

Materials 2024, 17, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/materials

Article

Numerical Homogenization of Orthotropic Functionally

Graded Periodic Cellular Materials: Method Development and

Implementation

Behnam Shahbazian, Victor Bautista Katsalukha and Mirmilad Mirsayar *

Department of Aerospace, Physics, and Space Sciences, Florida Institute of Technology,

Melbourne, FL 32901, USA; bshahbazian2021@my.fit.edu (B.S.); vbautista2016@my.fit.edu (V.B.)

* Correspondence: mmirsayar@fit.edu

Abstract: This study advances the state of the art by computing the macroscopic elastic properties

of 2D periodic functionally graded microcellular materials, incorporating both isotropic and ortho-

tropic solid phases, as seen in additively manufactured components. This is achieved through nu-

merical homogenization and several novel MATLAB implementations (known in this study as Cel-

lular_Solid, Homogenize_test, homogenize_ortho, and Homogenize_test_ortho_principal). The developed

codes in the current work treat each cell as a material point, compute the corresponding cell elastic-

ity tensor using numerical homogenization, and assign it to that specific point. This is conducted

based on the principle of scale separation, which is a fundamental concept in homogenization the-

ory. Then, by deriving a fit function that maps the entire material domain, the homogenized material

properties are predicted at any desired point. It is shown that this method is very capable of captur-

ing the effects of orthotropy during the solid phase of the material and that it effectively accounts

for the influence of void geometry on the macroscopic anisotropies, since the obtained elasticity

tensor has different 𝐸1 and 𝐸2 values. Also, it is revealed that the complexity of the void patterns

and the intensity of the void size changes from one cell to another can significantly affect the overall

error in terms of the predicted material properties. As the stochasticity in the void sizes increases,

the error also tends to increase, since it becomes more challenging to interpolate the data accurately.

Therefore, utilizing advanced computational techniques, such as more sophisticated fitting methods

like the Fourier series, and implementing machine learning algorithms can significantly improve

the overall accuracy of the results. Furthermore, the developed codes can easily be extended to ac-

commodate the homogenization of composite materials incorporating multiple orthotropic phases.

This implementation is limited to periodic void distributions and currently supports circular, rec-

tangular, square, and hexagonal void shapes.

Keywords: periodic functionally graded cellular materials; 2D numerical homogenization; MATLAB

code; elasticity tensor; orthotropic materials; isotropic materials

1. Introduction

The term “cellular structures” is quite descriptive, denoting a medium consisting of

a void and solid material (i.e., the matrix), where each void is encased by a solid frame-

work called a cell [1]. Cellular structures have a wide range of applications, including in

biomedicine [2–4], aerospace [5–7], civil [8–10], and automotive industries [11–13], to

name but a few [14–23]. While traditional cellular structures consist of uniform patterns

(i.e., uniform cell densities), they can be constructed with spatially varying shapes, sizes,

and cell orientations to achieve optimized performance in regard to various different

types of applications and to achieve the desired combination of properties, such as high

strength [24], lightweight [25], effective heat dissipation [26], etc. [27–34]. The constitutive

Citation: Shahbazian, B.; Bautista

Katsalukha, V.; Mirsayar, M. Numer-

ical

Homogenization of Orthotropic

Functionally Graded Periodic

Cellular Materials: Method

Development and Implementation.

Materials 2024, 17, x.

https://doi.org/10.3390/xxxxx

Academic Editor: Gaetano Giunta

Received: 6 November 2024

Revised: 3 December 2024

Accepted: 9 December 2024

Published: date

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Materials 2024, 17, x FOR PEER REVIEW 2 of 47

response and optimal design of cellular structures with uniform and spatially varying

patterns have been investigated by numerous researchers in the past [35–44]. Spatially

graded cellular structures can be found in nature with different scales, ranging from na-

nometers to meters. Examples are diatoms [45], butterfly wings [46], grass stems [47], den-

tin [48], sea urchin spines [49], and bone [50]. Such spatially graded natural patterns have

inspired many researchers during the design and building of optimal artificial compo-

nents, by studying the structural response at different levels of hierarchy [51–59]. For ex-

ample, an artificial bone can be constructed by mimicking the hierarchical porous struc-

ture of a bone at different scale lengths and can be further optimized in regard to different

loading conditions, using various optimization techniques. Recent advances in additive

manufacturing (AM) techniques have enabled researchers to precisely build cellular struc-

tures with different dimensions using different shapes, orientations, and cell sizes, rang-

ing from microns to meters [60–69], allowing the micromechanical constitutive behavior

of micro-sized cells to be tailored in regard to the macroscopic structural response. How-

ever, it is well known that the manufacturing process (e.g., the printing direction) can sig-

nificantly affect the mechanical response of the component [70–76]. As a result, additively

manufactured spatially graded microcellular structures may exhibit highly anisotropic

behavior, as a result of both the geometrical configurations (cell pattern) and the material

properties (printing direction).

The analysis of cellular structures is indeed a significant challenge, due to the inher-

ent intricacy of such materials. One way to avoid this complex task is to utilize homoge-

nization methods, according to which the original non-continuous structure is equalized

with a homogeneous analogous medium, where both structures exhibit the same macro-

scopic material properties. In regard to this technique, the heterogeneous structure is di-

vided into small parts, known as representative volume elements (RVEs), and analyzed

to determine their material properties. Then, the obtained properties are integrated and

then averaged to form a continuous medium, with the same overall material behavior as

the original non-homogenous one. In other words, homogenization is a bridge to cover

the gap between the microscale behavior of cellular materials and the macroscale require-

ments of engineering applications [77].

Several methods have been proposed and utilized for numerical homogenization.

These methods include, but are not limited to, Bloch’s theorem and the Cauchy–Born hy-

pothesis [78], where the former theorem is used to describe the wave behavior in periodic

structures and the latter associates the deformation of a crystal lattice with the macro-

scopic strain in the material, and, together, they determine the relationship between the

microscale and macroscale performance of the medium. Some popular approaches in-

clude micropolar theory [79–81], which extends classical continuum mechanics to account

for microstructural effects by considering the microscopic rotation of the particles within

the material; the strain energy equivalence method [82,83], which equates the strain en-

ergy in the microstructure of the material with that of an equivalent homogeneous me-

dium; the beam theory approach [84–86], which utilizes the principles of beam mechanics

by simplifying the structure into a sequence of beams and, finally, computes the overall

properties based on the properties and arrangement of these beams; the multi-scale ho-

mogenization method [87], which integrates the material behavior information obtained

from across the microscale to the macroscale in order to make a more accurate approxi-

mation of the overall properties of the medium; the machine learning approach [88],

which uses algorithms to foresee the homogenized properties of a material by using mi-

crostructural data; and the asymptotic homogenization (AH) approach [89], which is a

mathematical technique that uses asymptotic expansions to estimate the macroscale be-

havior of the material. If the homogenization equation is discretized and solved using fi-

nite element analysis (FEA) or other numerical methods, it is commonly called numerical

homogenization. The advantages of this approach are abundant. For example, this proce-

dure can be conducted on a wide range of materials and various microstructures with

anisotropy or different complexities (whether they are periodic or non-periodic) and it can

Materials 2024, 17, x FOR PEER REVIEW 3 of 47

be easily customized or integrated with other methods. Andreassen and Andreasen [90]

used the theory of homogenization and presented a MATLAB R2023a code to calculate the

macroscopic elasticity tensor of two- or multi-material systems made of isotropic materials

(where one of the materials could be void) with uniform patterns of voids. Also, they de-

scribed and extended their code for the homogenization of fluid permeability, thermal ex-

pansion, and conductivity. Later, Dong et al. [91] used this code and expanded it to achieve

a homogenized constitutive matrix of 3D cellular materials or multi-material composites.

In this work, several MATLAB codes are developed to obtain the homogenized ma-

terial properties of microcellular materials with functionally graded void patterns, made from

both isotropic and orthotropic materials. To this end, first, a separate code is developed to

build the desired periodic functionally varying cellular structure with different void

shapes (circular, hexagonal, and rectangular/square). Then, numerical homogenization is

adopted to compute homogenized elasticity tensors assigned to the centroid of each unit

cell. If the material in the solid phase is isotropic, the approach presented in [90] is taken

(herein known as the “reference elasticity tensor”). However, the MATLAB implementa-

tion in [90] cannot consider material anisotropy. To address this deficiency, a new homog-

enization code was developed herein, which includes a parameter called the printing angle.

The overall microcellular structure is achieved by stacking unit cells, where each unit cell

is treated as a point. A fit function is then assigned to create a continuous surface from the

discrete material points (centroids of unit cells). This approach is advantageous because it

allows for the prediction of the elasticity tensor at other points in the homogenized mate-

rial domain. By comparing the reference elasticity tensor and the predicted one, the accu-

racy of the current computations is evaluated. If the material in the solid phase is isotropic,

the outputs are the reference and the predicted elasticity tensors (at any desired points),

the fit function that maps the entire medium and its coefficients for each elasticity tensor

component, the overall average element-wise percentage error, and the plots of the micro-

cellular structure and the corresponding relative density. If the material in the solid phase

is orthotropic, the outputs are the same but for both global coordinates and axes of or-

thotropy and the plots of material properties of the entire domain. Note that the devel-

oped codes are well capable of considering macroscopic anisotropy, whether it comes

from the orthotropic behavior of the solid phase or the geometry of the unit cell. Also, this

methodology is only suitable for periodic void patterns since non-periodic patterns lack a

repeating unit cell that can serve as a representative volume element (RVE). Without a

well-defined RVE, it becomes challenging to homogenize the material properties accu-

rately, as the microstructural variations cannot be captured by a single representative sam-

ple. If non-periodic void patterns are in mind, alternative modeling approaches such as

direct numerical simulations or stochastic homogenization methods can be utilized,

which are more complex and often increase the computational cost. Furthermore, it is

worth mentioning that the presented MATLAB implementation can be used in the ho-

mogenization of composite materials with more than one orthotropic phase. At the end,

some examples are solved, and the accuracy of the numerical implementation and its ca-

pabilities are addressed. Future work could focus on incorporating advanced materials

(such as nanoparticles and multifunctional composites [92,93]) or materials that exhibit

non-linear behavior, into homogenization frameworks.

2. Theoretical Framework and MATLAB Implementation

By assuming that the size of the unit cell is significantly smaller than the entire cellu-

lar structure (i.e., microcellular materials) and the bonding between different length

scales/materials is perfect, the theory of elasticity describes the macroscopic stiffness ten-

sor 𝐶𝑖𝑗𝑘𝑙
𝐻 using the following equation:

𝐶𝑖𝑗𝑘𝑙
𝐻 =

1

|𝑉|
∫ 𝐶𝑝𝑞𝑟𝑠(𝜀𝑝𝑞

0(𝑖𝑗)
− 𝜀𝑝𝑞

(𝑖𝑗)
)(𝜀𝑟𝑠

0(𝑘𝑙)
− 𝜀𝑟𝑠

(𝑘𝑙)
)𝑑𝑉

𝑉
, (1)

Materials 2024, 17, x FOR PEER REVIEW 4 of 47

where |𝑉|, 𝐶𝑝𝑞𝑟𝑠 and 𝜀𝑝𝑞
0(𝑖𝑗)

 are the volume of the unit cell, the locally varying stiffness

tensor, and the prescribed macroscopic strain fields, respectively [90,94]. Moreover, 𝜀𝑝𝑞
(𝑖𝑗)

is the locally varying strain fields, which are defined as follows:

𝜀𝑝𝑞
(𝑖𝑗)

= 𝜀𝑝𝑞(𝜒𝑖𝑗) =
1

2
(𝜒𝑝,𝑞

𝑖𝑗
+ 𝜒𝑞,𝑝

𝑖𝑗
). (2)

The displacement fields (𝜒𝑘𝑙) can be found by solving the following equation:

∫ 𝐶𝑖𝑗𝑝𝑞𝜀𝑖𝑗(𝜐)𝜀𝑝𝑞(𝜒𝑘𝑙)𝑑𝑉 = ∫ 𝐶𝑖𝑗𝑝𝑞𝜀𝑖𝑗(𝜐)𝜀𝑝𝑞
0(𝑘𝑙)

𝑑𝑉 ∀𝜐𝜖𝑉
𝑉𝑉

 , (3)

where 𝜐 is the virtual displacement field. Generally, Equation (3) is solved numerically

by discretizing the cell domain. To this end, both the left-hand side (i.e., the stiffness ma-

trix) and the right-hand side (i.e., the mechanical force vectors due to the macroscopic unit

strains 𝜀0) of this equation need to be discretized. To calculate displacement fields in

Equation (3) by using FE methods, we proceed as follows:

𝑲𝝌 = 𝑭, (4)

where K is the stiffness matrix and 𝑭 is the mechanical force vector due to the correspond-

ing macroscopic unit strains, where, herein, the strains are chosen to be:

𝜀1
0 = (1,0,0)𝑇 , 𝜀2

0 = (0,1,0)𝑇 , 𝜀3
0 = (0,0,1)𝑇. (5)

Equation (5) physically means that in the first case, the unit strain is applied along

the x-axis; in the second case, the unit strain is applied along the y-axis; and the last case

corresponds to a pure shear strain. Consequently, the force vectors can be calculated by:

𝑭 = ∑ ∫ 𝑩𝑒
𝑇

𝑉𝑒
𝑪𝑒𝜺0𝑑𝑉𝑒

𝑁
𝑒=1 , (6)

where N, 𝑩𝑒, 𝑪𝑒, and 𝑉𝑒 are the total number of elements in a unit cell, the element strain

displacement matrix, the element stiffness matrix, and the volume of the element, respectively.

Regarding the left-hand side of Equation (4), for the stiffness matrix, we have:

𝑲 = ∑ ∫ 𝑩𝑒
𝑇

𝑉𝑒
𝑪𝑒𝑩𝑒𝑑𝑉𝑒

𝑁
𝑒=1 , (7)

where the element stiffness matrix (𝑪𝑒) for an isotropic material depends on Lame’s first

and second parameters and they can be, respectively, found using Equations (8) and (9)

as follows:

𝜆 =
𝜈𝐸

(1+𝜈)(1−2𝜈)
, (8)

𝜇 =
𝐸

2(1+𝜈)
, (9)

where E is the Young’s modulus and ν is the Poisson’s ratio. If the plane stress conditions

are in mind, Lame’s first parameter can be modified and used as:

𝜆̂ =
2𝜇𝜆

𝜆+2𝜇
. (10)

The mentioned procedure is often referred to as numerical homogenization and has

been widely utilized by various researchers in the past [90–94]. Figure 1 shows two exam-

ples of different 2D periodic cellular patterns, where each cell can be described by the

parallelogram-shaped unit cells. Note that the shape of the unit cell is greatly influenced

by the overall structure of the cellular domain. The unit cell should be designed to best

capture the periodic repetition of the voids (see Figure 1)

Materials 2024, 17, x FOR PEER REVIEW 5 of 47

Figure 1. Examples of 2D periodic cellular patterns with parallelogram-shaped unit cells containing

(a) hexagonal and (b) triangular voids.

In this approach, the unit cell itself will be discretized and then solved by finite ele-

ment (FE) methods. Figure 2 illustrates the structure of the FE mesh and its corresponding

geometrical constraints, together with the actual meshed unit cell consisting of two mate-

rial phases. In this case, an indicator matrix X denotes whether the element contains ma-

terial one (𝑋𝑒 = 1) or material two (𝑋𝑒 = 2). As can be seen in this figure, the unit cell can

conveniently be characterized by three geometrical parameters of width (lx), height (ly),

and the angle (φ) between the x-axis and the left wall of the unit cell. To avoid overly

distorted elements, a range of 45°≤ φ ≤ 135° is usually recommended [90].

Figure 2. The structure of the FE mesh and its application on a unit cell consisting of two material

phases.

As discussed earlier, Andreassen and Andreassen [90] have developed a MATLAB

code for the homogenization of composite materials, assuming that the constituent phases

are isotropic. A comprehensive explanation and possible extensions of the code are thor-

oughly addressed in [90], so further explanations on this matter are avoided herein for the

sake of brevity. However, for the reader’s convenience, the code is reported in Appendix

A by the name of homogenize. The inputs for this code are the dimensions of the unit cell

(i.e., lx and ly); Lame's first and second parameters for the materials (in this work, the focus

is on the homogenization of functionally graded periodic cellular materials so one mate-

rial is associated with the solid part of the structure and the other one is void); the angle

formed by the left wall of the unit cell and the x-axis (i.e., φ); and the indicator matrix, X,

which has two purposes. Firstly, it in indicates what material is within the unit cell, and,

secondly, the size of this matrix characterizes how fine the discretization is (see Figure 2).

Thus, the function can be called (note that “flag” is just a debugging parameter):

homogenize(lx, ly, lambda, mu, phi, x, flag).

Materials 2024, 17, x FOR PEER REVIEW 6 of 47

In the current work, two new sets of codes (functions) are developed to model an

isotropic cellular structure and to appropriately utilize the homogenize code to obtain the

corresponding elasticity tensor of the homogenized material domain at any point. The

first developed code is called Cellular_Solid (see Appendix B), which is responsible for

making the unit cell with the desired void and requires three inputs, including the size of

the mesh grid (i.e., the size of indicator matrix), the shape of the void, and an “Argument”,

which specifies the size of the void. In the present work, the void shapes that this code

supports are circles, hexagons, squares, and rectangles. The variable (or the argument)

that determines the size of the circular or the hexagonal void is the radius and half of the

hexagon’s diagonal, respectively. Changing these parameters will alter the size of the

voids, much like using a magnifying tool. However, for the rectangle, two variables of

width and height are required, and if the two are equal, a square is expected. The second

code generated herein is called Homogenize_test (see Appendix C), and it properly and

efficiently uses the other two codes to construct an isotropic periodic cellular structure to

collect elasticity tensor data from all discrete points of the homogenized structure to create

a continuous function that can estimate the tensor components at any point within the

homogenized domain. The first part of this code is designated to initialization and collects

four user inputs, including unit cell’s matrix size, the unit cell’s void shape, and the di-

mensions of the overall structure. Then, it establishes the grid parameters to define the

range for x and y coordinates according to the input dimensions of the structure. Each x

and y coordinate pair represents the centroid of a unit cell and can be used as a variable

for the argument which identifies the size of the void. This is beneficial, because by as-

signing a function to the corresponding argument, different void sizes can be achieved by

moving from one material point to another. Then, the code saves two main data for each

point. The first one is the reference elasticity tensor for the corresponding unit cell ob-

tained from the homogenize function. The second one is relative density, obtained by ana-

lyzing the material distribution within each unit cell by computing the sum of elements

in the matrix X that contains material one (in this case, solid material) divided by the total

number of elements. Afterwards, the final structure and the corresponding relative den-

sity are plotted. Then, both the relative density and the elasticity tensors are curve fitted

by using a predefined function in MATLAB (in this case, “poly55”). Also, the overall av-

erage element-wise percentage error for the obtained tensor function is calculated by first

obtaining the percentage error for each tensor element by using the following equation:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒+𝜖
| × 100 , (11)

where 𝜖 is a small constant added to avoid division by zero. Then, these individual per-

centage errors are summed across all tensor elements for all unit cells and, finally, divided

by the total number of material points. It is worth noting that in the current work, poly55

is used for its simplicity, computational efficiency, acceptable fitting accuracy, and con-

venience in polynomial surface fitting. Obviously, any other fitting function can be used

herein, including user-developed ones. Note that for complex geometries, it is recom-

mended to use other methods like spline fitting instead of using higher-degree polynomi-

als, since it might result in computational overhead or overfitting. Moreover, if desired,

the reference and the fitted elasticity tensors at any specified point can be displayed as an

output by hard coding the coordinates of that point.

Recently developed, complex, and ultra-precise additive manufacturing methods

have enabled the creation and utilization of unique microcellular structures with func-

tionally graded patterns and tailored mechanical properties. The homogenization of such

topologically complex components is a crucial task for analyzing and predicting their be-

havior under various loading conditions. Due to the nature of this manufacturing process

which is performed layer by layer at a specified angle, the final structure often exhibits

significant orthotropy in the printing direction [94]. Despite the valuable contributions of

Andreassen and Andreassen [90] and although their method is capable of considering

Materials 2024, 17, x FOR PEER REVIEW 7 of 47

anisotropy induced by cell topology, it fails to consider orthotropic material phases in the

homogenization approach. Therefore, their approach may not be suitable for additively

manufactured microcellular structures, which are the focus of this work. Figure 3a,b show

two examples of anisotropies caused by the topology of the cell and the printing direction,

respectively.

Figure 3. (a) An example of geometrically anisotropic cell, (b) An orthotropic periodic cellular struc-

ture featuring square voids, printing angle θ, with global x-y and principal 1–2 coordinate systems.

Up to this point, the focus of the current method has been on the homogenization of

isotropic functionally graded periodic cellular structures, for which two new sets of codes

have already been provided. However, the core novelty and innovation of the present

work lie in developing a new code capable of considering material orthotropy in the ho-

mogenization process as well as spatially varying cellular patterns. The inputs of this new

code, which is called homogenize_ortho (see Appendix D), are the same as the ones that are

used in the homogenize function, but since the material orthotropy is considered, Lame’s

first and second parameters are omitted. Instead, five new inputs of 𝐸1 (Young's modulus

in first principal direction), 𝐸2 (Young's modulus in second principal direction), 𝐺12 (in-

tralaminar shear modulus), 𝜈12 (the Poisson’s ratio in the 2-direction due to load being

applied in the 1-direction), and θ (the printing or the orthotropy angle) are added, so the

final form of the line is shown below:

homogenize_ortho(lx, ly, E1, E2, G12, nu12, phi, theta, x, flag) .

After receiving the required inputs, the code transforms the material properties from

principal directions to a global x-y coordinate system by using the well-known transfor-

mation equations for orthotropic materials as follows:

𝐸𝑥 = (
cos4(𝜃)

𝐸1
+ (

1

𝐺12
−

2𝜈12

𝐸1
) sin2(𝜃)cos2(𝜃) +

sin4(𝜃)

𝐸2
)

−1

, (12)

𝐸𝑦 = (
sin4(𝜃)

𝐸1
+ (

1

𝐺12
−

2𝜈12

𝐸1
) sin2(𝜃)cos2(𝜃) +

cos4(𝜃)

𝐸2
)

−1

, (13)

𝐺𝑥𝑦 = (
1

𝐺12
(sin4(𝜃) + cos4(𝜃)) + 4 (

1

𝐸1
+

1

𝐸2
+

2𝜈12

𝐸1
−

1

2𝐺12
) sin2(𝜃)cos2(𝜃))

−1

, (14)

𝜈𝑥𝑦 = 𝐸𝑥 (
𝜈12

𝐸1
−

1

4
(

1

𝐸1
+

2𝜈12

𝐸2

1

𝐸2
−

1

𝐺12
) sin2(2𝜃)). (15)

For orthotropic materials, the stiffness matrix C is commonly represented as:

Materials 2024, 17, x FOR PEER REVIEW 8 of 47

𝐶 = [

𝐸𝑥 𝜈𝑥𝑦𝐸𝑦 0

𝜈𝑦𝑥𝐸𝑥 𝐸𝑦 0

0 0 𝐺𝑥𝑦

], (16)

The transformed material properties are assigned to each element. After that, element-

level stiffness matrices (keC) and force vectors (feC) are calculated based on the geometry

of the unit cell. Once the boundary conditions and the global stiffness matrix and load

vector are defined, the code finds the displacement field (chi) inside of the unit cell under

three typical load cases of axial strain in the x-direction (epsilon0_11 = (1, 0, 0)), axial strain

in the y-direction (epsilon0_22 = (0, 1, 0)), and shear strain (epsilon0_12 = (0, 0, 1)). Finally,

the homogenized elasticity tensor (CH) is calculated by integrating the stress and strain

fields over the volume of the unit cell, which provides a macroscopic view of how the

material behaves as a continuous medium despite its microscopic heterogeneities.

To effectively use the homogenize_ortho function, an innovative code, named Homoge-

nize_test_ortho_principal, has been developed (see Appendix E). Like before, this code

makes a connection between the Cellular_Solid function and creates the unit cells, then

stacks these cells to make the overall cellular structure. Each unit cell is represented by a

point in the structure, and the corresponding elasticity tensor and relative density are as-

signed to that point. However, an important issue herein is that the obtained elasticity

tensor from the homogenize_ortho function is in the global coordinate system and not in the

principal directions. To solve this issue, creatively, Equations (12)–(15) are solved back-

wards to obtain 𝐸1, 𝐸2, 𝐺12, and 𝜈12 as follows (note that eqn1, eqn2, eqn3, and eqn4 are

the same as 𝐸𝑥, 𝐸𝑦, 𝐺𝑥𝑦 , and 𝜈𝑥𝑦, respectively, as shown in Equations (12)–(15)):

eqn1 = 1./(((cosd(theta)).^4)./E1+(1./G12-2.*nu12./E1).*((sind(theta)).^2).*

((cosd(theta)).^2)+((sind(theta)).^4)./E2) == CH(1,1);

eqn2 = 1./(((sind(theta)).^4)./E1+(1./G12-2.*nu12./E1).*((sind(theta)).^2)

.*((cosd(theta)).^2)+((cosd(theta)).^4)./E2) == CH(2,2);

eqn3 = 1./(((sind(theta)).^4+(cosd(theta)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta)).^2).*((cosd(theta)).^2)) == CH(3,3);

eqn4 = CH(1,1).*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-1./G12).*

((sind(2*theta)).^2)) == (CH(1,2)/CH(2,2));

 %Solve

Sol = vpasolve([eqn1, eqn2, eqn3, eqn4], [E1,E2,G12,nu12], [CH_principal(1,1)/2;

CH_principal(2,2)/2; CH_principal(3,3)/2; CH_principal(1,2)/2]);

Note that the initial guesses need to be hard coded at the beginning of the code in the

following lines (fill the blank):

CH_principal = zeros(3);

CH_principal(1,1) = ---;

CH_principal(2,2) = ---;

CH_principal(3,3) = ---;

CH_principal(1,2) = ---;

CH_principal(2,1) = CH_principal(1,2); .

Materials 2024, 17, x FOR PEER REVIEW 9 of 47

Now that the material properties in the principal directions are obtained, they are

substituted into Equation (16) to obtain the reference elasticity tensor at each material

point. The remainder of the code performs the same operations discussed earlier for the

Homogenize_test function with the added features of plotting 𝐸1, 𝐸2, 𝐺12, 𝜈12. Moreover,

the coefficients of the polynomial fitting functions for elasticity tensors and relative den-

sity distributions are documented in CSV files. Also, note that, in this case, the tensor func-

tions for both global x-y and principal 1–2 coordinate systems will be displayed. Figure 4

depicts a simple flowchart of the explained procedure.

Figure 4. The flowchart of the homogenization process for orthotropic and isotropic solid phase in

periodic functionally graded microcellular materials.

3. Results and Discussion

In this section, several examples of homogenizing periodic functionally graded cel-

lular structures, considering both orthotropic and isotropic cases, are presented. For the

isotropic ones, six different cases are considered. Note that before running the code, the inputs

for the homogenize function need to be hard coded by making changes in the following line:

CH = homogenize(1,1,[115.4 1],[76.9 0.769],90,X,flag).

As mentioned, the first two inputs are lx and ly (the dimensions of the unit cell in x

and y directions), which, in this example, are both equal to unity. The third input is a one-

by-two matrix, where the first entry is Lame’s first parameter for the first material (in this

case, the solid phase) and the second entry is Lame’s first parameter for the second mate-

rial (which is void in this work). Note that, according to [90], when dealing with the void,

it is recommended to use one-hundredth of the value used for the solid material. The next

input is Lame’s second parameter, and it follows the same rule as Lame’s first parameter.

Note that, herein, a hypothetical material with a Young's modulus of 200 GPa and a

Materials 2024, 17, x FOR PEER REVIEW 10 of 47

Poisson's ratio of 0.3 is considered for the solid phase. Note that by substituting these

values in Equations (8) and (9), Lame’s first and second parameters for the solid material

are computed. The fifth input is the angle between the horizontal and the inclined wall of

the unit cell, φ, in degrees, which, in this example, is equal to 90°. This means that by

considering the given lx and ly, the unit cell is a one-by-one square. Finally, X is the size of

the indicator matrix used for the discretization of the unit cell, and its size will be estab-

lished once the code is run, so no changes are required here. To summarize it, the hard

coded inputs are lx = 1, ly = 1, Lame’s first parameter for the solid is 115.4, Lame’s first

parameter for the void is 1, Lame’s second parameter for the solid is 76.9, Lame’s second

parameter for the void is 0.769, φ = 90 (meaning the unit cell is square given that its width

and height are equal to unity), and, finally, the size of the indicator matrix, which does

not need to be hard coded since it will be checked once the code is run.

Once these inputs are hard coded, the Homogenize_test can be run. When the code is run,

it asks for four inputs of UC (unit cell) matrix size, UC’s void shape, the structure’s width, and

the structure’s height. Here, a unit cell matrix size of 50 is utilized. This means that the cell will

be discretized with a 50-by-50 mesh. Regarding the void shape, three cases of circle, rectangle,

and hexagon have been defined, and to choose any of the aforementioned geometries, the user

can simply type the name of the shape. Note that the desired function needs to be hard coded

in the corresponding void size argument. The input for both the width and height of the struc-

ture is chosen to be 20. This means that the entire cellular material domain consists of 400 unit

cells (and, therefore, material points) stacked together.

Figure 5 shows two functionally graded cellular structures (Figure 5a,c) with their

corresponding relative density plot (Figure 5b,d). The first structure is a cellular medium

with varying rectangular-shaped voids in the y-direction, while the voids in the other one

have the shape of a square, and their sizes change in the diagonal direction. Both struc-

tures have simple patterns, resulting in smooth changes in material properties from one

point to another. Consequently, applying a fitting function capable of giving a good ap-

proximation for the actual data (i.e., the reference elasticity tensor obtained from the ho-

mogenize function) will not be difficult. This is confirmed by the relatively small amounts

obtained as overall average element-wise percentage error, which are 1.09% and 1.91% for

the cases illustrated in Figure 5a,c, respectively.

There is an intriguing phenomenon hidden in the structure shown in Figure 5a. Even

though the material of the solid phase is isotropic, the structure exhibits anisotropy at the

unit cell level due to the geometry of the voids. Note that, unlike Figure 5c, the unit cells

are not symmetric in both the x and y directions (cf. Figure 3a). Therefore, the unit cell

returns different values of elastic modulus along the x and y directions, computed herein

as 𝐸𝑥 =161.53 GPa and 𝐸𝑦 =128.92 GPa. Note that elongated voids aligned in the x direc-

tion make the material stiffer along that direction. A high or random discrepancy in the

void sizes across different unit cells leads to significant variations in material properties,

making it mathematically challenging to develop a function that can accurately predict

these properties. For instance, Figure 6a depicts a structure with circular voids and a

highly diverse void pattern. As can be seen in this example, the size of the voids and their

position change dramatically, both pattern-wise and size-wise, so assigning a fit function

will be challenging. For this reason, it is not surprising to see that the overall average ele-

ment-wise percentage error in this case is 13.95%. Meanwhile, Figure 6c shows a structure

with hexagonal void shapes, where slower changes in void sizes occur as we move from

the center to the edges of the medium. In addition to that, the stochasticity in the pattern

is much less than that of 5a, resulting in an overall average element-wise percentage error

of 1.51%. The relative density for both structures is depicted in Figure 6b,d.

Materials 2024, 17, x FOR PEER REVIEW 11 of 47

Figure 5. Two functionally graded cellular structures with (a) rectangular voids that increase in size

in the y-direction and (b) its relative density plot together with (c) a structure with diagonally in-

creasing square voids and (d) the corresponding relative density plot.

Figure 6. Two examples of functionally graded cellular structures with isotropic material phases:

(a,b) a diverse circular void pattern and its corresponding relative density plot; (c,d) hexagonal

voids and the corresponding relative density plot.

Materials 2024, 17, x FOR PEER REVIEW 12 of 47

Two highly diverse structures in terms of void size and pattern are illustrated in Fig-

ure 7a,c. Figure 7a depicts a cellular structure with a pattern of circular voids that change

diagonally, resembling the rippling effect of water waves as one droplet of water merges

into another, and the structure in Figure 7c has random size voids in each unit cell. The

complexity in both structures is noticeable in the density plots illustrated in Figure 7b,d.

Due to the complex characteristics of the voids in these structures, it is not surprising to

see that the overall average element-wise percentage error for the first structure is 7.44%

and for the second one is 13.73%, which is high.

Figure 7. Examples of complex periodic microcellular structures: (a,b) illustrate a medium with cir-

cular voids that resembles a waive alongside its corresponding relative density plot; (c,d) present a

structure containing random circular voids and its associated relative density plot.

For the orthotropic functionally graded periodic cellular materials, two examples are

shown in Figures 8 and 9. For this part, the appropriate homogenization code, Homoge-

nize_test_ortho_principal, needs to be used, and note again that, before running the code,

the inputs must be hard coded as:

homogenize_ortho(1,1,[150 1],[9 0.01],[8 0.08],[0.3 0.3],90,theta,X,flag);.

Like the isotropic example, the first two inputs are the unit cell dimensions (both are

set to one). The third input is a matrix where the first entry is 𝐸1 for material one (in this

case, 150 GPa) and the second entry is 𝐸1 for material two. The fourth through sixth en-

tries are matrices associated with 𝐸2, 𝐺12, and 𝜈12. Note that, once more, the mentioned

rule is applied here, in which for the void, one-hundredth of the value used for the solid

material is used. The next entries are φ = 90°, the printing angle (θ), and finally the size of

Materials 2024, 17, x FOR PEER REVIEW 13 of 47

the indicator matrix. The last two values, the printing angle and matrix size, will be

prompted for input from the user once the code is run, so no prior changes are required.

Figure 8 shows an orthotropic periodic microcellular structure with square voids and

a printing angle of 30° (Figure 8a) along with its corresponding relative density, 𝐸1, 𝐸2,

𝐺12, and 𝜈12 plots (Figure 8b–f, respectively). Even though the patten seems to be compli-

cated, the variation in the void size is not significant, which makes it relatively easy to fit

a function capable of predicting the datapoints with acceptable precision. This is verified

by knowing that the overall average element-wise percentage error for this case is 3.44%.

Figure 8. (a) A periodic functionally graded microcellular structure with orthotropy angle of 30°

and its associated homogenized material properties including (b) relative density, (c) 𝐸1, (d) 𝐸2, (e)

𝐺12, and (f) 𝜈12.

Figure 9 illustrates an orthotropic periodic functionally varying microcellular struc-

ture but with a more complex pattern (Figure 9a), which resembles a ripple emanating

from the lower left of the medium. The orthotropy angle (i.e., printing orientation angle)

is 60°, and the unit cells contain circular voids, with sizes that change more dramatically

compared to the previous example. This dissimilarity leads to considerable changes in the

material properties at each unit cell and consequently makes it difficult to fit a function

capable of accurately capturing these variations. This results in an overall average ele-

ment-wise percentage error of 6.80% for this case. The corresponding homogenized ma-

terial properties are depicted in Figure 9b–f.

Materials 2024, 17, x FOR PEER REVIEW 14 of 47

Figure 9. (a) A complex periodic microcellular structure with orthotropy angle of 60° and its corre-

sponding homogenized material properties, including (b) relative density, (c) 𝐸1, (d) 𝐸2, (e) 𝐺12,

and (f) 𝜈12.

4. Conclusions

Recent developments in additive manufacturing have not only broadened the hori-

zon for creating structures with intricate features (like microcellular solids) but have also

accentuated the necessity of understanding and analyzing them under various loading

conditions. Homogenization is a powerful computational tool for the simplification of ma-

terials with complex discrete properties into an equivalent continuum medium. This tech-

nique is vital in various fields, particularly in structural and fracture analysis, where sim-

ulating crack nucleation and propagation in complex (i.e., heterogeneous) materials is not

only complicated but also computationally expensive [95–101]. In the current method, for

the first time, homogenization is utilized to obtain the macroscopic elasticity tensor of

functionally graded periodic cellular materials, considering both isotropic and orthotropic

constituents, from the equivalent homogeneous counterparts. To this end, several

MATLAB implementations are developed and presented for future users. Regarding

structures with isotropic solids, two new sets of codes are developed. The first one, named

Cellular_Solid, defines both the geometry of the unit cell and the void inside of it, while the

other one, named Homogenize_test, has several duties. Firstly, it retrieves the unit cell from

Cellular_Solid and then effectively utilizes a homogenization code already reported in the

literature (herein by the name of homogenize) to obtain the homogenized unit cell’s elastic-

ity tensor. Each unit cell is then stacked up, and the final structure is generated and plotted

along with its corresponding relative density. This code treats the unit cells as material

points and assigns the homogenized elasticity tensor to their centroids. Finally, using a

predefined MATLAB fit function, namely “poly55” in the current work, this code maps

the medium and predicts the elasticity tensor at any given material point.

The primary innovation of this work lies in analyzing spatially varying cellular ma-

terials while considering the effects of material orthotropy in the solid phase, to account

for the orthotropic nature of these materials fabricated via additive manufacturing. For

Materials 2024, 17, x FOR PEER REVIEW 15 of 47

this case, another two sets of codes are developed. The first code is a novel homogeniza-

tion code, which is capable of considering material orthotropy. Finally, the last code,

which is called Homogenize_test_ortho_principal, makes a connection between other codes

and not only plots the structure and its relative density but also illustrates E1, E2, G12,

and ν12 for the equivalent homogeneous medium. In both the isotropic and orthotropic

cases, the overall average element-wise percentage error is reported too. This work

showed that by using the MATLAB implementation provided herein, the homogenized

elasticity tensors in both isotropic and orthotropic (whether it is due to the material or the

asymmetrical geometry of the void) functionally graded periodic cellular materials can be

obtained accurately, conveniently, and with low computational costs. One of the ad-

vantages of the current method is that each entry of the final elasticity tensor is an equation

that maps the entire domain. Having an output like that is beneficial because it can be

easily used in advanced fracture models such as XFEM or peridynamics. Also, it was re-

vealed that the total accuracy of the predicted macroscopic elasticity tensor highly de-

pends on the complexity of the void patterns and how severe the void sizes change from

cell to cell. It was shown that the more complex they become, the harder it is to fit a func-

tion that can accurately represent each material point. Thus, the fitting function plays an

important role in the overall accuracy; as the stochasticity in the structure increases, a

more sophisticated fitting function is required. For instance, utilizing a fit function based

on Furrier series might be a prudent choice since it is especially useful for modeling peri-

odic data, due to its ability to represent any periodic function by decomposing it into a

sum of sine and cosine terms. Moreover, it was revealed that as the relative density de-

creases (i.e., porosity increases), the material's stiffness and strength normally decrease,

and the geometry-induced anisotropy becomes more pronounced due to the large void

size.

Author Contributions: B.S.: Writing—review and editing, writing—original draft, visualization,

methodology, investigation, formal analysis, conceptualization, coding. V.B.K.: Writing, investiga-

tion, formal analysis, methodology, conceptualization, coding. M.M.: Funding acquisition, writ-

ing—review, editing, supervision, resources, project administration, methodology, conceptualiza-

tion. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation of the United States (NSF),

grant number 2317406.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and MATLAB codes supporting the reported results are pro-

vided in the Appendix of this article. Additional data or materials can be requested from the corre-

sponding author.

Acknowledgments: The authors would like to acknowledge the National Science Foundation of the

United States (NSF), CMMI program, Mechanics of Materials and Structures (award # 2317406) for

the financial support of this research.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. The homogenize Code Originally Reported in [90]

function CH = homogenize(lx, ly, lambda, mu, phi, x, flag)
%%
% lx = Unit cell length in x-direction.
% ly = Unit cell length in y-direction.
% lambda = Lame's first parameter for both materials. Two entries.
% mu = Lame's second parameter for both materials. Two entries.
% phi = Angle between horizontal and vertical cell wall. Degrees
% x = Material indicator matrix. Size used to determine nelx/nely
%%

Materials 2024, 17, x FOR PEER REVIEW 16 of 47

%% INITIALIZE
% Deduce discretization
[nely, nelx] = size(x);
% Stiffness matrix consists of two parts, one belonging to lambda and
% one belonging to mu. Same goes for load vector
dx = lx/nelx; dy = ly/nely;
nel = nelx*nely;
[keLambda, keMu, feLambda, feMu] = elementMatVec(dx/2, dy/2, phi);
if flag==1
 disp('keLambda size');
 size(keLambda)
 disp('feLambda size');
 size(feLambda)
end
% Node numbers and element degrees of freedom for full (not periodic) mesh
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1);
edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nel,1);
%% IMPOSE PERIODIC BOUNDARY CONDITIONS
% Use original edofMat to index into list with the periodic dofs
nn = (nelx+1)*(nely+1); % Total number of nodes
nnP = (nelx)*(nely); % Total number of unique nodes
nnPArray = reshape(1:nnP, nely, nelx);
% Extend with a mirror of the top border
nnPArray(end+1,:) = nnPArray(1,:);
% Extend with a mirror of the left border
nnPArray(:,end+1) = nnPArray(:,1);
% Make a vector into which we can index using edofMat:
dofVector = zeros(2*nn, 1);
dofVector(1:2:end) = 2*nnPArray(:)-1;
dofVector(2:2:end) = 2*nnPArray(:);
edofMat = dofVector(edofMat);
ndof = 2*nnP; % Number of dofs
%% ASSEMBLE STIFFNESS MATRIX
% Indexing vectors
iK = kron(edofMat,ones(8,1))';
jK = kron(edofMat,ones(1,8))';
% Material properties in the different elements
lambda = lambda(1)*(x==1) + lambda(2)*(x==2);
mu = mu(1)*(x==1) + mu(2)*(x==2);
if flag==1
 disp('Lambda size');
 size(lambda)
end
% The corresponding stiffness matrix entries
sK = keLambda(:)*lambda(:).' + keMu(:)*mu(:).';
K = sparse(iK(:), jK(:), sK(:), ndof, ndof);
if flag==1
 disp('sK');
 sK(:,1)
end
if flag==1
 disp('iK size');
 size(jK)
 disp('jK size');
 size(jK)
 disp('sK size');
 size(sK)
 disp('K size');

Materials 2024, 17, x FOR PEER REVIEW 17 of 47

 size(K)
end
%% LOAD VECTORS AND SOLUTION
% Assembly three load cases corresponding to the three strain cases
sF = feLambda(:)*lambda(:).'+feMu(:)*mu(:).';
iF = repmat(edofMat',3,1);
jF = [ones(8,nel); 2*ones(8,nel); 3*ones(8,nel)];
F = sparse(iF(:), jF(:), sF(:), ndof, 3);
if flag==1
 disp('iF size');
 size(jF)
 disp('jF size');
 size(jF)
 disp('sF size');
 size(sF)
 disp('F size');
 size(F)
end
% Solve (remember to constrain one node)
chi(3:ndof,:) = K(3:ndof,3:ndof)\F(3:ndof,:);
%% HOMOGENIZATION
% The displacement vectors corresponding to the unit strain cases
chi0 = zeros(nel, 8, 3);
% The element displacements for the three unit strains
chi0_e = zeros(8, 3);
ke = keMu + keLambda; % Here the exact ratio does not matter, because
fe = feMu + feLambda; % it is reflected in the load vector
chi0_e([3 5:end],:) = ke([3 5:end],[3 5:end])\fe([3 5:end],:);
% epsilon0_11 = (1, 0, 0)
chi0(:,:,1) = kron(chi0_e(:,1)', ones(nel,1));
% epsilon0_22 = (0, 1, 0)
chi0(:,:,2) = kron(chi0_e(:,2)', ones(nel,1));
% epsilon0_12 = (0, 0, 1)
chi0(:,:,3) = kron(chi0_e(:,3)', ones(nel,1));
if flag==1
 disp('chi size');
 size(chi)
 disp('chi0 size');
 size(chi0)
 disp('chi0_e size');
 size(chi0_e)
 disp('edofMat');
 size(edofMat)
 disp('ndof');
 ndof
end
CH = zeros(3);
cellVolume = lx*ly;
for i = 1:3
 for j = 1:3
 sumLambda = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keLambda).*...
 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));
 if flag==1 && i==2 && j==2
 disp('sumLambda1 size')
 size(sumLambda)
 end
 if flag==1 && i==2 && j==2
 disp('edofMat+(i-1)*ndof size')
 size(edofMat+(i-1)*ndof)

Materials 2024, 17, x FOR PEER REVIEW 18 of 47

 end
 sumMu = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keMu).*...
 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));
 sumLambda = reshape(sum(sumLambda,2), nely, nelx);
 if flag==1 && i==2 && j==2
 disp('sumLambda2 size')
 size(sumLambda)
 end
 sumMu = reshape(sum(sumMu,2), nely, nelx);
 % Homogenized elasticity tensor
 CH(i,j) = 1/cellVolume*sum(sum(lambda.*sumLambda + mu.*sumMu));
 end
end
%disp('--- Homogenized elasticity tensor ---'); disp(CH)

%% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (NUMERICALLY)
function [keLambda, keMu, feLambda, feMu] = elementMatVec(a, b, phi)
% Constitutive matrix contributions
CMu = diag([2 2 1]); CLambda = zeros(3); CLambda(1:2,1:2) = 1;
% Two Gauss points in both directions
xx=[-1/sqrt(3), 1/sqrt(3)]; yy = xx;
ww=[1,1];
% Initialize
keLambda = zeros(8,8); keMu = zeros(8,8);
feLambda = zeros(8,3); feMu = zeros(8,3);
L = zeros(3,4); L(1,1) = 1; L(2,4) = 1; L(3,2:3) = 1;
for ii=1:length(xx)
 for jj=1:length(yy)
 % Integration point
 x = xx(ii); y = yy(jj);
 % Differentiated shape functions
 dNx = 1/4*[-(1-y) (1-y) (1+y) -(1+y)];
 dNy = 1/4*[-(1-x) -(1+x) (1+x) (1-x)];
 % Jacobian
 J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi/180)-a; ...
 -b -b b b]';
 detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1);
 invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)];
 % Weight factor at this point
 weight = ww(ii)*ww(jj)*detJ;
 % Strain-displacement matrix
 G = [invJ zeros(2); zeros(2) invJ];
 dN = zeros(4,8);
 dN(1,1:2:8) = dNx;
 dN(2,1:2:8) = dNy;
 dN(3,2:2:8) = dNx;
 dN(4,2:2:8) = dNy;
 B = L*G*dN;
 % Element matrices
 keLambda = keLambda + weight*(B' * CLambda * B);
 keMu = keMu + weight*(B' * CMu * B);
 % Element loads
 feLambda = feLambda + weight*(B' * CLambda * diag([1 1 1]));
 feMu = feMu + weight*(B' * CMu * diag([1 1 1]));
 end
end

Materials 2024, 17, x FOR PEER REVIEW 19 of 47

Appendix B. The Cellular_Solid Code

function largeMatrix = draw_shape(matrixSize, shape_type, varargin)

 % Initialize the large matrix with all elements as 1

 largeMatrix = ones(matrixSize);

 switch shape_type

 case 'circle'

 % varargin{1} is the radius of the circle

 circleRadius = varargin{1};

 % Initialize the current matrix with all elements as 1

 matrix = ones(matrixSize);

 % Calculate the coordinates of the center

 centerX = (matrixSize + 1) / 2;

 centerY = (matrixSize + 1) / 2;

 % Create a meshgrid of coordinates

 [X, Y] = meshgrid(1:matrixSize, 1:matrixSize);

 % Create a circular mask with 2s inside the circle

 circularMask = (X - centerX).^2 + (Y - centerY).^2 <= circleRadius.^2;

 % Update the current matrix with the circular mask

 matrix(circularMask) = 2;

 % Combine the current matrix with the large matrix

 largeMatrix = max(largeMatrix, matrix);

 case 'rectangle'

 % varargin{1} is the width of the rectangle

 % varargin{2} is the length of the rectangle

 rectangleWidth = varargin{1};

 rectangleLength = varargin{2};

 % Calculate the coordinates of the center

 centerX = floor((matrixSize + 1) / 2);

 centerY = floor((matrixSize + 1) / 2);

 % Calculate the starting and ending coordinates of the rectangle

 startX = centerX - floor(rectangleWidth / 2);

 endX = centerX + floor(rectangleWidth / 2);

Materials 2024, 17, x FOR PEER REVIEW 20 of 47

 startY = centerY - floor(rectangleLength / 2);

 endY = centerY + floor(rectangleLength / 2);

 % Ensure the coordinates are within the matrix boundaries

 startX = max(1, startX);

 endX = min(matrixSize, endX);

 startY = max(1, startY);

 endY = min(matrixSize, endY);

 % Create the rectangle in the matrix

 largeMatrix(startY:endY, startX:endX) = 2;

 case 'hexagon'

 % varargin{1} is half of the hexagon diagonal

 w = varargin{1};

 % % 1- Below is the hexagonal with two vertices next to each other

 % % use only this part or part 2

 % a11 = (matrixSize + 1) / 2 - w;

 % a12 = (matrixSize + 1) / 2;

 %

 % a21 = (matrixSize + 1) / 2 - w*cosd(60);

 % a22 = (matrixSize + 1) / 2 - w*sind(60);

 %

 % a31 = (matrixSize + 1) / 2 + w*cosd(60);

 % a32 = (matrixSize + 1) / 2 - w*sind(60);

 %

 % a41 = (matrixSize + 1) / 2 + w;

 % a42 =(matrixSize + 1) / 2;

 %

 % a51 = (matrixSize + 1) / 2 + w*cosd(60);

 % a52 = (matrixSize + 1) / 2 + w*sind(60);

 %

 % a61 = (matrixSize + 1) / 2 - w*cosd(60);

 % a62 = (matrixSize + 1) / 2 + w*sind(60);

 % 2- Below is the hexagonal with one vertices on top

 % use only this part or part 1

 a11 = (matrixSize + 1) / 2;

Materials 2024, 17, x FOR PEER REVIEW 21 of 47

 a12 = (matrixSize + 1) / 2 - w;

 a21 = (matrixSize + 1) / 2 + w*sind(60);

 a22 = (matrixSize + 1) / 2 - w*cosd(60);

 a31 = (matrixSize + 1) / 2 + w*sind(60);

 a32 = (matrixSize + 1) / 2 + w*cosd(60);

 a41 = (matrixSize + 1) / 2 ;

 a42 =(matrixSize + 1) / 2 + w;

 a51 = (matrixSize + 1) / 2 - w*sind(60);

 a52 = (matrixSize + 1) / 2 + w*cosd(60);

 a61 = (matrixSize + 1) / 2 - w*sind(60);

 a62 = (matrixSize + 1) / 2 - w*cosd(60);

 % Specify the vertices of the hexagon (user-defined)

 hexagonVertices = [

 a11, a12; % Vertex 1

 a21, a22; % Vertex 2

 a31, a32; % Vertex 3

 a41, a42; % Vertex 4

 a51, a52; % Vertex 5

 a61, a62]; % Vertex 6

 % Create a binary mask for the hexagon

 hexagonMask = poly2mask(hexagonVertices(:, 1), hexagonVertices(:, 2), ma-

trixSize, matrixSize);

 % Set the corresponding elements in the matrix to 2

 largeMatrix(hexagonMask) = 2;

 case 'coordinates'

 % varargin{1} is a matrix containing the coordinates of the vertices

 vertices = varargin{1};

 % Create a binary mask for the triangle

Materials 2024, 17, x FOR PEER REVIEW 22 of 47

 shapeMask = poly2mask(vertices(:, 1), vertices(:, 2), matrixSize, matrixSize);

 % Set the corresponding elements in the matrix to 2

 matrix(shapeMask) = 2;

 otherwise

 error('Unknown shape type');

 end

end

Appendix C. The Homogenize_test Code

clc

clear all

close all

%User inputs

matrixSize = input('Enter UC matrix size: ');

shape = input('Enter UCs void shape (circle, rectangle, hexagon): ','s');

x_length = input('Enter the structure width: ');

y_length = input('Enter the structure height: ');

% Defining grid parameters

x_range = 0:1:x_length-1;

y_range = 0:1:y_length-1;

x_center = (x_length-1)/2;

y_center = (y_length-1)/2;

RD = zeros(x_length, y_length);

% Define a structure to hold the coordinates and elasticity tensors

plate = struct('x', [], 'y', [], 'tensor', []);

RD_struct = struct('x', [], 'y', [], 'RD', []);

%Dummy flag

y_now = pi();

%Full structure visualization

FullStructure = [];

% Initialize a row holder for each row of unit cells

Materials 2024, 17, x FOR PEER REVIEW 23 of 47

rowHolder = [];

flag=0;

% Loop through the grid and compute the elasticity tensor for each point

for y = fliplr(y_range)

 % Clear rowHolder for the new row

 rowHolder = [];

 for x = x_range

 switch shape

 case 'circle'

 %study 5

 % argument = sin(sqrt((x - x_center)^2 + (y - y_center)^2))*10;

 %study 3

 % argument = abs(sin(x+y))*matrixSize/4+1;

 % if argument >= floor(matrixSize/2)

 % argument = floor(matrixSize/2)-1;

 % end

 %case 6

 argument = randi([5, 15]);

 X = Cellular_Solid(matrixSize, shape, argument);

 case 'rectangle'

 %study 1

 % argument1 = (y+3)*1.5;

 % argument2 = y+3;

 %study 2

 argument1 = (sqrt(y^2+x^2))*1.5;

 argument2 = (sqrt(y^2+x^2))*1.5;

 X = Cellular_Solid(matrixSize, shape, argument1, argument2);

 case 'hexagon'

 %study 4

 argument = 24-(sqrt((y-y_center)^2+(x-x_center)^2))*0.9;

Materials 2024, 17, x FOR PEER REVIEW 24 of 47

 X = Cellular_Solid(matrixSize, shape, argument);

 end

 CH = homogenize(1,1,[115.4 1],[76.9 0.769],90,X,flag);

 flag=0;

 %Save "relative density"

 RD_struct(end+1)=struct('x', x, 'y', y, 'RD', sum(sum(X == 1))/(matrixSize^2));

 RD(x+1,y+1) = sum(sum(X == 1))/(matrixSize^2);

 % Add the data to the structure

 plate(end+1) = struct('x', x, 'y', y, 'tensor', CH);

 % Concatenate this unit cell to the row holder

 rowHolder = [rowHolder, X];

 end

 % Once a full row of unit cells is formed, concatenate it to the FullStructure

 FullStructure = [FullStructure; rowHolder];

end

plate = plate(2:end); %Get rid of first empty entry

RD_struct = RD_struct(2:end);

%% Plotting

% Calculate the range of densities

densityMin = min(RD(:));

densityMax = max(RD(:));

% Define contour levels

numLevels = 50; % You can change this value

contourLevels = linspace(densityMin, densityMax, numLevels);

figure(1)

contourf(x_range,y_range,RD',contourLevels,'LineColor', 'none')

colormap(flipud(gray));

colorbar

caxis([densityMin, densityMax]); % Set color axis scaling

% Adjusting font sizes individually

title('Relative density plot', 'FontSize', 20) % Set font size for title

xlabel('x coordinate', 'FontSize', 20) % Set font size for x-axis label

ylabel('y coordinate', 'FontSize', 20) % Set font size for y-axis label

Materials 2024, 17, x FOR PEER REVIEW 25 of 47

set(gca, 'FontSize', 19) % Set font size for axis ticks

axis equal

%Full cellular/porous structure

figure(2)

imshow(FullStructure, [1, 2]);

% Adjusting font sizes individually

title('Final Combined Matrix', 'FontSize', 20) % Set font size for title

xlabel('x coordinate', 'FontSize', 20) % Set font size for x-axis label

ylabel('y coordinate', 'FontSize', 20) % Set font size for y-axis label

axis equal

%% Obtain the "reference" Elasticity tensor at a given set of coordinates

% x_coordinate = floor(x_length/2); %This gives the CH at the center of the plate

% y_coordinate = floor(y_length/2);

%Manual input

x_coordinate = 15; %This gives the CH at the center of the plate

y_coordinate = 15;

tensor = getTensorAtCoordinate(plate, x_coordinate, y_coordinate); %Uses the funnction at

the end

%% Curve fitting the Elasticity Tensor Map

% Initialize tensor_function as a cell array

tensor_function = cell(3);

for i=1:3

 for j=1:3

 x_data = [plate.x];

 y_data = [plate.y];

 tensor_data = cellfun(@(t) t(i,j), {plate.tensor});

 % Define the fit type, e.g., a polynomial

 fitType = fittype('poly55'); % second-degree polynomial

 % Perform the fit

 tensor_function{i,j} = fit([x_data', y_data'], tensor_data', fitType);

 end

end

tensor_function

%% Curve fitting the Relative Density Map

Materials 2024, 17, x FOR PEER REVIEW 26 of 47

x_data = [plate.x];

y_data = [plate.y];

RD_data = [RD_struct.RD];

% Define the fit type, e.g., a polynomial

fitType = fittype('poly55'); % second-degree polynomial

% Perform the fit

%RDL = reshape(RD, [], 1);

RD_function = fit([x_data', y_data'], RD_data', fitType);

% For instance, for the 88th entry in the structure, fitted and actual RD

% are:

L = 88;

% To know its coordinates use:

% x_coordinate = plate(88).x

% y_coordinate = plate(88).y

RD_Fitted = RD_function(plate(L).x, plate(L).y)

RD_Actual = RD_struct(L).RD

%% Evaluating the curve-fitted Elasticity tensor from coordinate

%Accessing specific equation (entry of the tensor)

specific_function = tensor_function{1,2};

%Evaluating the function at a given x and y value

x_value = 15; % Replace with the desired x value

y_value = 15; % Replace with the desired y value

result = specific_function(x_value, y_value);

%Evaluating full Elasticity tensor at a given y value

elasticity_tensor = zeros(3);

for i = 1:3

 for j = 1:3

 elasticity_tensor(i,j) = tensor_function{i,j}(x_value, y_value);

 end

end

elasticity_tensor

%% Evaluating error (fit analysis)

% Initialize variable for accumulating total element-wise percentage error

total_percentage_error = 0;

total_elements = 0;

% Loop through all coordinates in 'plate' to accumulate the percentage errors

Materials 2024, 17, x FOR PEER REVIEW 27 of 47

for i = 1:length(plate)

 x = plate(i).x;

 y = plate(i).y;

 % Extract the reference tensor from 'plate'

 tensor_exact = plate(i).tensor;

 % Evaluate the approximate tensor at the same coordinates

 for m=1:3

 for n=1:3

 tensor_approx(m,n) = tensor_function{m,n}(x, y);

 end

 end

 % Compute the element-wise percentage error

 % Avoid division by zero by adding a small constant (e.g., 1e-9)

 percentage_error_matrix = abs((tensor_exact - tensor_approx)./ (tensor_exact + 1e-9)) *

100;

 % Sum up the percentage errors and count the number of elements

 total_percentage_error = total_percentage_error + sum(sum(percentage_error_matrix));

 total_elements = total_elements + numel(percentage_error_matrix);

end

% Compute the overall average element-wise percentage error

overall_avg_percentage_error = total_percentage_error / total_elements;

fprintf('The overall average element-wise percentage error is %.2f%%\n', overall_avg_per-

centage_error);

%% getTensorAtCoordinate "reference" function

%Get a specific tensor from coordinate (function)

function tensor = getTensorAtCoordinate(plate, x, y)

 for i = 1:length(plate)

 if isequal(plate(i).x, x) && isequal(plate(i).y, y)

 tensor = plate(i).tensor

 return;

 end

 end

 error('Coordinate not found in the structure.');

end

Materials 2024, 17, x FOR PEER REVIEW 28 of 47

Appendix D. The homogenize_ortho Code

function CH = homogenize_ortho(lx, ly, E1, E2, G12, nu12, phi, theta, x, flag)

%%

% lx = Unit cell length in x-direction.

% ly = Unit cell length in y-direction.

% E1 = Young's Modulus in first principal direction for both materials. Two entries.

% E2 = Young's Modulus in second principal direction for both materials. Two en-

tries.

% G12 = Shear Modulus in direction 1-2.

% nu12 = Poisson's ratio in direction 1-2.

% phi = Angle between horizontal and vertical cell wall. Degrees

% theta = Ply angle

% x = Material indicator matrix. Size used to determine nelx/nely

%%

%% INITIALIZE

% Deduce discretization

[nely, nelx] = size(x);

% Stiffness matrix for orthotropic materials

dx = lx/nelx; dy = ly/nely;

nel = nelx*nely;

% Material properties coordinate transformation (Local 12 to Global xy)

Ex = 1./(((cosd(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((sind(theta)).^4)./E2);

Ey = 1./(((sind(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((cosd(theta)).^4)./E2);

Gxy = 1./(((sind(theta)).^4+(cosd(theta)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta)).^2).*((cosd(theta)).^2));

%nu_xy = Ex.*(nu12./E1.*((sind(theta)).^4+(cosd(theta)).^4)-(1./E1+1./E2-

1./G12).*((sind(theta)).^2).*((cosd(theta)).^2));

nu_xy = Ex.*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-1./G12).*((sind(2*theta)).^2));

% Material properties in the different elements

Ex = Ex(1)*(x==1) + Ex(2)*(x==2);

Ey = Ey(1)*(x==1) + Ey(2)*(x==2);

Gxy = Gxy(1)*(x==1) + Gxy(2)*(x==2);

nu_xy = nu_xy(1)*(x==1) + nu_xy(2)*(x==2);

%Linearize

Ex=Ex(:); Ey=Ey(:); Gxy=Gxy(:); nu_xy=nu_xy(:);

Materials 2024, 17, x FOR PEER REVIEW 29 of 47

% Construct the orthotropic stiffness matrix C for each element

C = zeros(nel, 3, 3);

C(:,1,1) = Ex;

C(:,1,2) = nu_xy .* Ey;

C(:,2,1) = (Ey./Ex) .* nu_xy .* Ex;

C(:,2,2) = Ey;

C(:,3,3) = Gxy;

%Elements Stiffness Matrix and Load Vector

[keC, feC] = elementMatVecOrtho(dx/2, dy/2, phi, C, nel, flag);

% Node numbers and element degrees of freedom for full (not periodic) mesh

nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);

edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1);

edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nel,1);

%% IMPOSE PERIODIC BOUNDARY CONDITIONS

% Use original edofMat to index into list with the periodic dofs

nn = (nelx+1)*(nely+1); % Total number of nodes

nnP = (nelx)*(nely); % Total number of unique nodes

nnPArray = reshape(1:nnP, nely, nelx);

% Extend with a mirror of the top border

nnPArray(end+1,:) = nnPArray(1,:);

% Extend with a mirror of the left border

nnPArray(:,end+1) = nnPArray(:,1);

% Make a vector into which we can index using edofMat:

dofVector = zeros(2*nn, 1);

dofVector(1:2:end) = 2*nnPArray(:)-1;

dofVector(2:2:end) = 2*nnPArray(:);

edofMat = dofVector(edofMat);

ndof = 2*nnP; % Number of dofs

%% ASSEMBLE STIFFNESS MATRIX

% Indexing vectors

iK = kron(edofMat,ones(8,1))';

jK = kron(edofMat,ones(1,8))';

% The corresponding stiffness matrix entries for orthotropic materials

sK = reshape(keC, [64, nel]); % keC should already account for E1, E2, G12, and nu12

K = sparse(iK(:), jK(:), sK(:), ndof, ndof);

%% LOAD VECTORS AND SOLUTION

% Assembly three load cases corresponding to the three strain cases

sF = reshape(feC, [24, nel]); % feC should already account for E1, E2, G12, and nu12

Materials 2024, 17, x FOR PEER REVIEW 30 of 47

iF = repmat(edofMat', 3, 1);

jF = [ones(8, nel); 2*ones(8, nel); 3*ones(8, nel)];

F = sparse(iF(:), jF(:), sF(:), ndof, 3);

% Solve (remember to constrain one node)

chi(3:ndof,:) = K(3:ndof,3:ndof)\F(3:ndof,:);

%% HOMOGENIZATION

% The displacement vectors corresponding to the unit strain cases

chi0 = zeros(nel, 8, 3);

% The element displacements for the three unit strains

ke0=zeros(8,8);

fe0=zeros(8,3);

for k = 1:nel

 ke0(:,:)=keC(:,:,k);

 fe0(:,:)=feC(:,:,k);

 % epsilon0_11 = (1, 0, 0)

 chi0(k,[3 5:end],1) = ke0([3 5:end],[3 5:end])\fe0([3 5:end],1);

 % epsilon0_22 = (0, 1, 0)

 chi0(k,[3 5:end],2) = ke0([3 5:end],[3 5:end])\fe0([3 5:end],2);

 % epsilon0_12 = (0, 0, 1)

 chi0(k,[3 5:end],3) = ke0([3 5:end],[3 5:end])\fe0([3 5:end],3);

end

CH = zeros(3);

cellVolume = lx*ly;

sumC = zeros(nel,8);

for i = 1:3

 for j = 1:3

 chii = chi(edofMat+(i-1)*ndof);

 chij = chi(edofMat+(j-1)*ndof);

 for k = 1:nel

 ke_h = squeeze(keC(:,:,k));

 sumC_h = ((chi0(k,:,i) - chii(k,:))*ke_h).*...

 (chi0(k,:,j) - chij(k,:));

 for q = 1:8

 sumC(k,q) = sumC_h(q);

 end

 end

 sumC = sum(sumC,2);

Materials 2024, 17, x FOR PEER REVIEW 31 of 47

 % Homogenized elasticity tensor

 CH(i,j) = 1/cellVolume*sum(sumC);

 end

end

%% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (NUMERICALLY)

function [keC, feC] = elementMatVecOrtho(a, b, phi, C, nel, flag)

% Constitutive matrix contributions

% Initialize

 keC = zeros(8, 8, nel);

 feC = zeros(8, 3, nel);

 L = zeros(3, 4); L(1, 1) = 1; L(2, 4) = 1; L(3, 2:3) = 1;

 xx = [-1/sqrt(3), 1/sqrt(3)]; yy = xx;

 ww = [1, 1];

for el = 1:nel

 C_local = squeeze(C(el,:,:));

 ke_local = zeros(8, 8); % Initialize for this element

 fe_local = zeros(8, 3); % Initialize for this element

 for ii=1:length(xx)

 for jj=1:length(yy)

 % Integration point

 x = xx(ii); y = yy(jj);

 % Differentiated shape functions

 dNx = 1/4*[-(1-y) (1-y) (1+y) -(1+y)];

 dNy = 1/4*[-(1-x) -(1+x) (1+x) (1-x)];

 % Jacobian

 J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi/180)-a; ...

 -b -b b b]';

 detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1);

 invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)];

 % Weight factor at this point

 weight = ww(ii)*ww(jj)*detJ;

 % Strain-displacement matrix

 G = [invJ zeros(2); zeros(2) invJ];

 dN = zeros(4,8);

 dN(1,1:2:8) = dNx;

 dN(2,1:2:8) = dNy;

 dN(3,2:2:8) = dNx;

 dN(4,2:2:8) = dNy;

 B = L*G*dN;

 % Update the local ke and fe for this element

 ke_local = ke_local + weight * (B' * C_local * B);

Materials 2024, 17, x FOR PEER REVIEW 32 of 47

 fe_local = fe_local + weight * (B' * C_local * diag([1, 1, 1]));

 end

 end

 % Store the local ke and fe in the global 3D arrays

 keC(:,:, el) = ke_local;

 feC(:,:, el) = fe_local;

end

Appendix E. The Homogenize_test_ortho_principal Code

clc

clear all

close all

%User inputs (let's ignore the 'coordinates' option for now)

matrixSize = input('Enter UC matrix size: ');

shape = input('Enter UCs void shape (circle, rectangle, hexagon): ','s');

x_length = input('Enter the structure width: ');

y_length = input('Enter the structure height: ');

theta = input('Enter the printing angle [degrees]: ');

theta_dummy = theta-1:0.1:theta+1;

% Define grid parameters

x_range = 0:1:x_length-1;

y_range = 0:1:y_length-1;

x_center = (x_length-1)/2+2;

y_center = (y_length-1)/2-3;

RD = zeros(x_length, y_length);

% Define a structure to hold the coordinates and elasticity tensors

plate = struct('x', [], 'y', [], 'tensor', [], 'principal_tensor', []);

RD_struct = struct('x', [], 'y', [], 'RD', []);

%Dummy flag

y_now = pi();

%Full structure visualization

FullStructure = [];

% Initialize a row holder for each row of unit cells

rowHolder = [];

flag=0;

CH_principal = zeros(3);

CH_principal(1,1) = 150;

CH_principal(2,2) = 9;

CH_principal(3,3) = 8;

Materials 2024, 17, x FOR PEER REVIEW 33 of 47

CH_principal(1,2) = 0.3;

CH_principal(2,1) = CH_principal(1,2);

% Loop through the grid and compute the elasticity tensor for each point

for y = fliplr(y_range)

 % Clear rowHolder for the new row

 rowHolder = [];

 for x = x_range

 switch shape

 case 'circle'

% write your function for circular voids here

 argument = sin(sqrt((x - 5)^2 + (y - 5)^2))*10;

 X = NSF_function(matrixSize, shape, argument);

 case 'rectangle'

% write your function for rectangular/square voids here

 argument1 = abs(sin(x+y))*matrixSize/4+1;

 if argument1 >= floor(matrixSize/2)

 argument1 = floor(matrixSize/2)-1;

 end

 argument2 = abs(sin(x+y))*matrixSize/4+1;

 if argument2 >= floor(matrixSize/2)

 argument2 = floor(matrixSize/2)-1;

 end

 X = NSF_function(matrixSize, shape, argument1, argument2);

 case 'hexagon'

% write your function for hexagonal voids here

 argument = floor(sqrt(y^2+x^2))+1;

 if argument >= floor(matrixSize/2)

 argument = floor(matrixSize/2)-1;

 end

 X = NSF_function(matrixSize, shape, argument);

Materials 2024, 17, x FOR PEER REVIEW 34 of 47

 end

 CH = homogenize_ortho(1,1,[150 1],[9 0.01],[8 0.08],[0.3 0.3],90,theta,X,flag);

 syms E1 E2 G12 nu12 real positive

 %system of eqns

 eqn1 = 1./(((cosd(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((sind(theta)).^4)./E2) == CH(1,1);

 eqn2 = 1./(((sind(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((cosd(theta)).^4)./E2) == CH(2,2);

 eqn3 =

1./(((sind(theta)).^4+(cosd(theta)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta)).^2).*((cosd(theta)).^2)) == CH(3,3);

 eqn4 = CH(1,1).*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-

1./G12).*((sind(2*theta)).^2)) == (CH(1,2)/CH(2,2));

 %Solve

 Sol = vpasolve([eqn1, eqn2, eqn3, eqn4], [E1,E2,G12,nu12], [CH_princi-

pal(1,1)/2; CH_principal(2,2)/2; CH_principal(3,3)/2; CH_principal(1,2)/2]);

 % Check if solution is empty

 if isempty(Sol.E1) || isempty(Sol.E2) || isempty(Sol.G12) || isempty(Sol.nu12)

 warning('No solution found for the given values of CH and theta.');

 x

 y

 for i = theta_dummy

 syms E1 E2 G12 nu12 real positive

 %system of eqns

 eqn1 = 1./(((cosd(theta_dummy)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta_dummy)).^2).*((cosd(theta_dummy)).^2)+((sind(theta_dummy)).^4)./

E2) == CH(1,1);

 eqn2 = 1./(((sind(theta_dummy)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta_dummy)).^2).*((cosd(theta_dummy)).^2)+((cosd(theta_dummy)).^4)./

E2) == CH(2,2);

 eqn3 =

1./(((sind(theta_dummy)).^4+(cosd(theta_dummy)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta_dummy)).^2).*((cosd(theta_dummy)).^2)) == CH(3,3);

 eqn4 = CH(1,1).*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-

1./G12).*((sind(2*theta_dummy)).^2)) == (CH(1,2)/CH(2,2));

 %Solve

Materials 2024, 17, x FOR PEER REVIEW 35 of 47

 Sol = vpasolve([eqn1, eqn2, eqn3, eqn4], [E1,E2,G12,nu12],

[CH_principal(1,1)/2; CH_principal(2,2)/2; CH_principal(3,3)/2; CH_principal(1,2)/2]);

 if isempty(Sol.E1) || isempty(Sol.E2) || isempty(Sol.G12) ||

isempty(Sol.nu12)

 warning('No solution found for the given values of CH and

theta.');

 else

 break;

 end

 end

 else

 CH_principal = zeros(3);

 % If a solution is found, assign it to CH_principal

 CH_principal(1,1) = Sol.E1;

 CH_principal(2,2) = Sol.E2;

 CH_principal(3,3) = Sol.G12;

 CH_principal(1,2) = Sol.E2*Sol.nu12;

 CH_principal(2,1) = CH_principal(1,2);

 end

 flag=0;

 %end

 %Save "relative density"

 RD_struct(end+1)=struct('x', x, 'y', y, 'RD', sum(sum(X == 1))/(matrixSize^2));

 RD(x+1,y+1) = sum(sum(X == 1))/(matrixSize^2);

 %y_now=y;

 % Add the data to the structure

 plate(end+1) = struct('x', x, 'y', y, 'tensor', CH, 'principal_tensor', CH_princi-

pal);

 % Concatenate this unit cell to the row holder

 rowHolder = [rowHolder, X];

 end

 % Once a full row of unit cells is formed, concatenate it to the FullStructure

 FullStructure = [FullStructure; rowHolder];

end

plate = plate(2:end); %Get rid of first empty entry

RD_struct = RD_struct(2:end);

%% Plotting

% Calculate the range of densities

densityMin = min(RD(:));

Materials 2024, 17, x FOR PEER REVIEW 36 of 47

densityMax = max(RD(:));

% Define contour levels

numLevels = 50; % You can change this value

contourLevels = linspace(densityMin, densityMax, numLevels);

figure(1)

contourf(x_range,y_range,RD',contourLevels,'LineColor', 'none')

colormap(flipud(gray));

colorbar

caxis([densityMin, densityMax]); % Set color axis scaling

title('Relative density plot')

xlabel('x coordinate')

ylabel('y coordinate')

set(gca, 'FontSize', 19)

axis equal

%Full cellular/porous structure

figure(2)

imshow(FullStructure, [1, 2]);

title('Final Combined Matrix');

xlabel('x coordinate')

ylabel('y coordinate')

axis equal

%% Obtain the "reference" Elasticity tensor at a given set of coordinates

% x_coordinate = floor(x_length/2); %This gives the CH at the center of the plate

% y_coordinate = floor(y_length/2);

%Manual input

x_coordinate = 9; %This gives the CH at the center of the plate

y_coordinate = 2;

tensor = getTensorAtCoordinate(plate, x_coordinate, y_coordinate); %Uses the funnction at

the end

%% Curve fitting the Elasticity Tensor Map

% Initialize tensor_function as a cell array

tensor_function = cell(3);

for i=1:3

 for j=1:3

 x_data = [plate.x];

 y_data = [plate.y];

 tensor_data = cellfun(@(t) t(i,j), {plate.tensor});

Materials 2024, 17, x FOR PEER REVIEW 37 of 47

 % Define the fit type, e.g., a polynomial

 fitType = fittype('poly55'); % second-degree polynomial

 % Perform the fit

 tensor_function{i,j} = fit([x_data', y_data'], tensor_data', fitType);

 end

end

tensor_function

%% Curve fitting the Principal Elasticity Tensor Map

% Initialize tensor_function as a cell array

principal_tensor_function = cell(3);

for i=1:3

 for j=1:3

 x_data = [plate.x];

 y_data = [plate.y];

 principal_tensor_data = cellfun(@(t) t(i,j), {plate.principal_tensor});

 % Define the fit type, e.g., a polynomial

 fitType = fittype('poly55'); % second-degree polynomial

 % Perform the fit

 principal_tensor_function{i,j} = fit([x_data', y_data'], principal_tensor_data',

fitType);

 end

end

principal_tensor_function

%% Extracting stiffness tensor coefficients into CSV file

all_coeffs = []; % Initialize empty matrix to collect all coefficients

% Variable names for the coefficients in the order they are returned by coeffvalues

variable_names = {'p00', 'p10', 'p01', 'p20', 'p11', 'p02', 'p30', 'p21', 'p12', 'p03',

'p40', 'p31', 'p22', 'p13', 'p04', 'p50', 'p41', 'p32', 'p23', 'p14', 'p05'};

% List of desired indices as (row, column) pairs

desired_indices = [1 1; 1 2; 2 2; 3 3];

% Loop over the desired indices

for index = 1:size(desired_indices, 1)

Materials 2024, 17, x FOR PEER REVIEW 38 of 47

 % obtain the row and column from the current index pair

 row = desired_indices(index, 1);

 col = desired_indices(index, 2);

 % Collect current coefficients from the (row, col) entry

 current_coeffs = coeffvalues(tensor_function{row,col});

 % Append to the all_coeffs matrix

 all_coeffs = [all_coeffs; current_coeffs];

end

% Convert the full matrix to a table before writing to CSV

all_coeffs_table = array2table(all_coeffs, 'VariableNames', variable_names);

% Write the full table of coefficients to a CSV file

writetable(all_coeffs_table, 'selected_tensor_coefficients1.csv');

%% Extracting principal stiffness tensor coefficients into CSV file

principal_all_coeffs = []; % Initialize empty matrix to collect all coefficients

% Variable names for the coefficients in the order they are returned by coeffvalues

variable_names = {'p00', 'p10', 'p01', 'p20', 'p11', 'p02', 'p30', 'p21', 'p12', 'p03',

'p40', 'p31', 'p22', 'p13', 'p04', 'p50', 'p41', 'p32', 'p23', 'p14', 'p05'};

% List of desired indices as (row, column) pairs

desired_indices = [1 1; 1 2; 2 2; 3 3];

% Loop over the desired indices

for index = 1:size(desired_indices, 1)

 % obtain the row and column from the current index pair

 row = desired_indices(index, 1);

 col = desired_indices(index, 2);

 % Collect current coefficients from the (row, col) entry

 current_coeffs = coeffvalues(principal_tensor_function{row,col});

 % Append to the all_coeffs matrix

 principal_all_coeffs = [principal_all_coeffs; current_coeffs];

end

% Convert the full matrix to a table before writing to CSV

Materials 2024, 17, x FOR PEER REVIEW 39 of 47

principal_all_coeffs_table = array2table(principal_all_coeffs, 'VariableNames', varia-

ble_names);

% Write the full table of coefficients to a CSV file

writetable(principal_all_coeffs_table, 'principal_tensor_coefficients.csv');

%% Curve fitting the Relative Density Map

x_data = [plate.x];

y_data = [plate.y];

RD_data = [RD_struct.RD];

% Define the fit type, e.g., a polynomial

fitType = fittype('poly33'); % second-degree polynomial

% Perform the fit

%RDL = reshape(RD, [], 1);

RD_function = fit([x_data', y_data'], RD_data', fitType);

% "L" is a specific index in the data structure and displays RD for that

% specific index

L = 88;

% obtain the coordinates for L = 88 by typing the following lines

% x_coordinate = plate(88).x

% y_coordinate = plate(88).y

RD_Fitted = RD_function(plate(L).x, plate(L).y)

RD_Actual = RD_struct(L).RD

%% Extracting density coefficients to CSV file

% Collect the coefficients for the fit

RD_coeffs = coeffvalues(RD_function);

% Create a variable names array corresponding to the coefficients of the poly33 model

variable_names = {'p00', 'p10', 'p01', 'p20', 'p11', 'p02', 'p30', 'p21', 'p12', 'p03'};

% Convert the coefficients to a table with appropriate variable names

RD_coeffs_table = array2table(RD_coeffs, 'VariableNames', variable_names);

% Write the table to a CSV file

writetable(RD_coeffs_table, 'RD_coefficients.csv');

Materials 2024, 17, x FOR PEER REVIEW 40 of 47

%% Evaluating the curve-fitted Elasticity tensor from coordinate

%Accessing specific equation (entry of the tensor)

specific_function = tensor_function{1,2};

%Evaluating the function at a given x and y value

x_value = 9; % Replace with the desired x value

y_value = 2; % Replace with the desired y value

result = specific_function(x_value, y_value);

%Evaluating full Elasticity tensor at a given y value

elasticity_tensor = zeros(3);

for i = 1:3

 for j = 1:3

 elasticity_tensor(i,j) = tensor_function{i,j}(x_value, y_value);

 end

end

elasticity_tensor

%% Evaluating error (fit analysis)

% Initialize variable for accumulating total element-wise percentage error

total_percentage_error = 0;

total_elements = 0;

% Loop through all coordinates in 'plate' to accumulate the percentage errors

for i = 1:length(plate)

 x = plate(i).x;

 y = plate(i).y;

 % Extract the reference tensor from 'plate'

 tensor_exact = plate(i).tensor;

 % Evaluate the approximate tensor at the same coordinates

 for m=1:3

 for n=1:3

 tensor_approx(m,n) = tensor_function{m,n}(x, y);

 end

 end

 % Compute the element-wise percentage error

 % Avoid division by zero by adding a small constant (e.g., 1e-9)

 percentage_error_matrix = abs((tensor_exact - tensor_approx)./ (tensor_exact + 1e-9)) *

100;

Materials 2024, 17, x FOR PEER REVIEW 41 of 47

 % Sum up the percentage errors and count the number of elements

 total_percentage_error = total_percentage_error + sum(sum(percentage_error_matrix));

 total_elements = total_elements + numel(percentage_error_matrix);

end

% Compute the overall average element-wise percentage error

overall_avg_percentage_error = total_percentage_error / total_elements;

fprintf('The overall average element-wise percentage error is %.2f%%\n', overall_avg_per-

centage_error);

%% Plotting E1

x=0:x_length-1;

y=0:y_length-1;

E1=zeros(x_length,y_length);

for i=x+1

 for j=y+1

 E1(i,j) = principal_tensor_function{1,1}(i-1,j-1);

 end

end

Min=min(min(E1));

Max=max(max(E1));

numLevels = 50;

contourLevels = linspace(Min, Max, numLevels);

figure(3)

contourf(x_range,y_range,E1',contourLevels,'LineColor', 'none')

colormap(flipud(gray));

colorbar

caxis([Min, Max]); % Set color axis scaling

title('E_{1} plot')

xlabel('x coordinate')

ylabel('y coordinate')

set(gca, 'FontSize', 19)

axis equal

%% Plotting E2

x=0:x_length-1;

y=0:y_length-1;

E2=zeros(x_length,y_length);

Materials 2024, 17, x FOR PEER REVIEW 42 of 47

for i=x+1

 for j=y+1

 E2(i,j) = principal_tensor_function{2,2}(i-1,j-1);

 end

end

Min=min(min(E2));

Max=max(max(E2));

numLevels = 50;

contourLevels = linspace(Min, Max, numLevels);

figure(4)

contourf(x_range,y_range,E2',contourLevels,'LineColor', 'none')

colormap(flipud(gray));

colorbar

caxis([Min, Max]); % Set color axis scaling

title('E_2 plot')

xlabel('x coordinate')

ylabel('y coordinate')

set(gca, 'FontSize', 19)

axis equal

%% Plotting G12

x=0:x_length-1;

y=0:y_length-1;

G12=zeros(x_length,y_length);

for i=x+1

 for j=y+1

 G12(i,j) = principal_tensor_function{3,3}(i-1,j-1);

 end

end

Min=min(min(G12));

Max=max(max(G12));

numLevels = 50;

contourLevels = linspace(Min, Max, numLevels);

figure(5)

contourf(x_range,y_range,G12',contourLevels,'LineColor', 'none')

colormap(flipud(gray));

colorbar

caxis([Min, Max]); % Set color axis scaling

title('G_{12} plot')

xlabel('x coordinate')

ylabel('y coordinate')

Materials 2024, 17, x FOR PEER REVIEW 43 of 47

set(gca, 'FontSize', 19)

axis equal

%% Plotting nu12

x=0:x_length-1;

y=0:y_length-1;

nu12=zeros(x_length,y_length);

for i=x+1

 for j=y+1

 nu12(i,j) = (principal_tensor_function{1,2}(i-1,j-1))/(principal_tensor_func-

tion{2,2}(i-1,j-1));

 end

end

Min=min(min(nu12));

Max=max(max(nu12));

numLevels = 50;

contourLevels = linspace(Min, Max, numLevels);

figure(6)

contourf(x_range,y_range,nu12',contourLevels,'LineColor', 'none')

colormap(flipud(gray));

colorbar

caxis([Min, Max]); % Set color axis scaling

title('\nu_{12} plot')

xlabel('x coordinate')

ylabel('y coordinate')

set(gca, 'FontSize', 19)

axis equal

%% getTensorAtCoordinate "reference" function

%Get a specific tensor from coordinate (function)

function tensor = getTensorAtCoordinate(plate, x, y)

 for i = 1:length(plate)

 if isequal(plate(i).x, x) && isequal(plate(i).y, y)

 tensor = plate(i).tensor

 return;

Materials 2024, 17, x FOR PEER REVIEW 44 of 47

 end

 end

 error('Coordinate not found in the structure.');

end

References

1. Shahbazian, B.; Mirsayar, M. Fracture mechanics of cellular structures: Past, present, and future directions. Eng. Solid Mech. 2023,

11, 231–242.

2. Parthasarathy, J.; Starly, B.; Raman, S. A design for the additive manufacture of functionally graded porous structures with

tailored mechanical properties for biomedical applications. J. Manuf. Process 2011, 13, 160–170.

3. Zhao, S.; Li, S.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Murr, L.E. Microstructure and mechanical properties of open cellular Ti–6Al–

4V prototypes fabricated by electron beam melting for biomedical applications. Mater. Technol. 2016, 31, 98–107.

4. Abate, K.M.; Nazir, A.; Yeh, Y.P.; Chen, J.E.; Jeng, J.Y. Design, optimization, and validation of mechanical properties of different

cellular structures for biomedical application. Int. J. Adv. Manuf. Technol. 2020, 106, 1253–1265.

5. Heo, H.; Ju, J.; Kim, D.M. Compliant cellular structures: Application to a passive morphing airfoil. Compos. Struct. 2013, 106,

560–569.

6. Hohe, J.; Hardenacke, V.; Fascio, V.; Girard, Y.; Baumeister, J.; Stöbener, K.; Weise, J.; Lehmhus, D.; Pattofatto, S.; Zeng, H.; et

al. Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications. Mater.

Des. 2012, 39, 20–32.

7. Lv, J.; Ren, X.; Song, C.; Zhang, H. Two-Scale Topology Optimization of the 3D Plant-Inspired Adaptive Cellular Structures for

Morphing Applications. J. Aerosp. Eng. 2020, 33, 04020032.

8. Davalos, J.F.; Qiao, P.; Xu, X.F.; Robinson, J.; Barth, K.E. Modeling and characterization of fiber reinforced plastic honeycomb

sandwich panels for highway bridge applications. Compos. Struct. 2001, 52, 441–452.

9. Nazir, A.; Jeng, J.Y. Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation.

Mater. Des. 2020, 186, 108349.

10. Horn, T.J.; Harrysson, O.L.; Marcellin-Little, D.J.; West, H.A.; Lascelles, B.D.X.; Aman, R. Flexural properties of Ti6Al4V rhombic

dodecahedron open cellular structures fabricated with electron beam melting. Addit. Manuf. 2014, 1–4, 2–11.

11. Borsellino, C.; Di Bella, G. Reinforced biomimetic cellular structures for automotive applications. Mater. Des. 2009, 30, 4054–

4059.

12. Saenz-Dominguez, I.; Tena, I.; Esnaola, A.; Sarrionandia, M.; Torre, J.; Aurrekoetxea, J. Design and characterization of cellular

composite structures for automotive crash-boxes manufactured by out of die ultraviolet cured pultrusion. Compos. Part. B Eng.

2019, 160, 217–224.

13. Mkrtchyan, L.; Maier, M.; Huber, U. Structural polyurethane foam: Testing and modelling for automotive applications. Int. J.

Crashworthiness 2008, 13, 523–532.

14. Hang, X.; He, S.; Dong, Z.; Minnick, G.; Rosenbohm, J.; Chen, Z.; Yang, R.; Chang, L. Nanosensors for single cell mechanical

interrogation. Biosens. Bioelectron. 2021, 179, 113086.

15. Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632.

16. Srivastava, V.C.; Sahoo, K.L. Processing, stabilization and applications of metallic foams. Mater. Sci. 2007, 25, 733–753.

17. Salimon, A.; Brechet, Y.; Ashby, M.F.; Greer, A.L. Potential applications for steel and titanium metal foams. J. Mater. Sci. 2005,

40, 5793–5799.

18. Benedetti, M.; Du Plessis, A.; Ritchie, R.O.; Dallago, M.; Razavi, S.M.; Berto, F. Architected cellular materials: A review on their

mechanical properties towards fatigue-tolerant design and fabrication. Mater. Sci. Eng. R. Rep. 2021, 144, 100606.

19. Fuganti, A.; Lorenzi, L.; Grønsund, A.; Langseth, M. Aluminum foam for automotive applications. Adv. Eng. Mater. 2000, 2, 200–

204.

20. Costanza, G.; Solaiyappan, D.; Tata, ME. Properties, applications and recent developments of cellular solid materials: a review.

Maters. 2023, 16, 7076.

21. Najmon, J.C.; Jacob, D.J.; Wood, Z.M.; Tovar, A. Cellular helmet liner design through bio-inspired structures and topology

optimization of compliant mechanism lattices. SAE Int. J. Transp. Saf. 2018, 6, 217–236.

22. Murr, L.E.; Gaytan, S.M.; Medina, F.; Lopez, H.; Martinez, E.; Machado, B.I.; Hernandez, D.H.; Martinez, L.; Lopez, M.I.; Wicker,

R.B.; et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays.

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1999–2032.

23. Freyman, T.M.; Yannas, I.V.; Gibson, L.J. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci. 2001, 46,

273–282.

24. Daynes, S.; Feih, S.; Lu, W.F.; Wei, J. Optimization of functionally graded lattice structures using isostatic lines. Mater. Des. 2017,

127, 215–223.

25. Zhu, L.; Li, N.; Childs, P.R.N. Light-weighting in aerospace component and system design. Propuls. Power Res. 2018, 7, 103–119.

Materials 2024, 17, x FOR PEER REVIEW 45 of 47

26. Das, S.; Sutradhar, A. Multi-physics topology optimization of functionally graded controllable porous structures: Application

to heat dissipating problems. Mater. Des. 2020, 193, 108775.

27. Exerowa, D.; Kruglyakov, P.M. Foam and Foam Films: Theory, Experiment, Application; Elsevier: Amsterdam, The Netherlands,

1997.

28. Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.

29. Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route

to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

30. Huang, Z.; Chen, H.; Huang, Y.; Ge, Z.; Zhou, Y.; Yang, Y.; Xiao, P.; Liang, J.; Zhang, T.; Shi, Q.; et al. Ultra-broadband wide-

angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 2018, 28, 1704363.

31. Huang, P.; Wu, F.; Shen, B.; Zheng, H.; Ren, Q.; Luo, H.; Zheng, W. Biomimetic porous polypropylene foams with special

wettability properties. Compos. Part B Eng. 2020, 190, 107927.

32. Liu, Q.; Gao, S.; Zhao, Y.; Tao, W.; Yu, X.; Zhi, M. Review of layer-by-layer self-assembly technology for fire protection of flexible

polyurethane foam. J. Mater. Sci. 2021, 56, 9605–9643.

33. Schaedler, T.A.; Carter, W.B. Architected cellular materials. Annu. Rev. Mater. Res. 2016, 46, 187–210.

34. Prabhu, S.; Raja, V.K.; Nikhil, R. Applications of cellular materials—An overview. Appl. Mech. Mater. 2015, 766, 511–517.

35. Gibson, I.J.; Ashby, M.F. The mechanics of three-dimensional cellular materials. Proc. R. Soc. A Math. Phys. Sci. 1982, 382, 43–59.

36. Gibson, L.J. Modelling the mechanical behavior of cellular materials. Mater. Sci. Eng. A 1989, 110, 1–36.

37. Gibson, L.J.; Ashby, M.F.; Schajer, G.S.; Robertson, C.I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. A

Math. Phys. Sci. 1982, 382, 25–42.

38. Maiti, S.K.; Gibson, L.J.; Ashby, M.F. Deformation and energy absorption diagrams for cellular solids. Acta Metall. 1984, 32,

1963–1975.

39. Zhang, Y.; Gao, L.; Xiao, M. Maximizing natural frequencies of inhomogeneous cellular structures by Kriging-assisted

multiscale topology optimization. Comput. Struct. 2020, 230, 106197.

40. Zhang, Y.; Xiao, M.; Li, H.; Gao, L.; Chu, S. Multiscale concurrent topology optimization for cellular structures with multiple

microstructures based on ordered SIMP interpolation. Comput. Mater. Sci. 2018, 155, 74–91.

41. Li, D.; Dai, N.; Tang, Y.; Dong, G.; Zhao, Y.F. Design and optimization of graded cellular structures with triply periodic level

surface-based topological shapes. J. Mech. Des. 2019, 141, 071402.

42. Li, D.; Liao, W.; Dai, N.; Dong, G.; Tang, Y.; Xie, Y.M. Optimal design and modeling of gyroid based functionally graded cellular

structures for additive manufacturing. Comput. Aided Des. 2018, 104, 87–99.

43. Zhang, P.; Toman, J.; Yu, Y.; Biyikli, E.; Kirca, M.; Chmielus, M.; To, A.C. Efficient design optimization of variable-density

hexagonal cellular structure by additive manufacturing: Theory and validation. J. Manuf. Sci. Eng. 2015, 137, 021004.

44. Tamijani, A.Y.; Velasco, S.P.; Alacoque, L. Topological and morphological design of additively manufacturable spatially varying

periodic cellular solids. Mater. Des. 2020, 196, 109155.

45. Losic, D.; Rosengarten, G.; Mitchell, J.G.; Voelcker, N.H. Pore architecture of diatom frustules: Potential nanostructured

membranes for molecular and particle separations. J. Nanosci. Nanotechnol. 2006, 6, 982–989.

46. Zhang, W.; Gu, J.; Liu, Q.; Su, H.; Fan, T.; Zhang, D. Butterfly effects: Novel functional materials inspired from the wings scales.

Phys. Chem. Chem. Phys. 2014, 16, 19767–19780.

47. Karam, G.N.; Gibson, L.J. Elastic buckling of cylindrical shells with elastic cores—I. Analysis. Int. J. Solids Struct. 1995, 32, 1259–

1283.

48. Montoya, C.; Arola, D.; Ossa, E.A. Importance of tubule density to the fracture toughness of dentin. Arch. Oral Biol. 2016, 67, 9–14.

49. Chen, H.; Yang, T.; Wu, Z.; Deng, Z.; Zhu, Y.; Li, L. Quantitative 3D structural analysis of the cellular microstructure of sea

urchin spines (II): Large-volume structural analysis. Acta Biomater. 2020, 107, 218–231.

50. Ostertag, A.; Peyrin, F.; Fernandez, S.; Laredo, J.D.; de Vernejoul, M.C.; Chappard, C. Cortical measurements of the tibia from

high resolution peripheral quantitative computed tomography images: A comparison with synchrotron radiation micro-

computed tomography. Bone 2014, 63, 7–14.

51. Kladovasilakis, N.; Tsongas, K.; Tzetzis, D. Finite element analysis of orthopedic hip implant with functionally graded

bioinspired lattice structures. Biomimetics 2020, 5, 44.

52. Nian, Y.; Wan, S.; Li, X.; Su, Q.; Li, M. How does bio-inspired graded honeycomb filler affect energy absorption characteristics?

Thin-Walled Struct. 2019, 144, 106269.

53. Li, D.; Liao, W.; Dai, N.; Xie, Y.M. Comparison of mechanical properties and energy absorption of sheet-based and strut-based

gyroid cellular structures with graded densities. Materials 2019, 12, 2183.

54. Jin, Y.; Kong, H.; Zhou, X.; Li, G.; Du, J. Design and Characterization of Sheet-Based Gyroid Porous Structures with Bioinspired

Functional Gradients. Materials 2020, 13, 3844.

55. Xiang, X.; Zou, S.; San Ha, N.; Lu, G. Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial

crushing. Compos. Part. B Eng. 2020, 198, 108216.

56. Mirzaali, M.J.; de la Nava, A.H.; Gunashekar, D.; Nouri-Goushki, M.; Veeger, R.P.E.; Grossman, Q.; Angeloni, L.; Ghatkesar,

M.K.; Fratila-Apachitei, L.E.; Ruffoni, D.; et al. Mechanics of bioinspired functionally graded soft-hard composites made by

multi-material 3D printing. Compos. Struct. 2020, 237, 111867.

57. Peng, C.; Tran, P. Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings. Compos. Part. B Eng.

2020, 188, 107773.

Materials 2024, 17, x FOR PEER REVIEW 46 of 47

58. Tan, C.; Zou, J.; Li, S.; Jamshidi, P.; Abena, A.; Forsey, A.; Moat, R.J.; Essa, K.; Wang, M.; Zhou, K.; et al. Additive manufacturing

of bio-inspired multi-scale hierarchically strengthened lattice structures. Int. J. Mach. Tools Manuf. 2021, 167, 103764.

59. Yin, H.; Wang, X.; Wen, G.; Zhang, C.; Zhang, W. Crashworthiness optimization of bio-inspired hierarchical honeycomb under

axial loading. Int. J. Crashworthiness 2021, 26, 26–37.

60. Opgenoord, M.M.; Willcox, K.E. Design for additive manufacturing: Cellular structures in early stage aerospace design. Struct.

Multidiscip. Optim. 2019, 60, 411–428.

61. Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.Y. A state-of-the-art review on types, design, optimization, and additive

manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510.

62. Yang, L.; Harrysson, O.; Cormier, D.; West, H.; Gong, H.; Stucker, B. Additive manufacturing of metal cellular structures: Design

and fabrication. JOM 2015, 67, 608–615.

63. Robbins, J.; Owen, S.J.; Clark, B.W.; Voth, T.E. An efficient and scalable approach for generating topologically optimized cellular

structures for additive manufacturing. Addit. Manuf. 2016, 12, 296–304.

64. Cheng, L.; Zhang, P.; Biyikli, E.; Bai, J.; Robbins, J.; To, A. Efficient design optimization of variable-density cellular structures

for additive manufacturing: Theory and experimental validation. Rapid Prototyp. J. 2017, 23, 660–677.

65. Liu, T.; Guessasma, S.; Zhu, J.; Zhang, W. Designing Cellular Structures for Additive Manufacturing Using Voronoi–Monte

Carlo Approach. Polymers 2019, 11, 1158.

66. Chu, J.; Engelbrecht, S.; Graf, G.; Rosen, D.W. A comparison of synthesis methods for cellular structures with application to

additive manufacturing. Rapid Prototyp. J. 2010, 16, 275–283.

67. Hassanin, H.; Alkendi, Y.; Elsayed, M.; Essa, K.; Zweiri, Y. Controlling the properties of additively manufactured cellular

structures using machine learning approaches. Adv. Eng. Mater. 2020, 22, 1901338.

68. Limmahakhun, S.; Oloyede, A.; Sitthiseripratip, K.; Xiao, Y.; Yan, C. 3D-printed cellular structures for bone biomimetic implants.

Addit. Manuf. 2017, 15, 93–101.

69. Felzmann, R.; Gruber, S.; Mitteramskogler, G.; Tesavibul, P.; Boccaccini, A.R.; Liska, R.; Stampfl, J. Lithography-based additive

manufacturing of cellular ceramic structures. Adv. Eng. Mater. 2012, 14, 1052–1058.

70. Xu, Y.; Zhang, H.; Šavija, B.; Figueiredo, S.C.; Schlangen, E. Deformation and fracture of 3D printed disordered lattice materials:

Experiments and modeling. Mater. Des. 2019, 162, 143–153.

71. Hmeidat, N.S.; Pack, R.C.; Talley, S.J.; Moore, R.B.; Compton, B.G. Mechanical anisotropy in polymer composites produced by

material extrusion additive manufacturing. Addit. Manuf. 2020, 34, 101385.

72. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and

mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586.

73. Somireddy, M.; Czekanski, A. Anisotropic material behavior of 3D printed composite structures– Material extrusion additive

manufacturing. Mater. Des. 2020, 195, 108953.

74. Carroll, B.E.; Palmer, T.A.; Beese, A.M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy

deposition additive manufacturing. Acta Mater. 2015, 87, 309–320.

75. Zhu, Y.; Tian, X.; Li, J.; Wang, H. The anisotropy of laser melting deposition additive manufacturing Ti–6.5 Al–3.5 Mo–1.5 Zr–

0.3 Si titanium alloy. Mater. Des. 2015, 67, 538–542.

76. Spoerk, M.; Savandaiah, C.; Arbeiter, F.; Traxler, G.; Cardon, L.; Holzer, C.; Sapkota, J. Anisotropic properties of oriented short

carbon fibre filled polypropylene parts fabricated by extrusion based additive manufacturing. Compos. Part A Appl. Sci. Manuf.

2018, 113, 95–104.

77. Evans, A.G.; Hutchinson, J.W.; Ashby, M.F. Multifunctionality of cellular metal systems. Prog. Mater. Sci. 1998, 43, 171–221.

78. Phani, A.S.; Woodhouse, J.; Fleck, N.A. Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 2006, 119,

1995–2005.

79. Askar, A.; Cakmak, A.S. A structural model of a micropolar continuum. Int. J. Eng. Sci. 1968, 6, 583–589.

80. Chen, Y.; Liu, X.N.; Hu, G.K.; Sun, Q.P.; Zheng, Q.S. Micropolar continuum modelling of bi-dimensional tetrachiral lattices.

Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20130734.

81. Wang, X.L.; Stronge, W.J. Micropolar theory for two–dimensional stresses in elastic honeycomb. Proc. R. Soc. Ser. A Math. Phys.

Eng. Sci. 1999, 455, 2091–2116.

82. Hohe, J.; Becker, W. Determination of the elasticity tensor of non-orthotropic cellular sandwich cores. Tech. Mech. Eur. J. Eng.

Mech. 1999, 19, 259–268.

83. Staszak, N.; Garbowski, T.; Szymczak-Graczyk, A. Solid Truss to Shell Numerical Homogenization of Prefabricated Composite

Slabs. Materials 2021, 14, 4120.

84. Gibson, L.J.; Ashby, M.F.; Schajer, G.S.; Robertson, C.I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. A

Math. Phys. Sci. 1982, 382, 25–42.

85. Masters, I.G.; Evans, K.E. Models for the elastic deformation of honeycombs. Compos. Struct. 1996, 35, 403–422.

86. Christensen, R.M. Mechanics of cellular and other low-density materials. Int. J. Solids Struct. 2000, 37, 93–104.

87. Vigliotti, A.; Deshpande, V.S.; Pasini, D. Non-linear constitutive models for lattice materials. J. Mech. Phys. Solids 2014, 64, 44–60.

88. Arbabi, H.; Bunder, J.E.; Samaey, G.; Roberts, A.J.; Kevrekidis, I.G. Linking machine learning with multiscale numerics: Data-

driven discovery of homogenized equations. JOM 2020, 72, 4444–4457.

89. Hassani, B.; Hinton, E. A review of homogenization and topology optimization I—Homogenization theory for media with

periodic structure. Comput. Struct. 1998, 69, 707–717.

Materials 2024, 17, x FOR PEER REVIEW 47 of 47

90. Andreassen, E.; Andreasen, C.S. How to determine composite material properties using numerical homogenization. Comput.

Mater. Sci. 2014, 83, 488–495.

91. Dong, G.; Tang, Y.; Zhao, Y.F. A 149 line homogenization code for three-dimensional cellular materials written in MATLAB. J.

Eng. Mater. Technol. 2019, 141, 011005.

92. Lalegani, Z.; Ebrahimi, S.S.; Hamawandi, B.; La Spada, L.; Batili, H.; Toprak, M.S. Targeted dielectric coating of silver

nanoparticles with silica to manipulate optical properties for metasurface applications. Mater. Chem. Phys. 2022, 287, 126250.

93. Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. MFM 2019, 2, 043001.

94. Mirsayar, M. On brittle fracture of two-dimensional lattices with material anisotropies. Fatigue Fract. Eng. Mater. Struct. 2022,

45, 1929–1941.

95. Yuan, J.; He, S.; Chen, C.; Wang, L. Phase-field fracture analysis of heterogeneous materials based on homogenization method.

Acta Mech. 2024, 235, 1083–1107.

96. Massabò, R.; Darban, H. Mode II dominant fracture of layered composite beams and wide-plates: A homogenized structural

approach. Eng. Fract. Mech. 2019, 213, 280–301.

97. Mirsayar, M.; Shahbazian, B. A novel three-dimensional notch fracture criterion via effective critical distances. Int. J. Mech. Sci.

2024, 271, 109149.

98. Greco, F. Homogenized mechanical behavior of composite micro-structures including micro-cracking and contact evolution.

Eng. Fract. Mech. 2009, 76, 182–208.

99. Mirsayar, M.M. A combined stress/energy-based criterion for mixed-mode fracture of laminated composites considering fiber

bridging micromechanics. Int. J. Mech. Sci. 2021, 197, 106319.

100. Yuan, J.; Mao, Y.; Chen, C. Multiple-phase-field modeling for fracture of composite materials. Mech. Adv. Mater. Struct. 2022, 29,

7476–7490.

101. Mirsayar, M.M. A generalized criterion for fatigue crack growth in additively manufactured materials–Build orientation and

geometry effects. Int. J. Fatigue 2021, 145, 106099.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

