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Abstract

A dictionary attack in a biometric system entails the use

of a small number of strategically generated images or tem-

plates to successfully match with a large number of identi-

ties, thereby compromising security. We focus on dictionary

attacks at the template level, specifically the IrisCodes used

in iris recognition systems. We present an hitherto unknown

vulnerability wherein we mix IrisCodes using simple bit-

wise operators to generate alpha-mixtures Ðalpha-wolves

(combining a set of ªwolfº samples) and alpha-mammals

(combining a set of users selected via search optimization)

that increase false matches. We evaluate this vulnerabil-

ity using the IITD, CASIA-IrisV4-Thousand and Synthetic

datasets, and observe that an alpha-wolf (from two wolves)

can match upto 71 identities @FMR=0.001%, while an

alpha-mammal (from two identities) can match upto 133

other identities @FMR=0.01% on the IITD dataset.

1. Introduction

In a dictionary attack, a small number of biometric sam-

ples or templates are strategically generated such that they

successfully match with a large number of identities. Dic-

tionary attacks on biometric recognition systems were first

described in the context of fingerprints [26], where the au-

thors demonstrated the vulnerability of small-sized sensors

that enroll multiple low-resolution fingerprint samples. The

authors synthesized fingerprint ªtemplatesº using a brute

force approach that could match a large proportion of iden-

tities in an unseen population. They further devised the

latent variable evolution method to generate Deep Master-

Prints [5]. Following the success of masterprints, the fea-

sibility of dictionary attacks in other biometric modalities

were explored. MasterFaces [28] examined the vulnerabil-

ity of face recognition systems to dictionary attacks with

reasonable success. However, the authors in [29] pointed

out the limited generalizability of face-based dictionary at-

tacks across matchers, and contended that these attacks be-

come less effective with increase in dimensionality of the

facial representation. Dictionary attacks on speaker verifi-

cation systems were introduced in [18].

Motivation: Iris recognition is deployed in many appli-

cations due to its high accuracy and fast matching [4,8]. The

biometric menagerie [31] highlights that the wolf-like [11]

behavior of an individual (i.e., a single person fortuitously

matches multiple people in a zero-effort imposter attack)

is dominantly an image-specific issue stemming from non-

ideal image acquisition in iris recognition systems, and not

particularly a subject-specific issue. Iris image acquisition

guidelines [22] dictate specific requirements (iris radius ≥
80 pixels, rotation < 15◦ and daytime illumination). How-

ever, with commercial sensors mounted on hand-held de-

vices, factors such as stand-off distances, indoor vs. out-

door, and occlusions (e.g., eyeglasses) result in non-ideal

conditions that can make iris templates extracted from such

images vulnerable to false matches. The wolf-attack prob-

ability [30] can be also increased by using either a set of

real or synthetic biometric samples that can adversarially

match several users. We hypothesize that by carefully se-

lecting users and further mixing their IrisCodes to form

alpha-mixtures can significantly increase the success of dic-

tionary attack. In this work, we adopt two strategies to gen-

erate alpha-mixtures at template level, (i) combine wolves

inherent in the population to generate alpha-wolves, and (ii)

combine users selected via a search-based scheme (with or

without wolves) to generate alpha-mammals.

Contributions: (a) We conduct a novel vulnerabil-

ity analysis of iris recognition systems that uses mixed

IrisCodes, referred to as alpha-mixtures, to launch dictio-

nary attacks at the template level. The mixture comprises

alpha-wolves and alpha-mammals that are highly effective

in matching arbitrary users not used in mixing. (b) We adopt

different strategies for i) IrisCode selection (wolf selection
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and search optimization), ii) mixing of IrisCodes (using

simple bitwise logical operators and CNN-based mixing)

and iii) evaluation (log-Gabor and spatial Gabor encoding)

on multiple datasets. (c) We examine the utility of synthetic

IrisCodes as dictionary attacks against real IrisCodes. We

demonstrate the effectiveness of our method under limited

knowledge assumptions with cross-attacks.

2. Related Work

2.1. Preliminaries

Iris recognition involves these steps [15]. 1) Iris image

acquisition uses specialized sensors operating in the near-

infrared spectrum (700-900nm). 2) Iris segmentation ex-

tracts the colored annular region between the limbus and

pupillary boundaries. 3) Iris encoding, E(·), obtains a com-

pact template known as the IrisCode1 using texture repre-

sentation schemes such as Gabor filters. The IrisCode is

typically a binary feature vector consisting of 2,048 bits

that encodes the phase representation of the iris texture.

Other types of encoding schemes have also been devel-

oped [16, 17, 19, 20, 24]. 4) Iris matching, S(·, ·), uses frac-

tional Hamming distance to measure the proportion of dis-

agreement of the bits between two IrisCodes to produce a

decision of match or non-match depending on the thresh-

old, τ , at a selected False Match Rate (FMR).

Daugman’s IrisCode [7] achieves extremely low FMR

(1 in 26 million at HD=0.32) due to its high entropy [9]

while maintaining fast matching using bitwise-Hamming

distance. There has been a slew of other iris recognition

methods using traditional filtering schemes, such as log-

Gabor filters (LG) [19], spatial Gabor filters (QSW) [17],

local-intensity variations [24], DCT-based analysis [20], cu-

mulative sum based analysis [16]. Deep learning based

iris recognition systems perform end-to-end matching with

comparable matching accuracy and are not limited to binary

features or Hamming distance. Refer to [21] for a survey of

deep learning based iris recognition methods. Note that DL-

based iris recognition typically do not use binary IrisCodes

which is the focus of this work. In this work, we implement

dictionary attacks using open-source implementation of lg

and qsw-based features [25].

2.2. Morphing vs. Mixing

Erdogan [12] proposed generating a dual-identity iris

image by creating a composite of two irides using multi-

ple strategies. Rathgeb and Busch [23] proposed morphing

two IrisCodes that matches the individuals whose IrisCodes

contributed to the mixture. They performed random bit

substitution, random row substitution and stability-based

1Typically, the term ªIrisCodeº has been associated with the Daugman-

method [7] for extracting iris templates; however, in this work, we use it to

indicate any binary code extracted from the iris.

bit substitution to demonstrate that morphed IrisCodes can

result in a fractional Hamming distance < 0.32. Simi-

larly, [27] demonstrated that iris images from the left eye

class can be morphed with images from the right eye class

resulting in > 90% successful attacks. Note that our method

performs mixing of IrisCodes using a function, M({ICk}),
where k ≥ 2. See the details of mixing in Sec. 3. Un-

like morphing, the mixed IrisCode can spoof multiple other

identities, and not just the inputs to the mixing function.

3. Proposed Method

Combining IrisCodes requires three inputs: (i) a set of

seed IrisCodes, (ii) the number of seed IrisCodes to be

combined, and (iii) a mixing function to combine the seed

IrisCodes. We describe the inputs for the two methods de-

veloped in this work below.

3.1. Method I: Generating Alpha-wolves

We ideally want the alpha-mixture to behave as wolves

that causes a high number of biometric collisions. A sim-

ple yet effective way of ensuring the wolf-like behavior

of the mixture is to begin with a set of disjoint wolves

as seed IrisCodes. The strategic selection of wolves as

seed IrisCodes brings us to the concept of Doddington’s

zoo [11]. The biometric menagerie classifies those in-

dividuals as wolves who successfully match other people

(zero-effort imposter attack) resulting in high false matches.

We utilize this phenomenon to rationalize our selection of

wolves that will serve as the optimal set of seed IrisCodes.

The best number of wolf (seed) IrisCodes to be combined

is a hyper-parameter determined during evaluation. We se-

lect a fixed set of seed IrisCodes that match imposters at

a false match rate (e.g., FMR=0.01%). Next, we com-

bine wolves following
(

n
k

)

, where n denotes the num-

ber of wolves for a dataset (training set) Dtr, |Dtr| =
d, and k = {2, · · · , n}. We select bitwise operations,

viz., AND(&), OR(|) and XOR(⊕) operators for mix-

ing IrisCodes. Therefore, we use the mixing function as

follows: M1(IC1&IC2);M1(IC1|IC2);M1(IC1⊕IC2)
for k = 2. We select bitwise operators due to the binary na-

ture of the IrisCode. Refer to Lines 1-14 in Algo. 1. The

algorithmic time-complexity of wolf selection is O(d) as it

involves a single pass over the training set. The algorithmic

time-complexity of wolf mixing is O(kl), where k∗l << d.

We combine k seed wolves using l mixing functions result-

ing in O(kl) time complexity for generating alpha-wolves.

3.2. Method II: Generating Alpha-mammals

We hypothesize that while mixing wolves leads to

ªalpha-wolvesº, more optimal combination of samples

might exist in the dataset that does not necessarily involve

wolves. We can consider a wolf as a point in the tem-

plate space that is close to several other identities, simul-
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taneously. It behaves as a centroid with maximal overlap

with other identities. However, combining wolves may in-

advertently push the mixed idenitity, i.e., the ªalpha-wolfº,

away from its optimal position, thereby reducing proximity

with other individuals. This brings us to the idea of combin-

ing other members of the Doddington’s zoo, such as mixing

a wolf with a sheep (low False Match Rate and low False

Non-Match Rate), that may lead to a more optimal dictio-

nary attack. We search for this optimal set of IrisCodes to

be combined using a second methodology coined ªalpha-

mammalsº. This hill-climbing approach makes no assump-

tion about the need for multiple alpha-wolves nor on the

number of IrisCodes that should be combined. We define

the user coverage for an IrisCode IC from the training set

Dtr at a threshold τ as follows.

Cov(IC) =
∑

i∈Dtr

[S(i, IC) ≤ τ ] (1)

The state space is defined as the set of IrisCodes that are

mixed together using some function M. The action space is

defined as either the deletion or addition of any IrisCode to

the current state space. Finally, the reward is defined as the

user coverage described in Eqn. 1. The algorithm starts with

an empty set. In the first iteration, it always picks the wolf

sample that leads to maximal coverage. Next, the algorithm

optimizes over the set of users in Dtr. Refer to Lines 15-

46 in Algo. 1. The algorithmic time-complexity is O(dtl),
where d is the size of the training set, t is the number of

iterations used and l is the number of mixing functions.

4. Experimental Design

We use two real iris datasets, namely, IITD [2], and

CASIA-IrisV4-Thousand [1] and a synthetic iris dataset,

namely, CASIA-IrisV4-Synthetic [1]. We consider left

and right eye images as separate classes for both real

datasets. The synthetic dataset has only a single eye for

each identity. The IITD dataset comprises 224 subjects with

1,188 left eye images and 1,052 right eye images that is

used for both wolf selection and evaluation. We use USIT

v3.0.0 toolkit2 to perform iris segmentation (using contrast-

adjusted Hough transform (caht)), IrisCode feature extrac-

tion (using log-Gabor (lg) and quadrature spline wavelet

(qsw)), and matching (using fractional Hamming distance

(hd)). Note that USIT v3.0 converts the binary IrisCode to

an 8-bit unsigned integer in [0, 255] and then flattens it to

produce a 1-D vector of 1, 280 bytes (23×27×10 equivalent

to 20 × 512 = 10, 240 bits). Although the original authors

indicated possible correlations between the first and last 10

rows [23], we use the entire template. We perform match-

2We use the Windows executable provided by the original authors at

https://www.wavelab.at/sources/USIT/ in Method I and

custom built Linux executable in Method II.

Algorithm 1: Generating Alpha-Mixtures

Data: Dtr , E(·), S(·, ·), τ andM({·})
Result: Set of Alpha-wolves: αw , Alpha-mammals: αm

1 Generating Alpha-wolves:

2 Step I: Wolf selection

3 {IC1, · · · , ICd} ← E(Dtr), |Dtr| = d ; /* IrisCodes */

4 if S(ICi, ICj) ≤ τ ∀j and i ̸= j ; /* check for false

match */

5 then

6 W ← ICi; /* seed wolves */

7 end

8 Step II: Wolf mixing ; /* |W| = n */

9 for k = 2 to n do

10 Ck ←
(

n

k

)

; Pk ←W{Ck} ; /* select combinations

of seed wolves */

11 for l = 1 to 3 do

12 αwkl
←Ml({Pk}) ; /* mix seed wolves

with 3 bitwise ops. */

13 end

14 end

15 Generating Alpha-mammals:

16 q ← ϕ ; /* initialize an empty IC set */

17 c← 0 ; /* set current coverage to 0 */

18 cn ← 0 ; /* set best neighbor coverage to 0 */

19 for l = 1 to 3 do

20 while cn ≥ c do

21 c← cn q ← qn
22 Step I: Check if appending sample helps. ;

23 for k = 1 to |Dtr| do

24 q′ ← q.append(ICk)

25 IC ←Ml(q
′) ; /* mix set of ICs */

26 ck =
∑

i∈Dtr
[S(i, IC) ≤ τ ] ; /* cov on new

IC */

27 if ck ≥ cn ; /* cov improved, update

cov and IC set */

28 then

29 cn ← ck
30 qn ← q.append(ICk)

31 end

32 end

33 Step II: Check if removing sample helps. ;

34 for k = 1 to |q| do

35 q′ ← q.remove(ICk)

36 IC ←Ml(q
′) ; /* mix set of ICs */

37 ck =
∑

i∈D
[S(i, IC) ≤ τ ] ; /* cov on new

IC */

38 if ck ≥ cn ; /* cov improved, update

cov and IC set */

39 then

40 cn ← ck
41 qn ← q.remove(ICk)

42 end

43 end

44 end

45 αml
←Ml(q)

46 end

47 Return: αw ,αm ; /* alpha-mixtures */

ing using the 1-D flattened representation while mixing is

performed on the binary valued 2-D template.

CASIA-IrisV4-Thousand comprises 1,000 subjects with

10,000 left eye images and 10,000 right eye images. We use

the COTS Neurotechnology VeriEye 12.4 SDK for segmen-

tation, Libor Masek code for texture and mask generation,

and USIT v3.0 for encoding and matching. We discard in-
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Figure 1. Examples of wolves used in generating alpha-wolves be-

longing to IITD (top row), CASIA-IrisV4-Thousand (middle row)

and CASIA-IrisV4-Synthetic (bottom row) datasets. Note that, vi-

sually, wolves are high quality iris images.

admissible IrisCodes upon visual inspection (e.g., all 0’s).

Next, we select wolves in 1:10 and 3:10 ratio from the en-

tire set of 1,000 identities to form the training set, resulting

in first 93 subjects using lg @FMR=0.05%, and the first 265

subjects using qsw features @FMR=0.01% (some identities

were manually discarded due to unreliable encoding). We

adopt this strategy to examine if wolves selected from a sub-

set of the population (training set) can be effective against

unseen subjects from the same dataset (test set). This helps

us evaluate the effectiveness of the method with access to

limited number of wolf samples. In this case, the user cov-

erage is evaluated on the remainder of the target population

(test set) excluding the subset from which the wolves were

selected. See examples of wolves in Fig. 1. For computing

the alpha-mammals, we search across the first 93 users and

test on the remaining set of 907 users on the CASIA-IrisV4-

Thousand dataset for both the qsw and lg features.

5. Results and Analysis

5.1. Results for Method I: Alpha-wolves

We select that mixed IrisCode that produces the high-

est false matches across the test set as the best alpha-wolf,

i.e., αw,best = argmaxαwk
S(αwk

, ICq); ∀q ∈ Dte. Here,

αwk
denotes the set of alpha-wolves corresponding to mix-

ing k out of n seed wolves, S(·, ·) is the iris matcher, and

Dte denotes the test set. We report the proportion of identi-

ties where at least one sample matched with the best alpha-

wolf generated using different bitwise operators (AND, OR,

XOR) and different feature extraction schemes (lg and qsw)

on both eyes (left and right). We refer to this proportion

as the user coverage that quantifies the success of the dic-

tionary attack. We observe that as the number of wolves

increase, the OR-mixture results in denser codes, while the

AND-mixture results in sparser codes and the XOR-mixture

contains equal proportion of 1’s and 0’s in the alpha-wolves.

So, we restrict to mixing two, three and four seed wolves.

Table 1. Alpha-wolf attacks on IITD lg-Left dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.001% 0.01% 0.1% 1%

2 0.9/0.9/10.7 0.9/0.9/20.5 1.8/1.8/79.0 2.7/3.1/89.7

3 0.0/0.0/0.0 0.0/0.0/0.9 2.2/2.2/0.9 1.8/3.1/0.4

4 0.0/0.0/5.8 0.0/0.0/6.2 1.8/1.8/50.4 0.9/3.1/64.3

Table 2. Alpha-wolf attacks on IITD lg-Right dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.001% 0.01% 0.1% 1%

2 0.9/0.9/17.9 0.9/0.9/21.4 2.2/1.8/82.1 2.7/4.0/84.4

3 0.0/0.0/0.0 0.0/0.0/0.0 2.2/2.7/0.9 3.1/3.6/0.9

4 0.0/0.0/15.6 0.0/0.0/17.4 2.2/1.8/79.9 2.7/3.1/88.3

Table 3. Alpha-wolf attacks on IITD qsw-Left dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.001% 0.01% 0.1% 1%

2 0.9/0.9/20.9 0.9/0.9/25.0 2.2/2.2/91.5 4.5/3.6/96.4

3 0.0/0.0/0.0 0.0/0.0/0.4 3.1/2.7/1.3 4.5/3.6/1.8

4 0.0/0.0/4.0 0.0/0.0/5.4 2.7/3.1/83.0 4.0/2.2/94.2

Table 4. Alpha-wolf attacks on IITD qsw-Right dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.001% 0.01% 0.1% 1%

2 0.9/0.9/31.7 0.9/0.9/42.4 2.2/2.7/88.8 4.5/3.6/90.6

3 0.0/0.0/0.0 0.0/0.4/0.0 2.7/3.1/0.9 4.0/4.0/0.9

4 0.0/0.4/13.4 0.0/0.4/16.9 2.2/2.7/88.8 3.6/4.0/90.1

We present results on the IITD dataset in Tables 1,2,3

and 4. We observe that the overall user coverage is the high-

est for the XOR operator for mixing IrisCodes. We report

the results at four FMR(%) values= {0.001, 0.01, 0.1, 1}
on IITD. As observed in the results, qsw feature-based

IrisCode is more successful in generating dictionary attacks

compared to log-Gabor (lg) feature-based IrisCode. Our at-

tack achieves up to 31.7% user coverage @FMR=0.001%

by XOR-ing two identities on qsw-right, 42.4% user cov-

erage @FMR=0.01% by XOR-ing two identities on qsw-

right, 91.5% user coverage @FMR=0.1% by XOR-ing two

identities on qsw-left dataset, and up to 96.4% user cover-

age @FMR=1% by XOR-ing two identities on qsw-left.

We present results on CASIA-IrisV4-Thousand (for

brevity we will refer it as CASV4-Th) dataset at

FMR(%) = {0.01, 0.05, 0.1, 1} for lg-feature in Ta-

bles 5 and 6, and at FMR(%) = {0.001, 0.01, 0.1, 1}
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Table 5. Alpha-wolf attacks on CASV4-Th lg-Left dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.01% 0.05% 0.1% 1%

2 0.0/2.2/0.0 0.0/57.1/1.3 0.3/64.4/3.9 33.6/98.3/68.0

3 0.0/2.4/0.9 0.0/56.5/2.2 0.0/63.9/2.3 1.0/97.7/6.6

4 0.0/2.4/0.0 0.0/55.8/0.7 0.0/62.5/0.7 0.0/97.2/3.1

Table 6. Alpha-wolf attacks on CASV4-Th lg-Right dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.01% 0.05% 0.1% 1%

2 0.3/1.0/10.0 0.4/2.7/67.9 0.6/4.2/70.3 3.2/25.3/93.7

3 0.2/1.0/0.2 0.3/3.3/1.4 0.3/4.2/1.8 1.0/15.8/2.9

4 0.2/0.5/2.2 0.2/3.0/45.7 0.2/4.1/51.0 0.5/12.4/78.6

Table 7. Alpha-wolf attacks on qsw-CASV4-Th Left dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.001% 0.01% 0.1% 1%

2 0.0/0.3/0.5 0.0/0.8/2.4 0.8/2.7/26.4 54.0/32.8/99.5

3 0.0/0.3/0.0 0.0/0.7/0.0 0.5/2.5/1.4 32.8/25.4/8.4

4 0.0/0.3/0.0 0.0/0.7/1.7 0.0/2.3/5.6 10.6/18.5/77.7

Table 8. Alpha-wolf attacks on qsw-CASV4-Th Right dataset.

# seed

wolves

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.001% 0.01% 0.1% 1%

2 0.0/6.3/0.0 0.3/72.8/0.5 10.7/97.3/10.6 73.1/99.3/88.6

3 0.0/9.5/0.0 0.1/72.7/0.6 2.4/97.2/0.7 45.9/99.3/73.8

4 0.0/9.5/0.0 0.1/61.7/0.3 0.4/93.2/1.2 11.6/97.8/24.7

for qsw-feature in Tables 7 and 8. This is because we

observe inherently poor performance on the CASV4-Th

dataset, so we selected wolves at FMR=0.05% when ap-

plicable. Alpha-wolves achieve upto 9.5% user cover-

age @FMR=0.001% by AND-ing three identities using

qsw feature on the CASV4-Th Right dataset, 72.8% user

coverage @FMR=0.01% by AND-ing two identities us-

ing qsw features on the CASV4-Th Right dataset, 67.9%

@FMR=0.05% by XOR-ing two identities using lg fea-

tures on the CASV4-Th Right dataset, 97.3% user coverage

@FMR=0.1% by AND-ing two identities using qsw fea-

ture on the CASV4-Th Right dataset, and upto 99.5% user

coverage @FMR=1% by XOR-ing two identities using qsw

features on the CASV4-Th Left dataset.

5.2. Results for Method II: Alpha-mammals

In this section, we present our results on dictionary at-

tacks using the ªalpha-mammalº hill climbing algorithm. In

Table 9, we present the results obtained on the IITD dataset

for the lg and qsw features at FMR(%) = {0.01, 0.1, 1.0}.

Table 9. Alpha-mammal attacks on the IITD dataset.

feature-laterality

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.01% 0.1% 1%

lg-Left 0.9/0.9/51.6 28.7/57.8/28.7 53.8/76.7/53.8

lg-Right 0.9/0.9/4.1 4.1/4.1/85.1 11.3/12.6/90.1

qsw-Left 0.9/0.9/59.6 58.7/58.7/64.1 88.3/88.3/92.4

qsw-Right 0.9/0.9/6.3 4.1/4.5/90.5 13.5/13.5/92.3

Table 10. Alpha-mammal attacks on the CASV4-Th dataset. Here,

we discard mixtures with more than 70% of 1’s or 0’s.

feature-laterality

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.01% 0.1% 1%

lg-Left 4.8/59.5/15.6 6.1/92.6/23.6 46.5/99.0/92.7

lg-Right 4.6/6.2/51.8 12.0/19.3/76.6 48.0/75.5/98.6

qsw-Left 0.1/1.6/2.2 3.2/5.1/28.1 83.2/80.3/99.1

qsw-Right 0.4/0.9/74.3 2.2/4.8/71.1 71.1/71.1/99.5

Similarly, we show the results on the CASV4-Th dataset in

Table 10. It is also important to note that, unlike alpha-

wolves, we only obtain one alpha-mammal per search pro-

cess. Thus this attack is always one-shot. Overall, we saw

that for the IITD dataset, the XOR operator has the best per-

formance except for the lg feature and the left eye class. In

this specific exception, the AND operator outperforms the

XOR operation at FMR(%) = {0.1, 1}. We saw some in-

teresting mixtures, especially for the AND operator and lg

feature on left IrisCodes, where the mixed IrisCode mask

ends up covering a majority of the eye region. This may

indicate that specific regions in the alpha-mammal IrisCode

that are not occluded contribute significantly towards a suc-

cessful dictionary attack. We show a specific example of

such a scenario in Fig. 2. Therefore, after more than three

IrisCodes are combined we limit the lateral movement, i.e.,

unless we see an improvement in the reward function we

terminate the search. This reduces the number of IrisCodes

that are combined and thus limits the occluded region.

(a) alpha-mammal IrisCode mask

(b) alpha-mammal IrisCode

Figure 2. Example of an alpha-mammal computed on the IITD

dataset wherein a majority of the IrisCode is covered by the mask.

6. Discussion

6.1. Analyzing alpha-mixtures

We discuss our findings and offer insights into the

behavior of the alpha-mixtures. Surprisingly, we observe

that the seed IrisCodes that generate the alpha-mixtures
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Figure 3. Distribution of 1’s and 0’s of alpha-wolves using two

wolves for IITD lg-Right (left) and CASV4-Th qsw-Right (right).

belong to good quality ocular images with little or no

occlusion, thereby alleviating concerns regarding fragile

bits [13]. We further observe that increasing the number

of wolves/mammals in the mixture does not necessar-

ily increase the chances of higher user coverage. In a

majority of cases, mixing two wolves/mammals yields

the best user coverage. In terms of mixing operators,

XOR appears to produce the highest user coverage in

most of the cases. XOR performs logical inequality

that produces True/1 only if both bits disagree, imply-

ing XOR-mixing inherently combines highly dissimilar

wolves, while OR- and AND-mixing combines relatively

similar wolves. We use Normalized Compression Dis-

tance (NCD) to examine how ‘similar’ or ‘dissimilar’

the alpha-wolves (αW ) are compared to the seed wolves

(W ). NCD computes the similarity between objects by

evaluating the binary size of their compressed versions,

C(·). NCD(W,αW ) = C(WαW )−min{C(W ),C(αW )}
max{C(W ),C(αW )} ,

0 < NCD < 1. We observe that NCD is highest for

XOR-mixed alpha-wolves (≈ 0.98) compared to AND-

and OR-mixed alpha-wolves (≈ 0.85) on the IITD dataset.

Alternatively, in the context of information theory, Daug-

man suggests that there should be no uncertainty about

the identity X denoted by a biometric signal Y , i.e.,

H(X|Y ) = 0 [9]. However, Yalphamix combines biometric

signals from two identities (say, X1 and X2), thus increas-

ing the conditional entropy, H(X1, X2|Yalphamix) =
H(X1|Yalphamix) + H(X2|Yalphamix, X1) =
H(X2|Yalphamix) + H(X1|Yalphamix, X2). We speculate

that higher conditional entropy in the alpha-mixtures may

be responsible for increase in biometric collisions, thereby

Table 11. Statistics of bit ‘1’ in the original, seed codes and XOR-

mixed alpha-wolves from the IITD and CASV4-Th datasets for

IrisCodes and their masks.

IITD CASV4-Th

feature-

laterality

code

µ± σ

mask

µ± σ

code

µ± σ

mask

µ± σ

o
ri

g
in

al

lg-left 0.49±0.03 0.86±0.11 0.5±0.03 0.9±0.16

lg-right 0.49±0.05 0.85±0.17 0.48±0.05 0.77±0.2

qsw-left 0.55±0.5 0.83±0.17 0.56±0.07 0.9±0.16

qsw-right 0.54±0.06 0.84±0.19 0.59±0.09 0.77±0.2

se
ed

co
d
es lg-left 0.49±0.01 0.92±0.03 0.35±0.12 0.36±0.29

lg-right 0.49±0.01 0.85±0.09 0.47±0.04 0.64±0.24

qsw-left 0.49±0.005 0.86±0.10 0.45±0.16 0.54±0.31

qsw-right 0.56±0.03 0.85±0.09 0.68±0.23 0.22±0.18

α
w
o
lv
e
s

lg-left 0.45±0.1 0.06±0.01 0.44±0.09 0.46±0.21

lg-right 0.47±0.05 0.13±0.07 0.48±0.03 0.31±0.2

qsw-left 0.49±0.05 0.14±0.09 0.48±0.16 0.4±0.25

qsw-right 0.46±0.03 0.13±0.07 0.46±0.18 0.31±0.14

producing higher false matches.

We investigate the distribution of 1’s and 0’s to under-

stand the behavior of the mixing function. Fig. 3 analyzes

the proportion of 0’s to 1’s in the alpha-wolves from the

IITD right-lg feature and from CASV4-Th right-qsw-based

IrisCodes. It is surprising to note that in cases where the

XOR mixing function yields the highest coverage (IITD

right-lg), the alpha-wolves are tightly clustered around one,

indicating equal proportion of 1’s and 0’s. However, when-

ever the AND-mixing function produces higher user cover-

age compared to XOR (CASV4-Th right-qsw), we observe

the proportion of 0’s to 1’s in XOR-ed alpha-wolves to be

scattered. We present a statistical analysis (mean and stan-

dard deviation) of the bits of the IrisCodes and their masks

for the original IrisCodes, seed wolves and alpha-wolves

in Table 11. We observe that the XOR-mixed IrisCodes

are consistent with the original IrisCodes, but the IrisCode

masks become sparser, i.e., contain more 0’s. We qualita-

tively analyze the frequency of ‘1’ and ‘0’ bits in original

and alpha-wolf IrisCodes and masks in Fig. 4.

6.2. Additional analysis

Is there an overlap among the seed IrisCodes across

feature encoding and eye laterality? We observe that

identical subjects (but different samples) appear as wolves

for both lg and qsw within the same laterality (right) on the

IITD dataset. For example, lg has seed wolves {074 09,

150 06}, while qsw has {074 06, 150 09}. XX YY de-

notes subject XX and sample YY. We note minimal overlap

among the seed wolves on the CASV4-Th dataset.

Can we assess the viability of the mixed IrisCodes at

the image level? To examine the viability of the mixed

IrisCodes, we use an off-the-shelf image-to-image transla-

tion network [14] to accept a binary IrisCode as input and

generate the corresponding iris image as output. We use
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(a) The heatmap of IITD left eyes with lg feature.

(b) The heatmap of alpha-wolf of IITD left eyes with lg feature.

Figure 4. Examples of the heatmap of ‘0’s and ‘1’s frequency.

(a) alpha-wolf im-

age (b) alpha-wolf IrisCode (c) alpha-wolf mask

(d) wolf1 image (e) wolf1 IrisCode (f) wolf1 mask

(g) wolf2 image (h) wolf2 IrisCode (i) wolf2 mask

Figure 5. Illustration of alpha-wolf translated iris image (top

row) and the respective constituent seed wolves (bottom two rows)

along with their IrisCodes and masks.

a simple network, pix2pix [3], as our main objective is to

inspect the viability of the mixed IrisCodes as biologically

plausible ªhumanº iris pattern. We incorporate the Deep

Image Structure and Texture Similarity (DISTS) [10] in-

dex as an auxiliary term to the standard GAN expectation

and L1 loss terms in the formulation to account for textural

and structural details preservation in the generated image.

Therefore, the final generator loss function is as follows.

LG = λGAN ∗LGAN+λL1∗LL1+λDISTS∗LDISTS (2)

In Eqn. 2, λGAN = 1, λL1 = 100, λDISTS = 0.1. We

trained the model using an ADAM optimizer with initial

learning rate=0.0002, momentum term=0.5, for 200 epochs

and batch size=1. We used the entire dataset of IITD with

the original IrisCodes and the ocular images for the trans-

lation network. However, we trained separately for each

Successful cases

Failure cases

Figure 6. Examples of outputs from the viability check.

eye category and feature extractor, resulting in four models

(left/right × lg/qsw). Our test set comprises of the mixed

IrisCodes (alpha-wolves) as inputs. See the generated im-

ages, codes and masks corresponding to the two wolves in

Fig. 5. More examples of generated iris images correspond-

ing to alpha-wolves (mixture of wolves) are presented in

Fig. 6. The image translation step filters out improbable

alpha-wolves via manual inspection. Next, we recompute

the user coverage with the successful alpha-wolves. We re-

port them for XOR-mixed alpha-wolves (best-performing)

in Table 12. At FMR=0.001%, we observe an absolute de-

crease in the user coverage by 1.8% on IITD left-lg, while

decreasing the number of attack attempts by 16%; a de-

crease in the user coverage by 2.7% on IITD right-lg, while

decreasing the number of attack attempts by 39%; no de-

crease in attacks on IITD left-qsw, while decreasing the

number of attack attempts by 50%; and finally, a decrease

in the user coverage by 13.4% on IITD right-qsw, while de-

creasing the number of attack attempts by 50%.

Table 12. User coverage after filtering alpha-wolves using viability

check on IITD dataset.

feature-laterality

Proportion of Users (%) Covered

@ False Match Rate for XOR

0.001% 0.01% 0.1% 1%

lg-left 8.9 16.9 79.0 89.7

lg-right 15.2 17.8 62.5 72.3

qsw-left 20.9 25.0 84.4 93.3

qsw-right 18.3 20.9 83.0 87.1

Can synthetic IrisCodes be used to launch dictio-

nary attacks? In this experiment, we use CASIA-IrisV4-

Synthetic dataset [1] that comprises 10,000 images from

1,000 synthetic identities (no left or right eye category). Re-

fer to [6, 17] for synthesis details. We use a subset of 4,000

images (first 4 samples) from the dataset without masks.

Intra-dataset performance: We observe a maximum

user coverage of 4.3% with lg and 4.0% using qsw, both
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Table 13. Cross-attacks using alpha-wolves on IITD dataset.

αW

→
DIC

Thres-

holds

Left Right

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

Proportion of Users (%) Covered

@ False Match Rate for OR/AND/XOR

0.001 0.01 0.1 1 0.001 0.01 0.1 1

lg → qsw
ταW

0.0/0.0/10.27 0.0/0.0/18.75 2.23/1.79/89.73 2.23/1.79/92.41 0.0/0.0/16.96 0.0/0.0/20.09 1.79/2.23/87.50 1.79/2.23/89.73

τDIC
0.0/0.0/12.5 0.0/0.0/22.70 2.23/1.79/92.86 3.57/2.23/95.09 0.0/0.0/20.09 0.0/0.0/23.21 2.23/2.68/89.73 4.02/4.02/89.73

qsw → lg
ταW

0.0/0.0/21.43 0.0/0.0/23.66 1.79/2.68/89.29 2.23/4.02/93.30 0.0/0.0/29.02 0.0/0.0/34.82 2.23/2.68/87.95 2.68/3.57/89.29

τDIC
0.0/0.0/20.98 0.0/0.0/22.77 1.79/2.23/78.57 1.79/2.68/89.29 0.0/0.0/26.79 0.0/0.0/29.02 1.79/1.79/78.12 2.23/1.79/87.50

@FMR=0.1% by OR-ing two synthetic IrisCodes.

Cross-dataset performance: On CASV4-Th left

dataset, we observe @FMR=0.1%, a maximum user cover-

age of 1.0% using lg by AND-ing two synthetic IrisCodes

and 22.7% using qsw by OR-ing two IrisCodes. On

CASV4-Th right dataset, we observe a maximum user cov-

erage of 2.6% using lg by AND-ing two IrisCodes, and

47.7% using qsw by OR-ing two IrisCodes. We achieve a

maximum user coverage of 16.8% using lg by XOR-ing two

IrisCodes when tested on qsw-based IrisCodes @FMR=1%.

We also adopt a 2-state Hidden Markov Model (HMM)

with a transition probability α = 0.9 as suggested in [9]

to generate 10 synthetic IrisCodes. We mix them using the

bitwise operators and then test them on real datasets (IITD

and CASV4-Th). We observe AND-mixing achieves best

user coverage of 0.4% on the IITD dataset and 12.1% on

the CASV4-Th dataset, thus, indicating synthetic IrisCodes

can be used as dictionary attacks against real IrisCodes.

Are the attacks effective assuming limited knowl-

edge? Previous experiments consider that the adversary has

full knowledge of the feature encoding scheme and their

corresponding decision thresholds. In this experiment, we

use lg-based alpha-wolves, αW (from 2 wolves) to launch

dictionary attacks against qsw-based IrisCodes, DIC , and

vice-versa. We compute the user coverage considering mul-

tiple thresholds, ταW
(threshold corresponding to the fea-

ture of the alpha-wolves) and τDIC
(threshold correspond-

ing to the feature of the target IrisCode). This experiment

assumes limited knowledge on part of the adversary about

the encoding employed by the target system. Results in Ta-

ble 13 indicate that even with partial knowledge, template

level attacks achieve an extremely high coverage of 29.02%

@FMR=0.001% when XOR-mixed qsw-based wolves are

used against lg-based IrisCodes on the IITD right dataset.

Can we learn the best possible way to combine

IrisCodes? We have a fixed set of logical operators as the

mixing function but that does not guarantee optimal mixing.

Therefore, we employ an existing image fusion technique,

namely IFCNN [32] to perform mixing. IFCNN uses a 4-

layer CNN trained on over 100K RGB and depth-images

for fusing multi-modal, multi-spectral and multi-exposure

images using MSE and perceptual losses extracted from a

pre-trained ResNet 101 model. We selected this network as

it allows fusion of variable number of inputs. We supply

seed wolves as templates in one setup and as iris images

in another setup to perform mixing at both template and

image level. The best user coverage from the fused wolf

IrisCodes is 21.9%, and from the fused wolf iris images is

17.4% @FMR=1% after fusing 2 codes/images.

Summary: We study the feasibility of dictionary attacks

on iris recognition systems for the first time. Although the

practicality of this attack is currently restricted at the tem-

plate (IrisCode) level, we observe vulnerabilities on high

quality iris datasets and we suspect that the risk might be

further compounded in the presence of non-ideal imaging

(low resolution, inadequate illumination, etc.). Our find-

ings surprisingly indicate that mixing IrisCodes using sim-

ple bitwise operators can be highly effective as dictionary

attacks against a large number of unseen identities. We ob-

serve that, in particular, XOR-operator increases the user

coverage, e.g., from 1.34% on IITD left-lg wolves to 20.5%

@FMR=0.01% with XOR-mixed alpha-wolves (only wolf

samples) and 51.6% @FMR=0.1% with XOR-mixed alpha-

mammals (with or w/o wolves). Even synthetic IrisCodes

can be used as alpha-wolves to launch dictionary attacks on

real datasets with 47.7% coverage @FMR=0.1%. We fur-

ther validate the viability of alpha-mixtures at image level

via a conditional generative network.

7. Conclusion

In this work, we explore dictionary attacks at the tem-

plate level (IrisCodes) on iris recognition systems that use

log Gabor (lg) and spatial Gabor (qsw) features. We show

that mixing IrisCodes using AND, OR and XOR opera-

tors results in the so-called Master IrisCodes that can for-

tuitously match with a large number of other identities.

The IrisCodes are strategically selected: they can be either

wolves, resulting in alpha-wolves, or selected via search op-

timization, resulting in alpha-mammals. We empirically an-

alyze the efficacy of these attacks on three datasets, viz.,

IITD, CASIA-IrisV4-Thousand and Synthetic, and achieve

a user coverage of upto 71 identities @FMR=0.001% using

real alpha-wolves, upto 133 identities using alpha-mammals

at FMR=0.1% and upto 477 identities @FMR=0.1% using

synthetic alpha-wolves. Our method is effective on cross-

attacks across different IrisCode encoding schemes. Future

work will extend to image-level dictionary attacks.
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