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Abstract
1.	 Grasslands are among the most imperilled ecosystems worldwide, and many have 

experienced degradation due to the loss of historical disturbance regimes and sub-
sequent woody encroachment. Management practitioners often use physical and 
chemical management interventions in combination with fire to counter encroach-
ment, altering aboveground structure and belowground function, respectively. This 
may disrupt the feedbacks that perpetuate encroachment and restore the herba-
ceous community.

2.	 We use a large-scale field experiment to assess the initial effects of different 
management interventions on woody vegetation persistence, abiotic habitat 
conditions, and herbaceous community composition. We evaluate these effects 
across seven sites spanning a natural soil moisture gradient to capture one aspect 
of environmental heterogeneity with which managers regularly contend.

3.	 We found that chemical intervention, both with and without the addition of 
physical intervention, was most effective at reducing woody plant cover and 
abundance, and a second application reduced woody plant abundance by more 
than one application alone. We also found that any management intervention 
increased light availability and air temperature and decreased soil moisture, with 
the combination of physical and chemical interventions having the greatest ef-
fects. Finally, none of the management interventions affected herbaceous rich-
ness and functional group cover within the study period, indicating delayed or 
nonexistent effects on herbaceous community composition.

4.	 Synthesis and application. Our findings suggest that management should focus on 
chemical intervention for the greatest effects on woody plant persistence and 
abiotic habitat conditions. Changes to herbaceous community composition may 
occur in the long term and seem likely since short-term effects of management 
were successful in altering processes related to encroachment feedbacks.
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1  |  INTRODUC TION

Grasslands are among the most imperilled ecosystems worldwide. In 
many regions, more than half of the original grassland land area has 
been lost in the last century (Overbeck et al., 2015; Sohl et al., 2012). 
Conversion to agriculture is one of the greatest threats to grasslands 
(Hoekstra et al., 2005), however, those areas that remain intact, old-
growth grassland (sensu Veldman et al., 2015) have still experienced 
degradation due to changing climate, species invasion, and lack of 
disturbance (Stevens et al., 2022). Grasslands often have sufficient 
soil moisture and nutrients for woody plant growth but are main-
tained as open-canopied, grass- and forb-dominated ecosystems by 
disturbances such as frequent, low-intensity fire (Bond et al., 2005; 
Bond & Keeley, 2005). Loss of disturbance allows woody plants to 
establish and spread (Ratajczak et  al.,  2014). This phenomenon, 
known as woody encroachment, decreases grassland biodiversity 
(Ratajczak et  al.,  2012; Wieczorkowski & Lehmann,  2022) and al-
ters ecosystem services (Archer et al., 2017; Jackson et al., 2022). 
Preventing and reducing encroachment is a priority for old-growth 
grasslands worldwide, yet doing so is notoriously difficult.

One reason why preventing and reducing woody encroachment is 
so difficult is because altered disturbance regimes, such as the loss of 
fire, can generate positive feedbacks that favour woody species over 
the long term (D'Odorico et al., 2012). Without frequent fire, senesced 
herbaceous plant tissue continues to accumulate, slowly creating ther-
moregulated and moist conditions that may favour the germination and 
establishment of woody species (Hassan et al., 2021; Loydi et al., 2013). 
These individuals would otherwise be unable to establish if the highly 
flammable herbaceous litter instead served as fuel for fire that kills 
young woody plants (Bond, 2008; Engber et al., 2011). Continued litter 
accumulation can also lead to nutrient-enriched soil as organic matter 
decomposes rather than becomes volatilized by fire, further benefit-
ting woody plant growth (Xiong & Nilsson, 1999). Once established, 
woody plants change plant community structure and increase canopy 
shading, further inducing cool and moist conditions and reducing soil 
evaporation (Breshears et al., 1998; D'Odorico et al., 2007), thereby 
dampening the intensity and spread of fire (Ratajczak et  al.,  2011; 
Trauernicht et al., 2012). Additionally, woody plants can combat mois-
ture limitation by accessing deep soil water typically unused by drought-
tolerant grassland species (Nippert et al., 2013; Ratajczak et al., 2011). 
Established woody plants may also uplift water and limit soil nutrients 
(Bleby et al., 2010; Boutton & Liao, 2010; Zhou et al., 2018), aiding in 
the establishment of more woody individuals that would otherwise be 
outcompeted by herbaceous species that rapidly uptake water and nu-
trients at the soil surface (Ratajczak et al., 2011). Thus, even after the 
reintroduction of fire, woody vegetation can persist and spread (Miller 
et al., 2017; Robertson & Hmielowski, 2014).

To address the challenges posed by these feedbacks, grassland 
management practitioners often use additional management inter-
ventions in combination with fire to counter woody encroachment. 
Management can be physical (e.g., cutting), chemical (e.g., foliar 
herbicide), or some combination thereof (e.g., cut-stem herbicide; 
Midwest Invasive Plant Network,  2023). Physical intervention 

involves cutting off the connection between the photosynthesizing 
parts of the plant and its roots, removing the aboveground structure 
with minimal effect on belowground function. While fire is physical, 
this term typically refers to mechanical removal. Physical interven-
tion is often applied multiple times, as many woody plants can regrow 
from energy stored belowground (Bellingham & Sparrow,  2000; 
Bond & Midgley, 2001). Chemical intervention targets plant tissue 
and can harm belowground stores crucial for regrowth in woody 
plants (depending on the mode of action; Sherwani et  al.,  2015) 
but has minimal effects on the aboveground structure on its own. 
Standing dead aboveground woody material is typically left in place 
to naturally decompose (Midwest Invasive Plant Network, 2023), so 
while chemical intervention can halt aboveground resource acquisi-
tion, aboveground abiotic habitat conditions may remain the same. 
The combination of both physical and chemical interventions affects 
both the aboveground structure and the belowground function of 
woody plants. When interventions are repeated in short frequency, 
such as is the case when fire occurs in the same growing season 
as another intervention or when interventions are repeated across 
growing seasons, they may prevent woody plant recovery, ultimately 
leading to declines in woody vegetation (Ratajczak et al., 2018).

While feedbacks operate over long, multi-decadal timescales, man-
agement interventions operate on much shorter timescales (e.g., a single 
fire, mowing, or herbicide application), and it is unclear if these short-
term effects can alter longer-term feedbacks. A key to understanding 
the timescales over which feedbacks play out is deciphering the inde-
pendent effects of different types of management interventions and 
the repetition of their application not only on the persistence of woody 
vegetation but also on abiotic habitat conditions (e.g., temperature 
and moisture) and, ultimately, the herbaceous community. For exam-
ple, physical intervention may alter the maintenance of cool and moist 
conditions, and chemical intervention may alter the uplift of water and 
nutrients, which favour woody plant establishment and spread. These 
abiotic habitat conditions are also determinants of herbaceous com-
munity composition (Boonman et al., 2021), thus management-induced 
feedbacks are likely to benefit herbaceous species in the long term, 
helping to restore herbaceous species losses following encroachment 
(Ratajczak et al., 2012; Wieczorkowski & Lehmann, 2022).

Environmental heterogeneity and stochasticity also play import-
ant roles in our understanding of management outcomes (Brudvig & 
Catano, 2021; Perring et al., 2015). The same type of management 
intervention may produce different results across space and time as 
managers contend with variable environmental conditions such as 
resource availability (e.g., Bakker et  al.,  2003; Grman et  al.,  2013) 
and climate variability (e.g., MacDougall et  al.,  2007; Vaughn & 
Young,  2010). It is imperative to perform studies that explicitly 
control and evaluate the effect of environmental heterogeneity on 
woody plant management, especially when management is stan-
dardized across large regions.

Here, we use a large-scale field experiment to assess the initial 
effects of different management interventions (physical, chemical, 
or both) and repetition (one or two applications) across two growing 
seasons on woody vegetation persistence, abiotic habitat conditions, 
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2022  |    CHARTON and DAMSCHEN

and herbaceous community composition in tallgrass prairie. We eval-
uate these effects across seven different remnant tallgrass prairies 
spanning a natural soil moisture gradient to capture one aspect of 
environmental heterogeneity that managers frequently encounter 
(Hoffmann et al., 2012; Moeslund et al., 2013). Specifically, we ask: 
(1) which management interventions are most effective at reducing 
woody plant cover and abundance, (2) does management alter light, 
temperature, and moisture, and (3) does management increase her-
baceous richness and functional group cover? We tested our hypoth-
eses that: (1) chemical (i.e., herbicide) intervention is most effective at 
reducing woody plant cover and abundance because of its effect on 
belowground function, (2) physical (i.e., cut-stem) intervention most 
increases light availability and air temperature and decreases soil 
moisture because of its effect on aboveground structure, and (3) any 
intervention will increase herbaceous richness and functional group 
cover because of changes to woody plant structure and function.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental setup

We established a field experiment to quantify the effects of woody 
plant management on woody vegetation persistence, abiotic habi-
tat conditions, and herbaceous community composition at seven 
tallgrass prairies (Table 1; Figure 1). We selected sites from all pub-
licly accessible remnant (i.e., unplowed or old-growth) prairie within 
100 miles of Madison, Wisconsin, United States. Those selected met 
our study criteria of having lost their historical fire regime following 
European colonization but have since had fire management reintro-
duced. At the start of the study (i.e., 2020), all sites had not been 
burned since at least 2018 (Table S1). American bison (Bison bison 
L.) were once common in the region and played a role in maintaining 

grasslands through grazing but have been locally extirpated for 
centuries (Axelrod, 1985). While grazing cattle have since been in-
troduced to Wisconsin, they are not currently found at our study 
sites. We selected sites along a soil moisture gradient, where dry 
sites have a higher percentage of sand content in the soil than mesic 
sites (Table S2; Figures S1 and S2). Sites also varied in their topogra-
phy and vegetation communities (Appendix S1). Sites were accessed 
with permission from the Prairie Enthusiasts Empire-Sauk Chapter, 
the Southern Wisconsin Bird Alliance, the University of Wisconsin-
Madison Arboretum (2020–2011), and the Wisconsin Department 
of Natural Resources State Natural Areas Program (SNA20-18).

At each site, we identified areas with similar amounts of a single 
focal species, allowing us to directly compare the effects of manage-
ment without the confounding effects of species identity. We chose 
the common native shrub Cornus racemosa Lam. as our focal species 
because it was present in high abundance at all sites, spreads rapidly 
via clonal vegetative reproduction, and is a species of management 
concern. We mapped areas with approximately 20%–60% C. race-
mosa canopy cover ranging from 0.5–1.5 m tall using Avenza Maps 
v3.9 (Avenza Systems, Toronto, Canada), then randomly selected 
locations for eight 32-m2 plots within these areas using a random 
point generator in ArcMap 10.6 (Esri, Redlands, United States). We 
established a total of 56 plots, with each of the eight plots at the 
seven sites separated by at least 2 m. Nested within each plot were 
two 10-m2 and two 1-m2 subplots for a total of 112 subplots of each 
size across the study (Figure 1).

2.2  |  Experimental treatments

Following setup, we applied management interventions at the be-
ginning of each growing season (i.e., 2021–2022; Table S1). We ran-
domly assigned two plots at each site to one of four treatment groups 

TA B L E  1  Study sites fall along a natural moisture gradient, primarily characterized by soil sand content.

Site Ownership Coordinates Size (ha) Sand content (%)

Black Earth Rettenmund State Natural 
Area (BE)

The Prairie Enthusiastsa 43.139107 N, 89.773512 W 6.88 65.2

Oliver Prairie State Natural Area (OP) University of Wisconsin-Madison 
Arboretumb

42.684028 N, 89.500793 W 1.62 32.0

Empire Prairies State Natural Area 
Hauser Road Unit (HR)

The Prairie Enthusiastsa 43.259394 N, 89.437066 W 18.21 30.5

Faville Prairie State Natural Area (FP) University of Wisconsin-Madison 
Arboretumb

43.148796 N, 88.877923 W 35.21 27.5

Curtis Prairie (CP) University of Wisconsin-Madison 
Arboretumb

43.038499 N, 89.430762 W 29.54 25.0

Snapper Prairie State Natural Area (SP) Southern Wisconsin Bird Alliancec 43.162540 N, 88.889233 W 12.14 22.8

York Prairie State Natural Area (YP) Wisconsin Department of Natural 
Resourcesd

42.850566 N, 89.790356 W 31.16 18.2

ahttps://​www.​thepr​airie​enthu​siasts.​org/​.
bhttps://​arbor​etum.​wisc.​edu/​.
chttps://​swibi​rds.​org/​.
dhttps://​dnr.​wi.​gov/​.
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(i.e., unmanaged, physical intervention, chemical intervention, and 
both physical and chemical intervention; Figure 1) and ensured there 
were no statistically significant differences between treatments in 
the starting conditions of interest (Figure S3). Unmanaged plots re-
ceived no management intervention for the duration of the study, 
other than fire. For physical interventions (both with and without 
chemical intervention, i.e., cut-stem herbicide and cut stems), all 
aboveground woody plant biomass (including woody species other 
than C. racemosa, if present; Table S4) was cut to approximately 2 cm 
using hand clippers. For the combined physical and chemical inter-
ventions (i.e., cut-stem herbicide), exposed cut stems were immedi-
ately treated after clipping with a 20% Triclopyr 4 (Alligare, Opelika, 
United States) in oil surfactant penetrant and basal bark oil (Helena 
Agri-Enterprises, Collierville, United States) solution using a spot ap-
plicator. For the chemical (only) interventions (i.e., foliar herbicide), 
leaves were sprayed with a 5% Triclopyr 3 (Alligare) in water solution 
using a carefully aimed hand-held fine-mist sprayer.

All sites were burned in the dormant season (November–April) 
before both the first and second treatment applications (Tables S1 
and S3). Our goal was to ensure fire top-killed the woody species 
within our plots before management interventions, so in the few in-
stances where this did not naturally occur, we revisited plots after 
fire with a modified blowtorch and heat-treated stems to ensure the 
meristematic tissue was damaged (following Meunier et al., 2021). 
This was necessary at two of our sites in four total plots spread across 
three of the four treatment groups (two unmanaged, one physical 
intervention, and one combined physical and chemical intervention). 
We also added seeds to a randomly assigned subplot in each plot in 
the spring following the first fire (i.e., 2021; Appendix S2). Thus far, 

we have observed no seedling establishment from this overseeding 
treatment, so reported changes to the herbaceous community are 
presumably from vegetative spread.

2.3  |  Data collection

To assess the effectiveness of our experimental treatments, we col-
lected woody plant cover data annually (i.e., 2020–2022; once pre-
treatment, once following one management application, and once 
following two management applications in two successive years) in 
mid-August by visually estimating percent cover to the nearest whole 
percent of all woody species in both the 1- and 10-m2 subplots. For 
all cover estimates, we counted vegetation that intersected with 
any part of the plot and allowed species to overlap, so total cover 
could exceed 100%. We also collected abundance data of C. race-
mosa twice annually by recording the number and height of ramets 
in the 10-m2 subplots. We took measurements in late May, capturing 
abundance after fire but before that season's management interven-
tion, and again in mid-August, capturing abundance near the end of 
the growing season and following management. Clustering of stems 
within a ramet was usually clearly defined, but if it was not, densely 
packed stems within 10 cm of one another were counted as one.

We measured percent openness of the total vegetation canopy 
as a proxy for light availability using hemispherical photos taken at 
ground level. We levelled the camera and took all photos in diffuse 
light conditions annually in mid-August, then quantified canopy open-
ness using Gap Light Analyser (Frazer et al., 1999). We also installed 
56 TMS-4 dataloggers (Wild et al., 2019) in the center of one of the 

F I G U R E  1  Map of study sites in southern Wisconsin (left). Sites fall along a natural moisture gradient, where yellows represent higher soil 
sand content and blues lower. Experimental design was fully replicated at each study site (right). We established eight 32-m2 experimental 
plots (solid lines) randomly placed within patches of Cornus racemosa. Each plot contained two nested 10-m2 (large dashes) and 1-m2 (small 
dashes) subplots. We randomly applied one of four woody management interventions to each plot.
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2024  |    CHARTON and DAMSCHEN

two subplots to measure temperature 15 cm above the soil surface 
and soil moisture 6 cm below the soil surface at 15-min intervals year-
round. Dataloggers were installed after setup and remained in the 
field for the duration of the study (i.e., 2021–2022). From these data, 
we calculated average daily June, July, and August (JJA) means and 1st 
and 99th percentiles of temperature and soil moisture in each year.

Finally, we counted the number of herbaceous species in the 
1-m2 subplot to measure richness annually in late August. We also 
visually estimated the percent cover of the graminoid and forb func-
tional groups in the 1-m2 subplots to the nearest whole percent. 
We sampled the herbaceous community during peak flowering for 
most of the species in this ecosystem, which allows species to be 
confidently distinguished from one another but may lead to under-
representation of ephemeral early-season species (~13% of species, 
estimated from Cochrane et al., 2006).

2.4  |  Data analyses

To test the effects of management on woody plant persistence, abi-
otic habitat conditions, and herbaceous community composition, we 
built linear mixed effect models (LMMs) and generalized linear mixed 
effect models (GLMMs) using the fixed effects of management type 
(i.e., chemical intervention, physical intervention, or their combina-
tion), management repetition (i.e., one or two applications), and soil 
sand content. We chose the percentage of sand content in the soil 
as a meaningful measure of plot-level soil characteristics following 
a principal components analysis of five soil characteristics known 
to affect soil moisture (i.e., percent sand, silt, and clay, percent or-
ganic matter, and bulk density; Gupta & Larson, 1979; Figure S1). We 
investigated the possibility of an interaction between management 
type and soil sand content, but given the interaction was a signifi-
cant predictor only for soil moisture and increased model complex-
ity without adding much explanatory power (Table S5), we chose to 
interpret only the main effects of management type and soil sand 
content (Table 2). We also did not include a term for pre-treatment 
starting conditions as these were not significantly different among 
management types (Figure S3) and some were correlated with sand 
content (Figure S4). Each model included random intercepts for site 
and plot to account for the nested design of our experiment.

We fit separate models for C. racemosa cover, C. racemosa ramet 
count, canopy openness, air temperature, soil moisture, herbaceous 
species richness, graminoid cover, and forb cover. Percent cover of 
C. racemosa was highly correlated with percent cover for all woody 
species across years and scales (Figure  S5), so we did not run sep-
arate mixed models for these. Similarly, the number of C. racemosa 
ramets was correlated with average ramet height across years and 
seasons (Figure S6), so we again did not run separate mixed models 
for these. While C. racemosa cover, C. racemosa ramet count, and can-
opy openness are correlated (Figure S7), we still chose to run these 
as separate models because their correlation weakened with repeated 
management interventions (Figure S7) and they represent different as-
pects of woody vegetation persistence and abiotic habitat conditions 

(i.e., dominance, abundance, and light availability, respectively). To 
account for non-normal, zero-inflated, and over-dispersed C. race-
mosa cover and ramet count data, we used GLMMs with a negative 
binomial distribution. The canopy openness, air temperature, soil 
moisture, and herbaceous functional group cover models were run as 
LMMs with Gaussian distributions, and the herbaceous community 
richness model was run as a GLMM with a Poisson distribution. We 
ran all models using the lme4 package 1.1.35.1 (Bates et  al.,  2015) 
in R 4.3.1 (R Core Team, 2023) and used the lmerTest package 3.1.3 
(Kuznetsova et al., 2017) to calculate test statistics and p-values based 
on Satterthwaite (LMMs) and Laplace (GLMMs) approximations. We 
used the emmeans package 1.8.9 (Lenth, 2022) to calculate estimated 
marginal means for each management type and repetition grouping 
and the rsq package 2.6 (Zhang, 2022) to calculate the proportion of 
variation explained by the fixed effects in each model. Finally, to test 
for indirect effects of management inventions on abiotic habitat con-
ditions mediated by woody vegetation persistence and on herbaceous 
community composition mediated by abiotic habitat conditions and 
woody vegetation persistence, we built a piecewise structural equa-
tion model from eight linear mixed-effects models using the piecewis-
eSEM package 2.3.0 (Lefcheck, 2016) and the nlme package 3.1-164 
(Pinheiro et al., 2023; Appendix S3). The significance for all analyses 
was determined at an alpha of 0.05.

3  |  RESULTS

Percent cover of C. racemosa was reduced by chemical intervention 
(Table 2), which led, on average, to 16% less C. racemosa cover than 
physical intervention or no management (Figure 2). The number of 
C. racemosa ramets was also reduced by chemical intervention, how-
ever, we additionally found a main effect of management repetition 
(Table 2). On average, chemical intervention led to 58 fewer ramets 
than physical intervention or no management, and a second applica-
tion of chemical intervention led to three fewer ramets than a single 
application (Figure 2).

Canopy openness was raised by chemical intervention (Table  2). 
Combined chemical and physical intervention led to 24% greater open-
ness on average than unmanaged canopies after the first application 
but did not differ from other management treatment groups (Figure 3). 
Across growing seasons, daily air temperature and soil moisture varied 
greatly (Figures S8 and S9). Average JJA air temperature was raised by 
physical and chemical intervention and their combination, as well as man-
agement repetition (Table 2). All interventions were 1.6°C warmer on av-
erage after the first application than air temperatures in unmanaged plots 
following the second application (Figure 3). Average JJA volumetric soil 
moisture was not affected by management type but was by management 
repetition (Table 2). The greatest difference in soil moisture was between 
the combined chemical and physical interventions after one application 
and unmanaged plots following the second application, the latter being 
15% wetter than the former on average (Figure 3). Average daily 1st and 
99th percentiles of temperature and moisture responded similarly to 
management type and repetition as the averages (Table S6; Figure S10).
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    |  2025CHARTON and DAMSCHEN

TA B L E  2  Summary of mixed model results testing the effects of management type, management repetition, and soil sand content on 
woody plant persistence, abiotic habitat conditions, and herbaceous community composition. Results show the estimated coefficient (β), 
test statistic (z or t), and significance (p) for each fixed effect, along with the overall variance explained by the fixed effects (r2) for each 
model.

Model and fixed effects β z or t p r2

Cornus racemosa cover 0.278

Chemical intervention −2.977 −10.516 < 0.001***

Physical intervention 0.006 0.027 0.978

Chemical + physical intervention 0.002 0.004 0.997

Second application 0.118 1.501 0.133

Soil sand content −0.001 −0.117 0.907

Number of C. racemosa ramets 0.414

Chemical intervention −2.311 −9.309 < 0.001***

Physical intervention 0.074 0.314 0.754

Chemical + physical intervention 0.088 0.254 0.800

Second application −0.602 −6.062 < 0.001***

Soil sand content 0.009 1.505 0.132

Canopy openness 0.239

Chemical intervention 15.914 3.556 < 0.001***

Physical intervention 5.405 1.199 0.236

Chemical + physical intervention 1.294 0.204 0.839

Second application −3.164 −1.358 0.177

Soil sand content 0.256 1.338 0.193

Average JJA air temperature 0.427

Chemical intervention 0.562 4.744 < 0.001***

Physical intervention 0.390 3.130 0.003**

Chemical + physical intervention −0.433 −2.495 0.016*

Second application −1.077 −20.916 < 0.001***

Soil sand content −0.002 −0.268 0.790

Average JJA soil moisture 0.338

Chemical intervention −2.052 −1.094 0.277

Physical intervention −2.304 −1.173 0.244

Chemical + physical intervention 0.935 0.342 0.733

Second application 11.967 8.729 < 0.001***

Soil sand content 0.002 0.025 0.980

Herbaceous species richness 0.298

Chemical intervention −0.070 −0.944 0.345

Physical intervention 0.020 0.282 0.778

Chemical + physical intervention 0.125 1.220 0.222

Second application 0.044 1.027 0.304

Soil sand content 0.013 3.969 < 0.001***

Graminoid cover 0.045

Chemical intervention 4.440 0.863 0.393

Physical intervention −8.495 −1.643 0.107

Chemical + physical intervention 9.215 1.266 0.212

Second application −2.269 −0.987 0.325

Soil sand content −0.141 −0.605 0.549

(Continues)
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2026  |    CHARTON and DAMSCHEN

Herbaceous species richness was affected only by sand content 
(Table 2; Figure 4). However, the magnitude of effect sand content 
is predicted to have on richness is small; for every 77% increase in 
sand content, richness grows by just one. Graminoid cover was not 
significantly affected by any of the modelled predictors (Table  2; 
Figure 4). Forb cover was affected only by management repetition 
(Table 2), but this did not lead to differences in estimated marginal 
means (Figure 4).

The piecewise SEM indicated that there were indirect effects 
of management interventions on abiotic habitat conditions me-
diated by woody vegetation persistence and other abiotic habitat 

conditions and on herbaceous community composition mediated by 
abiotic habitat conditions (Table S7; Figure S11). Both canopy open-
ness and average JJA air temperature were positively affected by 
number of C. racemosa ramets and negatively affected by C. race-
mosa cover, while average JJA soil moisture was negatively affected 
by canopy openness and average JJA air temperature. Graminoid 
cover was positively affected by average JJA air temperature, while 
forb cover was negatively affected by canopy openness. However, 
the variances explained by the fixed effects of each component 
model were relatively low (Figure S11), and the overall fit of the SEM 
was poor (Fisher's C = 35.023, p = 0.068).

Model and fixed effects β z or t p r2

Forb cover 0.070

Chemical intervention −9.878 −1.637 0.109

Physical intervention −0.761 −0.126 0.901

Chemical + physical intervention 9.960 1.167 0.249

Second application −5.067 −2.324 0.021*

Soil sand content 0.465 1.900 0.072

Note: Significant predictors are indicated by asterisks where: *p < 0.05, **p < 0.01, and ***p < 0.001.

TA B L E  2  (Continued)

F I G U R E  2  Percent cover (above) and number of ramets (below) of Cornus racemosa across management interventions after one (left) and 
two (right) applications. Each point represents a subplot, where yellows represent higher soil sand content and blues lower. Box plots show 
the median (middle line), interquartile range (box), and one and half times the interquartile range (whiskers). Letters indicate significantly 
different management type and repetition group means.

 13652664, 2024, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14716 by U

niversity O
f W

isconsin - M
adison, W

iley O
nline Library on [12/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  2027CHARTON and DAMSCHEN

4  |  DISCUSSION

Our experiment demonstrates that: (1) chemical intervention is 
most effective at reducing woody plant persistence, and a second 
application reduces abundance more than one application alone 
(Figure 2), (2) any intervention can alter abiotic habitat conditions, 
matching expected historical conditions, with the combination of 
physical and chemical interventions having the greatest effects 
(Figure  3), and (3) management interventions do not affect her-
baceous community composition in the short term (Figure 4). This 
matched our first and, partially, our second hypothesis, but not our 
third.

The support we found for our first two hypotheses can be at-
tributed to the expected effects of physical versus chemical man-
agement on aboveground structure versus belowground function. 
Reduction in C. racemosa cover and abundance was likely linked to 
increased mortality with chemical intervention. This is a particularly 
important mechanism of control for resprouting woody species such 
as C. racemosa, as without mortality, ramets may repeatedly continue 
to regrow (Bellingham & Sparrow,  2000; Bond & Midgley,  2001). 
Anecdotally, physical intervention appeared to increase the re-
sprouting vigour of C. racemosa, consistent with findings that 
mowing, burning, and other management practices that alter only 
aboveground structure without affecting belowground function may 

F I G U R E  3  Canopy openness (above) and average June, July, and August temperature (middle) and soil moisture (below) across 
management interventions after one (left) and two (right) applications. Each point represents a subplot, where yellows represent higher soil 
sand content and blues lower. Box plots show the median (middle line), interquartile range (box), and one and half times the interquartile 
range (whiskers). Letters indicate significantly different management type and repetition group means.
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2028  |    CHARTON and DAMSCHEN

promote persistence or even further encroachment of resprouting 
woody species (Clark & Wilson, 2001; Eldridge & Ding, 2021; Miller 
et al., 2017). This may be partially attributed to clonal integration al-
lowing ramets outside the study plots to continue aboveground re-
source acquisition (e.g., photosynthesis) and transfer resources (e.g., 
carbon) to resprouting ramets within plots (Liu et  al.,  2016). Thus, 
physical intervention may be more effective at controlling species 
that are non-clonal and invest less in belowground versus abo-
veground biomass (e.g., non-resprouters; Pausas et al., 2015).

Chemical intervention was also necessary to increase overall 
canopy openness and thus light availability. However, air tempera-
ture increased with physical intervention, both with and without 

chemical intervention, consistent with intact woody vegetation 
inducing cooler mid-summer conditions (Breshears et al., 1998). In 
this case, altering aboveground structure was enough to tempo-
rarily return abiotic habitat conditions to those expected of intact 
grasslands, but with only physical intervention, these effects waned 
later in the season due to regrowth of the aboveground structure 
(Figure S8).

We did not find support for our third hypothesis in the short 
term, despite evidence of changes to woody vegetation persistence 
and abiotic habitat conditions that would be expected to benefit 
the herbaceous community. This is consistent with a recent global 
meta-analysis by Ding and Eldridge (2023) that suggests that woody 

F I G U R E  4  Herbaceous species richness (above) and graminoid (middle) and forb (below) cover across management interventions after 
one (left) and two (right) applications. Each point represents a subplot, where yellows represent higher soil sand content and blues lower. 
Box plots show the median (middle line), interquartile range (box), and one and half times the interquartile range (whiskers). There were no 
significantly different management type and repetition group means.
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    |  2029CHARTON and DAMSCHEN

plant management only reverses about half of the observed changes 
to herbaceous community composition that follow encroachment. 
This same study also suggests that management outcomes change 
through time, as feedbacks result in different short- and long-term 
effects. Without changes to the feedbacks that maintain woody 
plant persistence in the short term, it is unlikely that compositional 
changes will be revealed in the long term. Since we did observe 
short-term effects of management on some of the conditions in-
volved in woody encroachment feedbacks, compositional effects 
may occur in the long term. Additionally, richness and functional 
group cover are fairly coarse estimates of herbaceous community 
composition. More nuanced measures, such as species cover, spe-
cies turnover, and diversity metrics, might respond to management 
on shorter timescales.

Surprisingly, soil moisture did not affect management outcomes. 
Globally across many different grassland ecosystems, there is evi-
dence that management is more effective and leads to greater struc-
tural changes at mesic sites (Ding & Eldridge, 2019). This may be due 
to the common observation that woody plants have higher cover 
and abundance at mesic sites (e.g., Ratajczak et al., 2014), however, 
this observation was only partially supported by our pre-treatment 
data (Figure S4). In ecosystems where the range of variation in soil 
moisture is low, moisture may not effect encroachment or man-
agement. Regardless, management outcomes are highly site- and 
system-specific, so more research is needed to understand what 
aspects of environmental heterogeneity drive variation in outcomes 
within and between regions.

To better manage encroached grasslands, there remains a need 
to better understand how management alters feedbacks, however, 
we often assess only woody plant persistence and herbaceous com-
munity composition without considering abiotic habitat conditions 
that may link the two. Research can help guide the effectiveness of 
the work orchestrated globally to conserve and restore grasslands, 
especially when managers are resource-limited (Cortina-Segarra 
et al., 2021; Peters et al., 2018).

4.1  |  Management recommendations

Given limited resources, our findings suggest that management 
should focus on chemical intervention for the greatest effects on 
woody plant persistence and abiotic habitat conditions. We ob-
served an added effect of a second chemical intervention, which 
may be a mechanism to promote longer-lasting effects. However, 
chemical intervention may impact non-target organisms, such as the 
herbaceous community, and, moreover, may not always be a feasible 
solution due to ecological, safety, and legal concerns (e.g., herbicide 
bans, as per the European Union Habitats Directive). Alternative ap-
proaches include reintroduction of disturbance (e.g., fire, grazing), 
which can prevent continued encroachment but typically does lit-
tle to reduce woody vegetation (Judge, 2020; Miller et al., 2017), or 
belowground physical intervention (e.g., trenching and uprooting; 
Smith et al., 2013; Utaile et al., 2023), which can be time-consuming 

and disturb herbaceous species. Though we did not observe prom-
ising effects of aboveground physical intervention on its own, and 
anecdotally observed it increase resprouting vigour, it may be more 
effective if used both mid-summer (rather than at the onset of the 
growing season) and across many years (R. Hoffman, personal com-
munication, 25 May 2023), which needs to be tested. Finally, man-
agers in our region can anticipate similar management outcomes at 
sites with different moisture availability.
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