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Zero-Shot Demographically Unbiased Image

Generation From an Existing Biased StyleGAN
Anubhav Jain , Rishit Dholakia, Nasir Memon, Fellow, IEEE, and Julian Togelius

Abstract—Face recognition systems have made significant
strides thanks to data-heavy deep learning models, but these
models rely on large privacy-sensitive datasets. Recent work in
facial analysis and recognition have thus started making use
of synthetic datasets generated from GANs and diffusion based
generative models. These models, however, lack fairness in terms
of demographic representation and can introduce the same biases
in the trained downstream tasks. This can have serious societal
and security implications. To address this issue, we propose
a methodology that generates unbiased data from a biased
generative model using an evolutionary algorithm. We show
results for StyleGAN2 model trained on the Flicker Faces High
Quality dataset to generate data for singular and combinations of
demographic attributes such as Black and Woman. We generate
a large racially balanced dataset of 13.5 million images, and
show that it boosts the performance of facial recognition and
analysis systems whilst reducing their biases. We have made our
code-base (https://github.com/anubhav1997/youneednodataset)
public to allow researchers to reproduce our
work.

Index Terms—Bias mitigation, face recognition, synthetic
datasets.

I. INTRODUCTION

F
ACE recognition systems that were once based on

handcrafted features have now achieved human-level

performance with the assistance of deep learning models.

However, this transition has resulted in the accumulation of

large privacy-sensitive datasets that are costly to collect and

pose several issues. One major issue is that these large datasets

often lack ethnic and demographic diversity, which causes

deep facial recognition models to suffer from similar biases.

Ensuring the collection of highly diverse image datasets is

not only difficult but also expensive. Another issue is that

many countries have recognized biometric data privacy as a

fundamental right and have regulated its collection and usage

by law [1], [2], [3]. This makes it challenging to collect data
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from a large number of users and raises privacy concerns.

Companies like Facebook [4], Google [5], and Shutterfly [6]

have faced scrutiny for their usage of facial images of users

under the BIPA law.

This work presents an approach to address the issues

of bias and data privacy in facial recognition models by

leveraging advancements in image generation. Generative

models offer a cost and time-effective alternative to manual

data collection and annotation. They provide better control

over environmental conditions, lighting, occlusions, camera

angles, and backgrounds, enabling the training of more robust

and adaptable models. Additionally, synthetic datasets do not

contain any personally identifiable information, thus providing

crucial privacy protection. There are also various applications

related to identity anonymization where controlled facial and

protected attributes are required.

However, there is a major challenge in using existing gen-

erative models as they are highly biased. For instance, when

randomly sampling 10,000 images from a StyleGAN2 [7]

model, only 26 corresponded to Indians, 171 to Africans, while

over 6500 were Caucasians, as depicted in Figure 2. Thus,

generating large balanced datasets through simple rejection

sampling is not only inefficient but also implausible for

underrepresented groups.

Previous methods that aimed to generate data for spe-

cific protected attributes, such as race, have either trained

a generative model from scratch or fine-tuned an existing

model. However, both of these approaches either require

the collection of large amounts of balanced real data or

depend on its availability. For instance, a recent study [8]

collected over 5 million images of Africans and 3 million

images of Asians from various YouTube sources. Similarly, [9]

used real datasets such as FairFace, UTKFace, and MORPH.

Reference [10] instead generated 256,000 synthetic images just

to find latent directions pertaining to different demographic

groups. In contrast, we propose a simple yet effective search-

based algorithm that exploits the disentangled nature of the

StyleGAN latent space. This approach can generate a large

number of demographically balanced unique synthetic identi-

ties in a zero-shot manner, i.e., without any training or using

real datasets.

Moreover, as compared to optimizing over a single protected

attributes as in [8], the ability to generate combination of

protected attributes allows jointly optimizing for multiple

fairness objectives. Though, it is important to note this is

limited by the existence of such variations in the existing

StyleGAN2 model. We show examples of the output of the

proposed algorithm in Figure 1.
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Fig. 1. Examples of images generated using our approach for combination of protected attributes.

Fig. 2. Pie-chart depicting the racial distribution in the generated output of
the StyleGAN2 model across 10000 randomly drawn samples.

To show how this approach could be used to boost facial

recognition and analysis networks while mitigating biases, we

generate a racially balanced synthetic dataset. The dataset

consists of 50,000 synthetic identities each for six different

racial groups, including Indian, White, African, Black, Asian,

Middle Eastern, and Latino Hispanic, resulting in a total of

13.5 million images with 45 images per person. We demon-

strate that pretraining on this data can significantly improve

the performance of facial recognition systems. We evaluate

three different systems, namely ArcFace [11], AdaFace [12],

and ElasticFace [13], and show that our approach outperforms

models trained using widely accepted unbalanced datasets

such as VGGFace2 [14]. Our approach shows improvements

even on the BUPT balanced-face dataset [15] which already

contains an equal number of identities per race. Similarly, we

show results on ethnicity and gender classification using the

same generated dataset on the FairFace [16] and the UTKFace

datasets [17]. We show that the approach helps in boosting

performance while reducing biases.

To summarize, we make the following contributions in this

paper:

• We propose a simple evolutionary search-based approach

to generate a large balanced set of images using

an existing biased generative model. Our approach

doesn’t require any training dataset, synthetic or real.

Additionally, it doesn’t require training or fine-tuning of

the generative model.

• We contribute a dataset of over 50,000 distinct synthetic

identities for six different racial groups resulting in a total

of 13.5 million images with 45 images per person.

• We show that pre-training on the generated dataset

improves the performance of facial recognition and analy-

sis models while reducing the bias present in the models.

• We contribute to the ongoing discussion of address-

ing bias in facial recognition by providing a practical

and scalable solution that can be implemented without

requiring the collection of large amounts of real data.

This paper was invited to be submitted as an extension of

our previous IJCB 2023 paper [18], and compared to that paper

this manuscript contains the following additional material:

• We extend the work to show we use an modified fitness

function of the evolutionary algorithm to generate face

images with a combination of protected attributes.

• We further expanded on the explanation and analysis of

the proposed approach.

• We show that the generated racially balanced dataset can

be used to boost facial analysis algorithms while reducing

biases. We show results on the FairFace and UTKFace

datasets for ethnicity and gender classification tasks.

• We extended the training framework of face recognition

systems on the generated dataset to show results when

using only 4 racial groups, as is the case with the Racial

Faces in the Wild (RFW) dataset.

II. RELATED WORK

This section provides an overview of the most relevant work

done on bias mitigation in facial recognition models, including

the use of synthetic data for training these models, which is

particularly pertinent to the proposed approach.

A. Bias Mitigation in Face Recognition

Past research has extensively shown that widely accepted

deep learning-based facial recognition algorithms exhibit bias

towards a particular ethnicity [19], [20], [21], [22]. Most

of the research done on bias mitigation has been directed

towards mitigating the bias for particular demographic sub-

groups rather than arriving at generalizable solutions across

demographic groups [19].

Zhang et al. [23] proposed an adversarial learning approach

to reduce bias in facial recognition systems. Yucer et al. [24]

proposed an approach to alter the ethnicity of a person through

an adversarial training procedure applied to a CycleGAN

model. Gong et al. [25] used adaptive convolutional kernels
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and attention mechanisms based on the demographic subgroup

to mitigate demographic biases. Wang and Deng [15] propose

a reinforcement learning-based race balance network. They

also introduce the BUPT-GlobalFace and BUPT-BalancedFace

datasets containing datasets with racial distribution on global

and balanced distributions respectively. Researchers have also

proposed approaches to remove protected attributes in data

representations by adversarial training models [23], [26], [27].

Other researchers who studied biases in facial recogni-

tion models have pointed out correlations between protected

attributes and other features which is often the reason for

biases in face recognition models. Researchers have proposed

approaches to disentangle the protected attribute from other

features [28] as well as suppressing the protected attribute [29]

to have fairer face recognition models. In our case, given the

control that generative models provide, we can ensure that

some attributes such as pose, illumination, and expression do

not correlate with the protected attribute.

B. Synthetic Data Generation

Recently, researchers have shown interest in the use of

synthetic data for face recognition systems due to their

privacy-preserving properties. Most researchers have trained

new generative models on different types of real datasets [8],

[30], [31], [32]. Boutros et al. [31] proposed an approach to

train facial recognition using synthetic images. They trained

a generative model conditioned on the user identity to create

a synthetic dataset. Sevastopolsky et al. [8] also proposed

an approach to train a generative model on unlabelled data

collected from YouTube. They use this model to train an

encoder model which is then finetuned for face recognition.

However, all of these methods require a large number of either

labeled or unlabelled images for training the generative models

for their task. In this paper, we eliminate this step by making

use of an existing generative model even though it is biased.

Ramaswamy et al. [33] proposed a method to de-correlate

target labels (e.g., glasses, hats) with protected attributes (e.g.,

race, gender) to remove biases in facial attribute classification

models. Other researchers have also proposed approaches to

alter the facial attributes in images using generative mod-

els [34], [35], [36], [37], [38]. Researchers have also found

ways to disentangle the identity of a person from other facial

attributes of the image [39], [40].

A more related line of research to our work has been

on using pre-trained generative models to edit images by

traversing the latent space. Colbois et al. [41] demonstrated

that specific latent directions exist in the StyleGAN2 latent

space that can modify the pose, illumination, and expressions

of synthetic identity. Similarly, [10] used synthetic images

labeled by an auxiliary classifier as feedback to find latent

directions corresponding to different facial and protected

attributes. Reference [9] instead proposed using Gaussian

mixtures on a disentangled lower dimensional space instead

of directly using the StyleGAN latent space. Interestingly,

they claimed the StyleGAN3 latent space was not disentan-

gled for protected attributes. This could be because, as [42]

claimed, the StyleGAN3 latent space is more entangled

Fig. 3. We produce intra-class variations in expression (first row), poses
(second row) and illumination (third row) using latent directions in the
StyleGAN latent space. As we show, these variations work well across
demographics while preserving the identity.

than the StyleGAN2 counterpart. We discuss this further in

Appendix 2. Jain et al. [18] showed that the subspaces exist

in the original latent space of the StyleGAN2 model and can

be explored by using an evolutionary algorithm.

III. UNBIASED DATA GENERATION

In this section, we present our approach to generate

demographic-specific data. We start by defining the problem in

Section III-A followed by the proposed evolutionary algorithm

in Section III-B.

A. Problem Statement

We are given a generative model that exhibits biases wrt to

certain demographic groups and we wish to generate unbiased

data from this model. Let us assume a generative model G

parameterized by θ and learned distribution pθ : X ,D → R

over a set of demographic groups {d1, d2, . . . , dn} ∈ D and

samples x ∈ X . pθ (di) is the marginal distribution over the

demographic class di for the joint distribution pθ (x, d). Thus,

pθ (di) �= pθ

(

dj

)

∀di, dj ∈ D; i �= j. (1)

Ex∼pθ
[x ∈ di] �= Ex∼pθ

[

x ∈ dj

]

∀di, dj ∈ D; i �= j. (2)

This implies that in expectation when randomly sampling

data from the generative model we do not get an equally

representative set across the group of demographics. We wish

to mitigate this disparity such that, for a generated dataset with

data distribution pgen : X ,D → R,

Ex∼pgen
[x ∈ di] = 1/|D| ∀di ∈ D. (3)
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Fig. 4. Our proposed approach consists of two parts, (a) randomly sampling latent vectors till demographic criteria are met, followed by (b) iteratively
sampling in the subspace of the found vector.

Fig. 5. Images showing the generation of synthetic data using our approach targeting the ‘Latino Hispanic’ ethnic group and the ‘Woman’ gender group
while mutating in the z-subspace with the number of mutations set to 3.

In this work, we use a pre-trained StyleGAN2 [7] model

that was trained on the Flickr-Faces High-Quality [43]

dataset to generate 1024x1024 closeup facial images. The

StyleGAN2 model uses two latent spaces, the space Z ∈ R
512

sampled from a Gaussian random vector. This is mapped to

a larger latent space W+ ∈ R
18×512 using a small neural

network-based mapping function.

B. Generating Demographic-Specific Identities

While there exists representation biases in the StyleGAN

model, there is still significant variability which can allow

the generation of unique synthetic identities that are balanced

in terms of the demographic groups. Reference [44] showed

that StyleGAN models have a capacity of approximately

1.43 × 106 unique identities. Additionally, previous research

has shown the existence of latent directions or subspaces in

the StyleGAN2 latent space pertaining to different facial or

protected attributes [10], [41]. In this work, we make use of

these subspaces to propose using a controllable latent space

search algorithm similar to a breadth-first search in the latent

space of a StyleGAN2 model. Figure 4 presents a high-level

overview of the proposed approach which consists of two

parts. The first step is finding a latent vector in the subspace

pertaining to the target demographic group. This is done

by random rejection sampling using auxiliary race, gender

and age classifiers [45] for checking whether the generated

image belongs to the target groups. Using these demographic

classifiers we define a fitness function as follows,

f (v) =

{

1 if Cr(I), Cg(I), Ca(I) == Tr, Tg, Ta

0 otherwise
(4)

where Tr, Tg, Ta are the target demographic groups corre-

sponding to gender, age and ethnicity, G is the generative

model, and Cr, Cg, Ca are the race, gender and age classifiers

respectively. We use the latent vector found through random

sampling as the starting point, referred to as vs in Algorithm 1.

Similar to the breadth-first search we maintain a queue for the

traversal. The starting point is added to a queue and we use

this to begin the search.

Iteratively, we dequeue a latent vector from the queue,

referred to as vc. If f (vc) = 1 then, we sample neighboring

points by mutating the current latent vector vc with a random

variable. We use a uniform random variable instead of a

multivariate Gaussian random variable, which is typically used

in most search algorithms, as it provides better control in the

GAN latent space and allows us to generate reasonable facial

images by staying within appropriate boundaries. Let vi be the

set of vectors mutated from the vector vc at the i-th iteration.

vi = {vi1, vi2, . . . , vin} (5)

where n is the number of mutations of the current vector vc.

We append the entire set vi into the queue. We continue the

search process till the queue is not empty and other search

controls such as maximum iterations have not been exceeded.

We show the iterative generation of synthetic identities in

Figure 5 for the Asian demographic subgroup with the number

of mutations set to 1.

Our approach works well on both the Z and W+ latent

vector space, even though previous research has suggested

limited disentanglement of the Z space. The trade-off here

is similar to the use of a truncation-psi parameter, between

the diversity and quality of the images. The Z latent space
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Algorithm 1 Latent Space Exploration for Generating

Synthetic Identities for Each Demographic Subgroup

Input: A generative model G; an auxiliary race, gender and

age classifier Cr, Cg, Ca; target demographic group Tr, Tg, Ta;

starting latent vector found using random sampling vs s.t.

C(G(vs)) = t; number of mutations n; max range of random

mutation δ; maximum number of iteration for a particular

starting vector max_iter

bfOutput: A list of latent space vectors w.

1: queue ← []

2: out ← []

3: iter ← 0

4: queue.enqueue(vs)

5: while len(queue) �= 0 and iter ≤ max_iter do

6: vc = queue.dequeue()

7: I = G(vc)

8: if face not detected in I then

9: continue

10: end if

11: if Cr(I) == Tr and Cg(I) == Tg and Ca(I) == Ta

then

12: out.append(vc)

13: iter ← iter + 1

14: for j = 0 to n do

15: vj ← vc + random(range = [ − δ, δ])ju

16: if dist(vj, vs) > dist(vc, vs) then

17: queue.enqueue(vj)

18: end if

19: end for

20: end if

21: end while

22: return List of latent vectors corresponding to the target

ethnicity - out.

ensures better quality, however with limited diversity. In

contrast, the W+ latent space ensures higher diversity but

may compromise the quality of the image. Thus, we use a

Google mediapipe [46] face detection model when searching

in the W+ latent space to ensure we stay within bounds. This

is however not required when evolving the Z latent space

which follows a smooth Gaussian distribution. Also, in the

case of mutating in the W+ latent space, we observed that

after a large number of iterations (> 500), when a number of

possible directions had been exhausted, the synthetic identities

started looking similar. This is because the search algorithm

is forced to take directions where the identity doesn’t change

but only variants of the same identity are produced. We see

that limiting the number of iterations from a particular seed

value can efficiently take care of this problem.

The proposed approach runs independently for different

ethnicities as shown in Algorithm 1 and can thus parallelly

generate data for different ethnicities. This allows us to

specifically control how many samples are required for each

demographic subgroup and we can appropriately terminate the

search operation once this criterion is satisfied.

For generating multiple images for each identity, we use

the approach proposed by Colbois et al. [41] using latent

directions for generating expression, pose, and illumination

variations. We have shown examples of intra class variations in

Figure 3. We have, however, excluded extreme pose variations

due to the limitations of the approach on StyleGAN2 as shown

by the original authors. This allows us to specifically curate

a diverse yet controlled set of facial expressions, poses, and

illumination while maintaining consistency across identities

and ethnicities.

To show advantages of the approach in face recognition and

analysis we use the proposed approach to generate a large

racially balanced dataset. We have broadly classified images

into 6 ethnic groups using an auxiliary ethnicity classifier [45]

- Caucasian, African, Indian, Asian, Middle Eastern, and

Latino Hispanic. In comparison to previous studies that have

generally used only 4 racial groups, we believe this is more

inclusive even though the test face recognition datasets only

contain labels for 4 groups - Indian, African, Caucasian, and

Asian. We generate two versions each for the Z and W+

spaces containing 15,000 and 50,000 synthetic identities per

ethnicity with 25 and 45 images per person respectively. These

are referred to as z-15k and z-50k for the Z latent space and

w-15k and w-50k for the W+ latent space.

C. Results: Are the Synthetic Identities Biometrically

Different?

Since we do not use a facial recognition algorithm in the

loop while searching for unique synthetic identities, an impor-

tant question arises, are the identities biometrically unique?

In this section, we experimentally validate this using a SOTA

biometric recognition system. The latent space search for

synthetic identities is done keeping the perceptual dissimilarity

between two consecutive images in mind. We do this by

controlling the step size or the range of the uniform random

vector. However, we don’t provide the search any feedback

on the biometric similarity score between two consecutive

images that are generated. To validate that these images are

in fact biometrically dissimilar, we perform a study using a

pre-trained SFace model [31]. The model has been taken from

the DeepFace library [47]. We specifically choose SFace as

compared to an ArcFace model as it has also been trained on

synthetic data and would be better at classifying such data.

It achieves similar performance on other metrics compared to

the ArcFace model.

We match each person with every other person in the

dataset. We show the results in the form of histograms in

figure 6 for the z-50k and w-50k datasets created using the

Z and W+ latent spaces respectively. We use images with

the same facial expression, pose, and illumination for every

identity to remove any bias from such attributes. In the figure,

the red line shows the operating threshold of 0.593 that was

set by DeepFace for the SFace model. As visible in the plots,

there is an extremely small tail of the histogram that is below

the threshold. Implying that the search algorithm can guarantee

uniqueness with extremely high accuracy. Additionally, we do

not see any low scores, which would have clearly indicated
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Fig. 6. Histogram showing the verification scores on 500,000 generated
identities using the (a) W+ and (b) Z subspace of StyleGAN2. The red line
depicts the operating threshold set by DeepFace. As expected there is a larger
tail below the threshold for the Z space-generated identities.

TABLE I
COMPARISON OF TIME IT TAKES (IN MINUTES) TO GENERATE

1000 SAMPLES THROUGH RANDOM REJECTION SAMPLING VERSUS OUR

PROPOSED APPROACH FOR DIFFERENT ETHNICITIES. WE SEE OVER 200
TIMES IMPROVEMENT FOR INDIANS AND BLACKS

the same person being returned in multiple iterations of the

search. This also implies that using this evolutionary search

process we are able to generate almost 50 times as many

unique biometric identities as there were in the original FFHQ

dataset for some ethnicities such as Africans and Indians.

D. Results: Comparison of Computational Time

We empirically compare the computational time required for

sampling racially diverse data using random rejection sampling

as compared to our proposed approach. In Table I we show

results on the time (in minutes) required for both approaches.

Random rejection sampling for under-represented groups such

as Indians and Blacks is highly inefficient and requires over

12 hours to just generate 1000 samples. Our approach has

comparable time for each ethnicity, requiring 32 minutes or

less for the same number of samples.

IV. TRAINING THE FACE RECOGNITION MODEL

To show the advantages of the generated racially bal-

anced dataset, we pre-train face recognition models on this

dataset. We make use of three facial recognition models,

namely ArcFace, ElasticFace, and AdaFace. As a baseline,

these models have been trained on a real dataset. We have

specifically selected three popularly used datasets in face

recognition with varied levels of demographic imbalances -

VGGFace2, BUPT-BalancedFace, and BUPT-GlobalFace. We

followed the same training and testing protocols as the original

authors of the respective recognition models. We provide the

training and fine-tuning details including the hyperparameters

in Appendix 3.

The VGGFace2 dataset contains 9000+ identities and over

3.3 million images. They do not provide any information on

the numbers corresponding to each demographic group.

The BUPT-BalancedFace contains 7000 identities per race

but with small variations in the total number of images per

race. The subset of the dataset with images of Caucasians

contains 326 thousand images and in contrast, the subset for

Indians only contains 275 thousand images. Thus even though

the dataset is balanced in terms of the number of identities, it

has a notable difference in the number of images per identity

for the Indian subset.

The BUPT-GlobalFace dataset mimics the demographic

distribution that is prevalent in the world. It contains 38

thousand identities and 2 million images in total. 38% percent

of the dataset corresponds to white people, 31% to Asians

18% to Indians, and the remaining 13% to Africans.

We report results on the Racial Faces in the Wild (RFW)

dataset [48] which contains partitions for 4 racial groups -

Caucasians, Blacks, Indians, and Asians. We also report results

on the Labeled Faces in the Wild (LFW) [49], Celebrities

in Frontal-Profile in the Wild (CFP-FP and CFP-FF) [50],

AgeDB [51], Cross-Age LFW (CALFW) [52] and the Cross-

Pose LFW (CPLFW) [53] datasets.

The LFW dataset contains 13,233 images of 5,749 peo-

ple that were extracted using the Viola-Jones face detector

algorithm. It is often referred to as the de facto benchmark

for unconstrained face recognition. The CFP dataset contains

images of celebrities in frontal and profile views. It contains

a total of 7,000 pairs of celebrities in both the frontal-frontal

(CFP-FF) and frontal-profile (CFP-FP) views. The dataset is

primarily used for benchmarking the performance of face

recognition across poses. The AgeDB dataset contains 12,240

images of famous personalities, including actors, writers,

scientists, and politicians. It contains 440 subjects with varied

ages and poses. The dataset is a good benchmark for age-

invariant face recognition and age progression. It subject’s ages

vary from 3 years to 101 years. Similarly, the Cross-Age LFW

dataset has been used as a testbed for face recognition across

age groups. It has been created from the LFW dataset where

3,000 pairs of images have been selected with age gaps to

add aging progression intra-class variance. Similarly negative

pairs were also selected with the same gender and race to

reduce the influence of other attributes. The CPLFW dataset

on the contrary focuses on adding positive subjects with pose

variations. They also add 3,000 positive pairs with varied poses

and construct the same number of negative pairs keeping the

same constraints as the CALFW dataset.

1) Metrics Used for Evaluation: For evaluating the facial

recognition models, we report the recognition accuracy on

various datasets. Additionally, similar to [54] we utilize the

recognition accuracy difference (AD), metric for evaluation of

the post-training model biases. Accuracy difference is the max-

imum difference or disparity between the recognition accuracy

of different facets in a set of demographics {d1, d2, . . . , dn} ∈

D (equation (6)).

AD = maxi,j|ACCi − ACCj|∀i, j ∈ D (6)
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TABLE II
RECOGNITION PERFORMANCE WHEN TRAINING ON THE VGGFACE2

DATASET AND TESTING ON THE SUBSETS OF THE RFW DATASET. THE

MODELS TRAINED ON REAL DATA SERVE AS A BASELINE. Z-15K AND

Z-50K ARE SYNTHETIC DATASETS CREATED BY SEARCHING ON THE

Z-LATENT SPACE WITH 15,000 AND 50,000 IDENTITIES PER RACE

RESPECTIVELY. W-15K AND W-50K ARE ONES CREATED USING THE

W-LATENT SPACE. W-50K-4 AND Z-50K-4 ARE SUBSETS OF THE

SYNTHETIC DATASETS CONTAINING ONLY 4 RACIAL GROUPS

SIMILAR TO THE ONES IN THE RFW DATASET - INDIAN,
ASIAN, WHITE, AND AFRICAN

A. Results on the Use of the Synthetic Dataset for Training

Facial Recognition

We hypothesize that using a balanced dataset in terms

of ethnic distribution will lead to a more accurate and fair

face recognition model. A balanced dataset will help ensure

that the model is better able to recognize individuals from

underrepresented communities, who may be more likely to

be falsely identified by traditional biased models. Most facial

recognition models currently are trained on datasets such as

MS-1M, and VGGFace2. All of these datasets are unbalanced

with respect to ethnic diversity. We compare the advantages of

pretraining on the generated synthetic dataset as compared to

only training a face recognition model on real data. Given, the

distributional shift from high-quality synthetic images to real-

world in-the-wild datasets, we finetune all the models trained

on balanced synthetic datasets on real-world datasets.

We summarize the results on the RFW dataset in

Table II, Table III and Table IV for the VGGFace2, BUPT-

BalancedFace and BUPT-GlobalFace datasets respectively. We

see a significant improvement in the performance of the

models especially in the case of the ElasticFace model when

finetuned on the VGGFace2 dataset. The recognition accuracy

on the RFW dataset improves from 74.97% to 81.10% for

Indians, 71.31% to 76.23% for Asians, 77.78% to 84.62%

for Caucasians, and 70.92% to 77.08% for Africans. Even for

the AdaFace model, on average, we see an improvement of

TABLE III
RECOGNITION PERFORMANCE WHEN TRAINING ON THE

BUPT-BALANCEDFACE DATASET AND TESTING ON

THE SUBSETS OF THE RFW DATASET

TABLE IV
RECOGNITION PERFORMANCE WHEN TRAINING ON THE

BUPT-GLOBALFACE DATASET AND TESTING ON THE

SUBSETS OF THE RFW DATASET

approximately 2% in the model that was pre-trained with the

z-50k synthetic dataset.

We also see improvements in the set of experiments involv-

ing the BUPT-GlobalFace dataset. However, it is important

to note that the RFW dataset has been extracted from the

same MS-1M celeb dataset that BUPT-GlobalFace was created

from. While the two sets are disjoint, the datasets are similar

in terms of the data distribution. Thus, the finetuning on

the BUPT-GlobalFace dataset played a larger role in the
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TABLE V
RECOGNITION PERFORMANCE WHEN TRAINING ON THE VGGFACE2 DATASET AND TESTING ON THE

LFW, CFP-FP, CFP-FF, CALFW, AGEDB, AND THE CPLFW DATASETS

TABLE VI
RECOGNITION PERFORMANCE WHEN TRAINING ON THE BUPT-BALANCEDFACE DATASET AND TESTING ON THE

LFW, CFP-FP, CFP-FF, CALFW, AGEDB, AND THE CPLFW DATASETS

final performance. We believe this is the reason behind the

less significant improvement for these sets of experiments.

Nonetheless, for the model that was pre-trained on the z-50k

synthetic dataset, we see an improvement of approximately

0.5% on average across the different subsets of the RFW

dataset.

Interestingly, we see improvements even for the BUPT-

BalancedFace dataset which is already balanced in terms of

ethnic diversity. A recent work [8], showed an improvement

in the range of 0.45% to 1% for different ethnicities on the

RFW dataset by using synthetic data along with the BUPT-

BalancedFace dataset. We show improvements in the range

of 0.48% to 1.64% for the ArcFace model pre-trained on

the z-50k-4 dataset. It is also important to note that our

approach has other added advantages - we do not collect

any real data and make use of an already existing generative

model. We can do the synthetic data generation in a zero-

shot manner using a simple search-based approach without the

requirement for training the StyleGAN from scratch as done

by [8].
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TABLE VII
RECOGNITION PERFORMANCE WHEN TRAINING ON THE BUPT-GLOBALFACE DATASET AND TESTING ON THE

LFW, CFP-FP, CFP-FF, CALFW, AGEDB, AND THE CPLFW DATASETS

TABLE VIII
RESULTS FOR ETHNICITY AND GENDER CLASSIFICATION ON THE FAIRFACE AND UTKFACE DATASETS. P(A) IS THE STANDARD DEVIATION OF THE

CLASSIFICATION ACCURACY ACROSS THE PROTECTED GROUPS. FAIRGRAPE REFERS TO THE APPROACH PROPOSED BY [55]

We also show that the models pre-trained on the balanced

synthetic data help in mitigating the bias in the model. For

the Adaface models trained on the VGGFace2 dataset, we

see a 2.55% reduction in the maximum disparity between

different racial groups. Similarly, there is a 2.02% reduction

for the Arcface model. However, there is a slight increase

in the accuracy difference for the ElasticFace model. We see

similar improvements even in the case of the models trained on

BUPT-BalancedFace which is already trained on an unbiased

dataset. Thus, the approach boosts the performance of the

models while simultaneously reducing the bias.

Finally, we also improvements in the recognition

performance for the other datasets - LFW, AgeDB, CFP-

FP, CFP-FF, CPLFW, and, CALFW. We reported these

results in Table V for the VGGFace dataset, Table VI

for the BUPT-BalancedFace dataset and Table VII for

the BUPT-GlobalFace dataset. We see the maximum

improvements in the case of the AdaFace model when

Fig. 7. PCA analysis of 300,000 randomly sampled W+ vectors.

compared to pretraining on w-50k dataset. The performance

on the CFP-FP dataset improves from 85.49% to 87.03%. We

can attribute any improvement in performance improvements

in the CFP-FP dataset to the presence of profile view images

in the synthetic training set. We made use of the control
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Fig. 8. Examples of 100 different identities corresponding to the “Indian” racial group generated using the proposed approach. These have been randomly
selected from the dataset showing different poses and expression.

over the generative process to include all 180-degree pose

variations in the training set.

V. TRAINING THE FACE ANALYSIS MODEL

We further show the advantages of synthetic racially

balanced data in facial analysis. We specifically focus on

two tasks, i.e., ethnicity and gender classification. Similar

to FR, the baselines are trained purely on real datasets.

We show results on the FairFace [16] and the UTKFace

datasets [17].

The FairFace dataset contains 108,501 images that are

balanced in terms of racial distribution. The dataset contains

7 racial groups - White, Black, Indian, East Asian, Southeast

Asian, Middle Eastern, and Latino along with two gender

classes Male and Female.

The UTKFace dataset contains over 20,000 images anno-

tated with age, gender, and race. The dataset however is not

balanced in terms of racial groups and it contains 4 racial

groups - White, Black, Asian, and Indian.

We followed the same training and testing protocols as

in [55]. Similar to [55] we reported results on the standard

deviation between the performance on the protected groups,

referred to as ρ(A). In addition to the accuracy difference

metric, this helps us quantitatively access the biases present

in the model.
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Fig. 9. Examples of 100 different identities corresponding to the “African” racial group generated using the proposed approach. These have been randomly
selected from the dataset showing different poses and expression.

A. Results on Facial Analysis

The results have been summarized in Table VIII. We

see that for the FairFace and UTKFace datasets, models

pre-trained on our balanced data outperform the approach

proposed by [55]. Given the balanced nature of the FairFace

and UTKFace datasets, we did not see a significant improve-

ment in the performance over the only training on real data.

We expect to see more significant improvements in situations

where the real dataset is imbalanced. Nevertheless, for the

FairFace dataset we saw that both the accuracy difference

(AD) and ρ(A) reduced for gender classification task across

the gender groups. However, it was slightly higher for the

same task across the racial groups. At the same time, we saw

better overall classification accuracy for both race and gender

classification.

VI. DISCUSSION

Although GANs offer some control over the data generation

process, they also have several limitations. For instance, GANs

can only change certain attributes in the variations of each

identity, and they cannot replicate real-world data accurately.

The generated samples are always consistent in terms of

quality and size, which is not the case with real-world data.

Consequently, we require additional fine-tuning on a real-

world dataset to address this domain gap.
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Fig. 10. Examples of 100 different identities corresponding to the “Caucasian” racial group generated using the proposed approach. These have been randomly
selected from the dataset showing different poses and expression.

While we can generate a large number of samples for

minority communities we can expect there to be differences in

the diversity of samples belonging to the minority communities

as there are fewer examples in the original training dataset.

Moreover, in the case of generating a combination of protected

attributes, this issue is further exacerbated as some combina-

tions may not have been present in the original training dataset.

For example, we saw very few examples of ‘middle eastern’

race and the ‘woman’ gender group.

In this work, we use a state-of-the-art existing ethnicity,

gender, and age classifier [47]. The approach assumes that

this classifier is perfect and uses it as supervision for the

evolutionary algorithm. We do not consider imperfections in

the classifications of the classifier and thus we can expect some

noisy predictions or misclassifications. A misclassification can

occur in two different situations, the starting latent vector

itself has been misclassified and the second case is where

a misclassification occurs during a latent space search. In

both these cases false positives can introduce some examples

of different demographics during the search for a particu-

lar demographic group but it would be limited since the

classifier would need to constantly misclassify images in a

particular latent subspace/ direction to continue the search

there. Otherwise, the search would terminate in that latent
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Fig. 11. Examples of 100 different identities corresponding to the “Middle Eastern” racial group generated using the proposed approach. These have been
randomly selected from the dataset showing different poses and expression. What is interesting is that most samples are male. There are two possible reasons
- biased nature of the ethnicity classifier and the absence of female middle eastern humans in the GAN latent space.

space/ direction after its mutations return negative matches

with the target demographic. On the other hand, false negatives

can negatively impact the search. These misclassifications

become even more pertinent in the case of searching for

combinations of demographics where the error multiplies.

Here any misclassification in any of the protected attributes

leads to termination of the search in that direction/ subspace.

In this study, we have utilized the StyleGAN2 generative

model due to its disentangled latent space and its ability

to generate high-quality facial images. We believe a similar

approach can be applied to any generative model with a

disentangled latent space such as Latent Diffusion Models.

Diffusion-based models have been shown to generate images

with high diversity, however, with higher computational time

and cost.

VII. CONCLUSION

In conclusion, this work presents an approach to generate

a balanced number of distinct synthetic identities for differ-

ent demographic subgroups from a highly biased generative

model. We do so in a zero-shot manner without training or

finetuning a generative model. We show that this approach

works well on the StyleGAN2, and is successful in generating
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Fig. 12. Examples of 100 different identities corresponding to the “Asian” racial group generated using the proposed approach. These have been randomly
selected from the dataset showing different poses and expression.

over 50,000 synthetic identities per race. Finally, we show

that pretraining a face recognition and analysis models on this

dataset boosts the performance of the model. Being a balanced

dataset it also assists in mitigating the biases in the model

and achieves fairer performance across different demographic

groups. This shows that this approach is generalizable and

balanced datasets generated using this approach can be used

for training any downstream task.

APPENDIX

A. Discussion

We experimented with other approaches similar to past

researchers [8], [10], [41] that project real data onto the latent

space to get synthetic data. In addition to using privacy-

sensitive real data, the projection approach tries to give an

exact match between the real identity and projection. While for

this task, we are only concerned about an estimated ethnicity

match between them. This leads the projection operation to

generate unclear or often even demonic faces in an effort

to match other unnecessary details such as the background

and clothes. Moreover, the projection is more difficult for the

underrepresented groups where the variations in the biased

generative model are considerably lesser. Additionally, this

limits the variations of synthetic data that can be generated

to variations or interpolations of the projection of the real

data. This would also limit the uniqueness of the identities.

Along similar lines as [10], we had also experimented with
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Fig. 13. Examples of 100 different identities corresponding to the “Latino Hispanic” racial group generated using the proposed approach. These have been
randomly selected from the dataset showing different poses and expression.

randomly generating data and using these as references for

these approaches instead of projecting real images on the

latent space. However, due to the highly biased nature of

StyleGAN2, even after generating over 100,000 samples we

had very few samples for the under-represented ethnicities

(<2000). This made it computationally expensive in terms

of both the time required and storage space. Our proposed

approach even without making use of any real or synthetic

training data is able to generate a more diverse set of unique

identities. This makes it both efficient in terms of time and

space as it requires no training data to learn latent directions

or interpolations of the data.

B. Disentanglement of the StyleGAN Latent Space

Rahimi et al. [9] suggested limited disentanglement of the

StyleGAN3 latent space by visualizing t-SNE plots in two

dimensions. We however argue that due to limited correlation

between the W+ dimensions, it is inadequate to rely solely

on the t-SNE visualization. In Figure 7 we show that even

for preserving 80% of the energy you need approximately

4000 dimensions of the data. Thus, there doesn’t seem

to be strong evidence to suggest that the 9216 dimen-

sional W+ can be accuracy represented on a 2 dimensional

plane.
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C. Hyper-Parameters for Training and Finetuning Facial

Recognition Models

We utilize the following hyperparameters for training the

respective face recognition model with a ResNet-50 backbone

for all the datasets for consistency. We have used the same

parameters for finetuning as well. We had experimented with

different learning rates for the synthetic datasets but had found

these parameters to be the best performing.

1) AdaFace:

• Batch Size: 512

• Epochs: 26

• Learning rate milestones: 12, 20, 24

• Learning rate: 0.1

• m: 0.4

• h: 0.333

• Low-resolution augmentation probability: 0.2

• Crop augmentation probability: 0.2

• Photometric augmentation probability: 0.2

2) ArcFace:

• Embedding size: 512

• Momentum: 0.9

• Weight Decay: 5e-4

• Batch Size: 128

• Learning rate: 0.02

• Epochs: 20

• Margin list: (1.0, 0.5, 0.0)

3) ElasticFace:

• Epoch: 40

• Batch size: 128

• Learning rate: 0.1

• s: 64.0

• m: 0.5

• std: 0.0175

• Momentum: 0.9

• Warmup: -1

• Weight decay: 5e-4

• Embedding size: 512
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