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Numerous innovative nanoparticle formulations of drugs and biologics, named nano-formulations, have
been developed in the last two decades. However, methods for their scaled-up production are still
lagging, as the amount needed for large animal tests and clinical trials is typically orders of magnitude
larger. This manufacturing challenge poses a critical barrier to successfully translating various nano-for-
mulations. This review focuses on how microfluidics technology has become a powerful tool to over-
come this challenge by synthesizing various nano-formulations with improved particle properties and
product purity in large quantities. This microfluidic-based manufacturing is enabled by microfluidic
mixing, which is capable of the precise and continuous control of the synthesis of nano-formulations. We
further discuss the specific applications of hydrodynamic flow focusing, a staggered herringbone micro-
mixer, a T-junction mixer, a micro-droplet generator, and a glass capillary on various types of nano-for-
mulations of polymeric, lipid, inorganic, and nanocrystals. Various separation and purification microfluidic
methods to enhance the product purity are reviewed, including acoustofluidics, hydrodynamics, and die-
lectrophoresis. We further discuss the challenges of microfluidics being used by broader research and
industrial communities. We also provide future outlooks of its enormous potential as a decentralized
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1. Introduction

Numerous innovative nanoparticle formulations have been
developed for targeted and improved drug delivery.'™ Early
efforts focused on chemotherapeutic drugs for oncology appli-
cations. However, many of these formulations were developed
and tested using preclinical small animal models. It is still
challenging to translate these into large animal tests and clini-
cal trials. For now, only twenty-eight nanoparticle therapeutics
(including COVID-19 vaccines with emergency use authoriz-
ation) have been approved for clinical use.*” A major hin-
drance lies in the dramatic increase of the amount of nano-
particles (NPs) needed for clinical trials compared to small
animal tests. For example, antitumor nano-formulations may
require hundreds of grams of NPs for a phase 1A clinical
trial.>® Thus, scaling up for production is one of the technical
gaps when researching and testing many nano-formulations in
more clinically relevant settings.

“School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907,
USA. E-mail: shend53@purdue.edu, bumsoo@purdue.edu; Tel: +1-765-494-5626
bpurdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA

614 | Analyst, 2024,149, 614-637

approach for manufacturing nano-formulations.

Large-scale production is technically challenging as batch-
to-batch variations in the physiochemical properties may occur
due to the polydispersity of NPs, which can induce inconsis-
tencies in preclinical or clinical trials.'®'! Conventional batch
production methods or reactors include solvent evaporation
for polymeric NPs,"””™* extrusion for lipid nanoparticles
(LNPs),"”>'® and a static mixer for nanocrystals."”*° These
batch synthesis methods operate at the millimeter or even
centimeter scale, resulting in a uniform mixing environment
where local fluctuations of concentration occur and lead to the
formation of NPs with large sizes and a wide size distribution.
NP size and shape are crucial physicochemical properties to
control during the synthesis process as they directly influence
the therapeutic efficacy of NPs, such as in vivo biodistribution
and retention ability in tissues, as well as take up and clear-
ance by macrophages.?*®* Batch production methods may
generate polymeric NPs with uncontrolled size and limited
drug loading, resulting in short half-life of biodistribution,*??
or LNPs with a high polydispersity index (PDI), leading to
limited tissue penetration;***® worse, nanocrystals produced
by batch methods have a wide range of sizes, depending on
the type of hydrophobic drugs.’*® Therefore, microfluidic
platforms are developed and employed to scale up the manu-
facturing of nano-formulations. The utilization of microflui-
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dics not only avoids labor-intensive multistep processes for
research labs, but also avoids batch-to-batch variations with its
continuous manner of NP synthesis. Microfluidics also
enables the precise control of the synthesis process, which
leads to convenient modification of the physicochemical pro-
perties of NPs.

Firstly, we explain how microfluidics can bring high consist-
ency and reproducibility to nano-formulation synthesis by con-
trolled rapid mixing of pico- to nanoliter volumes of fluids
from the perspective of separating the NP formation stages of
nucleation, growth, and aggregation. Then we specifically
introduce the microfluidic mixing techniques of hydrodyn-
amic flow focusing, a staggered herringbone micromixer, a
T-junction mixer, a micro-droplet generator, and a glass capil-
lary, as well as their applications in the synthesis of polymeric
NPs, lipid NPs, inorganic NPs, and nanocrystals with improved
physical properties and in vivo behavior. Microfluidic tech-
niques to separate and purify nano-drugs and biologics are
also summarized, including both the passive and active tech-
niques of acoustofluidics, hydrodynamics, and dielectrophor-
esis. Finally, we discuss the current challenges of the utiliz-
ation of microfluidics by broader research and industrial com-
munities due to the high entry level and fabrication complex-
ity. It has enormous potential as a decentralized approach for
the manufacturing of NP-based drug formulations, ideally to
meet the specific needs of individuals.

2. Mechanisms for the formation of
drug nanoparticles using microfluidics
The microfluidics techniques of hydrodynamic flow focusing,

a staggered herringbone micromixer, a T-junction mixer, a
micro-droplet generator, and a glass capillary lead to precise
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control over nanoliter volumes of fluid in a device with micro-
scale dimensions, and thus a short microfluidic mixing
timescale on the order of milliseconds is achieved, which
enables control of the nanoprecipitation-based NP formation
process.”® Specifically, the concurrent occurrence of the NP
formation stages of nucleation, growth, and aggregation
induces significant batch-to-batch variations in conventional
batch methods.***" By comparison, microfluidic platforms,
with their short mixing timescales, do a better job at separ-
ating the three NP stages.’’*® The mixing timescale related
mechanism to explain different NP formation dynamics
induced by microfluidic mixing and batch mixing is illustrated
in Fig. 1. The microfluidic mixing timescale (z,,) can be tuned
to be shorter than the drug’s nucleation timescale (z,), so the
drug solute concentration quickly exceeds the saturation con-
centration (¢;) and reaches the critical nucleation concen-
tration (c,), leading to the generation of evenly distributed pre-
cursors for nucleation (prenucleation drug molecule clusters).
Then the concentration of drug solute quickly drops when
homogeneous nucleation is initiated. Homogeneous nuclea-
tion dominates over particle growth to consume the remaining
drug molecules or clusters, which enables the synthesis of
small and uniform NPs. The batch mixing timescale (7',) is
longer than 7, which means that mixing is still not completed
when nucleation starts. Nuclei are generated but there is still a
large amount of solutes dissolved in the organic phase, so par-
ticle growth dominates over heterogeneous nucleation to
consume the remaining drug molecules, resulting in NPs with
larger size and higher PDI.

Precisely prepared microfluidic channels with dimensions
of tens to hundreds of micrometers enable high levels of
control over the fluids in the laminar flow regime. The micro-
fluidic mixing mechanism is based on the interdiffusion of
solvent molecules obtained by means of laminar flows. Hence,
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Fig. 1 Schematic explanation of the different NP formation dynamics induced by microfluidic mixing and batch mixing. The shorter microfluidic
mixing timescale (z,,,) than the drug’s nucleation timescale (z,) (i.e., green line) induces homogeneous nucleation and controlled growth of particles,
while a longer mixing timescale (z',) than z, such as batch mixing (i.e., red line) leads to heterogeneous nucleation and uncontrolled growth of

particles.
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microfluidic mixing can be characterized by the Reynolds
number, Re, and the Peclet number, Pe.

uL
Re = P&

(1)
where p and u are the density and viscosity of the fluid,
respectively, u is the flow speed, and L is the characteristic
length of the channel. The Reynolds number is a dimension-
less quantity characterizing flow patterns. The occurrence of
turbulent flow is indicated when Re > 2000-4000.%”

ulL

Pe = D (2)
where D is the diffusivity. The Peclet number describes the
relative importance of mass transport by diffusion (across the
channel) and by convection (along the channel). In order to
generate predictable mixing patterns, microfluidic mixing is
mostly designed to operate at Re < 2000 to avoid turbulent
flows, which have random streamlines.*"*® Our previous work
on the microfluidic synthesis of drug nanocrystals shows
streamlined distribution in a microfluidic mixing device in the
Reynolds number range of 5-250 where straight and parallel
streamlines are present at Re = 5 while micro-vortices can
occur at Re = 25 in the water-ethanol mixing region.”® The con-
straint of the Reynolds number leads to an upper limit of the
Peclet number of 250-2500."° The precise control of mixing
between fluids is not possible using conventional batch
methods but can be achieved in microfluidics in a continuous
manner with predictable mixing efficiency, which enables
control over the NP formation processes of nucleation, growth,
and aggregation, and thus the limitations on uniformity and
consistency of NP characteristics can be overcome with micro-
fluidic synthesis platforms.

Microfluidic platforms have been utilized to produce NPs
with a smaller size, narrower size distribution (i.e. smaller
PDI), and improved drug loading and encapsulation
efficiency.”® To achieve this, nanoprecipitation is induced in
the microchannel via rapid mixing of solvent and anti-solvent.
Several microfluidic mixing techniques have been developed
without the involvement of external fields, including hydro-
dynamic flow focusing (HFF), a staggered herringbone micro-
mixer (SHM), a T-junction mixer, a micro-droplet generator,
and a glass capillary. These microfluidic mixing methods are
employed to produce various types of NPs including polymeric
NPs, LNPs, inorganic NPs, and drug nanocrystals. Low
Reynolds numbers (generally less than 100)*" indicate steady
state and fully developed laminar flow regimes during micro-
fluidic mixing, and hence mass transfer can be considered to
depend solely on diffusion. The mixing time (zy,), which is a
measure of the solvent exchange efficiency, quadratically
depends on the diffusion length between solvents. 7, can be
defined as

T = — (3)
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where x is the diffusion length and D is the diffusion coeffi-
cient.”> Therefore, diffusion-based microfluidic mixing
methods rely on reducing the diffusion length to control the
mixing time to provide a homogeneous environment for NP
formation.

HFF is a powerful tool to reduce the diffusion length
between mixing solvents with stable control. As schematically
shown in Fig. 2A, HFF is commonly a three-inlet microfluidic
device that generates a central flow with side flows. The flow
regime of HFF develops when fluids with different velocities
are introduced into the mixing channel side by side.** The
central fluid flows at a much lower velocity than the side fluid
in the same channel. As a result, the central fluid (organic
phase) containing the samples of interest is sheathed in a thin
sheet of the side fluid (aqueous phase) to achieve fast mixing
between the two fluids. Fig. 2B shows the schematic structure
of the SHM. The microfluidic SHM has two inlets and utilizes
repeated patterns of asymmetric protrusions to induce passive
mixing by chaotic stirring, which greatly reduces the diffusion
length between the two fluids.**** Chaotic stirring can be
induced by the asymmetric protrusions at low Reynolds
numbers (Re < 100).*® Efficient mixing of the organic and
aqueous fluids can be achieved within 10 or 15 cycles of the
repeat patterns.”’” Fig. 2C shows microfluidic droplet-based
mixing, which confines the chemical reactions to picoliter-
sized droplets. The droplet generators are commonly used for
inorganic NP synthesis.*®* Aqueous droplets containing the
seeds of NPs and other reagents for the reaction are generated
in the form of water-in-oil emulsions. In a T-junction mixer,
two fluids flow directly toward each other with a perpendicular
output. The simple T-junction mixer shown in Fig. 2D (left) is
not able to reduce the diffusion length when it operates with
stratified laminar flows.'® To enhance mixing, the T junction
can be designed with dimensions in the millimeter range and
operate under turbulent or transitional conditions (Re >
2000).%° To enable the T junction to work in the microfluidic
mixing scenario (Re < 100), the vortex micro T-mixer has been
developed to form vortex flows at low Reynolds numbers.’">
Fig. 2D (right) shows the generation of vortex flows in the
mixing channel by two fluids flowing through non-aligned
inlets. Two-dimensional HFF (Fig. 2A) squeezes the central
fluid horizontally but not vertically. Fig. 2E shows a microflui-
dic device enabling the three-dimensional (3D) squeezing of
the central fluid with the generation of microvortices upstream
of 3D flow focusing.’®>* The benefit of 3D flow focusing lies in
the elimination of the interface between the central fluid and
the wall of the microchannel, which can significantly reduce
NP attachment and minimize the risk of channel clogging.>*™’
Another approach for 3D flow focusing is the microfluidic
device of a glass capillary (Fig. 2F). The glass capillary device is
prepared by inserting tapered cylindrical capillaries into a
square capillary.>® Similar to 2D HFF, the organic solvent is
the inner phase, and the aqueous solution is the outer phase.
The inserted glass capillary positions the organic solvent at
the center of the mixing channel in all directions. Thus, the
organic-aqueous interface, where the NPs are predominantly

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Schematics of the microfluidic mixing techniques for the synthesis of hanomedicines. (A) Hydrodynamic flow focusing (HFF). (B) Staggered
herringbone micromixer (SHM). (C) Micro-droplet generator. (D) T-junction mixer. (E) 3D flow focusing with microvortices. (F) Glass capillary.

formed, is fully displaced from the walls of the mixing
channel.”

To scale up the production of NPs at clinically or indust-
rially relevant levels, three strategies can be adopted in micro-
fluidic settings. First, the flow rate through the microchannel
can be regulated according to the timescale-based mechanism
discussed in Fig. 1. This strategy enables the determination of
the optimal flow rate range to achieve high throughput syn-
thesis of NPs while maintaining the quality of NPs including
size and drug loading. As shown in Fig. 3A, our group pro-
posed a timescale-based mechanism to optimize the HFF con-
ditions for both synthesis quality and throughput. We noticed
an increase in NP size and a decrease in drug loading when
the flow rate was increased to 102.5 mL h™" due to the accumu-
lation of organic solvent in the bifurcated streams. This issue
could be resolved when the flow rate was further increased to
205 mL h™', while maintaining a good quality of NPs approxi-
mately 100 nm in size, 0.1 PDI, 70% encapsulation efficiency,
as well as 50% drug loading.’® The second strategy to further
increase throughput is to introduce strong convective mixing
into the microchannel. However, a high inlet flow pressure is
required, and high-pressure capacity of the tubing intercon-
nection needs to be developed to avoid liquid leakage. As
shown in Fig. 3B, a robust tubing method was developed to
sustain a pressure of up to 4.5 MPa. This high-pressure tubing
technique enables strong convective mixing at a high flow rate
of 410 mL h™", resulting in the size-controlled synthesis of
small PLGA NPs of 55 nm in diameter with good dispersion.
The mass production of PLGA NPs can reach 200-800 mg h™*.%°

This journal is © The Royal Society of Chemistry 2024

Combined with the first two strategies, the third strategy to
scale up throughput is to arrange the microchannels in paral-
lel. In Fig. 3C, a pressure-tolerant (up to 16 MPa) 3D-HFF
device with eight parallel microchannels was used to prepare
PLGA NPs. The NP size was reproducibly controlled between
50 and 150 nm at a flow rate up to 1440 mL h™', which
enabled a mass production rate of approximately
1300 mg h™".°" These scale-up strategies show the potential for
microfluidic synthesis to meet clinical or even industrial
purposes.

3. Microfluidic synthesis and
separation strategies for nano-
formulations

Nano-formulations can encompass both organic and inorganic
materials of synthetic or natural origin for nanomedicine, and
hence can be classified as organic or inorganic NPs.®?
Inorganic NPs offer great opportunities in nanomedicine to
serve as therapeutic or imaging agents. Commonly used
materials for inorganic NPs include metals, metallic oxides,
and semiconductors.®® Organic NPs can be further divided
into polymeric NPs, lipid NPs, and (small molecule) drug
nanocrystals. Here we discuss microfluidic synthesis strategies
for these different types of nano-formulations, as well as the
microfluidic separation and purification of nano-drug and
biologics.

Analyst, 2024,149, 614-637 | 617
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Fig. 3 Scale-up strategies for the microfluidic synthesis of NPs. (A) Timescale-based optimization of the flow rate conditions in a single microchan-
nel. A flow rate of 205 mL h™* was achieved to produce quality-controlled NPs of hydrophobic drugs with a size of approximately 100 nm. Reprinted
with permission from ref. 39. Copyright 2023 Elsevier. (B) Enhanced convective mixing in a microchannel with pressure-tolerant designs. A flow rate
of 410 mL h™! was achieved to produce PLGA NPs while maintaining their small size of 55 nm. Reprinted with permission from ref. 60. Copyright
2013 Royal Society of Chemistry. (C) Pressure-tolerant microfluidic device with multiple parallel microchannels. The total flow rate of eight micro-
channels reached 1440 mL h™, which enabled a mass production rate up to 1300 mg h~L. Reprinted with permission from ref. 61. Copyright 2014

Royal Society of Chemistry.

3.1. Polymeric NPs

Polymeric NPs are one of the most studied formulations as
nanomedicines with applications from drug delivery to
imaging. Poly(lactic-co-glycolic acid) (PLGA) stands out as the
most clinically advanced polymer for its hydrophobicity, which
enables easy nanoprecipitation for NP formation and loading
of hydrophobic drugs (such as paclitaxel) into PLGA NPs.**
PLGA also shows good biodegradability and biocompatibility
with negligible effects on organisms in most cases.®>®°
Another good example is polyethylene glycol (PEG), which has
become the most popular polymeric molecule for the coating
of NPs.®” PEG sterically stabilized the NPs by forming a hydro-

618 | Analyst, 2024, 149, 614-637

philic layer on the surface of NPs.®® The controlled release pro-
perties of polymeric NPs rely on the controlling properties of
polymers, which alter the release profiles of the encapsulated
drugs.®® The conventional batch method of solvent evapor-
ation involves multiple time-consuming steps for the pro-
duction and post processing of emulsions; moreover, the
batch produced polymeric NPs typically have big sizes of over
150 nm, limited drug loading, as well as significant batch-to-
batch variations.

The microfluidic synthesis of polymeric NPs can be con-
ducted in different devices of HFF, a SHM, a micro-droplet
generator, and a glass capillary. HFF is the most commonly
used microfluidic method in polymeric NP studies, where a

This journal is © The Royal Society of Chemistry 2024
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central stream of polymer-containing organic solvent is
squeezed by the side aqueous streams flowing at a much
higher speed. Fig. 4A shows details of a study to synthesize
PLGA-PEG NPs by rapidly mixing polymer-acetonitrile solu-
tions and water using the HFF device.>®> The PLGA-PEG NPs
prepared by a batch mixing method increased dramatically in
size with the addition of free PLGA to the precursor solution,
but the size of NPs produced by the HFF method remained
relatively unchanged with an increase of the PLGA concen-
tration up to 50 mg mL~". Moreover, the half-life of the encap-
sulated drug docetaxel is longer in the microfluidic NPs than
that in the batch NPs (19 h versus 11 h). Fig. 4B shows details
of a study that proposed a variation of the design of the HFF
device.”® The HFF chips were manually folded to form the geo-
metries of an arc and double spiral to facilitate mixing. The
combination of HFF and 3D curved microchannels was found
to significantly reduce the mixing time, which enabled the syn-
thesis of doxorubicin (DOX)-loaded PLGA with good size
control at higher throughput. The HFF-synthesized PLGA NPs
were also found to significantly improve the stability of the
encapsulated drug curcumin with a half-life of 2 days; in com-
parison, the half-life of the free drug curcumin was as short as
30 minutes.”! To avoid channel clogging by polymer aggre-
gates, PDMS-based 3D HFF devices were developed to reduce
the organic stream-channel wall interface and showed no
channel fouling after running the synthesis of PLGA-PEG NPs
for over 10 minutes.*

The study shown in Fig. 4C enabled the synthesis of poly-
meric NPs via droplet-based microfluidics.”> The polymers
hyaluronic acid (HA) and linear polyethyleneimine (LEPI) were
covalently crosslinked in each droplet to produce highly mono-
disperse polymeric NPs with tunable sizes of 92-190 nm and a
very small PDI of 0.015. The release of encapsulated DOX
exhibited an enhanced antiblastic effect even at sublethal
dosages, highlighting the applicability of this droplet-based
microfluidic method in nanomedicine scenarios. The efficient
production of PLGA NPs is also feasible using the SHM. The
study illustrated in Fig. 4D optimized the total flow rate (TFR)
and flow rate ratio (FRR) of the aqueous and organic solutions
introduced into the SHM device for the synthesis of PLGA NPs
tagged with cell-penetrating peptides (CPP). The distribution
of the CPPs (Au-labeled) throughout the PLGA NPs was only
observed when the PLGA NPs were prepared with a conju-
gation approach based on an in situ SHM.”® The example of
the application of a glass capillary, as a variation of 3D HFF,
for the synthesis of polymeric NPs is provided in Fig. 4E.>® The
curcumin-loaded shellac NPs were produced by injecting the
ethanolic polymer solution from the tapered cylindrical capil-
lary into the water-containing outer square capillary. The
mixing time was estimated at 9 ms with a mixing length of
1.6 mm when the glass capillary device was operating under
the parameters of TFR = 20 mL h™' and FRR = 40. A high
encapsulation efficiency of 98% for curcumin was achieved
indicating that the glass capillary synthesis method could be
robust and reproducible for the encapsulation of hydrophobic
drugs in biocompatible polymeric NPs. Not only encapsulation

This journal is © The Royal Society of Chemistry 2024
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efficiency, but also release kinetics and the anticancer effect of
the polymeric NPs can be improved when prepared using
microfluidic methods. For example, one study encapsulated
gemcitabine in PLGA NPs using the microfluidic mixing
device of HFF.”* Compared to the gemcitabine-loaded PLGA
NPs prepared by the double-emulsion/solvent evaporation
method, the encapsulation efficiency was increased by two-
fold; moreover, the release of gemcitabine was slower, and
more potent cytotoxicity was observed against the
MCF-7 human breast cancer cells.

3.2. Lipid NPs

Lipid NPs (LNPs) or liposomes can be used to deliver hydro-
phobic drugs by encapsulating them in the lipid bilayer.”®
LNPs have become the most clinically advanced nonviral
vectors to deliver therapeutic nucleic acids of small interfering
RNA (siRNA), messenger RNA (mRNA) or plasmid DNA (pDNA)
as more than ten LNP-siRNA/mRNA/pDNA formulations have
entered the stage of clinal trials.”®”® LNP formulations for co-
delivery of siRNA and mRNA have also been explored; these
may enable the simultaneous knockdown of undesirable
protein(s) and expression of desirable protein(s).”” Moreover,
lipid-covered polymeric NPs and pure drug NPs have shown
great benefits in drug delivery for their high efficiency and
minor side effects.®>®! Batch methods to produce LNPs involve
the stepwise mixing of the lipid-containing organic solution
and the nucleic acid-containing aqueous solution to precipi-
tate LNPs, which is generally achieved by extrusion or pipette
mixing. The manufacturing challenge for batch methods lies
in the poor control of the LNP properties, especially LNP sizes
of greater than 100 nm.”® Microfluidic strategies have been
applied to reduce the LNP size and size dispersity, and
improve the encapsulation efficiency of therapeutic reagents.
The microfluidic synthesis of LNPs, including lipid-coated
NPs, can be performed in different types of microfluidic
mixers including a SHM, HFF, 3D HFF with microvortices, and
T-junction mixers. Producing LNPs using the SHM device has
successfully overcome the main hurdle of the batch stepwise
mixing of the high-cost tens of milliliters of nucleic acid
solution.**®> Fig. 5A shows details of a study that developed
the SHM method for the synthesis of LNPs which managed to
lower the requirement for the volume of input solutions from
milliliters to microliters, thus saving expensive siRNA
reagents.*! As little as 10 pL of organic and aqueous solutions
were reliably mixed in milliseconds. Compared to the pipette
mixing method, which produced LNPs of ~180 nm in dia-
meter, the SHM method decreased the LNP size to below
100 nm. The LNP size was highly reproducible between
repeated experiments and was further decreased to ~70 nm at
flow rates of 12-60 mL h™'. Moreover, the SHM method
enabled improved screening of lipid-like materials for siRNA
delivery due to its rapid and small-scale manner. The crucial
role of size control of LNPs in siRNA delivery efficiency was
shown in another study.*> Large LNPs of 170 nm in diameter
had poor gene silencing in vivo compared to small LNPs of
60 nm in diameter produced by the SHM method. The ability
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Reprinted with permission from ref. 72. Copyright 2022 Royal Society of Chemistry. (D) Staggered herringbone micromixer (SHM). PLGA NPs pre-
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of SHM devices to precisely and reproducibly control the that 27 nm LNPs were unstable, and 117 nm LNPs failed to
LNP size enabled researchers to further study the effect of LNP  transport through the liver vasculature. The LNPs of 38-78 nm
size on gene silencing by preparing siRNA-loaded LNPs of in diameter resulted in the most efficient hepatic gene
different sizes ranging from 27 to 117 nm.** It was found silencing.
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As shown in Fig. 5B, researchers used a two-stage HFF to
assemble NPs with a PLGA core/lipid shell structure.®* The
lipid shell could be monolayer (P-L) or bilayer (P-W-L) solely
depending on the injection order of PLGA and lipid solutions.
The P-L and P-W-L NPs had different rigidity but the same
composition, surface chemistry, and size. The cellular take up
of NPs was found to be regulated by rigidity. The rigid P-L NP
was internalized smoothly, but the less rigid P-W-L NP signifi-
cantly deformed during internalization, which impeded its
entry into the cell. As a result, the HeLa cells took up more
“hard” P-L NPs than “soft” P-W-L NPs, as indicated by the
higher fluorescence intensities of the cells incubated with the
P-L NPs. Fig. 5C shows the production of PLGA-lipid NPs with
superior reproducibility and homogeneity using the 3D HFF
device with microvortices.>® The device operated at Reynolds
numbers of 30-150 yielding a high throughput up to 3 ¢ h™".
The NP size was well controlled in the range of 55-80 nm with
a small PDI of ~0.1. In comparison, the batch method pro-
duced larger NPs of 80-120 nm in diameter with a PDI of
~0.2. The production of LNPs can be conducted with a turbu-
lent T-junction mixer at a high throughput (Fig. 5D).>° Rapid
mixing was induced by having the two fluids flow directly
toward each other with a perpendicular turbulent output,
which required a high Reynolds number of 11 000. Size modu-
lation over the range of 35-150 nm was fulfilled by varying the
flow and the core-to-surface lipid ratio. The encapsulation of
iron oxide NPs into LNPs provided enhanced image contrast
for magnetic resonance imaging (MRI) of the liver and spleen.
The turbulent T-junction mixer offers an approach to scale up
LNP production; however, it may not be a preferred method
for applications such as the high throughput screening of
various LNP formulations since it cannot be scaled down to
handle small volumes of expensive reagents such as nucleic
acids or lipids.

3.3. Inorganic NPs

Inorganic NPs typically possess unique optical properties
enabling them to respond to specific external stimuli includ-
ing light, magnetic field, ultrasound, radiofrequency, and radi-
ation, as well as internal stimuli such as pH, interstitial
pressure, and conjugation of biomarkers.**®” Hence, in-
organic NPs have been widely used as therapeutic, diagnostic,
or imaging agents. Gold NPs (AuNPs), having a unique surface
plasmon resonance (SPR), are one of the most studied types of
inorganic NPs. Modulating the optical and photothermal pro-
perties of AuNPs has showing promising applications for clini-
cal use such as in tumor imaging,®® tumor ablation,*® and on-
demand release of incorporated therapeutics.’® Iron oxide NPs
(IONPs) are another type of inorganic NP that has been exten-
sively investigated because of the uniqueness of the innate
magnetic response. IONPs are able to facilitate the combi-
nation of imaging with therapy, called theranostics, allowing
for more precise drug delivery.”"®> IONPs can serve as thera-
peutic agents via magnetic hyperthermia in an alternating
magnetic field. The local increase in heat can be used to
induce cancer cell death, as well as the triggered release of the
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loaded drug.®*®* Silica (SiO,) NPs (SNPs) are also attractive for
drug delivery as not only their size and shape, but also their
porosity and the chemical properties of their surfaces can be
controlled, which gives them the ability to store and release
both hydrophilic and hydrophobic drugs.”>®” Inorganic NPs
are commonly produced by chemical methods (such as chemi-
cal reduction) to induce NP precipitation. Batch methods face
significant challenges for scaled up production. Batch
methods are not able to separate the nanoprecipitation stages
of nucleation and growth leading to the problem of high levels
of batch-to-batch variation of NP size.

Microfluidic devices such as the micro-droplet generator,
glass capillary, and T-junction mixer have been developed for
the synthesis or surface modification of inorganic NPs. Fig. 6A
shows details of one study using a micro-droplet generator to
synthesize silver NPs.”® The silver salt (silver nitrate) solution
was flow focused with another aqueous solution containing
the reducing agent tannic acid and the stabilizing agent triso-
dium citrate forming a series of micro-droplets. The droplet
volume could be modulated within 30-80 pL by varying the
input flow rates. The experimental results in Fig. 6A illustrate
the mixing inside droplets via the observation of the fluo-
rescence of the tracer rhodamine B. A mixing efficiency of 85%
was achieved within 40 ms, which was considered fast enough
for the precipitation reaction and NP formation. Details of
another study utilizing a micro-droplet generator to synthesize
silver and gold NPs are shown in Fig. 6B.°>'° The micro-dro-
plets were generated by a T junction. The droplet contained
ionic liquid solutions of the metal salt precursor and the
reductant. The gold NPs synthesized by the micro-droplet
method were 29% smaller than those from the batch method.
More striking differences were observed for silver NPs, which
had a well-defined spherical shape in the microfluidic syn-
thesis but appeared as large coral-like assemblies in the batch
synthesis.

The study outlined in Fig. 6C used a microfluidic glass
capillary device to conduct the surface modification of silicon
NPs with a polymer matrix.'®" Both silicon and gold NPs were
encapsulated in the polymer matrix by tailoring the NPs’
surface properties. The therapeutic compound XMU-MP-1 was
also loaded into the porous silicon NPs via nanoprecipitation
in the glass capillary. This nanohybrid showed potential as a
theranostic reagent for acute liver failure (ALF). The microflui-
dic synthesized NPs increased the local drug concentration in
the lesion area of the liver and enhanced the CT signal to gene-
rate a distinguishable area in CT images by the accumulation
of NPs in mice with ALF. Fig. 6D shows details of a study to
create biomimetic cell membrane-coated NPs via the surface
modification of iron oxide NPs (IONPs).'**> Microfluidic mixing
between the IONPs and the blood cell membrane-derived vesi-
cles (RBC vesicles) were fulfilled using a variant of a T-junction
mixer involving a series of U-shaped turns followed by an elec-
troporation zone. The two reagents were observed to be evenly
mixed after the third U turn. This core-shell nano-formulation
of RBC-IONPs had magnetic and photothermal properties
because of the IONP core, and long blood circulation times
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owing to the RBC shell. Thus, the RBC-IONPs were used for
enhanced tumor magnetic resonance imaging (MRI) and
photothermal therapy (PTT) while the microfluidically pre-
pared NPs showed significantly better treatment effects than
batch-prepared NPs.

3.4. Drug nanocrystals

Nowadays, a large portion of drugs are designed and generated
as poorly water-soluble molecules; this results in the majority
of failures in new drug development.'®*'%* Specifically, more
than 40% of drugs are classified as low solubility drugs by the
biopharmaceutical classification system (BCS),'*> and approxi-
mately 70-90% of new drugs have the problem of poor
aqueous solubility.’®® The incorporation of hydrophobic drugs
into NPs enables a faster dissolution rate and higher satur-
ation concentration of the drugs in aqueous solutions. %’
Thus, as a drug carrier, NPs improve the solubility and bio-
availability of encapsulated drugs. The bioactivity and stability
of encapsulated drugs can also be enhanced by protection
from the NPs against rapid metabolism and clearance.'®**°
Moreover, the nano-formulation can contribute to lower tox-
icity and improved therapeutic efficacy of a drug via the spatio-
temporal control of drug release.***™**

Drug nanocrystals, also called pure drug NPs, are a versatile
tool for the delivery of hydrophobic drugs as a simple core-
shell nanostructure. The drug nanocore is formed first, and
then encapsulated by a shell/layer of stabilizer. Polymers and
surface-active agents are the most commonly used stabilizers
for pharmaceutical nanocrystals. Stabilizers influence not only
the stability but also the bioavailability of nanocrystals. For
example, Pluronic-grafted chitosan copolymer, as the stabilizer
of paclitaxel (PTX) nanocrystals, improved the relative bio-
availability of PTX by 12.6-fold compared to Taxol™."'*> Among
the various nano-formulations, the advantages of drug nano-
crystals include high drug loading, low preparation cost, and
flexible administration routes.''® Drug nanocrystals are
referred to as a nanosuspension when they are suspended in
aqueous medium.'®* Apart from conventional clinical or pre-
clinical oral delivery of hydrophobic drugs, drug nanocrystals
can be more broadly used via other administration routes,
namely, transdermal, pulmonary, ophthalmic, buccal, and
intravenous.'"’7**°

The top-down milling method is not possible or requires a
very long process to reduce the size of drug nanocrystals below
100 nm. For example, using the media milling technique,
fenofibrate nanocrystals with the stabilizers Soluplus® and
HPMC were produced with sizes of 344 nm and 642 nm,
respectively.'*! The bottom-up microfluidic nanoprecipitation
method can help to reduce the size of drug nanocrystals.
Fig. 7A shows a commonly used microfluidic device of a
Y-junction mixer to synthesize a hydrocortisone nanosuspen-
sion. The ethanolic drug solution was mixed with an aqueous
solution containing stabilizers and then introduced into a
bulk solution of phosphate buffered saline (PBS) containing
stabilizers under continuous sonication. A hydrocortisone
nanosuspension with a mean size of 295 + 32 nm was gener-
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ated, which was comparable to the minimum size of hydrocor-
tisone nanocrystals produced by the wet milling method
(milling time up to 105 min). The Y-junction mixer was also
adopted in other studies to synthesize nanocrystals of different
hydrophobic drugs, namely, danazol,'** cefuroxime axetil,'**
and atorvastatin calcium.'*® These drug nanocrystals produced
by Y-junction mixers were generally larger than 300 nm in size.
Drug nanocrystals of rubrene smaller than 100 nm were pre-
pared with a HFF device, as shown in Fig. 7B."*® The ethanolic
rubrene solution was focused in the HFF configuration by
stabilizer-containing aqueous flows. Efficient diffusion in the
region of the focused drug-containing stream was confirmed
by confocal fluorescence microscopy in the presence of fluor-
escein. Rubrene nanocrystals of 50-110 nm in mean diameter
were produced by the HFF device by controlling the aqueous-
to-organic flow ratio. Nanocrystals of paclitaxel (PTX) and sora-
fenib (SFN) stabilized by the coating polymer hypromellose
acetate succinate (HF) were generated with controlled sizes of
60-450 nm and 70-550 nm, respectively, in a study utilizing
a glass capillary device for drug nanocrystal synthesis
(Fig. 7C)."*° To reduce the nanocrystal size below 100 nm, a
high Reynolds number of Re > 500 was required. A droplet-
based microfluidic approach was also proposed to synthesize
drug nanocrystals of curcumin.' As shown in Fig. 7D, the
ethanolic curcumin solution was mixed with an aqueous solu-
tion containing stabilizers in a T-junction mixer, and then
formed hanging droplets from the micro-channel in the open-
air environment. Simultaneous mixing was activated by
inherent chaotic advection within each droplet, which was
observed via planar laser-induced fluorescence. As a result,
curcumin nanocrystals of 190-450 nm in mean diameter were
generated by this droplet-based method depending on the con-
centration of curcumin.

A surface stabilizer is necessary for drug nanocrystal stabi-
lization; however, grafting ligands to the surface of nanocrys-
tals made of pure drug molecules is technically challenging
due to the lack of chemical functional groups. Fig. 7E shows
the combination of ionic surfactants and polymeric stabilizers
for drug nanocrystal stabilization, which utilize the ionic sur-
factants for electrostatic repulsion and the polymeric stabil-
izers for steric hindrance.'® A recently employed coating
material of metal-phenolic networks (MPNs) for drug nano-
crystal stabilization is shown in Fig. 7F."*® MPNs are supramo-
lecular structures formed by the rapid coordination of natural
polyphenols (such as tannic acid (TA), gallic acid (GA), and epi-
gallocatechin gallate (EGCG)) with metal ions (such as Fe®*,
APY, sr**, and Cu®")."*>'** MPNs are flexible and compatible
with other biomaterials, so they have been developed for the
delivery of imaging and therapeutic agents."”>"*'"'*> MPNs are
also non-cytotoxic and degradable making them attractive for
the encapsulation of proteinosomes, microbes, and mamma-
lian cells.’**™"*® Recently, MPNs were employed as a coating
material for drug nanocrystal stabilization. As a thin shell,
MPNs can achieve a high drug loading; moreover, MPNs can
provide a functionalized surface for the nanocrystal to graft
other ligands.'?®'3'%° MPN-coated nanocrystals have been
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produced by batch nanoprecipitation methods for the hydro-
phobic drugs paclitaxel,"*® carfilzomib,'** vitamin D,**° curcu-
min,"" rapamycin,'*? chlorin e6,'** SN-38,'** simvastatin,'*’
andrographolide,'** and cabazitaxel."*® Batch methods involve
manual pipette mixing and the postprocessing step of soni-
cation; this makes it time-consuming and labor-intensive work
for scale up from benchtop production to higher volume
batches. Lately, our group developed a microfluidic HFF
method for the synthesis of MPN-coated nanocrystals of hydro-
phobic drugs.*® As shown in Fig. 7G, the mechanism of encap-
sulating a variety of hydrophobic drugs is established based on
the timescales of microfluidic mixing and drug nucleation.
Microfluidically synthesized MPN-coated nanocrystals of
vitamin D, curcumin, and paclitaxel had well-controlled sizes
of 80-200 nm, high drug loadings of 40-70%, and a through-
put of up to 70 mg h™' per channel exhibiting scale-up
potential.

3.5. Microfluidic separation and purification of nano-drugs
and biologics

In recent decades, microfluidic techniques have advanced to
manipulate nanoscale bioparticles, including trapping,'*®'*°
focusing****! and separation*?

acoustic radiation,'* elastic lift,">* dielectrophoresis*>*™**’ as
well as inertial and viscous.™® Fluid properties are relevant to
particle separation, namely, viscosity (resistance to flow),
density, and fluid velocity. Laminar flow (Re < 2000) not only
occurs but also Stokes flow (Re <« 1) in the microfluidic
channel. Particles in a flow experience shear and normal stres-
ses, generating parallel forces (drag force) and perpendicular
forces (wall effect and shear gradient lift forces) to the main
flow direction and are aligned in the equilibrium position in

using various forces such as

View Article Online
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Fig. 8A."> Drag forces generally accelerate particles until they
reach flow speed equilibrium.'®® In passive separation techno-
logies, particles are controlled by hydrodynamic flow in micro-
fluidics, while active separation technologies involve external
forces such as magnetic, acoustic, optical, or electrical effects,
often necessitating additional microchannel equipment.'®* In
active separation technologies, particle behavior is intricately
governed by external forces. For instance, as depicted in
Fig. 8B, particle movement is controlled by a magnetic
force.'®> When a particle is suspended within a uniform elec-
tric field, its movement is significantly influenced by the gradi-
ents within a non-uniform electric field, ultimately resulting in
a net force (Fig. 8C)."®® Furthermore, surface acoustic waves
(SAWs) are generated by a transducer called an interdigital
transducer (IDT) and particle movements are affected by
SAWs, as shown in Fig. 8D."®* The separation and purification
of nano-drugs and biologics, such as liposomes, viruses,
DNA nano-balls, and extracellular vesicles (EVs), are essential
prerequisites ~ for  their = biomedical and  clinical
applications."®>'%® Both passive and active techniques includ-
ing acoustofluidics,"®*™"”* hydrodynamics,"”>"”* and dielectro-
phoresis (DEP)'7>'”® have been employed for the separation
and purification of these substances.

Acoustofluidic technologies make use of acoustic waves to
precisely control fluids and particles immersed in fluids,
which enables contact-free and biocompatible separation of
NPs. Particles containing liquid are given motion by the
created density, velocity, or pressure field as a result of the
acoustic waves propagating in a liquid. The transducer utilized
for surface acoustic wave (SAW) generation and reception is
called an interdigital transducer (IDT). Fig. 9A shows the
design of a stereo acoustic stream (SteAS) for NP separation.'®®
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magnetic force, pulling the particles towards the magnet. (C) Electric force. The gradients of a non-uniform electric field lead to a net force and
thus control the movement of a suspended particle. (D) Acoustic force. Interdigital transducers (IDTs) generate surface acoustic waves (SAWs) to

modulate particle motion.
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A droplet is placed on a PDMS ring located between two IDTs.
The SteAS makes the droplet start to spin as the surface acous-
tic waves (SAWSs) propagate into the droplet. Then the particles
within the spinning droplet migrate toward its center, follow-
ing a dual-axis rotational trajectory. The SteAS was able to

This journal is © The Royal Society of Chemistry 2024

capture 30 nm polystyrene NPs and continuously focus
150 nm polystyrene NPs. This acoustofluidic technology
enables the enrichment and continuous size-based separation
of NPs, and thus holds potential for applications in analytical
chemistry and nano-drugs.
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The hydrodynamics method for NP separation can utilize
viscoelastic microfluidics to manipulate NPs in a more precise
manner than inertial microfluidics.'”>'”® Viscoelasticity-
induced microfluidic devices have been utilized to focus and
separate particles. Fig. 9B shows the design of viscoelastic
microfluidics mediated by A-DNA and aptamers, by which EV
subpopulations are size-selectively separated.'”® The cell-
derived EVs include exosomes (EXOs), microvesicles (MVs),
and apoptotic bodies (ABs), which can utilize aptamers
specific to HER2 and EpCAM. EXOs with sizes below 200 nm
were submerged in the viscoelastic sample fluid, experiencing
the centerline-directed elastic lift force. Conversely, MVs and
ABs with sizes equal to or exceeding 200 nm were repelled by
the force exerted by the flow, leading them to migrate towards
the Newtonian sheath stream devoid of elasticity. Thus, these
three EV subpopulations were separated for surface protein
analysis of individual EVs. The panel of aptamers for the mul-
tiple detection of EV markers can be expanded, and the diag-
nostic value of EV subpopulations for different types of cancer
can be further studied using this viscoelastic microfluidics.

The hydrodynamics method of deterministic lateral displa-
cement (DLD) employs pillar arrays to continuously separate
particles based on their size. The pillar arrays induce fluid
bifurcation and result in a distinctive number of streamlines
within the gaps. Particles that are smaller than the critical dia-
meter follow the streamlines in zigzag mode (migration angle
0 = Omax), otherwise the particles behave differently in
bumping mode (@ = 0), or the mode of partial displacement (0
< 0 < Opnay)- ' Fig. 9C shows the design of nanoscale determi-
nistic lateral displacement (nano-DLD) arrays with consistent
gap sizes ranging from 25 to 235 nm.'*> These nano-DLD
arrays effectively separated particles within the size range of 20
to 110 nm with sharp resolution. This hydrodynamics method
of nano-DLD enables continuous and rapid NP sorting with
single-particle resolution without the need for particle label-
ling. On-chip sorting and the quantification of biocolloids,
such as EVs, can also be fulfilled using the DLD technique.

Dielectrophoresis (DEP) refers to the movement of an
object by DEP forces; specifically, when an object is suspended
in a fluid and exposed to a non-uniform electric field, the con-
trasting dielectric properties between the object and its sur-
rounding medium result in the generation of DEP forces
acting on the object.'”>'8"182 Fig. 9D shows the measurement
of fluorescence intensity of EVs from blood plasma (green)
and polystyrene NPs (blue) captured on the surface of DEP
regions within a microfluidic device.'”” This optical DEP tech-
nique can be adapted to other lab-on-a-chip platforms that
feature the analysis of cancer-related biomarkers. Fig. 9E
shows another example of DEP microfluidics achieving the
increased concentration and sorting of NPs in a continuous
flow. The sub-100 nm particles (green fluorescence) were
focused towards the center of the channel and directed
towards the center outlet by the DEP force from a DC field. For
the parallelization of channels utilizing the DEP force from an
AC field, the inclined microsized electrodes in a zigzag three-
tooth pattern were found to generate the largest DEP force to
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focus the NPs with diameters of 84 or 47 nm. The massive par-
allelization of this DEP microfluidics can increase throughput
by a factor of 1250, which shows the potential for applications
in clinical diagnosis and nano-drug purification.

4. Summary

The success of microfluidic techniques in dealing with the
batch-to-batch variations of batch synthesis methods for nano-
formulations relies on the small scale of microfluidic mixing,
which makes the precises control of rapid diffusive mass trans-
fer possible. The micrometer scale of microfluidics enables a
short mixing time, as well as uniform mixing flow patterns,
yielding the small size and narrow size distribution of the
microfluidically synthesized NPs. However, scaling up the
microfluidic throughput to the industrial level is challenging.
It is notable that the microfluidic flow capacity, Q, dramatically
decreases with a decrease in the channel size, &, due to the
increase of the hydraulic resistance, Ry, which can be
expressed as Q « R™'y « h*.*® For example, the flow capacity
may be 80 times higher with a 3 times longer microfluidic
channel (e.g. 300 um versus 100 pm). Thus, although the con-
tinuous-flow manner makes microfluidic techniques promis-
ing for large-scale production, it would still be meaningful to
estimate the maximum microfluidic channel size for the syn-
thesis of nano-formulations, guided by the timescale-based
mechanism of mixing time versus precipitation time during
the nanoprecipitation process.

Microfluidic channels can be prepared from a variety of
materials such as polymers, glass, and silicon. Polymers are
currently the most promising materials for microfluidic
devices due to the advantages of flexibility, versatility, and bio-
compatibility, among which polydimethylsiloxane (PDMS) is
undoubtedly the most widely used material.'®3*7'%> Efforts are
also made in the development of alternative materials beyond
PDMS, such as non-binding polymers or plastics, due to
PDMS’s non-specific adsorption of proteins and other small
molecule drugs.'®®'#® The microchannel geometry can be pre-
pared by soft lithography and other lithography techniques
such as reactive-ion etching, electron-beam lithography, and
direct laser writing.'°°'®* The preparation of microfluidic
devices can also be conducted by 3D printing or laser cutting
as potential approaches for commercialization.'***> However,
the high entry level due to the required knowledge of fluid
dynamics, and the preparation of complex configurations of
microfluidics, still hinder the utilization of microfluidics by
broader research and industrial communities.

Despite the challenges discussed above, the development of
microfluidics is rapidly evolving to solve current problems and
expand to future directions. For example, one of the main
issues of channel clogging is being addressed by 3D HFF and
glass capillary techniques, and the scaling up of throughput to
the industrial level by the parallelization of microfluidic
devices is promising.'®'®” For future directions, the develop-
ment of integrated microfluidic synthesis and separation
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devices with in-line characterization and control set-ups'®® is
highly desirable, as these would enable real-time monitoring
and in-process adjustment to optimize the production quality
of nano-formulations. Microfluidics is also a modular manu-
facturing technology for the future decentralized approach to
nanomedicine manufacturing, which may facilitate the design
and production of nanomedicines to meet local or individual
needs; for example, the development of microfluidics may deal
with strained mRNA-LNP production, which has caused
shortages of vaccines."®® For now, the microfluidic technique
is more developed for NP synthesis, while drug delivery evalu-
ation of the synthesized nano-formulation requires the devel-
opment of new platforms or techniques for nanomedicine.
Many nano-formulations showed satisfactory delivery in vitro,
but failed when it came to in vivo environments.>**>°*> One
main challenge in drug delivery evolution is a modular plat-
form that maintains necessary physicochemical properties
which the conventional 2D monolayer cell culture system
cannot provide.”**>*> The combination of microfluidic tech-
niques for the NP synthesis platform, as well as a NP delivery
evaluation platform, such as the tumor-on-a-chip models of
pancreatic cancer and breast cancer developed in our
1ab,>%°2% can play an important role in pre-clinical phase
trials for nanoparticle-based drug formulation development.
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