stopping the sampling prematurely, we may incur less communication cost, but the proba-
bility of choosing worse incumbents is heightened. Therefore, the main goal of the first stage sample size should 
be to attain an accurate variance estimate, motivating the next strategy.
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4.2. Two-Stage Estimation Using Variance Estimates from Mv
k

To ameliorate errors in variance estimation, we double-purpose the VM described in Section 3 to derive a first 
stage sample size Nk, 1 with the predicted variance at x, that is,

Nk, 1(x) à
&

λkmax 1, Mv
k(x)
κ2�4

k

( )’

: (10) 

We then compute the estimated variance σ̂2(x, Nk, 1(x)) and readjust the sample size, if needed, for the second 
stage in a bid to meet the (8) criterion. This two-stage estimation technique is summarized in Algorithm 2.
Algorithm 2 (NkÜxá$TwoStageVarianceModel(�k, x, Mv

k ,κ,F k))
Require: trust-region radius �k, design point x, variance model Mv

k , and history F k. 
1: Set Nk, 1(x) using (10) and evaluate the estimate σ̂2(x, Nk, 1(x)):
2: Return

Nk(x) à max Nk, 1(x),
&

λk
σ̂2(x, Nk, 1(x))
κ2�4

k

’( )

:

This strategy presents a new challenge: a poor local model Mv
k leads to excessively large predicted variance, again 

leading to an unnecessary over-expense to our budget. This consideration motivates our final strategy, which 
hybridizes Algorithms 1 and 2.

4.3. Hybrid Two-Stage Estimation
Although our general preference is to utilize Mv

k to derive the first stage sample size (Algorithm 2) over λk (Algo-
rithm 1), in cases in which Mv

k proves to be inaccurate (particularly, Mv
k overestimates σ2(x)), this strategy pivots 

to employing λk many first stage samples instead. As a criterion for measuring the quality of the Mv
k prediction, 

we use a heuristic exploiting the assumed Lipschitz continuity of the variance function. Having a Lipschitz- 
continuous variance function implies that large differences (more than a constant factor times kx�Xkk) between 
Mv

k(x) and the variance estimate at the current incumbent, Mv
k(Xk) à σ̂2(Xk, Nk�1), signals inaccuracy in prediction 

of variance at x. To see why, note that, given a constant c� > 0, for large k (that depends on c�) with probability 
one, we have

|Mv
k(x)� σ̂

2(Xk, Nk�1) |  |Mv
k(x)� σ2(x) | + |σ2(x)� σ2(Xk) | + |σ2(Xk)� σ̂2(Xk, Nk�1) |  (Gv

max + Lv + c�)�k, 

where Gv
max is an upper bound on the gradient of the variance function. The inequality follows from a Taylor 

expansion, the assumption of Lipschitz continuous variance, and the adaptive sample size.
Hence, if Mv

k(x) � σ̂
2(Xk, Nk�1) + cv�k, for some cv > 0 dependent on the variance Lipschitz constant (approxi-

mating the constant coefficient of �k in the above upper bound of |Mv
k(x)� σ̂

2(Xk, Nk�1) |), then the prediction is 
deemed inaccurate, and we resort to employing Nk, 1(x) à λk. This hybrid two-stage estimation algorithm is out-
lined in Algorithm 3.

Algorithm 3 (Nk(x)àTwoStageHybrid(�k, x, Mv
k ,κ, Lv,F k))

Require: trust-region radius �k, design point x, the VM Mv
k , constant cv, and history F k. 

1: if Mv
k(x) � σ̂

2(Xk, Nk�1) + cv�k then
2: Call Algorithm 1.
3: else
4: Call Algorithm 2.
5: end if

A primary challenge with Algorithm 3 is that Lv and Gv
max are unknown, requiring cv to be determined empiri-

cally. Because the aim is to avoid using excessively large sample sizes for the initial variance estimate in (10), a 
problem caused by the inaccurate VM, we can set cv as a threshold for the sample size (10) that fits within our 
practical budget. We suggest setting cv larger than the approximated Lipschitz constant, considering the avail-
able computational budget. We set this threshold to 10 in our numerical experiments.

It is important to note that Algorithms 1–3 are exclusively employed for new design points x that have not 
been previously evaluated. When x is a design point that has been previously evaluated, a variance estimate and 
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initial sample sizes at x are already known. Whenever we reevaluate points, we obtain the second stage sample 
size directly as

Nk(x) à max Nk�1(x),
&

λkmax 1, σ̂
2(x, Nk�1(x))
κ�4

k

( )’( )

, (11) 

where Nk�1(x) denotes the total number of simulation oracle calls performed up until the (k� 1)th iteration.
We remark that all our proposed two-stage sample sizes are subject to a probability of not actually satisfying 

the criterion in (8). Therefore, they are theoretically suboptimal compared with employing (6) to find the right 
sample size. We recall that, despite sacrificing the theoretical guarantees that come with determining an optimal 
amount of simulation effort, these two-stage sample sizes come with a practical benefit of substantially reducing 
communications between the classical and quantum computers.

5. ASTRO-DF Augmented by a Variance Model (ASTRO-DF-VM)
In this section, we present the algorithm ASTRO-DF-VM, which incorporates the novel components discussed in 
the two previous sections, namely, the VM-informed point selection (Section 3) and two-stage estimation strategy 
(Section 4). Pseudocode for ASTRO-DF-VM is presented in Algorithm 4. Note that, for notational brevity, the 
index m distinguishing ASTRO-DF-VMm correspond to which of the three distinct two-stage estimation algo-
rithms is employed in Algorithm 4.
Algorithm 4 (ASTRO-DF-VMm for m‰f1,2,3g)

Require: Initial incumbent x0 2 Rd, initial and maximum trust-region radius �0, �max > 0, model fitness thresh-
olds 0 < η1 < η2 < 1 and certification threshold µ > 0, sufficient reduction constant θ > 0, expansion and 
shrinkage constants γ1 > 1 and γ2 2 (0, 1), sample size lower bound sequence {λk}, adaptive sampling constant 
κ > 0, and a Lipschitz constant estimate for the variance function cv. 
1: for k à 0, 1, 2, : : : do
2: Design Set Selection: Select X k à {Xj

k}
2d
jà0 ⇢ B(Xk; �k) by calling Algorithm 5.

3: OM Construction: For all j à 0, 1, : : : , 2d, estimate F(Xj
k, N(Xj

k)) using the sample size determined by Algo-
rithm m and construct the model Mk via (3).

4: Subproblem: Compute X̃k+1 ⇡ arg minx2B(Xk;�k)Mk(x):
5: Candidate Evaluation: Use Ñk+1 à N(X̃k+1) with Algorithm m to get F(X̃k+1, Ñk+1). Define the best design point 

X̂k+1 à arg minx2X k\Xk
F(x, Nk(x)), its sample size N̂k+1 à N(X̂k+1), incumbent’s sample size N̂k à N(Xk), and 

reductions obtained by 
- direct search: R̂k à F(Xk, N̂k)� F(X̂k+1, N̂k+1),
- subproblem: R̃k à F(Xk, N̂k)� F(X̃k+1, Ñk+1),
- and the OM: Rk à Mk(Xk)�Mk(X̃k+1).

6: Update: Set

(Xk+1, Nk+1, �k+1) à

(X̂k+1, N̂k+1,γ1�k ∧ �max) if R̂k > max{R̃k,θ�2
k},

(X̃k+1, Ñk+1,γ1�k ∧ �max) if R̃k � η2Rk and kGkk �
�k
µ

,

(X̃k+1, Ñk+1, �k) if R̃k � η1Rk and kGkk �
�k
µ

,

(Xk, N̂k,γ2�k) otherwise,

8
>>>>>><

>>>>>>:

and k à k + 1.
7: end for.

5.1. Construction of the Local Model Mv
k

In each iteration of ASTRO-DF-VM, the construction of Mv
k occurs prior to the selection of X k; hence, Mv

k is 
always constructed using previously evaluated points from observations in the filtration F k�1, the set of which 
we denote by X v

k . This means the deterministic coordinate basis geometry employed for constructing X k cannot 
be used for X v

k . Moreover, in the early iterations of ASTRO-DF-VM, X v
k may not have many points in it; an inter-

polation or regression with insufficient data can lead to low predictive accuracy. To address this, we propose a 
consistent approach for constructing Mv

k in Algorithm 5, expanding the trust region with a parameter w > 1 until 
the number of previously evaluated design points within the trust region exceeds 2d. This condition is satisfiable 
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in every iteration except the zeroth iteration. In our effort to minimize the expansion of the trust region, the 
parameter w is set to be close to one. We construct the VM Mv

k using all the design points within the expanded 
trust region X v

k , provided M(Φ,X v
k) in Definition 1 with the monomial basis Φ�employed in Definition 2 has a 

defined pseudoinverse. If |X v
k | à 2d + 1, we build a stochastic quadratic interpolation model with a diagonal Hes-

sian. If |X v
k | > 2d + 1, we construct a regression model with the same monomial basis.

In instances in which it is not possible to construct the VM Mv
k , that is, in the first iteration or when M(Φ,Xv

k)
does not admit a pseudoinverse, we elect not to construct Mv

k at all. In such cases, we select the design set for Mk 
using Algorithm A.1, the same approach used in history-informed ASTRO-DF for the purpose of model con-
struction. It is worth noting that the case in which M(Φ,X k) was not pseudoinvertible very rarely occurred after 
the zeroth iteration in our numerical experiments. This is because the previously evaluated design points are 
likely well-poised as the design set X k includes at least 2d� 1 new design points with a rotated coordinate basis 
(see the appendix).

Algorithm 5 ([X k, Mv
k] à DesignSetSelection-VM(Xk, �k,F k, w, k))

Require: current incumbent Xk, trust-region radius �k, history F k, and some constants w > 1 and cd 2 (0, 0:3). 
1: Select X k à {Xj

k}
2d
jà0 ⇢ B(Xk; �k) by calling Algorithm A.1.

2: if k > 0 then
3: Initialize ℓ à 0
4: repeat
5: Set ℓ à ℓ+ 1:
6: until |X v

k | � 2d + 1.
7: if M(Φ,X v

k) is pseudoinvertible then
8: VM Subproblem: Construct Mv

k and compute X̃v
k ⇡ arg minx2B(Xk;�k)M

v
k(x).

9: Two-Stage Estimation: Use Ñv
k à N(X̃v

k) with Algorithm m to get F(X̃v
k , Ñv

k).
10: Design Set Update: Find the closest point in X k to the VM minimizer X̃v

k , that is, ̃j à arg minj2{0, : : : , 2d}kX
j
k�

X̃v
kk and replace (Xj̃

k, F(Xj̃
k, N(Xj̃

k)) with (X̃v
k , F(X̃v

k , Ñv
k)) if j̃ ∉ {0} and kXj̃

k� X̃v
kk > cd�k (ensuring that the 

two points are not too close).
11: end if
12: end if
13: return [X k, Mv

k].

5.2. Selection of the Design Set Xk
ASTRO-DF-VM constructs a stochastic quadratic interpolation model with a diagonal Hessian. This construction 
requires 2d + 1 design points. Algorithm 5 outlines the procedure for computing X k motivated by a desire to 
reuse some previously evaluated design points but maintaining a well-poised geometry. Algorithm 5 begins 
with a scheme employed in history-informed ASTRO-DF, summarized in Algorithm A.1, in which X1

k is chosen 
as a previously evaluated point within the trust region that is the farthest from Xk, breaking ties arbitrarily. Algo-
rithm A.1 then generates a basis of orthonormal vectors for Rd and completes the design set X k by moving �k in 
the positive and negative direction away from Xk in each orthonormal direction. If there are no previously evalu-
ated points within the trust region, the design set is formed using the coordinate basis, that is, X k à X c

k (see the 
appendix and Definition 2).

Upon completion of point selection, X k may contain 2d points not previously evaluated. To keep the total num-
ber of function evaluations low, we include X̃v

k , the minimizer of the VM, in X k. We replace the point in X k closest 
to X̃v

k with X̃v
k , provided the selected point in X k is not X0

k and is not too close to X̃v
k . Therefore, at the termination 

of Algorithm 5, the set X k may contain only 2d� 1 previously unevaluated points.

6. Numerical Results
We assessed and compared ASTRO-DF-VM with other SO solvers. The evaluation of SO solvers such as SPSA 
and Nelder–Mead was conducted using SimOpt (Eckman et al. 2023a, b). We implemented various QAOA cir-
cuits using Qiskit (Javadi-Abhari et al. 2021). All code and data for these experiments can be found in an accom-
panying GitHub repository (Ha et al. 2024a).

It is worth noting that, in order to facilitate an effective comparison between the solvers, we employed com-
mon random numbers (CRN) through SimOpt alongside the quantum simulator available in Qiskit. CRN is a 
method for variance reduction that queries the simulation-based oracle with the same random number stream. 
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SimOpt offers versatile capabilities for applying CRN in diverse ways, enabling us to carry out sharper (with less 
variance) comparisons among the solvers. Whereas CRN cannot be applied on a real quantum computer, the 
Qiskit quantum simulator in our numerical experiments does allow us to fix the random number seed. We reiter-
ate that nothing in ASTRO-DF-VM assumes access to CRN streams, and this choice in experimentation was 
made only to reduce sources of variance in comparing across solvers, thereby ensuring that the experiments 
could be conducted within a reasonable time frame.

6.1. Comparison of the Two-Stage Estimation Algorithms
We start by comparing three two-stage estimation strategies via Algorithms 1–3 as indexed by ASTRO-DF-VMm 
in Algorithm 4.

To guarantee both robustness and accuracy, we ran each algorithm 20 times. In the numerical experiments, we 
use a metric for the simulation cost that takes into account both the costs related to acquiring a single sample, 
denoted by cs, and the communication costs cn. Hence, the calculation of the total simulation cost is

cnQ + csW, (12) 
where W quantifies the total count of oracle calls (shots) requested by the solver, in which in our context W àPT

kà1
Pp

ià0 Np
k with T being the number of iterations, and Q quantifies the total count of communications made 

with the quantum computer. In our experiments, we considered two cases: (cn, cs) à (0, 1) and (cn, cs) à (1,000,1); 
we expect that the performance gap of ASTRO-DF-VM in the second case will widen further with a real quantum 
computer on which communications costs can be even larger.

Our first test was performed with a QAOA circuit for solving an instance of a max-cut problem (Farhi et al. 2014). 
Specifically, we implemented the standard QAOA with depths of 1 and 10. We now provide a brief description of the 
max-cut problem and implementation. Let us consider a graph G represented as G à [V,D], where V denotes the set 
of vertices and D represents the set of edges. A cut of the graph G is defined as a partition (V1,V2) of the graph verti-
ces such that there are no edges between V1 and V2. A maximum cut of a graph G is a cut such that, among all possi-
ble cuts, the number of edges between V1 and V2 is maximized. This problem can be formulated as a quadratic 
unconstrained binary optimization problem max 1

2
P

(i, j)2D(1� xixj), where xi 2 {�1, + 1} for i 2 V.
We begin by exploring the structure in the variance function. Our explorations suggest that, when the objective 

function is easy to optimize, for example, it is convex, most solvers can find the optimal solution regardless of 
whether the variance information is used. However, in nonconvex settings, we identify cases in which the VM 
can be very helpful and cases in which the VM may be harmful. To visualize these findings, we report two 
instances of the max-cut problem with a depth of one (see Figure 7). When the objective function is difficult to 
optimize (and the landscape is nearly flat), exploiting the variance information alleviates the struggle to find the 
global optimum (see Figure 7(a)). In addition, we observe the positive impact of the VM in high-dimensional pro-
blems although we did not include that in the visualization. When the objective function is less flat and the vari-
ance function is fairly nonconvex, using a VM may lead to a suboptimal local solution instead of the global 
optimum. For example, in Figure 7(b), iterates generated by ASTRO-DF can converge to a near-global optimum, 
such as (2:8, 0:25), using the coordinate basis and direct search method. However, iterates generated by ASTRO- 
DF-VM might converge to a suboptimal region, such as (2:2, 1:4), because of the design set incorporating the VM 
minimizer and the direct search method. In low dimensions, this was the only case we discovered in which the 
VM can be harmful. On the other hand, because low depth in QAOA contexts results in inaccurate energy 
approximations, the tendency is often to increase the depth and dimension of the problem, whereby the VM 
becomes advantageous, as is shown numerically in Section 6.2. In the test examples, the original combinatorial 
optimization problems have optimal values of �4 and �6, respectively. The best objective values obtained at a 
depth of one, however, are approximately �2 and �3.5, indicating the need to increase the depth to achieve 
closer approximations to these optimal values.

As a second experiment, we reconsider the noisy Himmelblau function, described in (5), with zero-mean 
Gaussian noise ξ ~ N (0, V(x1, x2)) and four different variance functions: 

i. V1(x1, x2) à | (x1� 3)(x2� 2) | ; V1 features zero variance at (3, 2), the global minimum of the Himmelblau 
function.

ii. V2(x1, x2) à (x2
1 + x2� 11)2 + (x1 + x2

2� 7)2; V2 features four local minima coinciding with those of the Himmel-
blau function.

iii. V3(x1, x2) à (x2
1 + x2� 11)2 + (x1 + x2

2� 7)2 + 10(x1� x2)2; the global minimum of V3 intentionally does not 
align with the global minimum of the Himmelblau function, an undesirable property for ASTRO-DF-VMs.

iv. V4(x1, x2) à (x2
1 + x2� 11)2 + (x1 + x2

2� 7)2 + (x1� x2)2 + |x0� 3 | ; V4 features the same local minima and global 
minimum as the Himmelblau function.
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Figure 8 displays the solvability profiles for 12 instances of the max-cut problem (with varying edge structure) 
and four instances of the noisy Himmelblau function. Each solvability profile roughly shows the proportion of 
tested problems that a method can solve to within a specific relative optimality gap specified in the title of each 
plot (0.1 for the max-cut and 0.001 for the noisy Himmelblau, chosen appropriately based on the problem con-
text). The use of VM in ASTRO-DF-VM2 and ASTRO-DF-VM3 slightly improves the performance when there is 
latency. We believe this is because, as intended, the VM reduces the likelihood of needing a second stage by 
selecting a good first stage sample size, whereas the inaccurate variance estimates in ASTRO-DF-VM1 often 
necessitate a second stage and, hence, a larger number of communications.

Before proceeding with ASTRO-DF-VM3, which uses the VM for the first stage unless its predictions appear 
poor based on the cv threshold, and comparing its performance with other solvers, we examine the effect of cv. 
Figure 9 suggests that the choice of cv will not significantly affect the performance of ASTRO-DF-VM3 as long as 
excessively large sample sizes, which may result from an inaccurate VM, are avoided.

6.2. Comparison with Stochastic Optimization Solvers
In this section, we compare ASTRO-DF-VM3 with ASTRO-DF, SPSA, and Nelder–Mead on the two previous 
problems. Figures 10 and 11 show progress curves (improvement in the objective function value) on the noisy 
Himmelblau problems. Even when presented with a variance function that is not necessarily minimized at the 

Figure 7. (Color online) Illustration of the Contours of the Objective and Variance Functions with Two Distinct Graphs in Which 
Darker Areas Show Smaller Values 

(a) A Max-Cut problem with flat regions having     : {(0, 1), (0, 2), (0, 3), (0, 4)}

(b) A Max-Cut problem with non-flat regions having     : {(0, 3), (0, 4), (1, 3), (1, 4), (1, 2), (0, 2)}
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objective’s global optimum, ASTRO-DF-VM3 consistently outperforms other solvers in finding the optimal solu-
tion. In particular, with the variance function V3(x1, x2) whose global optimum does not align with the global 
optima of the objective function (even though the four local minima of the variance and objective functions coin-
cide), ASTRO-DF-VM3 demonstrates superior performance compared with both ASTRO-DF and the Nelder- 
Mead method in finding the global optimum for the synthetic problem. This remains true regardless of latency 
(see Figures 10 and 11).

On the max-cut problems, Figure 12 displays solvability profiles (percentage of solved problem instances) in 
which, irrespective of communication costs, ASTRO-DF-VM3 demonstrates superior performance compared 
with other solvers in finding optimal solutions. More specifically, Nelder–Mead and SPSA tend to become stuck 
at solutions significantly distant from the global optimum, and ASTRO-DF is limited in the number of iterations 
(steps) it can perform because of the substantial communication costs. Interestingly, even with no latency costs, 
we still observe ASTRO-DF-VM3 finding better solutions than ASTRO-DF. We attribute this to the assistance the 
VM provides in finding better design sets that either help construct better models or are used in a direct search 
regime (as elaborated in Section 3) to guide progress toward the global solution. For a closer look, we compare 
ASTRO-DF-VM3 and ASTRO-DF on one instance of the max-cut problem tracked per iteration and per expended 
budget without latency. As shown by Figure 13, ASTRO-DF-VM3 expends a similar number of samples per 

Figure 8. (Color online) Solvability Profiles of ASTRO-DF-VMm for m 2 {1, 2, 3} on 12 Max-Cut Problems with a Depth-1 
QAOA Circuit Solved to 10% Optimality and Four Noisy Himmelblau Functions Solved to 0.1% Optimality 

(a) Max-Cut problems without latency (b) Max-Cut problems with latency

(c) Noisy Himmelblau problems without latency (d) Noisy Himmelblau problems with latency

Notes. Solid lines denote mean fraction, and bands denote 95% confidence intervals. The x-axis shows the fraction of the computational burden 
measured by (12) with communication costs cn and sample cost cs, where (cn, cs) à (0, 1) without latency and (cn, cs) à (1,000, 1) with latency. The 
y-axis shows the fraction of the solved problem.
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iteration (and a similar number of iterations) to ASTRO-DF. Therefore, its ability to reach better solutions compared 
with ASTRO-DF (as shown in Figure 12) should be solely attributed to the VM’s aid in design set selection.

The advantage of ASTRO-DF-VM3 is amplified in the presence of latency costs as it will also benefit from 
fewer communications with the quantum computer. That is, as communication costs escalate, the performance 
gap between ASTRO-DF-VM3 and other solvers widens.

Figure 9. (Color online) Solvability Profiles and 95% Confidence Intervals of ASTRO-DF-VM3s with cv à 10 and cv à 100 on 12 
Max-Cut Problems with a Depth-1 (Left) and Depth-10 (Right) QAOA Circuit Solved to 10% Optimality 

Note. The computational burden (simulation cost) is measured by (12) with cn à 0 and cs à 1.

Figure 10. (Color online) Mean Performance and 95% Confidence Interval on the Noisy Himmelblau Function Without Latency 

(a) Variance function V1(x1, x2) (b) Variance function V2(x1, x2)

(c) Variance function V3(x1, x2) (d) Variance function V4(x1, x2)
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6.3. Comparison on a Regularized Function
Another natural way to utilize the zero-variance principle is to minimize the regularized objective function f (x) +
cpσ2(x) for some positive constant cp. In this section, we discuss the comparison between ASTRO-DF-VM3 and 
the original algorithm of ASTRO-DF on the regularized function. Figure 14 illustrates that ASTRO-DF-VM3 
shows better performance on both depth-1 and depth-10 circuits. One should expect this overperformance gap to 
widen as the communication costs cn increases (depicted by Figure 12). This suggests that using the VM is a bet-
ter strategy than adding a regularization.

7. Conclusion
In the optimization problem that forms an essential part of VQAs, two phenomena come to the forefront. The 
first pertains to latency, which leads to an increase in the time required to acquire a single sample of shots. Given 
its substantial computational overhead during the optimization process, it is imperative for the optimization 
solver to be thoughtfully designed with a focus on minimizing the quantum computer access frequency. The sec-
ond phenomenon is the gradual reduction of true variance that accompanies the decaying optimality gap. In this 
paper, we introduce a novel stochastic trust region method to tackle VQA optimization problems, leveraging the 
distinctive characteristics of diminishing variance and communication costs. We name this method ASTRO-DF- 
VM. To leverage the characteristic of diminishing variance, ASTRO-DF-VM constructs a second local model, the 
VM, on variance using variance estimates at points previously evaluated. The minimizer of the VM is included 
in the design set, helping to find better solutions at each iteration and the global optimum. Moreover, to reduce 

Figure 11. (Color online) Mean Performance and 95% Confidence Interval on the Noisy Himmelblau Function with Latency 

(a) Variance function V1(x1, x2) (b) Variance function V2(x1, x2)

(c) Variance function V3(x1, x2) (d) Variance function V4(x1, x2)
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communication costs, ASTRO-DF-VM restricts the access to the quantum computer to twice per design point at 
each iteration. Our numerical results showcase the effectiveness of ASTRO-DF-VM on two problems from 
QAOA. Even in scenarios without communication costs, the use of VM leads to outpacing other solvers in terms 
of finding quality solutions more efficiently. Moreover, as communication costs increase, the performance gap 

Figure 12. (Color online) Solvability Profiles for 12 Instances with Varied Edges on the Max-Cut Problem, Utilizing 20 Macrore-
plications and 95% Confidence Intervals Solved to 10% Optimality 

(a) cn = 0, cs = 1, and depth = 1 (b) cn = 1,000, cs = 1, and depth = 1

(c) cn = 0, cs = 1, and depth = 10 (d) cn = 1,000, cs = 1, and depth = 10

Figure 13. (Color online) Finite Time Performance on the Max-Cut Problem with Edges à {[0, 1], [0, 2], [1, 4], [2, 3], [2, 5], [3, 5]}

Notes. The x-axis shows the number of iterations (right figure) or the simulation cost measured by (12) with cn à 0 and cs à 1 (left figure). The 
y-axis shows the objective function value.
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between ASTRO-DF-VM and other solvers widens, further highlighting its advantage in latency-constrained 
settings.

Appendix A. Algorithm for Selecting Xk in History-Informed ASTRO-DF
Algorithm A.1 shows the pseudocode for selecting the design set at iteration k in history-informed ASTRO-DF (Ha and 
Shashaani 2023b). The example illustrating the application of Algorithm A.1 is detailed in Figure A.1.

Algorithm A.1 (X kàDesignSetSelection(�k, Xk,F k))
Require: trust-region radius �k, incumbent Xk. 
1: Find all previously evaluated design points within B(Xk, �k); denote it Rk.
2: if Rk à {Xk} then
3: Select the design set X k à X c

k following Definition 2.
4: else
5: Find X1

k à argmaxx2Rk
kXk � xk à Xk + PkUk, 1, where kUk, 1k à 1 and Pk à kX1

k �X0
kk.

6: Compute a set of d � 1 vectors {Uk, 2, : : : , Uk, d} mutually orthonormal to Uk, 1
7: Set X k à {Xk, Xk + PkUk, 1, Xk + �kUk, 2, : : : , Xk + �kUk, d, Xk ��kUk, 1, : : : , Xk ��kUk, d}.
8: end if
9: Return X k.

Figure 14. (Color online) Solvability Profiles for 12 Max-Cut Problems of ASTRO-DF-VM3 on the Original Objective Function 
and ASTRO-DF on the Regularized Function with cp à 1, 10, Utilizing 20 Macroreplications and 95% Confidence Intervals Solved 
to 10% Optimality 

(a) Depth = 1 (b) Depth = 10

Figure A.1. (Color online) An Example Demonstrating the Application of the Rotated Coordinate Basis (Ha and Shashaani 2023b) 

Notes. (a) The coordinate basis using a coordinate system defined by elementary basis vectors, which is history-informed ASTRO-DF’s default 
coordinate basis in the absence of reusable design points within the trust region. (b) A rotated coordinate basis. In this case, in the kth iteration of 
history-informed ASTRO-DF, the design point X0

k�1 is the farthest from X0
k among all previously evaluated design points, and so we choose 

X1
k à X0

k�1. Orthogonalizing against Uk, 1 :à X0
k �X1

k deterministically defines the rotated coordinate basis in the kth iteration.
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