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A nonlinear Hall effect (NHE) can originate from the quantum metric mechanism in antiferromagnetic
topological materials with PT symmetry, which has been experimentally observed in MnBi2Te4. In this paper,
we propose that breaking PT symmetry via external electric fields can lead to a dramatic enhancement of NHE,
thus allowing for an electric control of NHE. Microscopically, this is because breaking PT symmetry can lift
the spin degeneracy of a Kramers pair, giving rise to additional contributions within one Kramers pair of bands.
We demonstrate this enhancement through a model Hamiltonian that describes an antiferromagnetic topological
insulator sandwich structure.
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I. INTRODUCTION

Integrating magnetism into topological insulators (TIs) can
break time reversal (T ) symmetry and lead to the emergence
of magnetic topological phases, e.g., quantum anomalous Hall
(QAH) insulators [1–8] and axion insulators (AIs) [9–12].
Magnetism has been successfully achieved in TIs by ei-
ther doping magnetic impurities, e.g., Cr- and/or V-doped
(Bi,Sb)2Te3, or growing a stoichiometric antiferromagnetic
topological compound, MnBi2Te4. When ferromagnetism is
achieved in TI films, both surface states are gapped, leading
to the QAH effect [1,8,13,14]. The quantized Hall response
for QAH states has been unambiguously observed in several
systems, including magnetically doped TIs [3–6], MnBi2Te4
films [7], and twisted graphene and transition metal dichalco-
genide materials [15–24]. When two surface states of TI films
are gapped by antiferromagnetic (AFM) alignment of magne-
tization, which can be achieved in a magnetic TI sandwich
structure with AFM alignment at two surfaces (dubbed as
“AFM TIs” below), as shown in Fig. 1(a), or in even septuple
layers (SLs) of MnBi2Te4 films [25,26], the AI phase was the-
oretically predicted and can host a quantized magnetoelectric
response [10,27–29]. A zero Hall plateau observed in these
AFM TIs [11,12] provides evidence for the AI phase. Optical
experiments have also been studied in AFM TIs to explore the
axion electrodynamics of the AI phase [30–34].

Recently, quantized topological and nonquantized geomet-
ric responses have been generalized to the nonlinear regime
in topological materials [35–44]. A notable example is the
nonlinear Hall effect (NHE), which describes the Hall cur-
rent response at the nonlinear order of electric fields. There
are two major intrinsic geometric mechanisms for NHE,
the Berry curvature dipole [45–48] and the quantum metric
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dipole [49–52]. These two mechanisms have different sym-
metry properties. The Berry curvature dipole-induced NHE
can exist in a T -symmetric system, but is forbidden by PT
symmetry, where P is inversion. This is because PT sym-
metry guarantees the double degeneracy of all bands at each
momentum. Due to its similarity to Kramers’ theorem for
T -symmetric systems [53,54], these spin degenerate bands
are dubbed “Kramers pairs” below. As a result, the Berry
curvature, as well as the Berry curvature dipole, has to vanish
at each momentum in the Brillouin zone (BZ). In contrast, the
quantum metric dipole (also called “intrinsic NHE” [49,52])
requires the T breaking, but it can exist in a PT -symmetric
system. The AFM TIs can possess PT symmetry but break
both P and T symmetry due to the AFM order, and thus pro-
vide an ideal platform to examine the intrinsic NHE induced
by a quantum metric. Recently, intrinsic NHE has been exper-
imentally observed in even SLs of MnBi2Te4 films [55,56].
The quantum metric mechanism requires breaking both T and
P but also occurs in PT -breaking systems. Our main objective
is to understand the dependence of intrinsic NHE on the PT
breaking, achieved by an out-of-plane electric field.

In this paper, we study the NHE in a model Hamiltonian of
AFM TIs under electric fields in Figs. 1(a) and 1(b). Inversion
symmetry breaking by electric fields can lift the spin degener-
acy of a Kramers pair of bands. Although these two spin bands
are no longer degenerate in energy, we continue using the
terminology “Kramers pair” to denote them. In PT -symmetric
systems, only the contribution between different Kramers
pairs of bands (dubbed “inter-Kramers pairs” below) exist for
the NHE. Our main result here is to show additional NHE
contributions from two spin bands within one Kramers pair
(dubbed “intra-Kramers pair” below) can emerge when the in-
version symmetry breaking is strong enough so that the energy
splitting between the two spin bands is larger than disor-
der broadening. Furthermore, we find the intra-Kramers-pair
NHE contribution can dominate over the inter-Kramers-pairs
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FIG. 1. (a) PT -symmetric magnetic TI sandwich structure. Each
band is doubly degenerate due to the PT symmetry and the quantum
metric dipole only arises between different Kramers pairs of bands.
(b) When an external electric field breaks PT symmetry, the Kramers
pairs split in energy, giving rise to additional contributions between
two bands within one Kramers pair. (c) The energy dispersion for
t = 2meV andV0 = 1meV. (d) Fermi-surface contours of the lowest
conduction band at the Fermi energies ε f = 0.1, 0.2, and 0.3 eV.

NHE contribution in the thin-film limit when the top and
bottom surface states are strongly hybridized. We predict an
enhancement of the intrinsic NHE in AFM TIs due to the
PT -symmetry breaking.

II. MODEL HAMILTONIAN AND SYMMETRY
FOR AFM TIs

We consider a model Hamiltonian for the AFM TI sand-
wiches, as shown in Fig. 1(a), where the top and bottom
surface states open the gaps with opposite signs. We assume
the Fermi energy is within the TI bulk, so the low-energy
effective Hamiltonian for two surface states reads

H = v f (kyσx − kxσy)τz + mσzτz

+ λ(k3+ + k3−)σzτz + tτx +V0τz, (1)

where σi and τi (i = x, y, z) are Pauli matrices in the spin
and surface states basis, v f is the Fermi velocity, m is the
exchange coupling strength, λ is the hexagonal warping co-
efficient [57], and k± = kx ± iky. We choose the parameters
to be v f = 2.55 eVÅ, λ = 125 eVÅ3, and m = 1meV [57].
V0 is the asymmetric potential created by the out-of-plane
electric field E , V0 = eEd , where d is the TI film thickness.
The coupling parameter t describes the hybridization strength
between the top and bottom surface states, which quickly
decays as the film thickness d increases and is chosen in the
range of 0–10 meV [58–61].

The model Hamiltonian breaks P = τx and T = iσyK
symmetries, and preserves C3z = e−i π

3 σz and MxT = −iσzK

symmetries. In particular, the exchange coupling term breaks
P, T , Mx = iσx, and My = iσy symmetries, the hexagonal
warping term breaks the full rotational symmetries down to
theC3z symmetry, and the asymmetric potential termV0 breaks
P and PT symmetries. When the asymmetric potential is
absent, the system is PT symmetric. The symmetry properties
of this system also give a strong constraint on the form of
nonlinear conductivity σabc, defined by ja = σabcEbEc, where
a, b, c = x, y. From the symmetry analysis shown in the Sup-
plemental Material [62] (see also Refs. [63–67] therein),
MxT requires σyyy = σyxx = σxyx = σxxy = 0 while C3z re-
quires σxyy = σyxy = σyyx = −σxxx. Therefore, σxyy is the only
independent component.

The eigenenergies of the Hamiltonian can be solved
as εnμ = n

√
t2 + (A + μV0)2, where n, μ = ± and A =√

v2
f k

2 + [m + 2λkx(k2x − 3k2y )]
2, where n is the index for dif-

ferent sets of Kramers pairs and μ labels two spin states in
one Kramers pair. When V0 = 0, there are two sets of degen-
erate Kramers pairs with the eigenenergies ε± = ±√

A2 + t2.
Such degeneracy is broken by a nonzero V0 in Fig. 1(c),
where the energy dispersion is calculated for t = 2meV and
V0 = 1meV. Figure 1(d) depicts the Fermi-surface contours
of the lowest conduction band at different energies, where the
hexagonal warping effect is visible for a large momentum k.

III. QUANTUM-METRIC-INDUCED NHE IN
PT -SYMMETRIC AND PT -BREAKING SYSTEMS

Since the Berry curvature dipole is forbidden by
C3z [45,68], it is excluded in our model even when PT sym-
metry is broken. Therefore, we focus on the intrinsic NHE.
The intrinsic nonlinear Hall conductivity can be written as
(see Supplemental Material [62])

σxyy =−e3

h̄

∑
nμ,mν

∫
d3k

(2π )3
fnμ

[
∂x

(
αnμ,mνg

yy
nμ,mν

)

+ ∂y
(
βnμ,mνg

xy
nμ,mν

)]
, (2)

where ∂a = ∂
∂ka

and fnμ = 1
e(εnμ−ε f )/�+1

is the Fermi distribu-
tion function, with the eigenenergy εnμ, the Fermi energy ε f ,
and the temperature broadening � = kBT . The band-resolved
quantum metric reads [50]

gabnμ,mν = Aa
nμ,mνAb

mν,nμ + Ab
nμ,mνAa

mν,nμ, (3)

where Aa
nμ,mν = 〈nμ|i∂a|mν〉 is the Berry connection, and

|nμ〉 is the eigenwave function of the Hamiltonian. The re-
maining dependence on disorder broadening �τ = h̄/τ with
the relaxation time τ in the intrinsic conductivity is via the
functions α and β, defined as

αnμ,mν = Re

[
εnμ,mν

�τ (iεnμ,mν + �τ )
− (nμ ↔ mν)

]
, (4)

βnμ,mν = Re

[
εnμ,mν

iεnμ,mν + �τ/2

(
1

iεnμ,mν + �τ

+ 1

�τ

)

−(nμ ↔ mν)

]
. (5)

This dependence becomes significant whenever the energy
difference εnμ,mν = εnμ − εmν is of the order of �τ .
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FIG. 2. (a) σ inter
xyy as a function of Fermi energy ε f for the inter-Kramers-pairs contribution at V0 = 2meV, � = 0.6meV, and t = 0, 1, 2, 3

and 4meV. (b) σ intra
xyy as a function of Fermi energy ε f for the intra-Kramers-pair contribution with different t . (c) The maximum value of σ inter

xyy

and σ intra
xyy with respect to Fermi energy ε f as a function of coupling coefficient t .

For the PT -symmetric case, the two spin bands within
one Kramers pair (n = m) are degenerate so that εnμ,nν = 0
and thus αnμ,nν = βnμ,nν = 0. Therefore, the degenerate states
within one Kramers pair give no contribution. We consider
the case when the energy difference between different sets
of Kramers pairs is much larger that the disorder level, i.e.,
εnμ,mν � �τ (n �= m), and can apply the expansion

1

iεnμ,mν + �τ

= 1

iεnμ,mν

+ �τ

ε2nμ,mν

+ O
(
�2

τ

)
. (6)

Up to the first order in �τ , we find αnμ,mν = 2
εnμ,mν

and

βnμ,mν = − 1
εnμ,mν

for n �= m, which leads to

σxyy = −e3

h̄

∑
nμ

∫
k
fnμ

(
2∂xG

yy
nμ − ∂yG

xy
nμ

)
, (7)

where Gab
nμ = ∑

mν g
ab
nμ,mν/εnμ,mν with m �= n. The derived

NHE expression is only for the quantum metric between non-
degenerate bands (“inter-Kramers pairs”), and is consistent
with Ref. [50]. The result can be also be viewed from the
point of view of semiclassical theory. The origin of the NHE
is traced to systematic corrections to the Berry curvature and
energy dispersion stemming from the dressing of operators
due to the electric field. Semiclassically, H → H + eE · r.
Invoking the U (1)N symmetry of the block Hamiltonian, it
is possible to remove the gauge-dependent linear coupling
via a unitary transformation H ′ = e−SHeS , with S fixed to
remove the linear in E contribution (see Ref. [50]). However,
it should be noted that the semiclassical approach fixes the
diagonal components of H ′. It is also possible to construct
off-diagonal elements of H ′ and hence v′ = ∂H ′

∂k . By allowing
off-diagonal elements in the Boltzmann equation away from
the clean limit, one recovers Eqs. (4) and (5). Importantly,
in the limit where the relaxation τ only enters the diagonal
part of the density function fnμ (the standard semiclassical
assumption), the result of the Boltzmann treatment and the
approach presented here coincide completely.

In PT -breaking systems, the asymmetric potentialV0 splits
the energy of two spin bands within one Kramers pair. When
the energy difference between these two spin bands is much
larger than the disorder level, i.e., V0 � �τ , the relaxation
time approximation [Eq. (6)] is valid for any pairs of (n, μ)
and (m, ν) and thus αnμ,mν = 2

εnμ,mν
and βnμ,mν = − 1

εnμ,mν
for

both intra-Kramers pairs (n = m) and inter-Kramers pairs
(n �= m). We then obtain a similar expression as Eq. (7), but
the summation over m in Gab

nμ = ∑
mν g

ab
nμ,mν/εnμ,mν should

also includes m = n. Therefore, the quantum metric within
one Kramers pair of bands (“intra-Kramers pair”) can also
contribute to the NHE in addition to the inter-Kramers-pairs
part.

IV. ELECTRIC FIELD CONTROL OF NHE

We numerically evaluate the NHE for the model Hamil-
tonian [Eq. (1)] based on Eq. (2). Figures 2(a) and 2(b)
shows the Fermi energy ε f dependence of the inter-Kramers-
pair contribution σ inter

xyy and the intra-Kramers-pair contribution
σ intra
xyy at different coupling coefficients t , respectively, at V0 =

2meV, � = 0.6meV, and assuming the disorder level is
very low (V0 � h̄/τ ). For both components, σxyy displays
the same sign in the electron and hole doping regions. The
intra-Kramers-pair contribution σ intra

xyy vanishes for t = 0meV,
which indicates that the interlayer hybridization term is cru-
cial for the nonzero quantum metric between two bands in one
Kramers pair. Furthermore, σ intra

xyy increases with t while the
inter-Kramers-pairs contribution σ inter

xyy decreases, as illustrated
in Fig. 2(c), which plots the maximum values max(σ intra

xyy ) and
max(σ inter

xyy ) as a function of t . Here, the maximum refers to
the peak value of σ intra

xyy and σ inter
xyy when varying with ε f in

Figs. 2(a) and 2(b). Therefore, the intra-Kramers-pair contri-
bution σ intra

xyy plays a more important role when the interlayer
hybridization is stronger, i.e., when the sample thickness is
thinner.

We summarize max(σxyy) as a function ofV0 in Fig. 3(a), in
which the green curve depicts the variation of total max(σxyy),
while the blue and red curves illustrate max(σ intra

xyy ) and
max(σ inter

xyy ), respectively, at t = 2meV and h̄/τ = 0.5meV.
The intra-Kramers-pair contribution max(σ intra

xyy ) is zero at
V0 ∼ 0, and increases rapidly when V0 is increasing. In con-
trast, the inter-Kramers-pairs contribution max(σ inter

xyy ) almost
remains constant with increasing V0. Thus, one can divide the
variation of max(σxyy) into three regions for a fixed disorder
strength. When V0 � h̄/τ , max(σ intra

xyy ) is close to zero and
max(σ inter

xyy ) dominates. When V0 ∼ h̄/τ , max(σ intra
xyy ) increases

rapidly with V0, while max(σ inter
xyy ) exhibits a small decrease.
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FIG. 3. (a) The maximum value of σxyy for the intra-Kramers-pair (blue), inter-Kramers-pairs (red), and total (green) contributions as a
function of asymmetric potential V0 at t = 2meV and h̄/τ = 0.5meV. (b) The maximum value of σ inter

xyy as a function of asymmetric potential
V0 at different disorder levels h̄/τ for the inter-Kramers-pairs contribution at t = 2meV. (c) The maximum value of σ intra

xyy as a function of V0

for the intra-Kramers-pair contribution at t = 2meV.

When V0 � h̄/τ , max(σ intra
xyy ) saturates while max(σ inter

xyy ) re-
veals an upturn. Figures 3(b) and 3(c) show the max(σ inter

xyy )
and max(σ intra

xyy ) as a function of V0 for different h̄/τ . The
above scenario for the division of three regions generally
remains valid for different h̄/τ values. Furthermore, with in-
creasing h̄/τ , both max(σ inter

xyy ) and max(σ intra
xyy ) are reduced.

V. CONCLUSION

To summarize, we showed the enhancement of the intrinsic
NHE in AFM TI sandwiches via the breaking of inversion
symmetry. The intrinsic NHE has been observed for even
SLs of MnBi2Te4 in two recent experiments [55,56], and the
displacement field dependence of the NHE has been mea-
sured. As discussed previously, the amount of enhancement is
affected by the film thickness as well as the disorder level in
the system. In Ref. [55], a small enhancement of the NHE was
reported as the displacement field increases. The conductivity
in this experiment is σxx ≈ 14mS at a carrier density ne =
3 × 1012 cm−2, and from τ = m∗σxx

e2ne
with the electron effective

mass m∗ ≈ 0.1me [69], we estimate the disorder level to be
h̄/τ ∼ 0.4meV. However, the experiment was perform in 6
SL MnBi2Te4, of which the hybridization strength between
two surface states is considerably small [58–61], thus sup-
pressing the intra-Kramers-pair contribution, as well as the
enhancement of NHE. In Ref. [56], on the other hand, very
little or no increase of the NHE was observed in the displace-
ment field dependence measurement. We estimate the disorder
level as h̄/τ ∼ 20meV with σxx/ne ≈ 9 × 10−11 µS cm2 and
strong disorder scattering can greatly suppress the NHE
enhancement.

The scaling analysis between the nonlinear Hall conductiv-
ity and the longitudinal conductivity by varying temperatures
has been used to distinguish the intrinsic NHE, which is the
sole contribution that is independent of relaxation time τ in
the weak disorder limit, from other extrinsic mechanisms,
e.g., skew scattering and side jump [49,56,70–72], with strong
dependence on τ . As our NHE formula Eq. (2) is beyond
the weak disorder limit, the relaxation time τ dependence of
the intrinsic NHE is found in Figs. 3(b) and 3(c), when the

disorder broadening is comparable to band energy splitting.
We note in both experiments [55,56] the NHE shows very
little dependence of τ when varying temperatures. As the
NHE only appears below the Néel temperature ∼24K [73],
we can estimate the change of relaxation time to be δτ

τ
∼ 20%

within this temperature range. From Figs. 3(b) and 3(c), a
significant change of NHE can only occur when τ is changed
several times. Thus, a 20% variation of τ can only give a
negligible change of NHE, while more feasible control is
through a displacement field [55].

In our calculations, the value of NHE is around the
order of 10 mAnm/V2, while the experimental values re-
ported in Refs. [55,56] are both ∼100 mAnm/V2, one order
larger than the calculated value. To explain this discrepancy,
it was proposed that the quantum metric in experiments
might be enhanced by the modified surface band structure of
MnBi2Te4 [56]. As disorder scattering is strong in Ref. [56],
a full quantum mechanical treatment of the disorder effect
beyond the relaxation time approximation [70,71,74,75] is
required. Furthermore, the edge transport may also give rise to
the NHE for the Fermi energy close to the band edges [76,77],
which is beyond the current theoretical formalism.
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