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Abstract: This study advances the state of the art by computing the macroscopic elastic properties 

of 2D periodic functionally graded microcellular materials, incorporating both isotropic and ortho-

tropic solid phases, as seen in additively manufactured components. This is achieved through nu-

merical homogenization and several novel MATLAB implementations (known in this study as Cel-

lular_Solid, Homogenize_test, homogenize_ortho, and Homogenize_test_ortho_principal). The developed 

codes in the current work treat each cell as a material point, compute the corresponding cell elastic-

ity tensor using numerical homogenization, and assign it to that specific point. This is conducted 

based on the principle of scale separation, which is a fundamental concept in homogenization the-

ory. Then, by deriving a fit function that maps the entire material domain, the homogenized material 

properties are predicted at any desired point. It is shown that this method is very capable of captur-

ing the effects of orthotropy during the solid phase of the material and that it effectively accounts 

for the influence of void geometry on the macroscopic anisotropies, since the obtained elasticity 

tensor has different 𝐸1 and 𝐸2 values. Also, it is revealed that the complexity of the void patterns 

and the intensity of the void size changes from one cell to another can significantly affect the overall 

error in terms of the predicted material properties. As the stochasticity in the void sizes increases, 

the error also tends to increase, since it becomes more challenging to interpolate the data accurately. 

Therefore, utilizing advanced computational techniques, such as more sophisticated fitting methods 

like the Fourier series, and implementing machine learning algorithms can significantly improve 

the overall accuracy of the results. Furthermore, the developed codes can easily be extended to ac-

commodate the homogenization of composite materials incorporating multiple orthotropic phases. 

This implementation is limited to periodic void distributions and currently supports circular, rec-

tangular, square, and hexagonal void shapes. 

Keywords: periodic functionally graded cellular materials; 2D numerical homogenization; MATLAB 

code; elasticity tensor; orthotropic materials; isotropic materials 

 

1. Introduction 

The term “cellular structures” is quite descriptive, denoting a medium consisting of 

a void and solid material (i.e., the matrix), where each void is encased by a solid frame-

work called a cell [1]. Cellular structures have a wide range of applications, including in 

biomedicine [2–4], aerospace [5–7], civil [8–10], and automotive industries [11–13], to 

name but a few [14–23]. While traditional cellular structures consist of uniform patterns 

(i.e., uniform cell densities), they can be constructed with spatially varying shapes, sizes, 

and cell orientations to achieve optimized performance in regard to various different 

types of applications and to achieve the desired combination of properties, such as high 

strength [24], lightweight [25], effective heat dissipation [26], etc. [27–34]. The constitutive 
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response and optimal design of cellular structures with uniform and spatially varying 

patterns have been investigated by numerous researchers in the past [35–44]. Spatially 

graded cellular structures can be found in nature with different scales, ranging from na-

nometers to meters. Examples are diatoms [45], butterfly wings [46], grass stems [47], den-

tin [48], sea urchin spines [49], and bone [50]. Such spatially graded natural patterns have 

inspired many researchers during the design and building of optimal artificial compo-

nents, by studying the structural response at different levels of hierarchy [51–59]. For ex-

ample, an artificial bone can be constructed by mimicking the hierarchical porous struc-

ture of a bone at different scale lengths and can be further optimized in regard to different 

loading conditions, using various optimization techniques. Recent advances in additive 

manufacturing (AM) techniques have enabled researchers to precisely build cellular struc-

tures with different dimensions using different shapes, orientations, and cell sizes, rang-

ing from microns to meters [60–69], allowing the micromechanical constitutive behavior 

of micro-sized cells to be tailored in regard to the macroscopic structural response. How-

ever, it is well known that the manufacturing process (e.g., the printing direction) can sig-

nificantly affect the mechanical response of the component [70–76]. As a result, additively 

manufactured spatially graded microcellular structures may exhibit highly anisotropic 

behavior, as a result of both the geometrical configurations (cell pattern) and the material 

properties (printing direction). 

The analysis of cellular structures is indeed a significant challenge, due to the inher-

ent intricacy of such materials. One way to avoid this complex task is to utilize homoge-

nization methods, according to which the original non-continuous structure is equalized 

with a homogeneous analogous medium, where both structures exhibit the same macro-

scopic material properties. In regard to this technique, the heterogeneous structure is di-

vided into small parts, known as representative volume elements (RVEs), and analyzed 

to determine their material properties. Then, the obtained properties are integrated and 

then averaged to form a continuous medium, with the same overall material behavior as 

the original non-homogenous one. In other words, homogenization is a bridge to cover 

the gap between the microscale behavior of cellular materials and the macroscale require-

ments of engineering applications [77]. 

Several methods have been proposed and utilized for numerical homogenization. 

These methods include, but are not limited to, Bloch’s theorem and the Cauchy–Born hy-

pothesis [78], where the former theorem is used to describe the wave behavior in periodic 

structures and the latter associates the deformation of a crystal lattice with the macro-

scopic strain in the material, and, together, they determine the relationship between the 

microscale and macroscale performance of the medium. Some popular approaches in-

clude micropolar theory [79–81], which extends classical continuum mechanics to account 

for microstructural effects by considering the microscopic rotation of the particles within 

the material; the strain energy equivalence method [82,83], which equates the strain en-

ergy in the microstructure of the material with that of an equivalent homogeneous me-

dium; the beam theory approach [84–86], which utilizes the principles of beam mechanics 

by simplifying the structure into a sequence of beams and, finally, computes the overall 

properties based on the properties and arrangement of these beams; the multi-scale ho-

mogenization method [87], which integrates the material behavior information obtained 

from across the microscale to the macroscale in order to make a more accurate approxi-

mation of the overall properties of the medium; the machine learning approach [88], 

which uses algorithms to foresee the homogenized properties of a material by using mi-

crostructural data; and the asymptotic homogenization (AH) approach [89], which is a 

mathematical technique that uses asymptotic expansions to estimate the macroscale be-

havior of the material. If the homogenization equation is discretized and solved using fi-

nite element analysis (FEA) or other numerical methods, it is commonly called numerical 

homogenization. The advantages of this approach are abundant. For example, this proce-

dure can be conducted on a wide range of materials and various microstructures with 

anisotropy or different complexities (whether they are periodic or non-periodic) and it can 
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be easily customized or integrated with other methods. Andreassen and Andreasen [90] 

used the theory of homogenization and presented a MATLAB R2023a code to calculate the 

macroscopic elasticity tensor of two- or multi-material systems made of isotropic materials 

(where one of the materials could be void) with uniform patterns of voids. Also, they de-

scribed and extended their code for the homogenization of fluid permeability, thermal ex-

pansion, and conductivity. Later, Dong et al. [91] used this code and expanded it to achieve 

a homogenized constitutive matrix of 3D cellular materials or multi-material composites. 

In this work, several MATLAB codes are developed to obtain the homogenized ma-

terial properties of microcellular materials with functionally graded void patterns, made from 

both isotropic and orthotropic materials. To this end, first, a separate code is developed to 

build the desired periodic functionally varying cellular structure with different void 

shapes (circular, hexagonal, and rectangular/square). Then, numerical homogenization is 

adopted to compute homogenized elasticity tensors assigned to the centroid of each unit 

cell. If the material in the solid phase is isotropic, the approach presented in [90] is taken 

(herein known as the “reference elasticity tensor”). However, the MATLAB implementa-

tion in [90] cannot consider material anisotropy. To address this deficiency, a new homog-

enization code was developed herein, which includes a parameter called the printing angle. 

The overall microcellular structure is achieved by stacking unit cells, where each unit cell 

is treated as a point. A fit function is then assigned to create a continuous surface from the 

discrete material points (centroids of unit cells). This approach is advantageous because it 

allows for the prediction of the elasticity tensor at other points in the homogenized mate-

rial domain. By comparing the reference elasticity tensor and the predicted one, the accu-

racy of the current computations is evaluated. If the material in the solid phase is isotropic, 

the outputs are the reference and the predicted elasticity tensors (at any desired points), 

the fit function that maps the entire medium and its coefficients for each elasticity tensor 

component, the overall average element-wise percentage error, and the plots of the micro-

cellular structure and the corresponding relative density. If the material in the solid phase 

is orthotropic, the outputs are the same but for both global coordinates and axes of or-

thotropy and the plots of material properties of the entire domain. Note that the devel-

oped codes are well capable of considering macroscopic anisotropy, whether it comes 

from the orthotropic behavior of the solid phase or the geometry of the unit cell. Also, this 

methodology is only suitable for periodic void patterns since non-periodic patterns lack a 

repeating unit cell that can serve as a representative volume element (RVE). Without a 

well-defined RVE, it becomes challenging to homogenize the material properties accu-

rately, as the microstructural variations cannot be captured by a single representative sam-

ple. If non-periodic void patterns are in mind, alternative modeling approaches such as 

direct numerical simulations or stochastic homogenization methods can be utilized, 

which are more complex and often increase the computational cost. Furthermore, it is 

worth mentioning that the presented MATLAB implementation can be used in the ho-

mogenization of composite materials with more than one orthotropic phase. At the end, 

some examples are solved, and the accuracy of the numerical implementation and its ca-

pabilities are addressed. Future work could focus on incorporating advanced materials 

(such as nanoparticles and multifunctional composites [92,93]) or materials that exhibit 

non-linear behavior, into homogenization frameworks. 

2. Theoretical Framework and MATLAB Implementation 

By assuming that the size of the unit cell is significantly smaller than the entire cellu-

lar structure (i.e., microcellular materials) and the bonding between different length 

scales/materials is perfect, the theory of elasticity describes the macroscopic stiffness ten-

sor 𝐶𝑖𝑗𝑘𝑙
𝐻  using the following equation: 

𝐶𝑖𝑗𝑘𝑙
𝐻 =

1

|𝑉|
∫ 𝐶𝑝𝑞𝑟𝑠(𝜀𝑝𝑞

0(𝑖𝑗)
− 𝜀𝑝𝑞

(𝑖𝑗)
)(𝜀𝑟𝑠

0(𝑘𝑙)
− 𝜀𝑟𝑠

(𝑘𝑙)
)𝑑𝑉

𝑉
,  (1) 
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where |𝑉|, 𝐶𝑝𝑞𝑟𝑠 and 𝜀𝑝𝑞
0(𝑖𝑗)

 are the volume of the unit cell, the locally varying stiffness 

tensor, and the prescribed macroscopic strain fields, respectively [90,94]. Moreover, 𝜀𝑝𝑞
(𝑖𝑗)

 

is the locally varying strain fields, which are defined as follows: 

𝜀𝑝𝑞
(𝑖𝑗)

= 𝜀𝑝𝑞(𝜒𝑖𝑗) =
1

2
(𝜒𝑝,𝑞

𝑖𝑗
+ 𝜒𝑞,𝑝

𝑖𝑗
).  (2) 

The displacement fields (𝜒𝑘𝑙) can be found by solving the following equation: 

∫ 𝐶𝑖𝑗𝑝𝑞𝜀𝑖𝑗(𝜐)𝜀𝑝𝑞(𝜒𝑘𝑙)𝑑𝑉 = ∫ 𝐶𝑖𝑗𝑝𝑞𝜀𝑖𝑗(𝜐)𝜀𝑝𝑞
0(𝑘𝑙)

𝑑𝑉                         ∀𝜐𝜖𝑉
𝑉𝑉

 ,  (3) 

where 𝜐 is the virtual displacement field. Generally, Equation (3) is solved numerically 

by discretizing the cell domain. To this end, both the left-hand side (i.e., the stiffness ma-

trix) and the right-hand side (i.e., the mechanical force vectors due to the macroscopic unit 

strains 𝜀0 ) of this equation need to be discretized. To calculate displacement fields in 

Equation (3) by using FE methods, we proceed as follows: 

𝑲𝝌 = 𝑭,  (4) 

where K is the stiffness matrix and 𝑭 is the mechanical force vector due to the correspond-

ing macroscopic unit strains, where, herein, the strains are chosen to be: 

𝜀1
0 = (1,0,0)𝑇 , 𝜀2

0 = (0,1,0)𝑇 , 𝜀3
0 = (0,0,1)𝑇. (5) 

Equation (5) physically means that in the first case, the unit strain is applied along 

the x-axis; in the second case, the unit strain is applied along the y-axis; and the last case 

corresponds to a pure shear strain. Consequently, the force vectors can be calculated by: 

𝑭 = ∑ ∫ 𝑩𝑒
𝑇

𝑉𝑒
𝑪𝑒𝜺0𝑑𝑉𝑒

𝑁
𝑒=1 ,  (6) 

where  N, 𝑩𝑒, 𝑪𝑒, and 𝑉𝑒 are the total number of elements in a unit cell, the element strain 

displacement matrix, the element stiffness matrix, and the volume of the element, respectively. 

Regarding the left-hand side of Equation (4), for the stiffness matrix, we have: 

𝑲 = ∑ ∫ 𝑩𝑒
𝑇

𝑉𝑒
𝑪𝑒𝑩𝑒𝑑𝑉𝑒

𝑁
𝑒=1  ,  (7) 

where the element stiffness matrix (𝑪𝑒) for an isotropic material depends on Lame’s first 

and second parameters and they can be, respectively, found using Equations (8) and (9) 

as follows: 

𝜆 =
𝜈𝐸

(1+𝜈)(1−2𝜈)
,  (8) 

𝜇 =
𝐸

2(1+𝜈)
,  (9) 

where E is the Young’s modulus and ν is the Poisson’s ratio. If the plane stress conditions 

are in mind, Lame’s first parameter can be modified and used as: 

𝜆̂ =
2𝜇𝜆

𝜆+2𝜇
.  (10) 

The mentioned procedure is often referred to as numerical homogenization and has 

been widely utilized by various researchers in the past [90–94]. Figure 1 shows two exam-

ples of different 2D periodic cellular patterns, where each cell can be described by the 

parallelogram-shaped unit cells. Note that the shape of the unit cell is greatly influenced 

by the overall structure of the cellular domain. The unit cell should be designed to best 

capture the periodic repetition of the voids (see Figure 1) 
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Figure 1. Examples of 2D periodic cellular patterns with parallelogram-shaped unit cells containing 

(a) hexagonal and (b) triangular voids. 

In this approach, the unit cell itself will be discretized and then solved by finite ele-

ment (FE) methods. Figure 2 illustrates the structure of the FE mesh and its corresponding 

geometrical constraints, together with the actual meshed unit cell consisting of two mate-

rial phases. In this case, an indicator matrix X denotes whether the element contains ma-

terial one (𝑋𝑒 = 1) or material two (𝑋𝑒 = 2). As can be seen in this figure, the unit cell can 

conveniently be characterized by three geometrical parameters of width (lx), height (ly), 

and the angle (φ) between the x-axis and the left wall of the unit cell. To avoid overly 

distorted elements, a range of 45°≤ φ ≤ 135° is usually recommended [90]. 

 

Figure 2. The structure of the FE mesh and its application on a unit cell consisting of two material 

phases. 

As discussed earlier, Andreassen and Andreassen [90] have developed a MATLAB 

code for the homogenization of composite materials, assuming that the constituent phases 

are isotropic. A comprehensive explanation and possible extensions of the code are thor-

oughly addressed in [90], so further explanations on this matter are avoided herein for the 

sake of brevity. However, for the reader’s convenience, the code is reported in Appendix 

A by the name of homogenize. The inputs for this code are the dimensions of the unit cell 

(i.e., lx and ly); Lame's first and second parameters for the materials (in this work, the focus 

is on the homogenization of functionally graded periodic cellular materials so one mate-

rial is associated with the solid part of the structure and the other one is void); the angle 

formed by the left wall of the unit cell and the x-axis (i.e., φ); and the indicator matrix, X, 

which has two purposes. Firstly, it in indicates what material is within the unit cell, and, 

secondly, the size of this matrix characterizes how fine the discretization is (see Figure 2). 

Thus, the function can be called (note that “flag” is just a debugging parameter): 

homogenize(lx, ly, lambda, mu, phi, x, flag).  
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In the current work, two new sets of codes (functions) are developed to model an 

isotropic cellular structure and to appropriately utilize the homogenize code to obtain the 

corresponding elasticity tensor of the homogenized material domain at any point. The 

first developed code is called Cellular_Solid (see Appendix B), which is responsible for 

making the unit cell with the desired void and requires three inputs, including the size of 

the mesh grid (i.e., the size of indicator matrix), the shape of the void, and an “Argument”, 

which specifies the size of the void. In the present work, the void shapes that this code 

supports are circles, hexagons, squares, and rectangles. The variable (or the argument) 

that determines the size of the circular or the hexagonal void is the radius and half of the 

hexagon’s diagonal, respectively. Changing these parameters will alter the size of the 

voids, much like using a magnifying tool. However, for the rectangle, two variables of 

width and height are required, and if the two are equal, a square is expected. The second 

code generated herein is called Homogenize_test (see Appendix C), and it properly and 

efficiently uses the other two codes to construct an isotropic periodic cellular structure to 

collect elasticity tensor data from all discrete points of the homogenized structure to create 

a continuous function that can estimate the tensor components at any point within the 

homogenized domain. The first part of this code is designated to initialization and collects 

four user inputs, including unit cell’s matrix size, the unit cell’s void shape, and the di-

mensions of the overall structure. Then, it establishes the grid parameters to define the 

range for x and y coordinates according to the input dimensions of the structure. Each x 

and y coordinate pair represents the centroid of a unit cell and can be used as a variable 

for the argument which identifies the size of the void. This is beneficial, because by as-

signing a function to the corresponding argument, different void sizes can be achieved by 

moving from one material point to another. Then, the code saves two main data for each 

point. The first one is the reference elasticity tensor for the corresponding unit cell ob-

tained from the homogenize function. The second one is relative density, obtained by ana-

lyzing the material distribution within each unit cell by computing the sum of elements 

in the matrix X that contains material one (in this case, solid material) divided by the total 

number of elements. Afterwards, the final structure and the corresponding relative den-

sity are plotted. Then, both the relative density and the elasticity tensors are curve fitted 

by using a predefined function in MATLAB (in this case, “poly55”). Also, the overall av-

erage element-wise percentage error for the obtained tensor function is calculated by first 

obtaining the percentage error for each tensor element by using the following equation: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒+𝜖
| × 100 ,  (11) 

where 𝜖 is a small constant added to avoid division by zero. Then, these individual per-

centage errors are summed across all tensor elements for all unit cells and, finally, divided 

by the total number of material points. It is worth noting that in the current work, poly55 

is used for its simplicity, computational efficiency, acceptable fitting accuracy, and con-

venience in polynomial surface fitting. Obviously, any other fitting function can be used 

herein, including user-developed ones. Note that for complex geometries, it is recom-

mended to use other methods like spline fitting instead of using higher-degree polynomi-

als, since it might result in computational overhead or overfitting. Moreover, if desired, 

the reference and the fitted elasticity tensors at any specified point can be displayed as an 

output by hard coding the coordinates of that point. 

Recently developed, complex, and ultra-precise additive manufacturing methods 

have enabled the creation and utilization of unique microcellular structures with func-

tionally graded patterns and tailored mechanical properties. The homogenization of such 

topologically complex components is a crucial task for analyzing and predicting their be-

havior under various loading conditions. Due to the nature of this manufacturing process 

which is performed layer by layer at a specified angle, the final structure often exhibits 

significant orthotropy in the printing direction [94]. Despite the valuable contributions of 

Andreassen and Andreassen [90] and although their method is capable of considering 
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anisotropy induced by cell topology, it fails to consider orthotropic material phases in the 

homogenization approach. Therefore, their approach may not be suitable for additively 

manufactured microcellular structures, which are the focus of this work. Figure 3a,b show 

two examples of anisotropies caused by the topology of the cell and the printing direction, 

respectively. 

 

Figure 3. (a) An example of geometrically anisotropic cell, (b) An orthotropic periodic cellular struc-

ture featuring square voids, printing angle θ, with global x-y and principal 1–2 coordinate systems. 

Up to this point, the focus of the current method has been on the homogenization of 

isotropic functionally graded periodic cellular structures, for which two new sets of codes 

have already been provided. However, the core novelty and innovation of the present 

work lie in developing a new code capable of considering material orthotropy in the ho-

mogenization process as well as spatially varying cellular patterns. The inputs of this new 

code, which is called homogenize_ortho (see Appendix D), are the same as the ones that are 

used in the homogenize function, but since the material orthotropy is considered, Lame’s 

first and second parameters are omitted. Instead, five new inputs of 𝐸1 (Young's modulus 

in first principal direction), 𝐸2 (Young's modulus in second principal direction), 𝐺12 (in-

tralaminar shear modulus), 𝜈12 (the Poisson’s ratio in the 2-direction due to load being 

applied in the 1-direction), and θ (the printing or the orthotropy angle) are added, so the 

final form of the line is shown below: 

homogenize_ortho(lx, ly, E1, E2, G12, nu12, phi, theta, x, flag) .  

After receiving the required inputs, the code transforms the material properties from 

principal directions to a global x-y coordinate system by using the well-known transfor-

mation equations for orthotropic materials as follows: 

𝐸𝑥 = (
cos4(𝜃)

𝐸1
+ (

1

𝐺12
−

2𝜈12

𝐸1
) sin2(𝜃)cos2(𝜃) +

sin4(𝜃)

𝐸2
)

−1

,  (12) 

𝐸𝑦 = (
sin4(𝜃)

𝐸1
+ (

1

𝐺12
−

2𝜈12

𝐸1
) sin2(𝜃)cos2(𝜃) +

cos4(𝜃)

𝐸2
)

−1

,  (13) 

𝐺𝑥𝑦 = (
1

𝐺12
(sin4(𝜃) + cos4(𝜃)) + 4 (

1

𝐸1
+

1

𝐸2
+

2𝜈12

𝐸1
−

1

2𝐺12
) sin2(𝜃)cos2(𝜃))

−1

,  (14) 

𝜈𝑥𝑦 = 𝐸𝑥 (
𝜈12

𝐸1
−

1

4
(

1

𝐸1
+

2𝜈12

𝐸2

1

𝐸2
−

1

𝐺12
) sin2(2𝜃)).  (15) 

For orthotropic materials, the stiffness matrix C is commonly represented as: 



Materials 2024, 17, x FOR PEER REVIEW 8 of 47 
 

 

𝐶 = [

𝐸𝑥 𝜈𝑥𝑦𝐸𝑦 0

𝜈𝑦𝑥𝐸𝑥 𝐸𝑦 0

0 0 𝐺𝑥𝑦

],  (16) 

The transformed material properties are assigned to each element. After that, element-

level stiffness matrices (keC) and force vectors (feC) are calculated based on the geometry 

of the unit cell. Once the boundary conditions and the global stiffness matrix and load 

vector are defined, the code finds the displacement field (chi) inside of the unit cell under 

three typical load cases of axial strain in the x-direction (epsilon0_11 = (1, 0, 0)), axial strain 

in the y-direction (epsilon0_22 = (0, 1, 0)), and shear strain (epsilon0_12 = (0, 0, 1)). Finally, 

the homogenized elasticity tensor (CH) is calculated by integrating the stress and strain 

fields over the volume of the unit cell, which provides a macroscopic view of how the 

material behaves as a continuous medium despite its microscopic heterogeneities. 

To effectively use the homogenize_ortho function, an innovative code, named Homoge-

nize_test_ortho_principal, has been developed (see Appendix E). Like before, this code 

makes a connection between the Cellular_Solid function and creates the unit cells, then 

stacks these cells to make the overall cellular structure. Each unit cell is represented by a 

point in the structure, and the corresponding elasticity tensor and relative density are as-

signed to that point. However, an important issue herein is that the obtained elasticity 

tensor from the homogenize_ortho function is in the global coordinate system and not in the 

principal directions. To solve this issue, creatively, Equations (12)–(15) are solved back-

wards to obtain 𝐸1, 𝐸2, 𝐺12, and 𝜈12 as follows (note that eqn1, eqn2, eqn3, and eqn4 are 

the same as 𝐸𝑥, 𝐸𝑦, 𝐺𝑥𝑦 , and 𝜈𝑥𝑦, respectively, as shown in Equations (12)–(15)): 

eqn1 = 1./(((cosd(theta)).^4)./E1+(1./G12-2.*nu12./E1).*((sind(theta)).^2).* 

((cosd(theta)).^2)+((sind(theta)).^4)./E2) == CH(1,1); 

eqn2 = 1./(((sind(theta)).^4)./E1+(1./G12-2.*nu12./E1).*((sind(theta)).^2) 

.*((cosd(theta)).^2)+((cosd(theta)).^4)./E2) == CH(2,2); 

 

eqn3 = 1./(((sind(theta)).^4+(cosd(theta)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta)).^2).*((cosd(theta)).^2)) == CH(3,3); 

 

 

eqn4 = CH(1,1).*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-1./G12).* 

((sind(2*theta)).^2)) == (CH(1,2)/CH(2,2)); 

 

            %Solve 

Sol = vpasolve([eqn1, eqn2, eqn3, eqn4], [E1,E2,G12,nu12], [CH_principal(1,1)/2; 

CH_principal(2,2)/2; CH_principal(3,3)/2; CH_principal(1,2)/2]); 

 

Note that the initial guesses need to be hard coded at the beginning of the code in the 

following lines (fill the blank): 

CH_principal = zeros(3); 

CH_principal(1,1) = ---; 

CH_principal(2,2) = ---; 

CH_principal(3,3) = ---; 

CH_principal(1,2) = ---; 

CH_principal(2,1) = CH_principal(1,2);   . 
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Now that the material properties in the principal directions are obtained, they are 

substituted into Equation (16) to obtain the reference elasticity tensor at each material 

point. The remainder of the code performs the same operations discussed earlier for the 

Homogenize_test function with the added features of plotting 𝐸1, 𝐸2, 𝐺12, 𝜈12. Moreover, 

the coefficients of the polynomial fitting functions for elasticity tensors and relative den-

sity distributions are documented in CSV files. Also, note that, in this case, the tensor func-

tions for both global x-y and principal 1–2 coordinate systems will be displayed. Figure 4 

depicts a simple flowchart of the explained procedure. 

 

Figure 4. The flowchart of the homogenization process for orthotropic and isotropic solid phase in 

periodic functionally graded microcellular materials. 

3. Results and Discussion 

In this section, several examples of homogenizing periodic functionally graded cel-

lular structures, considering both orthotropic and isotropic cases, are presented. For the 

isotropic ones, six different cases are considered. Note that before running the code, the inputs 

for the homogenize function need to be hard coded by making changes in the following line: 

CH = homogenize(1,1,[115.4 1],[76.9 0.769],90,X,flag).  

As mentioned, the first two inputs are lx and ly (the dimensions of the unit cell in x 

and y directions), which, in this example, are both equal to unity. The third input is a one-

by-two matrix, where the first entry is Lame’s first parameter for the first material (in this 

case, the solid phase) and the second entry is Lame’s first parameter for the second mate-

rial (which is void in this work). Note that, according to [90], when dealing with the void, 

it is recommended to use one-hundredth of the value used for the solid material. The next 

input is Lame’s second parameter, and it follows the same rule as Lame’s first parameter. 

Note that, herein, a hypothetical material with a Young's modulus of 200 GPa and a 
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Poisson's ratio of 0.3 is considered for the solid phase. Note that by substituting these 

values in Equations (8) and (9), Lame’s first and second parameters for the solid material 

are computed. The fifth input is the angle between the horizontal and the inclined wall of 

the unit cell, φ, in degrees, which, in this example, is equal to 90°. This means that by 

considering the given lx and ly, the unit cell is a one-by-one square. Finally, X is the size of 

the indicator matrix used for the discretization of the unit cell, and its size will be estab-

lished once the code is run, so no changes are required here. To summarize it, the hard 

coded inputs are lx = 1, ly = 1, Lame’s first parameter for the solid is 115.4, Lame’s first 

parameter for the void is 1, Lame’s second parameter for the solid is 76.9, Lame’s second 

parameter for the void is 0.769, φ = 90 (meaning the unit cell is square given that its width 

and height are equal to unity), and, finally, the size of the indicator matrix, which does 

not need to be hard coded since it will be checked once the code is run. 

Once these inputs are hard coded, the Homogenize_test can be run. When the code is run, 

it asks for four inputs of UC (unit cell) matrix size, UC’s void shape, the structure’s width, and 

the structure’s height. Here, a unit cell matrix size of 50 is utilized. This means that the cell will 

be discretized with a 50-by-50 mesh. Regarding the void shape, three cases of circle, rectangle, 

and hexagon have been defined, and to choose any of the aforementioned geometries, the user 

can simply type the name of the shape. Note that the desired function needs to be hard coded 

in the corresponding void size argument. The input for both the width and height of the struc-

ture is chosen to be 20. This means that the entire cellular material domain consists of 400 unit 

cells (and, therefore, material points) stacked together. 

Figure 5 shows two functionally graded cellular structures (Figure 5a,c) with their 

corresponding relative density plot (Figure 5b,d). The first structure is a cellular medium 

with varying rectangular-shaped voids in the y-direction, while the voids in the other one 

have the shape of a square, and their sizes change in the diagonal direction. Both struc-

tures have simple patterns, resulting in smooth changes in material properties from one 

point to another. Consequently, applying a fitting function capable of giving a good ap-

proximation for the actual data (i.e., the reference elasticity tensor obtained from the ho-

mogenize function) will not be difficult. This is confirmed by the relatively small amounts 

obtained as overall average element-wise percentage error, which are 1.09% and 1.91% for 

the cases illustrated in Figure 5a,c, respectively. 

There is an intriguing phenomenon hidden in the structure shown in Figure 5a. Even 

though the material of the solid phase is isotropic, the structure exhibits anisotropy at the 

unit cell level due to the geometry of the voids. Note that, unlike Figure 5c, the unit cells 

are not symmetric in both the x and y directions (cf. Figure 3a). Therefore, the unit cell 

returns different values of elastic modulus along the x and y directions, computed herein 

as 𝐸𝑥 =161.53 GPa and 𝐸𝑦 =128.92 GPa. Note that elongated voids aligned in the x direc-

tion make the material stiffer along that direction. A high or random discrepancy in the 

void sizes across different unit cells leads to significant variations in material properties, 

making it mathematically challenging to develop a function that can accurately predict 

these properties. For instance, Figure 6a depicts a structure with circular voids and a 

highly diverse void pattern. As can be seen in this example, the size of the voids and their 

position change dramatically, both pattern-wise and size-wise, so assigning a fit function 

will be challenging. For this reason, it is not surprising to see that the overall average ele-

ment-wise percentage error in this case is 13.95%. Meanwhile, Figure 6c shows a structure 

with hexagonal void shapes, where slower changes in void sizes occur as we move from 

the center to the edges of the medium. In addition to that, the stochasticity in the pattern 

is much less than that of 5a, resulting in an overall average element-wise percentage error 

of 1.51%. The relative density for both structures is depicted in Figure 6b,d.  
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Figure 5. Two functionally graded cellular structures with (a) rectangular voids that increase in size 

in the y-direction and (b) its relative density plot together with (c) a structure with diagonally in-

creasing square voids and (d) the corresponding relative density plot. 

 

Figure 6. Two examples of functionally graded cellular structures with isotropic material phases: 

(a,b) a diverse circular void pattern and its corresponding relative density plot; (c,d) hexagonal 

voids and the corresponding relative density plot. 
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Two highly diverse structures in terms of void size and pattern are illustrated in Fig-

ure 7a,c. Figure 7a depicts a cellular structure with a pattern of circular voids that change 

diagonally, resembling the rippling effect of water waves as one droplet of water merges 

into another, and the structure in Figure 7c has random size voids in each unit cell. The 

complexity in both structures is noticeable in the density plots illustrated in Figure 7b,d. 

Due to the complex characteristics of the voids in these structures, it is not surprising to 

see that the overall average element-wise percentage error for the first structure is 7.44% 

and for the second one is 13.73%, which is high. 

 

Figure 7. Examples of complex periodic microcellular structures: (a,b) illustrate a medium with cir-

cular voids that resembles a waive alongside its corresponding relative density plot; (c,d) present a 

structure containing random circular voids and its associated relative density plot. 

For the orthotropic functionally graded periodic cellular materials, two examples are 

shown in Figures 8 and 9. For this part, the appropriate homogenization code, Homoge-

nize_test_ortho_principal, needs to be used, and note again that, before running the code, 

the inputs must be hard coded as: 

homogenize_ortho(1,1,[150 1],[9 0.01],[8 0.08],[0.3 0.3],90,theta,X,flag);.  

Like the isotropic example, the first two inputs are the unit cell dimensions (both are 

set to one). The third input is a matrix where the first entry is 𝐸1 for material one (in this 

case, 150 GPa) and the second entry is 𝐸1 for material two. The fourth through sixth en-

tries are matrices associated with 𝐸2, 𝐺12, and 𝜈12. Note that, once more, the mentioned 

rule is applied here, in which for the void, one-hundredth of the value used for the solid 

material is used. The next entries are φ = 90°, the printing angle (θ), and finally the size of 
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the indicator matrix. The last two values, the printing angle and matrix size, will be 

prompted for input from the user once the code is run, so no prior changes are required. 

Figure 8 shows an orthotropic periodic microcellular structure with square voids and 

a printing angle of 30° (Figure 8a) along with its corresponding relative density, 𝐸1, 𝐸2, 

𝐺12, and 𝜈12 plots (Figure 8b–f, respectively). Even though the patten seems to be compli-

cated, the variation in the void size is not significant, which makes it relatively easy to fit 

a function capable of predicting the datapoints with acceptable precision. This is verified 

by knowing that the overall average element-wise percentage error for this case is 3.44%. 

 

Figure 8. (a) A periodic functionally graded microcellular structure with orthotropy angle of 30° 

and its associated homogenized material properties including (b) relative density, (c) 𝐸1, (d) 𝐸2, (e) 

𝐺12, and (f) 𝜈12. 

Figure 9 illustrates an orthotropic periodic functionally varying microcellular struc-

ture but with a more complex pattern (Figure 9a), which resembles a ripple emanating 

from the lower left of the medium. The orthotropy angle (i.e., printing orientation angle) 

is 60°, and the unit cells contain circular voids, with sizes that change more dramatically 

compared to the previous example. This dissimilarity leads to considerable changes in the 

material properties at each unit cell and consequently makes it difficult to fit a function 

capable of accurately capturing these variations. This results in an overall average ele-

ment-wise percentage error of 6.80% for this case. The corresponding homogenized ma-

terial properties are depicted in Figure 9b–f. 
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Figure 9. (a) A complex periodic microcellular structure with orthotropy angle of 60° and its corre-

sponding homogenized material properties, including (b) relative density, (c) 𝐸1, (d) 𝐸2, (e) 𝐺12, 

and (f) 𝜈12. 

4. Conclusions 

Recent developments in additive manufacturing have not only broadened the hori-

zon for creating structures with intricate features (like microcellular solids) but have also 

accentuated the necessity of understanding and analyzing them under various loading 

conditions. Homogenization is a powerful computational tool for the simplification of ma-

terials with complex discrete properties into an equivalent continuum medium. This tech-

nique is vital in various fields, particularly in structural and fracture analysis, where sim-

ulating crack nucleation and propagation in complex (i.e., heterogeneous) materials is not 

only complicated but also computationally expensive [95–101]. In the current method, for 

the first time, homogenization is utilized to obtain the macroscopic elasticity tensor of 

functionally graded periodic cellular materials, considering both isotropic and orthotropic 

constituents, from the equivalent homogeneous counterparts. To this end, several 

MATLAB implementations are developed and presented for future users. Regarding 

structures with isotropic solids, two new sets of codes are developed. The first one, named 

Cellular_Solid, defines both the geometry of the unit cell and the void inside of it, while the 

other one, named Homogenize_test, has several duties. Firstly, it retrieves the unit cell from 

Cellular_Solid and then effectively utilizes a homogenization code already reported in the 

literature (herein by the name of homogenize) to obtain the homogenized unit cell’s elastic-

ity tensor. Each unit cell is then stacked up, and the final structure is generated and plotted 

along with its corresponding relative density. This code treats the unit cells as material 

points and assigns the homogenized elasticity tensor to their centroids. Finally, using a 

predefined MATLAB fit function, namely “poly55” in the current work, this code maps 

the medium and predicts the elasticity tensor at any given material point.  

The primary innovation of this work lies in analyzing spatially varying cellular ma-

terials while considering the effects of material orthotropy in the solid phase, to account 

for the orthotropic nature of these materials fabricated via additive manufacturing. For 
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this case, another two sets of codes are developed. The first code is a novel homogeniza-

tion code, which is capable of considering material orthotropy. Finally, the last code, 

which is called Homogenize_test_ortho_principal, makes a connection between other codes 

and not only plots the structure and its relative density but also illustrates E1, E2, G12, 

and ν12 for the equivalent homogeneous medium. In both the isotropic and orthotropic 

cases, the overall average element-wise percentage error is reported too. This work 

showed that by using the MATLAB implementation provided herein, the homogenized 

elasticity tensors in both isotropic and orthotropic (whether it is due to the material or the 

asymmetrical geometry of the void) functionally graded periodic cellular materials can be 

obtained accurately, conveniently, and with low computational costs. One of the ad-

vantages of the current method is that each entry of the final elasticity tensor is an equation 

that maps the entire domain. Having an output like that is beneficial because it can be 

easily used in advanced fracture models such as XFEM or peridynamics. Also, it was re-

vealed that the total accuracy of the predicted macroscopic elasticity tensor highly de-

pends on the complexity of the void patterns and how severe the void sizes change from 

cell to cell. It was shown that the more complex they become, the harder it is to fit a func-

tion that can accurately represent each material point. Thus, the fitting function plays an 

important role in the overall accuracy; as the stochasticity in the structure increases, a 

more sophisticated fitting function is required. For instance, utilizing a fit function based 

on Furrier series might be a prudent choice since it is especially useful for modeling peri-

odic data, due to its ability to represent any periodic function by decomposing it into a 

sum of sine and cosine terms. Moreover, it was revealed that as the relative density de-

creases (i.e., porosity increases), the material's stiffness and strength normally decrease, 

and the geometry-induced anisotropy becomes more pronounced due to the large void 

size. 
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Appendix A. The homogenize Code Originally Reported in [90] 

function CH = homogenize(lx, ly, lambda, mu, phi, x, flag) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% lx        = Unit cell length in x-direction. 
% ly        = Unit cell length in y-direction. 
% lambda    = Lame's first parameter for both materials. Two entries. 
% mu        = Lame's second parameter for both materials. Two entries. 
% phi       = Angle between horizontal and vertical cell wall. Degrees 
% x         = Material indicator matrix. Size used to determine nelx/nely 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% INITIALIZE 
% Deduce discretization 
[nely, nelx] = size(x); 
% Stiffness matrix consists of two parts, one belonging to lambda and 
% one belonging to mu. Same goes for load vector 
dx = lx/nelx; dy = ly/nely; 
nel = nelx*nely; 
[keLambda, keMu, feLambda, feMu] = elementMatVec(dx/2, dy/2, phi); 
if flag==1 
    disp('keLambda size'); 
    size(keLambda) 
    disp('feLambda size'); 
    size(feLambda) 
end 
% Node numbers and element degrees of freedom for full (not periodic) mesh 
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx); 
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1); 
edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nel,1); 
%% IMPOSE PERIODIC BOUNDARY CONDITIONS 
% Use original edofMat to index into list with the periodic dofs 
nn = (nelx+1)*(nely+1); % Total number of nodes 
nnP = (nelx)*(nely);    % Total number of unique nodes 
nnPArray = reshape(1:nnP, nely, nelx); 
% Extend with a mirror of the top border 
nnPArray(end+1,:) = nnPArray(1,:); 
% Extend with a mirror of the left border 
nnPArray(:,end+1) = nnPArray(:,1); 
% Make a vector into which we can index using edofMat: 
dofVector = zeros(2*nn, 1); 
dofVector(1:2:end) = 2*nnPArray(:)-1; 
dofVector(2:2:end) = 2*nnPArray(:); 
edofMat = dofVector(edofMat); 
ndof = 2*nnP; % Number of dofs 
%% ASSEMBLE STIFFNESS MATRIX 
% Indexing vectors 
iK = kron(edofMat,ones(8,1))'; 
jK = kron(edofMat,ones(1,8))'; 
% Material properties in the different elements 
lambda = lambda(1)*(x==1) + lambda(2)*(x==2); 
mu     = mu(1)*(x==1) + mu(2)*(x==2); 
if flag==1 
    disp('Lambda size'); 
    size(lambda) 
end 
% The corresponding stiffness matrix entries 
sK = keLambda(:)*lambda(:).' + keMu(:)*mu(:).'; 
K  = sparse(iK(:), jK(:), sK(:), ndof, ndof);  
if flag==1 
    disp('sK'); 
    sK(:,1) 
end 
if flag==1 
    disp('iK size'); 
    size(jK) 
    disp('jK size'); 
    size(jK) 
    disp('sK size'); 
    size(sK) 
    disp('K size'); 
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    size(K) 
end 
%% LOAD VECTORS AND SOLUTION 
% Assembly three load cases corresponding to the three strain cases 
sF = feLambda(:)*lambda(:).'+feMu(:)*mu(:).'; 
iF = repmat(edofMat',3,1); 
jF = [ones(8,nel); 2*ones(8,nel); 3*ones(8,nel)]; 
F  = sparse(iF(:), jF(:), sF(:), ndof, 3); 
if flag==1 
    disp('iF size'); 
    size(jF) 
    disp('jF size'); 
    size(jF) 
    disp('sF size'); 
    size(sF) 
    disp('F size'); 
    size(F) 
end 
% Solve (remember to constrain one node) 
chi(3:ndof,:) = K(3:ndof,3:ndof)\F(3:ndof,:); 
%% HOMOGENIZATION 
% The displacement vectors corresponding to the unit strain cases 
chi0 = zeros(nel, 8, 3); 
% The element displacements for the three unit strains 
chi0_e = zeros(8, 3); 
ke = keMu + keLambda; % Here the exact ratio does not matter, because 
fe = feMu + feLambda; % it is reflected in the load vector 
chi0_e([3 5:end],:) = ke([3 5:end],[3 5:end])\fe([3 5:end],:); 
% epsilon0_11 = (1, 0, 0) 
chi0(:,:,1) = kron(chi0_e(:,1)', ones(nel,1)); 
% epsilon0_22 = (0, 1, 0) 
chi0(:,:,2) = kron(chi0_e(:,2)', ones(nel,1)); 
% epsilon0_12 = (0, 0, 1) 
chi0(:,:,3) = kron(chi0_e(:,3)', ones(nel,1)); 
if flag==1 
    disp('chi size'); 
    size(chi) 
    disp('chi0 size'); 
    size(chi0) 
    disp('chi0_e size'); 
    size(chi0_e) 
    disp('edofMat'); 
    size(edofMat) 
    disp('ndof'); 
    ndof 
end 
CH = zeros(3); 
cellVolume = lx*ly; 
for i = 1:3 
  for j = 1:3 
    sumLambda = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keLambda).*... 
      (chi0(:,:,j) - chi(edofMat+(j-1)*ndof)); 
    if flag==1 && i==2 && j==2 
        disp('sumLambda1 size') 
        size(sumLambda) 
    end 
    if flag==1 && i==2 && j==2 
        disp('edofMat+(i-1)*ndof size') 
        size(edofMat+(i-1)*ndof) 
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    end 
    sumMu = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keMu).*... 
      (chi0(:,:,j) - chi(edofMat+(j-1)*ndof)); 
    sumLambda = reshape(sum(sumLambda,2), nely, nelx); 
    if flag==1 && i==2 && j==2 
        disp('sumLambda2 size') 
        size(sumLambda) 
    end 
    sumMu = reshape(sum(sumMu,2), nely, nelx); 
    % Homogenized elasticity tensor 
    CH(i,j) = 1/cellVolume*sum(sum(lambda.*sumLambda + mu.*sumMu)); 
  end 
end 
%disp('--- Homogenized elasticity tensor ---'); disp(CH) 
 
%% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (NUMERICALLY) 
function [keLambda, keMu, feLambda, feMu] = elementMatVec(a, b, phi) 
% Constitutive matrix contributions 
CMu = diag([2 2 1]); CLambda = zeros(3); CLambda(1:2,1:2) = 1;  
% Two Gauss points in both directions 
xx=[-1/sqrt(3), 1/sqrt(3)]; yy = xx; 
ww=[1,1]; 
% Initialize 
keLambda = zeros(8,8); keMu = zeros(8,8); 
feLambda = zeros(8,3); feMu = zeros(8,3); 
L = zeros(3,4); L(1,1) = 1; L(2,4) = 1; L(3,2:3) = 1; 
for ii=1:length(xx) 
  for jj=1:length(yy) 
    % Integration point 
    x = xx(ii); y = yy(jj); 
    % Differentiated shape functions 
    dNx = 1/4*[-(1-y)  (1-y) (1+y) -(1+y)]; 
    dNy = 1/4*[-(1-x) -(1+x) (1+x)  (1-x)]; 
    % Jacobian 
    J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi/180)-a; ... 
        -b -b b b]'; 
    detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1); 
    invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)]; 
    % Weight factor at this point 
    weight = ww(ii)*ww(jj)*detJ; 
    % Strain-displacement matrix 
    G = [invJ zeros(2); zeros(2) invJ]; 
    dN = zeros(4,8); 
    dN(1,1:2:8) = dNx; 
    dN(2,1:2:8) = dNy; 
    dN(3,2:2:8) = dNx; 
    dN(4,2:2:8) = dNy; 
    B = L*G*dN; 
    % Element matrices 
    keLambda = keLambda + weight*(B' * CLambda * B); 
    keMu = keMu + weight*(B' * CMu * B); 
    % Element loads 
    feLambda = feLambda + weight*(B' * CLambda * diag([1 1 1])); 
    feMu = feMu + weight*(B' * CMu * diag([1 1 1])); 
  end 
end 

--------------------------------------------------------------------------------------------------------------------- 
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Appendix B. The Cellular_Solid Code 

function largeMatrix = draw_shape(matrixSize, shape_type, varargin) 

    % Initialize the large matrix with all elements as 1 

    largeMatrix = ones(matrixSize); 

 

    switch shape_type 

        case 'circle' 

            % varargin{1} is the radius of the circle 

            circleRadius = varargin{1}; 

 

             % Initialize the current matrix with all elements as 1 

                matrix = ones(matrixSize); 

 

                % Calculate the coordinates of the center 

                centerX = (matrixSize + 1) / 2; 

                centerY = (matrixSize + 1) / 2; 

 

                % Create a meshgrid of coordinates 

                [X, Y] = meshgrid(1:matrixSize, 1:matrixSize); 

 

                % Create a circular mask with 2s inside the circle 

                circularMask = (X - centerX).^2 + (Y - centerY).^2 <= circleRadius.^2; 

 

                % Update the current matrix with the circular mask 

                matrix(circularMask) = 2; 

 

                % Combine the current matrix with the large matrix 

                largeMatrix = max(largeMatrix, matrix); 

 

        case 'rectangle' 

            % varargin{1} is the width of the rectangle 

            % varargin{2} is the length of the rectangle 

            rectangleWidth = varargin{1}; 

            rectangleLength = varargin{2}; 

 

            % Calculate the coordinates of the center 

                centerX = floor((matrixSize + 1) / 2); 

                centerY = floor((matrixSize + 1) / 2); 

 

                % Calculate the starting and ending coordinates of the rectangle 

                startX = centerX - floor(rectangleWidth / 2); 

                endX = centerX + floor(rectangleWidth / 2); 
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                startY = centerY - floor(rectangleLength / 2); 

                endY = centerY + floor(rectangleLength / 2); 

 

                % Ensure the coordinates are within the matrix boundaries 

                startX = max(1, startX); 

                endX = min(matrixSize, endX); 

                startY = max(1, startY); 

                endY = min(matrixSize, endY); 

 

                % Create the rectangle in the matrix 

                largeMatrix(startY:endY, startX:endX) = 2; 

 

        case 'hexagon' 

            % varargin{1} is half of the hexagon diagonal 

            w = varargin{1}; 

 

            % % 1- Below is the hexagonal with two vertices next to each other 

            % % use only this part or part 2 

            % a11 = (matrixSize + 1) / 2 - w; 

            % a12 = (matrixSize + 1) / 2; 

            %  

            % a21 = (matrixSize + 1) / 2 - w*cosd(60); 

            % a22 = (matrixSize + 1) / 2 - w*sind(60); 

            %  

            % a31 = (matrixSize + 1) / 2 + w*cosd(60); 

            % a32 = (matrixSize + 1) / 2 - w*sind(60); 

            %  

            % a41 = (matrixSize + 1) / 2 + w; 

            % a42 =(matrixSize + 1) / 2; 

            %  

            % a51 = (matrixSize + 1) / 2 + w*cosd(60); 

            % a52 = (matrixSize + 1) / 2 + w*sind(60); 

            %  

            % a61 = (matrixSize + 1) / 2 - w*cosd(60); 

            % a62 = (matrixSize + 1) / 2 + w*sind(60); 

 

 

 

 

            % 2- Below is the hexagonal with one vertices on top 

            % use only this part or part 1 

            a11 = (matrixSize + 1) / 2; 
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            a12 = (matrixSize + 1) / 2 - w; 

 

            a21 = (matrixSize + 1) / 2 + w*sind(60); 

            a22 = (matrixSize + 1) / 2 - w*cosd(60); 

 

            a31 = (matrixSize + 1) / 2 + w*sind(60); 

            a32 = (matrixSize + 1) / 2 + w*cosd(60); 

 

            a41 = (matrixSize + 1) / 2 ; 

            a42 =(matrixSize + 1) / 2 + w; 

 

            a51 = (matrixSize + 1) / 2 - w*sind(60); 

            a52 = (matrixSize + 1) / 2 + w*cosd(60); 

 

            a61 = (matrixSize + 1) / 2 - w*sind(60); 

            a62 = (matrixSize + 1) / 2 - w*cosd(60); 

 

 

 

            % Specify the vertices of the hexagon (user-defined) 

            hexagonVertices = [ 

                a11, a12;  % Vertex 1 

                a21, a22;  % Vertex 2 

                a31, a32;  % Vertex 3 

                a41, a42; % Vertex 4 

                a51, a52;  % Vertex 5 

                a61, a62 ];  % Vertex 6 

 

 

            % Create a binary mask for the hexagon 

            hexagonMask = poly2mask(hexagonVertices(:, 1), hexagonVertices(:, 2), ma-

trixSize, matrixSize); 

 

            % Set the corresponding elements in the matrix to 2 

            largeMatrix(hexagonMask) = 2; 

 

 

        case 'coordinates' 

            % varargin{1} is a matrix containing the coordinates of the vertices 

            vertices = varargin{1}; 

 

            % Create a binary mask for the triangle 
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            shapeMask = poly2mask(vertices(:, 1), vertices(:, 2), matrixSize, matrixSize); 

 

            % Set the corresponding elements in the matrix to 2 

            matrix(shapeMask) = 2; 

 

        otherwise 

            error('Unknown shape type'); 

    end 

 

 

end 

--------------------------------------------------------------------------------------------------------------------- 

Appendix C. The Homogenize_test Code 

clc 

clear all 

close all 

 

%User inputs  

 

matrixSize = input('Enter UC matrix size: '); 

shape = input('Enter UCs void shape (circle, rectangle, hexagon): ','s'); 

x_length = input('Enter the structure width: '); 

y_length = input('Enter the structure height: '); 

 

 

 

% Defining grid parameters 

x_range = 0:1:x_length-1; 

y_range = 0:1:y_length-1; 

x_center = (x_length-1)/2; 

y_center = (y_length-1)/2; 

RD = zeros(x_length, y_length); 

% Define a structure to hold the coordinates and elasticity tensors 

plate = struct('x', [], 'y', [], 'tensor', []); 

RD_struct = struct('x', [], 'y', [], 'RD', []); 

 

%Dummy flag 

y_now = pi(); 

%Full structure visualization 

FullStructure = []; 

% Initialize a row holder for each row of unit cells 
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rowHolder = []; 

flag=0; 

% Loop through the grid and compute the elasticity tensor for each point 

for y = fliplr(y_range) 

    % Clear rowHolder for the new row 

    rowHolder = []; 

    for x = x_range 

            switch shape 

                case 'circle' 

                

                     

                    %study 5 

                    % argument = sin(sqrt((x - x_center)^2 + (y - y_center)^2))*10; 

 

 

 

                    %study 3 

                    % argument = abs(sin(x+y))*matrixSize/4+1; 

                    % if argument >= floor(matrixSize/2) 

                    %     argument = floor(matrixSize/2)-1; 

                    % end 

 

                    %case 6 

                    argument = randi([5, 15]); 

 

 

                    X = Cellular_Solid(matrixSize, shape, argument); 

                case 'rectangle' 

                   

                   %study 1 

                   % argument1 = (y+3)*1.5; 

                   % argument2 = y+3; 

                    

                   %study 2 

                     argument1 = (sqrt(y^2+x^2))*1.5; 

                     argument2 = (sqrt(y^2+x^2))*1.5; 

 

                    X = Cellular_Solid(matrixSize, shape, argument1, argument2); 

                case 'hexagon' 

 

                    %study 4 

                    argument = 24-(sqrt((y-y_center)^2+(x-x_center)^2))*0.9; 
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                    X = Cellular_Solid(matrixSize, shape, argument); 

 

 

 

            end 

             CH = homogenize(1,1,[115.4 1],[76.9 0.769],90,X,flag); 

             

            flag=0; 

 

        %Save "relative density" 

        RD_struct(end+1)=struct('x', x, 'y', y, 'RD', sum(sum(X == 1))/(matrixSize^2)); 

        RD(x+1,y+1) = sum(sum(X == 1))/(matrixSize^2); 

 

        % Add the data to the structure 

        plate(end+1) = struct('x', x, 'y', y, 'tensor', CH); 

        % Concatenate this unit cell to the row holder 

        rowHolder = [rowHolder, X]; 

    end 

    % Once a full row of unit cells is formed, concatenate it to the FullStructure 

    FullStructure = [FullStructure; rowHolder]; 

end 

plate = plate(2:end); %Get rid of first empty entry 

RD_struct = RD_struct(2:end); 

%% Plotting 

% Calculate the range of densities 

densityMin = min(RD(:)); 

densityMax = max(RD(:)); 

 

% Define contour levels 

numLevels = 50; % You can change this value 

contourLevels = linspace(densityMin, densityMax, numLevels); 

figure(1) 

contourf(x_range,y_range,RD',contourLevels,'LineColor', 'none') 

colormap(flipud(gray)); 

colorbar 

caxis([densityMin, densityMax]); % Set color axis scaling 

% Adjusting font sizes individually 

title('Relative density plot', 'FontSize', 20)  % Set font size for title 

xlabel('x coordinate', 'FontSize', 20)          % Set font size for x-axis label 

ylabel('y coordinate', 'FontSize', 20)          % Set font size for y-axis label 
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set(gca, 'FontSize', 19)                        % Set font size for axis ticks 

 

axis equal 

%Full cellular/porous structure 

figure(2) 

imshow(FullStructure, [1, 2]); 

% Adjusting font sizes individually 

title('Final Combined Matrix', 'FontSize', 20)  % Set font size for title 

xlabel('x coordinate', 'FontSize', 20)          % Set font size for x-axis label 

ylabel('y coordinate', 'FontSize', 20)          % Set font size for y-axis label 

 

axis equal 

%% Obtain the "reference" Elasticity tensor at a given set of coordinates 

% x_coordinate = floor(x_length/2); %This gives the CH at the center of the plate 

% y_coordinate = floor(y_length/2); 

%Manual input 

x_coordinate = 15; %This gives the CH at the center of the plate 

y_coordinate = 15; 

tensor = getTensorAtCoordinate(plate, x_coordinate, y_coordinate); %Uses the funnction at 

the end 

 

%% Curve fitting the Elasticity Tensor Map 

% Initialize tensor_function as a cell array 

tensor_function = cell(3); 

 

for i=1:3 

   for j=1:3 

        x_data = [plate.x]; 

        y_data = [plate.y]; 

        tensor_data = cellfun(@(t) t(i,j), {plate.tensor}); 

 

        % Define the fit type, e.g., a polynomial 

        fitType = fittype('poly55'); % second-degree polynomial 

 

        % Perform the fit 

      

        tensor_function{i,j} = fit([x_data', y_data'], tensor_data', fitType); 

    end  

end 

tensor_function 

 

%% Curve fitting the Relative Density Map 
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x_data = [plate.x]; 

y_data = [plate.y]; 

RD_data = [RD_struct.RD]; 

% Define the fit type, e.g., a polynomial 

fitType = fittype('poly55'); % second-degree polynomial 

 

% Perform the fit 

%RDL = reshape(RD, [], 1); 

RD_function = fit([x_data', y_data'], RD_data', fitType); 

% For instance, for the 88th entry in the structure, fitted and actual RD 

% are: 

L = 88; 

% To know its coordinates use: 

% x_coordinate = plate(88).x 

% y_coordinate = plate(88).y 

RD_Fitted = RD_function(plate(L).x, plate(L).y) 

RD_Actual = RD_struct(L).RD 

 

%% Evaluating the curve-fitted Elasticity tensor from coordinate 

%Accessing  specific equation (entry of the tensor) 

specific_function = tensor_function{1,2}; 

%Evaluating the function at a given x and y value 

x_value = 15; % Replace with the desired x value 

y_value = 15; % Replace with the desired y value 

result = specific_function(x_value, y_value); 

%Evaluating full Elasticity tensor at a given y value 

elasticity_tensor = zeros(3); 

for i = 1:3 

    for j = 1:3 

        elasticity_tensor(i,j) = tensor_function{i,j}(x_value, y_value); 

    end 

end 

elasticity_tensor 

 

%% Evaluating error (fit analysis) 

 

% Initialize variable for accumulating total element-wise percentage error 

total_percentage_error = 0; 

total_elements = 0; 

 

% Loop through all coordinates in 'plate' to accumulate the percentage errors 
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for i = 1:length(plate) 

    x = plate(i).x; 

    y = plate(i).y; 

     

    % Extract the reference tensor from 'plate' 

    tensor_exact = plate(i).tensor; 

     

    % Evaluate the approximate tensor at the same coordinates 

    for m=1:3 

        for n=1:3 

            tensor_approx(m,n) = tensor_function{m,n}(x, y); 

        end 

    end 

 

    % Compute the element-wise percentage error 

    % Avoid division by zero by adding a small constant (e.g., 1e-9) 

    percentage_error_matrix = abs((tensor_exact - tensor_approx)./ (tensor_exact + 1e-9)) * 

100; 

     

    % Sum up the percentage errors and count the number of elements 

    total_percentage_error = total_percentage_error + sum(sum(percentage_error_matrix)); 

    total_elements = total_elements + numel(percentage_error_matrix); 

end 

 

% Compute the overall average element-wise percentage error 

overall_avg_percentage_error = total_percentage_error / total_elements; 

 

fprintf('The overall average element-wise percentage error is %.2f%%\n', overall_avg_per-

centage_error); 

 

 

%% getTensorAtCoordinate "reference" function 

%Get a specific tensor from coordinate (function) 

function tensor = getTensorAtCoordinate(plate, x, y) 

    for i = 1:length(plate) 

        if isequal(plate(i).x, x) && isequal(plate(i).y, y) 

            tensor = plate(i).tensor 

            return; 

        end 

    end 

    error('Coordinate not found in the structure.'); 

end 
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--------------------------------------------------------------------------------------------------------------------- 

Appendix D. The homogenize_ortho Code 

function CH = homogenize_ortho(lx, ly, E1, E2, G12, nu12, phi, theta, x, flag) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% lx        = Unit cell length in x-direction. 

% ly        = Unit cell length in y-direction. 

% E1        = Young's Modulus in first principal direction for both materials. Two entries. 

% E2        = Young's Modulus in second principal direction for both materials. Two en-

tries. 

% G12       = Shear Modulus in direction 1-2. 

% nu12      = Poisson's ratio in direction 1-2. 

% phi       = Angle between horizontal and vertical cell wall. Degrees 

% theta     = Ply angle 

% x         = Material indicator matrix. Size used to determine nelx/nely 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% INITIALIZE 

% Deduce discretization 

[nely, nelx] = size(x); 

% Stiffness matrix for orthotropic materials 

dx = lx/nelx; dy = ly/nely; 

nel = nelx*nely; 

% Material properties coordinate transformation (Local 12 to Global xy) 

Ex = 1./(((cosd(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((sind(theta)).^4)./E2); 

Ey = 1./(((sind(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((cosd(theta)).^4)./E2); 

Gxy = 1./(((sind(theta)).^4+(cosd(theta)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta)).^2).*((cosd(theta)).^2)); 

%nu_xy = Ex.*(nu12./E1.*((sind(theta)).^4+(cosd(theta)).^4)-(1./E1+1./E2-

1./G12).*((sind(theta)).^2).*((cosd(theta)).^2)); 

nu_xy = Ex.*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-1./G12).*((sind(2*theta)).^2)); 

 

% Material properties in the different elements 

Ex = Ex(1)*(x==1) + Ex(2)*(x==2); 

Ey = Ey(1)*(x==1) + Ey(2)*(x==2); 

Gxy = Gxy(1)*(x==1) + Gxy(2)*(x==2); 

nu_xy = nu_xy(1)*(x==1) + nu_xy(2)*(x==2); 

%Linearize 

Ex=Ex(:); Ey=Ey(:); Gxy=Gxy(:); nu_xy=nu_xy(:); 
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% Construct the orthotropic stiffness matrix C for each element 

C = zeros(nel, 3, 3); 

C(:,1,1) = Ex; 

C(:,1,2) = nu_xy .* Ey; 

C(:,2,1) = (Ey./Ex) .* nu_xy .* Ex; 

C(:,2,2) = Ey; 

C(:,3,3) = Gxy; 

 

%Elements Stiffness Matrix and Load Vector 

[keC, feC] = elementMatVecOrtho(dx/2, dy/2, phi, C, nel, flag); 

 

% Node numbers and element degrees of freedom for full (not periodic) mesh 

nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx); 

edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1); 

edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nel,1); 

%% IMPOSE PERIODIC BOUNDARY CONDITIONS 

% Use original edofMat to index into list with the periodic dofs 

nn = (nelx+1)*(nely+1); % Total number of nodes 

nnP = (nelx)*(nely);    % Total number of unique nodes 

nnPArray = reshape(1:nnP, nely, nelx); 

% Extend with a mirror of the top border 

nnPArray(end+1,:) = nnPArray(1,:); 

% Extend with a mirror of the left border 

nnPArray(:,end+1) = nnPArray(:,1); 

% Make a vector into which we can index using edofMat: 

dofVector = zeros(2*nn, 1); 

dofVector(1:2:end) = 2*nnPArray(:)-1; 

dofVector(2:2:end) = 2*nnPArray(:); 

edofMat = dofVector(edofMat); 

ndof = 2*nnP; % Number of dofs 

%% ASSEMBLE STIFFNESS MATRIX 

% Indexing vectors 

iK = kron(edofMat,ones(8,1))'; 

jK = kron(edofMat,ones(1,8))'; 

 

% The corresponding stiffness matrix entries for orthotropic materials 

sK = reshape(keC, [64, nel]);  % keC should already account for E1, E2, G12, and nu12 

K  = sparse(iK(:), jK(:), sK(:), ndof, ndof); 

 

%% LOAD VECTORS AND SOLUTION 

% Assembly three load cases corresponding to the three strain cases 

sF = reshape(feC, [24, nel]);  % feC should already account for E1, E2, G12, and nu12 
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iF = repmat(edofMat', 3, 1); 

jF = [ones(8, nel); 2*ones(8, nel); 3*ones(8, nel)]; 

F  = sparse(iF(:), jF(:), sF(:), ndof, 3); 

 

% Solve (remember to constrain one node) 

chi(3:ndof,:) = K(3:ndof,3:ndof)\F(3:ndof,:); 

%% HOMOGENIZATION 

% The displacement vectors corresponding to the unit strain cases 

chi0 = zeros(nel, 8, 3); 

% The element displacements for the three unit strains 

 

ke0=zeros(8,8); 

fe0=zeros(8,3); 

for k = 1:nel 

    ke0(:,:)=keC(:,:,k); 

    fe0(:,:)=feC(:,:,k); 

     

    % epsilon0_11 = (1, 0, 0) 

    chi0(k,[3 5:end],1) = ke0([3 5:end],[3 5:end])\fe0([3 5:end],1); 

    % epsilon0_22 = (0, 1, 0) 

    chi0(k,[3 5:end],2) = ke0([3 5:end],[3 5:end])\fe0([3 5:end],2); 

    % epsilon0_12 = (0, 0, 1) 

    chi0(k,[3 5:end],3) = ke0([3 5:end],[3 5:end])\fe0([3 5:end],3); 

end 

 

CH = zeros(3); 

cellVolume = lx*ly; 

sumC = zeros(nel,8); 

for i = 1:3 

  for j = 1:3 

      chii = chi(edofMat+(i-1)*ndof); 

      chij = chi(edofMat+(j-1)*ndof); 

 

      for k = 1:nel 

        ke_h = squeeze(keC(:,:,k)); 

        sumC_h = ((chi0(k,:,i) - chii(k,:))*ke_h).*... 

               (chi0(k,:,j) - chij(k,:)); 

        for q = 1:8 

            sumC(k,q) = sumC_h(q); 

        end 

      end 

        sumC = sum(sumC,2); 
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        % Homogenized elasticity tensor 

        CH(i,j) = 1/cellVolume*sum(sumC); 

  end 

end 

 

%% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (NUMERICALLY) 

function [keC, feC] = elementMatVecOrtho(a, b, phi, C, nel, flag) 

% Constitutive matrix contributions 

% Initialize 

    keC = zeros(8, 8, nel); 

    feC = zeros(8, 3, nel); 

    L = zeros(3, 4); L(1, 1) = 1; L(2, 4) = 1; L(3, 2:3) = 1; 

    xx = [-1/sqrt(3), 1/sqrt(3)]; yy = xx; 

    ww = [1, 1]; 

for el = 1:nel 

    C_local = squeeze(C(el,:,:)); 

    ke_local = zeros(8, 8);  % Initialize for this element 

    fe_local = zeros(8, 3);  % Initialize for this element 

    for ii=1:length(xx) 

      for jj=1:length(yy) 

        % Integration point 

        x = xx(ii); y = yy(jj); 

        % Differentiated shape functions 

        dNx = 1/4*[-(1-y)  (1-y) (1+y) -(1+y)]; 

        dNy = 1/4*[-(1-x) -(1+x) (1+x)  (1-x)]; 

        % Jacobian 

        J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi/180)-a; ... 

            -b -b b b]'; 

        detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1); 

        invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)]; 

        % Weight factor at this point 

        weight = ww(ii)*ww(jj)*detJ; 

        % Strain-displacement matrix 

        G = [invJ zeros(2); zeros(2) invJ]; 

        dN = zeros(4,8); 

        dN(1,1:2:8) = dNx; 

        dN(2,1:2:8) = dNy; 

        dN(3,2:2:8) = dNx; 

        dN(4,2:2:8) = dNy; 

        B = L*G*dN; 

        % Update the local ke and fe for this element 

        ke_local = ke_local + weight * (B' * C_local * B); 
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        fe_local = fe_local + weight * (B' * C_local * diag([1, 1, 1])); 

      end 

    end 

  % Store the local ke and fe in the global 3D arrays 

    keC(:,:, el) = ke_local; 

    feC(:,:, el) = fe_local; 

end 

--------------------------------------------------------------------------------------------------------------------- 

Appendix E. The Homogenize_test_ortho_principal Code 

clc 

clear all 

close all 

 

%User inputs (let's ignore the 'coordinates' option for now) 

matrixSize = input('Enter UC matrix size: '); 

shape = input('Enter UCs void shape (circle, rectangle, hexagon): ','s'); 

x_length = input('Enter the structure width: '); 

y_length = input('Enter the structure height: '); 

theta = input('Enter the printing angle [degrees]: '); 

theta_dummy = theta-1:0.1:theta+1; 

% Define grid parameters 

x_range = 0:1:x_length-1; 

y_range = 0:1:y_length-1; 

x_center = (x_length-1)/2+2; 

y_center = (y_length-1)/2-3; 

RD = zeros(x_length, y_length); 

% Define a structure to hold the coordinates and elasticity tensors 

plate = struct('x', [], 'y', [], 'tensor', [], 'principal_tensor', []); 

RD_struct = struct('x', [], 'y', [], 'RD', []); 

 

%Dummy flag 

y_now = pi(); 

%Full structure visualization 

FullStructure = []; 

% Initialize a row holder for each row of unit cells 

rowHolder = []; 

flag=0; 

CH_principal = zeros(3); 

CH_principal(1,1) = 150; 

CH_principal(2,2) = 9; 

CH_principal(3,3) = 8; 
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CH_principal(1,2) = 0.3; 

CH_principal(2,1) = CH_principal(1,2); 

% Loop through the grid and compute the elasticity tensor for each point 

for y = fliplr(y_range) 

    % Clear rowHolder for the new row 

    rowHolder = []; 

    for x = x_range 

 

            switch shape 

                case 'circle' 

% write your function for circular voids here 

       argument = sin(sqrt((x - 5)^2 + (y - 5)^2))*10; 

 

                    X = NSF_function(matrixSize, shape, argument); 

                case 'rectangle' 

 

 

% write your function for rectangular/square voids here 

 

 

                    argument1 = abs(sin(x+y))*matrixSize/4+1; 

                    if argument1 >= floor(matrixSize/2) 

                        argument1 = floor(matrixSize/2)-1; 

                    end 

 

                    argument2 = abs(sin(x+y))*matrixSize/4+1; 

                    if argument2 >= floor(matrixSize/2) 

                        argument2 = floor(matrixSize/2)-1; 

                    end 

 

 

 

 

                    X = NSF_function(matrixSize, shape, argument1, argument2); 

                case 'hexagon' 

% write your function for hexagonal voids here 

 

                    argument = floor(sqrt(y^2+x^2))+1; 

                    if argument >= floor(matrixSize/2) 

                        argument = floor(matrixSize/2)-1; 

                    end 

                    X = NSF_function(matrixSize, shape, argument); 
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            end 

            CH = homogenize_ortho(1,1,[150 1],[9 0.01],[8 0.08],[0.3 0.3],90,theta,X,flag); 

 

            syms E1 E2 G12 nu12 real positive 

 

            %system of eqns 

            eqn1 = 1./(((cosd(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((sind(theta)).^4)./E2) == CH(1,1); 

            eqn2 = 1./(((sind(theta)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta)).^2).*((cosd(theta)).^2)+((cosd(theta)).^4)./E2) == CH(2,2); 

            eqn3 = 

1./(((sind(theta)).^4+(cosd(theta)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta)).^2).*((cosd(theta)).^2)) == CH(3,3); 

            eqn4 = CH(1,1).*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-

1./G12).*((sind(2*theta)).^2)) == (CH(1,2)/CH(2,2)); 

 

            %Solve 

            Sol = vpasolve([eqn1, eqn2, eqn3, eqn4], [E1,E2,G12,nu12], [CH_princi-

pal(1,1)/2; CH_principal(2,2)/2; CH_principal(3,3)/2; CH_principal(1,2)/2]); 

 

            % Check if solution is empty 

            if isempty(Sol.E1) || isempty(Sol.E2) || isempty(Sol.G12) || isempty(Sol.nu12) 

                warning('No solution found for the given values of CH and theta.'); 

                   x 

                   y 

                   for i = theta_dummy 

                       syms E1 E2 G12 nu12 real positive 

 

                        %system of eqns 

                        eqn1 = 1./(((cosd(theta_dummy)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta_dummy)).^2).*((cosd(theta_dummy)).^2)+((sind(theta_dummy)).^4)./

E2) == CH(1,1); 

                        eqn2 = 1./(((sind(theta_dummy)).^4)./E1+(1./G12-

2.*nu12./E1).*((sind(theta_dummy)).^2).*((cosd(theta_dummy)).^2)+((cosd(theta_dummy)).^4)./

E2) == CH(2,2); 

                        eqn3 = 

1./(((sind(theta_dummy)).^4+(cosd(theta_dummy)).^4)./G12+4.*(1./E1+1./E2+2.*nu12./E1-

1./(2.*G12)).*((sind(theta_dummy)).^2).*((cosd(theta_dummy)).^2)) == CH(3,3); 

                        eqn4 = CH(1,1).*(nu12./E1-1/4.*(1./E1+2.*nu12./E1+1./E2-

1./G12).*((sind(2*theta_dummy)).^2)) == (CH(1,2)/CH(2,2)); 

 

                        %Solve 
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                        Sol = vpasolve([eqn1, eqn2, eqn3, eqn4], [E1,E2,G12,nu12], 

[CH_principal(1,1)/2; CH_principal(2,2)/2; CH_principal(3,3)/2; CH_principal(1,2)/2]); 

                        if isempty(Sol.E1) || isempty(Sol.E2) || isempty(Sol.G12) || 

isempty(Sol.nu12) 

                            warning('No solution found for the given values of CH and 

theta.'); 

                        else 

                            break; 

                        end 

                   end 

            else 

                CH_principal = zeros(3); 

                % If a solution is found, assign it to CH_principal 

                CH_principal(1,1) = Sol.E1; 

                CH_principal(2,2) = Sol.E2; 

                CH_principal(3,3) = Sol.G12; 

                CH_principal(1,2) = Sol.E2*Sol.nu12; 

                CH_principal(2,1) = CH_principal(1,2); 

            end 

 

 

 

            flag=0; 

        %end 

        %Save "relative density" 

        RD_struct(end+1)=struct('x', x, 'y', y, 'RD', sum(sum(X == 1))/(matrixSize^2)); 

        RD(x+1,y+1) = sum(sum(X == 1))/(matrixSize^2); 

        %y_now=y; 

        % Add the data to the structure 

        plate(end+1) = struct('x', x, 'y', y, 'tensor', CH, 'principal_tensor', CH_princi-

pal); 

        % Concatenate this unit cell to the row holder 

        rowHolder = [rowHolder, X]; 

    end 

    % Once a full row of unit cells is formed, concatenate it to the FullStructure 

    FullStructure = [FullStructure; rowHolder]; 

end 

plate = plate(2:end); %Get rid of first empty entry 

RD_struct = RD_struct(2:end); 

%% Plotting 

% Calculate the range of densities 

densityMin = min(RD(:)); 
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densityMax = max(RD(:)); 

 

% Define contour levels 

numLevels = 50; % You can change this value 

contourLevels = linspace(densityMin, densityMax, numLevels); 

figure(1) 

contourf(x_range,y_range,RD',contourLevels,'LineColor', 'none') 

colormap(flipud(gray)); 

colorbar 

caxis([densityMin, densityMax]); % Set color axis scaling 

title('Relative density plot') 

xlabel('x coordinate') 

ylabel('y coordinate') 

set(gca, 'FontSize', 19)     

axis equal    

%Full cellular/porous structure 

figure(2) 

imshow(FullStructure, [1, 2]); 

title('Final Combined Matrix'); 

xlabel('x coordinate') 

ylabel('y coordinate') 

   

axis equal 

%% Obtain the "reference" Elasticity tensor at a given set of coordinates 

% x_coordinate = floor(x_length/2); %This gives the CH at the center of the plate 

% y_coordinate = floor(y_length/2); 

%Manual input 

x_coordinate = 9; %This gives the CH at the center of the plate 

y_coordinate = 2; 

tensor = getTensorAtCoordinate(plate, x_coordinate, y_coordinate); %Uses the funnction at 

the end 

 

%% Curve fitting the Elasticity Tensor Map 

% Initialize tensor_function as a cell array 

tensor_function = cell(3); 

 

for i=1:3 

   for j=1:3 

        x_data = [plate.x]; 

        y_data = [plate.y]; 

        tensor_data = cellfun(@(t) t(i,j), {plate.tensor}); 
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        % Define the fit type, e.g., a polynomial 

        fitType = fittype('poly55'); % second-degree polynomial 

 

        % Perform the fit 

        tensor_function{i,j} = fit([x_data', y_data'], tensor_data', fitType); 

    end  

end 

tensor_function 

 

%% Curve fitting the Principal Elasticity Tensor Map 

% Initialize tensor_function as a cell array 

principal_tensor_function = cell(3); 

 

for i=1:3 

   for j=1:3 

        x_data = [plate.x]; 

        y_data = [plate.y]; 

        principal_tensor_data = cellfun(@(t) t(i,j), {plate.principal_tensor}); 

 

        % Define the fit type, e.g., a polynomial 

        fitType = fittype('poly55'); % second-degree polynomial 

 

        % Perform the fit 

        principal_tensor_function{i,j} = fit([x_data', y_data'], principal_tensor_data', 

fitType); 

    end  

end 

principal_tensor_function 

 

%% Extracting stiffness tensor coefficients into CSV file 

 

all_coeffs = []; % Initialize empty matrix to collect all coefficients 

 

% Variable names for the coefficients in the order they are returned by coeffvalues 

variable_names = {'p00', 'p10', 'p01', 'p20', 'p11', 'p02', 'p30', 'p21', 'p12', 'p03', 

'p40', 'p31', 'p22', 'p13', 'p04', 'p50', 'p41', 'p32', 'p23', 'p14', 'p05'}; 

 

% List of desired indices as (row, column) pairs 

desired_indices = [1 1; 1 2; 2 2; 3 3]; 

 

% Loop over the desired indices 

for index = 1:size(desired_indices, 1) 
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    % obtain the row and column from the current index pair 

    row = desired_indices(index, 1); 

    col = desired_indices(index, 2); 

     

    % Collect current coefficients from the (row, col) entry 

    current_coeffs = coeffvalues(tensor_function{row,col}); 

     

    % Append to the all_coeffs matrix 

    all_coeffs = [all_coeffs; current_coeffs]; 

end 

 

% Convert the full matrix to a table before writing to CSV 

all_coeffs_table = array2table(all_coeffs, 'VariableNames', variable_names); 

 

% Write the full table of coefficients to a CSV file 

writetable(all_coeffs_table, 'selected_tensor_coefficients1.csv'); 

 

%% Extracting principal stiffness tensor coefficients into CSV file 

 

principal_all_coeffs = []; % Initialize empty matrix to collect all coefficients 

 

% Variable names for the coefficients in the order they are returned by coeffvalues 

variable_names = {'p00', 'p10', 'p01', 'p20', 'p11', 'p02', 'p30', 'p21', 'p12', 'p03', 

'p40', 'p31', 'p22', 'p13', 'p04', 'p50', 'p41', 'p32', 'p23', 'p14', 'p05'}; 

 

% List of desired indices as (row, column) pairs 

desired_indices = [1 1; 1 2; 2 2; 3 3]; 

 

% Loop over the desired indices 

for index = 1:size(desired_indices, 1) 

    % obtain the row and column from the current index pair 

    row = desired_indices(index, 1); 

    col = desired_indices(index, 2); 

     

    % Collect current coefficients from the (row, col) entry 

    current_coeffs = coeffvalues(principal_tensor_function{row,col}); 

     

    % Append to the all_coeffs matrix 

    principal_all_coeffs = [principal_all_coeffs; current_coeffs]; 

end 

 

% Convert the full matrix to a table before writing to CSV 
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principal_all_coeffs_table = array2table(principal_all_coeffs, 'VariableNames', varia-

ble_names); 

 

% Write the full table of coefficients to a CSV file 

writetable(principal_all_coeffs_table, 'principal_tensor_coefficients.csv'); 

%% Curve fitting the Relative Density Map 

 

x_data = [plate.x]; 

y_data = [plate.y]; 

RD_data = [RD_struct.RD]; 

% Define the fit type, e.g., a polynomial 

fitType = fittype('poly33'); % second-degree polynomial 

 

% Perform the fit 

%RDL = reshape(RD, [], 1); 

RD_function = fit([x_data', y_data'], RD_data', fitType); 

 

 

% "L" is a specific index in the data structure and displays RD for that 

% specific index 

L = 88; 

% obtain the coordinates for L = 88 by typing the following lines 

% x_coordinate = plate(88).x 

% y_coordinate = plate(88).y 

 

RD_Fitted = RD_function(plate(L).x, plate(L).y) 

RD_Actual = RD_struct(L).RD 

 

%% Extracting density coefficients to CSV file 

 

% Collect the coefficients for the fit 

RD_coeffs = coeffvalues(RD_function); 

 

% Create a variable names array corresponding to the coefficients of the poly33 model 

variable_names = {'p00', 'p10', 'p01', 'p20', 'p11', 'p02', 'p30', 'p21', 'p12', 'p03'}; 

 

% Convert the coefficients to a table with appropriate variable names 

RD_coeffs_table = array2table(RD_coeffs, 'VariableNames', variable_names); 

 

% Write the table to a CSV file 

writetable(RD_coeffs_table, 'RD_coefficients.csv'); 
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%% Evaluating the curve-fitted Elasticity tensor from coordinate 

%Accessing  specific equation (entry of the tensor) 

specific_function = tensor_function{1,2}; 

%Evaluating the function at a given x and y value 

x_value = 9; % Replace with the desired x value 

y_value = 2; % Replace with the desired y value 

result = specific_function(x_value, y_value); 

%Evaluating full Elasticity tensor at a given y value 

elasticity_tensor = zeros(3); 

for i = 1:3 

    for j = 1:3 

        elasticity_tensor(i,j) = tensor_function{i,j}(x_value, y_value); 

    end 

end 

elasticity_tensor 

 

%% Evaluating error (fit analysis) 

 

% Initialize variable for accumulating total element-wise percentage error 

total_percentage_error = 0; 

total_elements = 0; 

 

% Loop through all coordinates in 'plate' to accumulate the percentage errors 

for i = 1:length(plate) 

    x = plate(i).x; 

    y = plate(i).y; 

     

    % Extract the reference tensor from 'plate' 

    tensor_exact = plate(i).tensor; 

     

    % Evaluate the approximate tensor at the same coordinates 

    for m=1:3 

        for n=1:3 

            tensor_approx(m,n) = tensor_function{m,n}(x, y); 

        end 

    end 

 

    % Compute the element-wise percentage error 

    % Avoid division by zero by adding a small constant (e.g., 1e-9) 

    percentage_error_matrix = abs((tensor_exact - tensor_approx)./ (tensor_exact + 1e-9)) * 

100; 
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    % Sum up the percentage errors and count the number of elements 

    total_percentage_error = total_percentage_error + sum(sum(percentage_error_matrix)); 

    total_elements = total_elements + numel(percentage_error_matrix); 

end 

 

% Compute the overall average element-wise percentage error 

overall_avg_percentage_error = total_percentage_error / total_elements; 

 

fprintf('The overall average element-wise percentage error is %.2f%%\n', overall_avg_per-

centage_error); 

 

%% Plotting E1 

 

 

x=0:x_length-1; 

y=0:y_length-1; 

E1=zeros(x_length,y_length); 

for i=x+1 

    for j=y+1 

        E1(i,j) = principal_tensor_function{1,1}(i-1,j-1); 

    end 

end 

Min=min(min(E1)); 

Max=max(max(E1)); 

numLevels = 50; 

contourLevels = linspace(Min, Max, numLevels); 

figure(3) 

contourf(x_range,y_range,E1',contourLevels,'LineColor', 'none') 

colormap(flipud(gray)); 

colorbar 

caxis([Min, Max]); % Set color axis scaling 

title('E_{1} plot') 

xlabel('x coordinate') 

ylabel('y coordinate') 

set(gca, 'FontSize', 19)     

axis equal 

 

%% Plotting E2 

 

x=0:x_length-1; 

y=0:y_length-1; 

E2=zeros(x_length,y_length); 
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for i=x+1 

    for j=y+1 

        E2(i,j) = principal_tensor_function{2,2}(i-1,j-1); 

    end 

end 

Min=min(min(E2)); 

Max=max(max(E2)); 

numLevels = 50; 

contourLevels = linspace(Min, Max, numLevels); 

figure(4) 

contourf(x_range,y_range,E2',contourLevels,'LineColor', 'none') 

colormap(flipud(gray)); 

colorbar 

caxis([Min, Max]); % Set color axis scaling 

title('E_2 plot') 

xlabel('x coordinate') 

ylabel('y coordinate') 

set(gca, 'FontSize', 19)     

axis equal 

%% Plotting G12 

 

 

x=0:x_length-1; 

y=0:y_length-1; 

G12=zeros(x_length,y_length); 

for i=x+1 

    for j=y+1 

        G12(i,j) = principal_tensor_function{3,3}(i-1,j-1); 

    end 

end 

Min=min(min(G12)); 

Max=max(max(G12)); 

numLevels = 50; 

contourLevels = linspace(Min, Max, numLevels); 

figure(5) 

contourf(x_range,y_range,G12',contourLevels,'LineColor', 'none') 

colormap(flipud(gray)); 

colorbar 

caxis([Min, Max]); % Set color axis scaling 

title('G_{12} plot') 

xlabel('x coordinate') 

ylabel('y coordinate') 
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set(gca, 'FontSize', 19)     

axis equal 

 

%% Plotting nu12 

 

 

x=0:x_length-1; 

y=0:y_length-1; 

nu12=zeros(x_length,y_length); 

for i=x+1 

    for j=y+1 

        nu12(i,j) = (principal_tensor_function{1,2}(i-1,j-1))/(principal_tensor_func-

tion{2,2}(i-1,j-1)); 

    end 

end 

Min=min(min(nu12)); 

Max=max(max(nu12)); 

numLevels = 50; 

contourLevels = linspace(Min, Max, numLevels); 

figure(6) 

contourf(x_range,y_range,nu12',contourLevels,'LineColor', 'none') 

colormap(flipud(gray)); 

colorbar 

caxis([Min, Max]); % Set color axis scaling 

title('\nu_{12} plot') 

xlabel('x coordinate') 

ylabel('y coordinate') 

 

set(gca, 'FontSize', 19)     

axis equal 

 

 

 

 

 

%% getTensorAtCoordinate "reference" function 

%Get a specific tensor from coordinate (function) 

function tensor = getTensorAtCoordinate(plate, x, y) 

    for i = 1:length(plate) 

        if isequal(plate(i).x, x) && isequal(plate(i).y, y) 

            tensor = plate(i).tensor 

            return; 
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        end 

    end 

    error('Coordinate not found in the structure.'); 

end 

--------------------------------------------------------------------------------------------------------------------- 
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