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Abstract Although different animal species often exhibit extensive variation in many behaviors,
typically scientists examine one or a small number of behaviors in any single study. Here, we
propose a new framework to simultaneously study the evolution of many behaviors. We measured
the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques
and identified all stereotyped movements exhibited by each species. We then fit a Generalized
Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using
the known phylogenetic relationships among species, we estimated the (unobserved) behaviors
exhibited by ancestral species. We found that much of intra-specific behavioral variation has a
similar covariance structure to previously described long-time scale variation in an individual’s
behavior, suggesting that much of the measured variation between individuals of a single species in
our assay reflects differences in the status of neural networks, rather than genetic or
developmental differences between individuals. We then propose a method to identify groups of
behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors,
rather than individual behaviors, likely evolved. Our approach provides a new framework for
identifying co-evolving behaviors and may provide new opportunities to study the mechanistic
basis of behavioral evolution.

Introduction

Behavior is one of the most variable and rapidly evolving phenotypes, with notable differences even
between closely related species (Lorenz, 1958; Martins, 1996). Variable behaviors and rapid behav-
ioral evolution likely facilitates adaptation to new or varying environments and speciation (Baier and
Hoekstra, 1914; West-Eberhard, 2003). Despite the importance of animal behavior, progress in
revealing the genetic basis of behavioral evolution has been slow (Gleason and Ritchie, 2004;
Yamamoto and Ishikawa, 2013; Ellison et al., 2011; Shaw and Lesnick, 2009). In contrast, recent
decades have seen significant progress in understanding the genetic causes of morphological evolu-
tion (Williams and Carroll, 2009; Shubin et al., 2009; Levine and Davidson, 2005; Stern and
Frankel, 2013).

While there are many potential reasons for the discrepancy between studies of behavioral and
morphological evolution, including the lack of a fossil record for behavior, a key difficulty has been
identifying which aspects of an animal’s development and physiology are the proximate causes of
behavior evolution. Evolutionary changes in behavior could emerge from alterations in the
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developmental patterning of neural circuits (e.g., brain networks, descending commands, central
pattern generators), changes in hormonal regulation that influence neural activity, or even from
changes in non-neuronal morphology (Baker et al., 2001; Massey et al., 2019). Each of these possi-
bilities could result in behavioral effects at different, yet overlapping, timescales — from muscle
twitches to stereotyped suites of behaviors to longer-lived states like foraging or courtship or aging
that may control the relative frequency of a given behavior. This complexity may make it difficult to
identify the precise aspects of behavior that have evolved.

To address these difficulties, the standard approach in the genetic study of behavioral evolution
has been to identify focal behaviors that exhibit robust differences between species, such as court-
ship behavior in fruit flies (Cande et al., 2012; Cande et al., 2014; Ding et al., 2019) or burrow for-
mation in deermice (Weber et al., 2013; Hu and Hoekstra, 2017). It has been possible to identify
genomic regions that correlate with quantitative changes in focal behaviors. However, usually multi-
ple genomic regions are identified, each containing many genes. Given the large number of putative
genes involved, combined with the possibility of epistatic interactions between loci, identification of
the contributions of individual genes to behavioral evolution has progressed slowly.

An alternative approach to focusing on single behaviors is to examine the full repertoire of move-
ments that an animal performs. By identifying sets of behaviors that evolve together, as was recently
performed for hand-tuned traits in a study of birds-of-paradise evolution (Ligon et al., 2018), it may
be possible to identify regulators of these suites of behaviors. This approach has been thwarted by
the challenge of robustly measuring multiple behavioral phenotypes simultaneously. Recent progress
in the unsupervised identification of animal behaviors across length and time scales, however, has
made this approach possible (Berman, 2018; Brown and de Bivort, 2018). In this study, we intro-
duce a quantitative framework for studying the evolutionary dynamics of large suites of behavior.
We have focused initially on fruit flies, which provide a convenient model for this problem - both
because they exhibit a wide range of complex behaviors and because unsupervised approaches can
be used to map all of the animal movements captured in video recordings (Berman et al., 2014;
Cande et al., 2018; Berman et al., 2016).

We recorded movies of isolated male flies from six species in a nearly stimulus-deprived environ-
ment. Because we did not record flies experiencing social and other environmental cues, we did not
observe many charismatic natural behaviors, such as courtship and aggression. Nevertheless, we
found that the behaviors they performed, including walking and grooming, contain species-specific
information. We thus hypothesized that our quantitative representations of behaviors could be stud-
ied in an evolutionary context. To infer the evolutionary trajectories of behavioral evolution, we esti-
mated ancestral behavioral repertoires with a Generalized Linear Mixed Model (GLMM) approach
(Hadfield, 2010), which builds upon Felsenstein’s approach to reconstructing ancestral states (Fel-
senstein, 1985, Felsenstein, 2005; Hadfield and Nakagawa, 2010; O’Meara, 2012). Using these
results, we develop a framework that allows us to model the behavioral traits that co-vary both
within a species and along the phylogeny. We found that within-species variance has a similar struc-
ture to long-lasting internal states of the animal that we characterized previously, and that inter-spe-
cies variance can capture how disparate behaviors may have evolved together. This latter finding
points toward the presence of higher order behavioral traits that would not have been detected by
studying individual behaviors in isolation and that may be amenable to further evolutionary and
genetic analysis.

Experiments and behavioral quantification

We captured video recordings of all behaviors performed by single flies isolated in a largely feature-
less environment for multiple individuals from six species of the Drosophila melanogaster species
subgroup: D. mauritiana, D. melanogaster, D. santomea, D. sechellia, D. simulans, and D. yakuba
(Cande et al., 2018). Although the animals could not jump or fly in these chambers and were not
expected to exhibit social or feeding behaviors, the flies displayed a variety of complex behaviors,
including locomotion and grooming. Each of these behaviors involves multiple body parts that move
at varying time scales. The species studied here were chosen because their phylogenetic relation-
ships are well understood (Clark et al., 2007, Obbard et al., 2012; Chyb and Gompel, 2013,
Seetharam and Stuart, 2013) (summarized in the tree seen in Figure 3), and genetic tools are avail-
able for most of these species (Stern et al., 2017). Since a single strain represents a genomic ‘snap-
shot’ of each species, we assayed multiple individuals from each of multiple strains of each species
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to attempt to capture species-specific differences, and not variation specific to particular strains (see
Materials and methods). In total, we collected data from 561 flies, each measured for an hour at a
sampling rate of 100 Hz.

While previous studies have identified differences in specific behaviors, such as courtship behav-
ior, between these species (Cande et al., 2012; Ding et al., 2019, Yamamoto and Ishikawa, 2013;
Auer and Benton, 2016), here we assayed the full repertoire of behaviors the flies performed in the
arena, with the aim of identifying combinations of behaviors that may be evolving together. To mea-
sure this repertoire, we used a previously described behavior mapping method (Berman et al.,
2014; Cande et al., 2018) that starts from raw video images and finds each animal’s stereotyped
movements in an unsupervised manner. The output of this method is a two-dimensional probability
density function (PDF) that contains many peaks and valleys (Figure 1A), where each peak corre-
sponds to a different stereotyped behavior (e.g., right wing grooming, proboscis extension, running,
etc).

Briefly, to create the density plots, raw video images were rotationally and translationally aligned
to create an egocentric frame for the fly. The transformed images were decomposed using Principal
Components Analysis into a low-dimensional set of time series. For each of these postural mode
time series, a Morlet wavelet transform was applied, obtaining a local spectrogram between 1 Hz
and 50 Hz (the Nyquist frequency). After normalization, each point in time was mapped using t-SNE
(van der Maaten and Hinton, 2008) into a two-dimensional plane. Finally, convolving these points
with a two-dimensional gaussian and applying the watershed transform (Meyer, 1994), produced
134 different regions, each of these containing a single local maximum of probability density that
corresponds to a particular stereotypical behavior. We integrate over this local region of the proba-
bility density to calculate the probability that a fly is performing this behavior at a random point in
time. Thus, we can associate each fly with a 134-dimensional real-valued vector that represents the
probability of the fly performing a certain stereotyped behavior at a given time during the hour-long
experimental session. We will refer to this quantity as the animal’s behavioral vector, P.

The behavioral map averaged across all six species is shown in Figure 1A and displays a pattern
of movements similar to those we found in previous work, where locomotion, idle/slow, anterior/
posterior movements, etc. are segregated into different regions (Berman et al., 2014; Cande et al.,
2018). Averaging across all individuals of each species, we found the mean behavioral vector for
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Figure 1. Behavioral repertoires of Drosophila. (A) The behavioral space probability density function, obtained using the unsupervised approach

described in Berman et al., 2014

on the entire data set of 561 individuals across all species. Coarse grained behaviors corresponding to the different

types of movements exhibited in the map are shown as well. (B) The relative performance of each of the 134 stereotyped behaviors for each of the six
species. Each region here represents a behavior, and the color scale indicates the logarithm of the fraction of time that each species performs the

specified behavior divided by the average across all species.
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each species (Figure 1B) and observed that each species performs certain behaviors with different
probabilities. For example, D. mauritiana individuals spend more time performing fast locomotion
than all other species on average, and D. yakuba individuals spend much of their time performing an
almost species-unique type of slow locomotion, but little time running quickly.

These average probability maps provide some insight into potential species differences, but to
identify species-specific behaviors, we also need to account for variation in the probability that indi-
viduals of each species perform each behavior. One way to address this problem is to ask whether
an individual's species identity can be predicted solely from its multi-dimensional behavioral vector.
To explore this question, we first used t-SNE to project all 561 individuals into a two-dimensional
plane (Figure 2A), using the Jensen-Shannon divergence as the distance metric between individual
behavioral vectors. In this plot, different colors represent different species, and different symbols
with the same color represent different strains within the same species. Although species do not
segment cleanly into separate regions of this plane, the distribution of species is far from random,
with individuals from the same species tending to group near to one other. Given this structure,
there is likely species-specific information in the behavioral vectors.

To quantify this observation, we applied a multinomial logistic regression classifier to the data,
performing a six-way classification based solely on the high-dimensional behavioral vectors. After
training, the classifier correctly classified 89 & .2% of vectors in our test set (a randomly selected 30%
of the entire data set that was not used during training). Moreover, the confusion matrix (Figure 2B)
revealed no systematic misclassification bias amongst the species. Note that we have used a rela-
tively simple classifier compared to modern deep learning methods (Goodfellow et al., 2016), so
these results likely represent a lower bound on the distinguishability of the behavioral vectors. Thus,
the behavioral vectors contain considerable species-specific information. We therefore proceeded to
explore how these behavioral vectors may have evolved along the phylogeny.
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Figure 2. Classification of fly species based on behavioral repertoires. (A) A t-SNE embedding of the behavioral repertoires shows that behavioral
repertoires contain some species-specific information. Each dot represents one individual fly, with different colors representing different species and
different symbols with the same color representing different strains within the same species. The distance matrix (561 by 561) used to create the
embedding is the Jensen-Shannon divergence between the behavioral densities of individual flies. (B) Confusion matrix for the logistic regression with
each row normalized. All the values are averaged from 100 different trials. The standard error is less than 0.01 for the diagonal elements and less than
0.005 for each of the off-diagonal elements.
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Reconstructing ancestral behavioral repertoires
Multiple methods have been proposed for reconstructing ancestral states from data collected from
extant species (Felsenstein, 1985; Felsenstein, 2005, Yang, 2006, O’Meara, 2012; Royer-
Carenzi and Didier, 2016). These methods generally fall into two camps: parsimony reconstruction,
which attempts to reconstruct evolutionary history with the fewest number of evolutionary changes
(Cunningham et al., 1998), and diffusion-processes, which model evolution as a random walk on a
multi-dimensional landscape (Hadfield and Nakagawa, 2010). Given the high-dimensional behav-
ioral vectors that we are attempting to model, a diffusion process is more likely to capture the inter-
trait correlations that we would like to understand. Thus, we focus on a diffusion-based model here.
Given a phylogeny for a collection of species, we modeled how species-specific complexes of
behaviors might have emerged. We assumed that each animal’s behavior is a quantitative trait with
an additive random effect, that is, each animal’s behavior is a trait that results from the additive
effects of many genetic loci, each of small effect, that is combined with a non-genetic effect that rep-
resents inter-specific variation. We do not, however, assume that all behaviors evolve independently
of each other. Thus, we are interested in predicting (1) whether intra- and inter-species variation can
be separated to identify independently evolving sets or linear combinations of behaviors and (2)
how behaviors co-vary along the phylogeny, potentially revealing co-evolving suites of behaviors.
We assumed that the observed flies’ behaviors evolved via a diffusion process with Gaussian
noise from a common ancestor along the known phylogenetic tree. Note that this is a less restrictive
assumption than neutrality, as multiple traits under selection may evolve in a correlated manner.
Specifically, we fit a multi-response Generalized Linear Mixed Model (GLMM) to the data, using the
approach described in Hadfield, 2010, modeling the evolutionary process such that the logarithm

of the behavioral vector, B, for each individual (I = (11, ..., Ix—134)), is given by
[=ji+p+é, M

where ji is the mean behavior of the common ancestor (treated as the fixed effects of this model),
and g and € are the random effects corresponding to the phylogenetic and individual variability,
respectively. We assume that these random effects are generated from the multi-dimensional normal
distributions /(0,4 ® V@) (phylogenetic) and A(0,1 ® V() (individual). Here, the matrix A represents
the information contained in the phylogenetic tree, with A;; being proportional to the length of the
path from the most recent common ancestor of species i and j to the common ancestor. A is normal-
ized so that the diagonal elements are all equal to 1. Therefore, A; represents the phylogenetic simi-
larity between a pair of species. I is the identity matrix, and V@ and V() are the phylogenetic and
within-species covariance matrices, respectively.

We fit u, V@, and V() using Markov Chain Monte Carlo (MCMC) simulations, confirming that the
MCMC converged using the Gelman-Rubin diagnostic (see Materials and methods, Figure 3—figure
supplement 1). In addition, our model is able to infer the mean endpoint behavioral repertoires (Fig-
ure 3—figure supplement 2), providing confidence that our model is consistent with our input data.
In addition to the inferred behavioral states corresponding to the common ancestor, PA"¢, we also
reconstructed the mean behavioral representations for the intermediate ancestors (Figure 3).

We also found that the model that allows behavioral co-evolution out-performs a model where
each behavioral trait evolves independently. Specifically, we fit a model where behavioral correla-
tions between individuals of different species were removed by enforcing that V@ and V(¢) must be
diagonal matrices, a reduction of more than 17,500 parameters compared to the full model (see
Materials and methods for details). The phylogenetic ancestral reconstruction was then made for
each behavioral trait separately. To compare the relative performance of these models, we used the
Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002), a commonly used assessment tool
for MCMC-fit hierarchical models that lack a good estimate for the number of effective parameters.
Like other information-theoretic model selection criteria (e.g., the Akaike Information Criterion or
the Bayesian Information Criterion), smaller values of the DIC imply a larger posterior probability of
the model given the available data. Despite the large reduction in the number of parameters for the
independent-trait model, the DIC for the independent-trait model was substantially higher
(DIC = (242 +2) x 10%) than the DIC for the full model (DIC = (114 £2) x 10%). Moreover, the full
model was able to predict the inter- and intra-species covariances between dissimilar pairs of
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Figure 3. Reconstructed behavioral repertoires using the GLMM. Inferred probabilities of the behavioral traits for the ancestral states are plotted at the
denoted locations along the phylogeny. Except for the common ancestor, ancestral states are plotted with respect to the closest ancestor. For each
behavioral trait, i, in the intermediate ancestors, we show: log(P;) — log(i’?”"), where Pi and P?"" correspond to the inferred mean behavioral trait for the
given ancestor and its closest ancestor, respectively. Coarse grained behaviors corresponding to different types of movements are shown on the top

right corner.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Gelman Rubin diagnostic for model parameters inferred using MCMC.
Figure supplement 2. Comparison between measured and inferred behaviors (on a log scale) for each of the extant species.
Figure supplement 3. Comparison of the independent focused trait approach vs the repertoire approach for a pair of behaviors.

behaviors (Figure 3—figure supplement 3). Hence, modeling the evolution of the full behavioral
repertoire captures the structure of the observed data better than a single trait approach.

Individual variability and long timescale correlations

While it is not possible to directly test the accuracy of our ancestral state reconstructions (Figure 3),
the inferred covariance matrices generate predictions about behavioral and genetic correlations that
are, in principle, testable. We therefore focus on the fitted covariance matrices, V(© and V(@ (each in
R334 which account for within-species and phylogenetic random effects, respectively.

We will focus first on the intra-species covariance matrix, V€. We note first that the matrix exhib-
its a modular structure (Figure 4A). After rearranging the behavior order via an information-based
clustering procedure (Slonim et al., 2005), we see that a block diagonal pattern emerges, with posi-
tive correlations lying within the blocks and negative correlations lying off the diagonal. The details
of this particular clustering approach are described in Materials and methods, but we find that the
results are nearly identical for several different clustering methodologies (Figure 4—figure supple-
ment 1). Quantifying the matrix's modularity via the average within-cluster dissimilarity,

1 vy
(d)=>_p(C) Y 5|1 -———| )
k

ijeCy VZ.E.E) VJ&"’)

where C; is the set of all behaviors belonging to the k th cluster, we find that (d)=~0.30 and 0.22 for
the 3- and 6-cluster solutions, respectively. These values are significantly smaller than the average
distances obtained using random cluster assignments ((d) =0.46 £0.03 and 0.45+0.04 for 3 and 6
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Figure 4. The structure of variability between flies of the same species relates to long timescale transitions in behavior. (A) The intra-species behavioral
covariance matrix (V(©)), with columns and rows ordered via an information-based clustering algorithm (Slonim et al., 2005). The black squares
represent behaviors that are grouped together in the three-cluster solution. (B) Behavioral map representation of the clustering solutions. The two-,
three-, and six-cluster solutions are shown on top (colors on the three cluster solution match those above the plot in A). The clusters are all spatially
contiguous and break down hierarchically (see Figure 4—figure supplement 1 for more examples). (C) Clustering structure of the behavioral space
obtained finding the optimally predictive groups of behaviors (see text for details). Note how these clusterings are very similar to the clusterings in B,
despite having been derived from an entirely independent measure.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Behaviors clustered according to the individual covariance matrix using three different clustering methods.
Figure supplement 2. Modularity of the intra-species behavioral covariance matrix using information based clustering.
Figure supplement 3. Coarse-grained behavioral representations that are optimally predictive of the future behavior states via DIB.

clusters respectively, see Figure 4—figure supplement 2 for other numbers of clusters and cluster-
ing methods). Thus, we can conclude that the intra-specific covariance matrix has a far-from-random
modular structure, implying that between individuals of the same species, groups of behaviors tend
to vary together in a stereotyped manner.

Moreover, these groups of behaviors that co-vary together within a species are not random col-
lections of behaviors. Instead, we found that co-varying clusters are spatially contiguous in the
behavioral map, implying that covariances of groups of similar behaviors (behaviors involving moving
similar parts of the animals’ bodies at similar speeds) compose much of the observed intra-species
variance. The clustering method does not take the spatial structure of the behavioral map into
account at all (just the values in V), so the clusters of local behaviors in the behavior map reflect
underlying similarity in the covariance of nearby behaviors, rather than an artifact of the algorithm.
Moreover, co-varying clusters are hierarchically organized, where coarse-grained co-varying behav-
iors can be sub-divided into smaller co-varying clusters (Figure 4B), a feature that is not guaranteed
by the information-based clustering algorithm.

This hierarchical structure of the behavioral map is reminiscent of the hierarchical temporal struc-
ture of behavior that was hypothesized originally by ethologists (Tinbergen, 1951; Deutsch et al.,
2020) and was observed to optimally explain the history-dependent long timescale non-stationary
structure of Drosophila melanogaster behavioral transitions (Berman et al., 2016). Thus, we hypoth-
esized that the structure of the intra-species covariance matrix might be linked to deviations from
statistical stationarity in the behavioral data that were not explicitly measured in the unsupervised
clustering or modeled in the GLMM.
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To explore this connection further, we performed an analysis that is analogous to the single-spe-
cies study in Berman et al., 2016, finding coarse-grainings of the behavioral space (i.e., a descrip-
tion of the behavioral space using fewer behaviors) that are optimally predictive of the future
behaviors that the flies perform. Specifically, if () is the behavior that a fly performs at time 7, we
would like to create a clustered version of our behavioral map, Z, such that we maximize the infor-
mation that z(¢) € Z, the cluster that the fly is in at time ¢ contains as much information about the
future behavior of the fly, b(r + 7) as possible. To keep Z from separating each behavior into its own
cluster, we also need to make sure that Z is as simple a clustering as possible (i.e., a smaller number
of clusters and a more even distribution of time spent within each clusters).

To be more precise, we calculated Z using the the Deterministic Information Bottleneck (DIB)
method (Strouse and Schwab, 2017). This approach minimizes the functional

Jr=—1(Z(1t);Z(b+ 7))+ yH(Z), (3)

where b(t+ 7) is a fly's behavior at time 1+ 7, Z(r) is the coarse-grained behavior visited at time z,
I(b(t);Z(t + 7)) is the mutual information between these quantities, vy is a positive constant, and H(Z)
is the entropy of the coarse-grained representation (see Materials and methods). As vy is increased,
progressively simpler, but less predictive, representations are found.

Applying this method to the data, pooled across all six species and using 7 = 50 (Figure 4C, Fig-
ure 4—figure supplement 3), we found the same hierarchical division of the behavioral map that
was observed for freely moving D. melanogaster (Berman et al., 2016). Moreover, we found that
the structure of the space using this approach closely mirrors the structure found via directly cluster-
ing the intra-species covariance matrix, V(¢ (Figure 4C). Quantifying the similarity between both
clustering partitions by calculating the Weighted Similarity Index (WSI), a modification of the Rand
Index (Rand, 1971) (Materials and methods), the WSI between the information-based clustering
method and the predictive information bottleneck for three clusters is WSI = 0.73, and WSI = 0.87
for six clusters. For random clusterings, we would expect to observe 0.51 £ 0.02 and 0.70 + 0.01 for 3
and 6 clusters, respectively, indicating a non-random overlap between these two partitions. Fig-
ure 4—figure supplement 1, shows that this result is independent of the clustering method and the
number of clusters.

The overlap between these two coarse-grainings indicates that most individual variability in the
behaviors we observe results from non-stationarity in behavioral measurements, rather than from
individual-specific variation. That is, much of the intraspecific variation appears to reflect flies
recorded when they were experiencing different hidden behavioral states (e.g., circadian state, hun-
ger, etc.), rather than reflecting fixed (environmental or genetic) differences between flies. This varia-
tion may have arisen because, although we controlled many variables (e.g., fly age, circadian cycle,
temperature, and humidity), it is not possible to control for all internal factors (e.g., hunger, arousal,
etc.) that affect an animal’s behavioral patterns (Anderson, 2016). The temporal coarse-graining of
the behavioral space that we found via the DIB provides insight into these non-stationarities, as they
are optimally predictive of the fly’s future behaviors. Given the contiguous nature of these regions,
this result means that flies tended to stay within specific regions of the behavioral space much longer
than one would assume from a Markov model, hinting that there is an important connection
between variability across animals and variability between animals.

More precisely, these results imply that variation in behavior observed among individuals, espe-
cially in non-manipulated settings, may often reflect a large component of hidden behavioral states
(Figure 5A). Thus, it may be possible to improve upon behavioral measurements in many settings by
controlling for the variability associated with these hidden states. For example, just because one fly
performs less anterior grooming than another may reflect that the animal is in a different long time-
scale behavioral state, rather than that the animal has a genetically encoded preference for reduced
grooming.

A potential method for accounting for these artifacts is to normalize each individual's behavioral
density such that the amount of time that the animal spends in each of the coarse-grained regions is
equalized. In other words, the amount of time spent anterior grooming, locomoting, etc. are set to
be the same for all animals, thus accounting for the variability associated with the inferred hidden
states. Mathematically, if P; is the probability of observing behavior i, and C; is the clustering assign-
ment of this behavior, we can define a normalized probability, P;, via
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Figure 5. Variability within a species, long timescale transitions, and hidden states modulating behavior. (A) A cartoon of the hypothesized relation
between individual variability within a species and long timescale transitions through hidden states. (B) Accounting for the long timescale dynamics - by
adjusting for the amount of time spent in each coarse-grained region (here, the six cluster solution at the top right of Figure 4C) - affects the measured
behavioral distributions between D. santomea and D. yakuba. Shown is the comparison of the Mahalanobis distance ((z”);) between behavioral
distributions before (x-axis) and after (y-axis) adjusting. (C) Kernel density estimates of the distributions for the circled behaviors in (B) on the left before
(left) and after (right) adjustments. Solid lines represent D. santomea and dashed lines represent D. yakuba.

(4)

where P,(C) =3P is the total density in cluster C for an individual fly and P(©) is the average

across all animals.

We found that applying this normalization to our data often results in substantial changes in the
inferred distributions of behavioral densities. For example, Figure 5B displays how the difference in
behavioral density between D. santomea and D. yakuba (as measured by the Mahalanobis distance
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between the distributions) alters as a result of normalization. For some behaviors, the signal
increases (red points), and in some cases, it decreases (blue points). Thus, it is important to take
these non-stationary effects into account when estimating how often single behaviors are performed
in studies of behavioral evolution. To measure these non-stationary effects, many behaviors must be
measured, not just a focal behavior, thus partially explaining the relative success of our multi-trait
model compared to a model where each trait is analyzed independently.

Identifying phylogenetically linked behaviors

One of the advantages of our approach is that we separate variations in behavior corresponding to
evolutionary patterns, the phylogenetic variability, from variations among individuals of the same
species. By studying the properties of the phylogenetic covariance matrix (V(@), we can identify mul-
tiple behaviors that may have evolved together.

We first characterized the coarse-grained structure within V@ through the information-based
clustering used in the previous section (Slonim et al., 2005) (see Materials and methods). As seen in
Figure 6A, the phylogenetically co-varying clusters are not spatially contiguous in the behavioral
map. This finding is in contrast to the spatial contiguity we observed for the intra-species covariance
matrix (Figure 4B). For example, the two-cluster solution (Figure 6A, left) groups the behavioral
space into side legs movements (middle of the behavioral map) and certain locomotion gaits (far left
of the behavioral map) versus the rest of behaviors. Similarly, when the matrix is clustered into a
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Figure 6. Phylogenetic variability and behavioral meta-traits. (A) (top) Clustering the phylogenetic covariance matrix (using the same information-based
clustering method from Figure 4), we observe that the clusters are no longer spatially contiguous. (bottom) The phylogenetic covariance matrix
reordered according to four clusters (colors corresponding to the four-cluster map above). (B) Fraction of variance explained by the largest eigenvalues
of the phylogenetic covariance matrix. (C) The eigenvectors corresponding to the largest six eigenvalues. (D) Distributions of the projections of
individual density vectors from D. santomea and D. yakuba onto eigenvector 3. (E) Same as in D but using projections of individuals from D. sechellia
and D. simulans onto eigenvector 4. (F) Same as in D but using projections of individuals from D. simulans and D. mauritiana onto eigenvector 5.
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larger number of clusters, correlated groups are not contiguously arranged within the behavior map.
Thus, our model predicts that many non-similar behaviors are evolving in a correlated manner.

To quantify these patterns as traits, we decomposed V@ via an eigendecomposition. As seen in
Figure 6B, almost all of the variance within the matrix can be explained with only the first six
eigenmodes. These eigenvectors (Figure 6C) share similar non-local structure to the clusterings
described above. By projecting individual behavioral vectors onto these eigenvectors, the resulting
dot products represent a meta-trait that is a linear combination of phylogenetically linked behaviors.

These evolving meta-traits may be suitable targets for further neurobiological or genetic studies.
Three examples of these distributions are shown in Figure 6D-F for several pairs of closely related
species. These three examples were not chosen at random, but instead because they showed signifi-
cant differentiation between species. The aim of this analysis is not to show that all meta-traits would
differ between all pairs of species, which is unlikely, but rather that it is possible to identify synthetic
meta-traits that could be further interrogated with experimental methods.

Discussion

We have developed a quantitative framework to study the evolution of behavioral repertoires, using
fruit flies (Drosophila) as a model system. We started with observations of 561 individuals from six
extant species behaving in an unremarkable environment. This assay did not include social behaviors,
such as courtship and aggression, nor many foraging behaviors. Thus, at first glance, it might seem
like we had excluded most species-specific behaviors from the analysis. Nonetheless, we found that
other complex behaviors, like walking, running, and grooming, exhibit species-specific features that
can be used to reliably assign individuals to the correct species. Thus, the motor patterns of behav-
iors that are not normally investigated for their species-specific features are likely evolving between
even closely related species. It is not clear, however, if these differences reflect natural selection or
genetic drift. All of these behaviors are critical to individual survival, however, so it is possible that
these behaviors have evolved, at least in part, in response to natural selection. It is clear, however,
that the underlying mechanisms, and perhaps the neural circuitry, controlling these behaviors must
have evolved.

Inspired by these observations, we estimated patterns of behavioral evolution in the context of a
well-understood phylogeny. We fit a Generalized Mixed Linear Model to our behavioral measure-
ments and the given phylogeny to reconstruct ancestral behavioral repertoires and the intra- and
inter-species covariance matrices. We found that the patterns of intra-species variability are similar
to long timescale behavioral dynamics that violate statistical stationarity - a result we reported previ-
ously in a study of a single species (Berman et al., 2016). This result suggests that much of the intra-
specific variability that emerged by sampling flies under well-controlled conditions reflects variability
in the hidden behavioral states of individual flies. While it may be challenging to conceptualize that
seemingly simple behaviors, like the pace of walking and running, are reflective of an underlying
long time scale behavior state, many short time scale behaviors, such as the individual movements
involved in grooming (Seeds et al., 2014), courtship (Calhoun et al., 2019; Deutsch et al., 2020)
and aggression (Hoopfer, 2016; Duistermars et al., 2018) reflect behaviors performed only, or
mainly, in the context of a longer lasting behavioral state. These types of long timescale variability
may be a statistical confound for evolutionary and experimental studies of behavior. We therefore
propose a method to control for these internal states by normalizing the frequency of behaviors rela-
tive to an estimate of an animal’'s non-stationary states. This method improved the accuracy of
behavioral phenotyping and dramatically altered estimates of some species-specific behaviors. For
more focused studies, it may not be necessary to measure the full suite of behaviors to effectively
normalize for behavioral state, since state can sometimes be estimated from a smaller number of
behaviors. In fact, targeted studies of charismatic behaviors, including behaviors associated with
aggression or courtship, often implicitly normalize by behavioral state.

Given our estimates for how suites of behaviors evolved, we examined whether the inter-species
covariance matrix could be used to identify behavioral meta-traits that might be subjected to further
evolutionary and experimental analysis. We identified multiple suites of behaviors that differed
between closely related species, providing a starting point for further analysis of how the mecha-
nisms underlying these suites of behaviors have evolved.
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There are multiple possible interpretations of these phylogenetically correlated behaviors. For
instance, at the neural level, each of these groups of movements may reflect a motor response to
shared upstream commands (Cande et al., 2018). Here, for example, different types of locomotion
might be controlled through the same descending neural circuitry, but due to evolutionary changes,
the same commands could lead to different behavioral outputs, as has been observed in fly court-
ship patterns (Ding et al., 2019). Alternatively, at the genetic level, multiple behaviors may be linked
by pleiotropic effects of individual genetic changes. Finally, groups of co-evolving traits may not be
linked mechanistically, but co-evolution may instead reflect selection on suites of behaviors. For
example, the male neurons that drive fly courtship song production in the ventral nerve cord are
unlikely to be related to the female neurons in the central brain that perceive and interpret the
courtship song. Nonetheless, these traits co-evolve such that females tend to prefer songs produced
by males of their own species (Bennet-Clark and Ewing, 1969; Ding et al., 2019).

The analysis framework introduced here represents the first attempt to analyze full behavioral
repertoires to gain insight into evolution. In principle, this approach could be applied to any data set
where a large number of behaviors have been sampled in many species. However, there are several
areas where one could add future improvements to this approach. First, we recorded behavior from
only six species of flies. Adding additional species would place more constraints on the evolutionary
dynamics, likely resulting in less variance in the ancestral state estimations and potentially adding
more structure to the relatively low rank (i.e., highly modular) covariance matrices. Additionally, fur-
ther work is required to determine the balance between sampling within and between strains and
species that optimizes estimates of evolutionary dynamics.

Second, our framework assumes that all evolutionary changes in behavior resemble a diffusion
process. Although this assumption is a reasonable initial hypothesis (Felsenstein, 1985), it may be
possible to test this assumption. For example, deeper sampling of additional species may allow iden-
tification of specific behaviors on particular lineages where neutrality can be rejected (Tajima, 1993).
If evidence emerges that the analyzed behaviors do not evolve under a diffusion process but under
stabilizing selection, for example, the model for ancestral reconstruction can be changed from a
Brownian motion to an Ornstein-Uhlenbeck process (Martins and Hansen, 1997, Hansen and Mar-
tins, 1996; Royer-Carenzi and Didier, 2016). Such a change can be implemented by altering the
structure of the phylogenetic matrix, A(Martins and Hansen, 1997; Caetano and Beaulieu, 2020),
but without other alterations to the overall methodology presented here.

Another potential limitation of our analysis is that some of the observed inter-specific differences
may reflect species-specific responses to environmental factors like room temperature or humidity,
rather than underlying genetic or developmental factors. Two observations mitigate against this pos-
sibility, however. First, there were no significant differences in overall activity level of the different
species, which would be a key indicator of environment-induced covariance. Second, the intra-spe-
cies covariance matrix (derived from data from all species) agrees well with previous findings within
a single species (Berman et al., 2016), implying that many of the potential environmental co-varying
factors are shared across all six species.

In addition, all of our current analyses ignored the temporal structure of behavior and sequences
of movements. While we found that the intra-specific variance has a similar structure to temporal
structure that we reported previously (Berman et al., 2016), the order in which behaviors occur may
also provide important biological information, especially during events like courtship or aggression.
It should be possible to incorporate temporal structure directly into the regression (Caetano and
Beaulieu, 2020). Deciding exactly which quantities to measure and how they should be incorpo-
rated, however, are complex questions that are outside the scope of this initial study. In addition,
the number of fit parameters, already over 18,000 here, would need to grow even larger to accom-
modate modeling transition rates between the behaviors as traits themselves. Thus, fitting such
models would necessitate even larger data sets than the one collected here. Moreover, because the
Perron-Frobenius Theorem mathematically couples the transition probabilities between behaviors
and the probabilities of the fly performing a given behavior, additional care (and data) is required to
ensure that observed differences in behavior are due to changes in temporal structure rather than
changes in the frequencies of performing a given behavior.

Lastly, capturing the full range of animal behaviors for a large number of animals presents a num-
ber of technological challenges, which is why we focused on measuring behavior in a highly simpli-
fied environment. However, a more complete understanding of the structure of behavior will require
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more sophisticated ways to capture behavioral dynamics in more naturalistic settings and during
complex social arrangements. While modern deep learning methods have made tracking animals in
more realistic settings increasingly plausible (Pereira et al., 2019; Mathis and Mathis, 2020), there
are still considerable hurdles to translating this information into a form that can be subjected to the
kind of analysis we propose here.

Despite these limitations, this work represents a new way to quantitatively characterize the evolu-
tion of complex behaviors, which may provide new phenotypes that can be subjected to experimen-
tal analysis. In the absence of a behavioral fossil record, reconstructing ancestral behaviors requires
an inferential approach like the one we present here. In addition, more complex models could be
built to test assumptions of the diffusion-based model we employed. Finally, a strength of our
approach is that it makes falsifiable predictions about how behaviors are linked mechanistically, pro-
viding predictions that can be tested experimentally to provide further insight into the genetic and
neurobiological structure of behavior.

Materials and methods

Data collection

All fly handling and imaging of fly behavior followed the procedures described in Cande et al.,
2018, excepting that we did not provide retinol-free food to any of the animals, nor we did provide
any red light cycling during the experiments. Individual male flies were collected upon eclosion and
housed singly in 2 mL wells in a 96-well ‘condo,” with food deposited in the bottom of each well,
which was sealed at the top with an airpore sheet. In total, we collected data from 561 individual
from 18 strains and six species. Flies were imaged at age 7-12 days, within 4 hr of lights on. Individu-
als were sampled from multiple strains and species: three strains of D. mauritiana (mau29: 29 flies,
mau317: 35 flies, mau318: 32 flies), four strains of D. melanogaster (Canton-S: 31 flies, Oregon-R: 33
flies, mel54: 34 flies, mel56: 31 flies), three strains of D. santomea (san00: 29 flies, san1482: 33 flies,
STO OBAT: 22 flies), three strains of D. sechellia (sech28: 32 flies, sech340: 25 flies, sech349: 33
flies), three strains of D. simulans (sim5: 33 flies, sim199: 30 flies, Oxnard: 34 flies), and two strains of
D. yakuba (yak01: 34 flies, CYOZ2: 31 flies).

Generalized linear mixed model

We fit our GLMM (Equation 1) using the software introduced in Hadfield, 2010. The covariance
matrices V(¢ and V@ ¢ R¥*X, kK = 134 and the mean vector ji € IRX*! were inferred from the poste-
rior distribution via MCMC sampling. Prior distributions for the covariance matrices were given by
Inverse Wishart Distributions (conjugate priors for the multi-Gaussian model) with K degrees of free-
dom and #;54Z as scale matrix, with J and [ the unit and identity matrices respectively. Tree branch
length were estimated from Seetharam and Stuart, 2013.

Gelman-Rubin convergence diagnostic

This test evaluates MCMC convergence by analyzing the difference between several Markov chains.
Specifically, we compare the estimated between-chains and within-chain variances for each parame-
ter of the model. Large differences between these variances indicate non-convergence (Gelman and
Rubin, 1992). Let 6 be a model parameter of interest and {0,,,}?’11 be the m th simulated chain,

m=1,2,....M. Denote, 6,, and 62 be the sample posterior mean and variance of the m th chain. If
0= ﬁzle 0, is the overall posterior mean estimator, the between-chains (B) and within-chain (W)
variances are given by:

N &, 1 &
B=—— m 5 =7 A2~
Milm;(a 0>, w M;am (5)

In Gelman and Rubin, 1992, it is shown that the following weighted average of W and B is an
unbiased estimator of the marginal posterior variance of 6: V:%W—i—%& The ratio V/W should
get close to one as the M chains converge to the target distribution with N —oo. In reference
(Brooks and Gelman, 1998) this ratio known as the Potential Scale Reduction Factor (PSRF) was
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d+3V

corrected to account for the the sampling variability using R, = /933 where d is the degrees of

freedom estimate of a t-distribution. Values of PSRF for all model parameters such that R.<1.1 are
used in Brooks and Gelman, 1998 as a criteria for convergence of the MCMC chains. Here, we used
20 independent chains, each with a different initialization.

Deviance information criterion (DIC)

The DIC is used as a Bayesian model selection criteria in problems where there is hierarchical struc-
ture to the underlying models and where the correct effective number of parameters is difficult to
ascertain (Spiegelhalter et al., 2002). These aspects are often found in models like ours where the
posterior distributions have been sampled using Markov Chain Monte Carlo. The DIC is defined as
follows:

DIC =D(f) + Pp, with
D(0) = E,g)[D(0)], (6)

pPp ZW—D@)

where D(6) = —2logP(y | 0) + 2logf () is called the deviance (f(y) denotes a function of the data alone
and P(y|#) corresponds to the likelihood of the model under evaluation). Hence, the posterior

mean, D(f), can be considered as a Bayesian measure of fit. Pp represents the effective number of
parameters, where D(0) is the deviance evaluated at the posterior mean of the parameters 0. Note

that (i) both quantities needed to calculate DIC, D(#), and D(6), can be readily estimated from the
samples generated by MCMC, and (ii) alternatively, we can also re-write DIC = D(f) +2Pp. This is
similar in form to the better-known Akaike Information criterion (AIC) (Akaike, 1973), for models
with negligible prior information or for large data sets where the likelihood dominates over the

prior.

Comparing the focused trait and full repertoire models
To build a model where behavioral traits evolve independently from each other, we fit each a single
trait GLMM for each behavior j:

ljzuj+ﬁj+zj7 (7)

where [; denotes the logarithm of the behavioral trait P;, 1; is the logarithm of the mean behavior of
the common ancestor (treated as the fixed effect of this model), and g; and &; are the random effects
corresponding to the phylogenetic and individual variability, respectively. Similar to the multi-
response model, these random effects are normally distributed from A/(0,A®a;) and NV (0,A ® ;)
with o; and «; (single numbers) corresponding to the phylogenetic and individual inferred variances
and A the phylogenetic matrix defined in the main text. Prior distributions for the variances are given
by inverse-Wishart distributions with 1.002 degrees of freedom and scale parameter equal to the
variance of the logarithm of the corresponding behavioral trait.

We fit these models using 10 bootstrapped data sets and obtained an average DIC value of
(230 +2) x 10°. Note that in the single-trait model, since each behavior is treated independently, the
likelihood gets factorized in terms of the individual likelihoods corresponding to each behavioral
trait: P(Iy, by, ..., Ix | 0) = 15, P(L: | 6,). Therefore, the DIC (estimated in terms of the log-likelihood) is
given by DIC = 3K | DIC;, where DIC; is calculated for each single trait GLMM.

In contrast, the complete GLMM model (described in the main text and in the section above) had
a significantly lower average DIC value of (114 +2) x 10? (calculated over 10 bootstrapped data sets
as well).

Information-based clustering

The information-based clustering approach used in this article (originally introduced in Slonim et al.,
2005) minimizes the distance between elements within clusters, while also compressing the original
representation as much as possible. More precisely, the method minimizes the functional
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F =(d)+TI(C;i), (8)

where 1(C;i) =YY, 3% P(C;i) log[Plgfc‘;)] is the mutual information between the original behavioral

N,
variable i and the clustering C.>= > P(C)d(C), and d(C) is the average distance of elements chosen

c=1
out of a single cluster:

d(C) =Y > P(iy | O)P(ir | C)d(ir, in), ©9)

ii i

with d(i1,i2) being the distance measure between a pair of elements and P(i | C) being the probabil-
ity to find element i in cluster C.T is a Lagrange multiplier that modulates the relative importance of
minimizing the average within-cluster distance and simplifying the clustering.

Given |C| = N,, T and a random initial condition for P(C | i), a solution is obtained by iterating a
set of self-consistent equations (Slonim et al., 2005) until the convergence criteria f”Tf”‘<10*5 is
satisfied. We chose 40,000 different initial conditions for P(C|i), along with randomly chosen values
of T € [0.1,1000] and N. € {2,3,...,20}. For each set of initial conditions and parameters, we per-
formed the optimization until the convergence criterion was met. We defined the Pareto front as the
set of solutions P(C | i) such that no other solution presents a smaller (d) and a smaller /(C;i), and
we only kept solutions that were along this front (eliminating duplicates). Finally, for each number of
clusters we selected the solution with the lowest (d).

For each number of clusters, we assess the modularity of the found solution by comparing (d) for
the solution to the average distance corresponding to random cluster assignments. These assign-
ments are made in such a way that the amount of elements per cluster is conserved by randomly
shuffling the vector that assigns each behavior to a particular cluster. The values presented in the
main text correspond to the mean and standard deviation of (d) over 50 different random trials.

Deterministic Information Bottleneck

We use the Deterministic Information Bottleneck (DIB) method (Strouse and Schwab, 2017) to find
coarse-grainings of the behavioral space that optimally predict future states. Inspired by the Informa-
tion Bottleneck (IB) (Tishby et al., 1999), given two measured variables, X and Y, the DIB method
finds a clustering, Z, of X, where Z is maximally informative of ¥, but is as simple as possible. Specifi-
cally, we minimize the functional:

J =~1(Y;2) +yH(2) (10)

with respect to p(z € Z|x € X). Here, v is a Lagrange multiplier that modulates the relative importance
of the two terms, with larger values of vy resulting in simpler representations.

In practice, to compute this minimum for a given value of y and an initial condition for p(z|x), we
minimize

J(a)=vH(Z)—aH(Z|X)—-1(Y;Z) (11)

with respect to p(z € Z|x € X) and take the limit as a — 0, following the self-consistent equation pro-
cedure described in Strouse and Schwab, 2017.

To apply DIB to the behavioral dynamics, we count time in units of the transitions between states,
providing a discrete time series of behaviors: b(n) can thus be one of N = 134 different integer values
at each discrete time n. Here, we relate the joint distributions of b(n) (X in Equation 10) and
b(n+ 1) (Y) through a coarse-grained clustering of the behavioral states (Z). Similar to our approach
with information-based clustering (see previous section), we chose 10,000 different pairs of random
values for y between 0.1 and 10% and N, between 2 and 30 clusters. Given N,, y and a random initial
condition for p(t | x), we find a solution by iterating through a set of self-consistent equations
(Strouse and Schwab, 2017) until the convergence criteria (an absolute change in the function of
less than 107) is satisfied. If any cluster has its probability become zero at any iteration, then that
cluster is dropped for all future iterations. Thus, N, is the maximum number of clusters that can be
returned. Of these 10,000 solutions, we keep all solutions that are on the Pareto front (i.e., no other
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solution has both a higher I(Y;Z) and a smaller H(Z)). The displayed clusters are the solutions on the
Pareto front with the largest I(Y;Z) for a given number of clusters.

Weighted similarity index
We quantify the similarity between clustering partitions using the Weighted Similarity Index (WSI), a
modification of the Rand Index (Rand, 1971) such that behaviors contribute the index according to
their overall probability. Specifically,

PP

WSI= 3" Wi+ > W, Wy =, (12)
uezs k,l;h >u PP

where S,(S,) is the set of pairs of behaviors that belong to the same (different) cluster in the two
partitions and Py is the probability of observing behavior k.
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