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Zero-Shot Demographically Unbiased Image
Generation From an Existing Biased StyleGAN

Anubhav Jain™, Rishit Dholakia, Nasir Memon, Fellow, IEEE, and Julian Togelius

Abstract—Face recognition systems have made significant
strides thanks to data-heavy deep learning models, but these
models rely on large privacy-sensitive datasets. Recent work in
facial analysis and recognition have thus started making use
of synthetic datasets generated from GANs and diffusion based
generative models. These models, however, lack fairness in terms
of demographic representation and can introduce the same biases
in the trained downstream tasks. This can have serious societal
and security implications. To address this issue, we propose
a methodology that generates unbiased data from a biased
generative model using an evolutionary algorithm. We show
results for StyleGAN2 model trained on the Flicker Faces High
Quality dataset to generate data for singular and combinations of
demographic attributes such as Black and Woman. We generate
a large racially balanced dataset of 13.5 million images, and
show that it boosts the performance of facial recognition and
analysis systems whilst reducing their biases. We have made our

code-base (https://github.com/anubhav1997/youneednodataset)
public to allow researchers to reproduce our
work.

Index Terms—Bias mitigation, face recognition, synthetic
datasets.

I. INTRODUCTION

ACE recognition systems that were once based on

handcrafted features have now achieved human-level
performance with the assistance of deep learning models.
However, this transition has resulted in the accumulation of
large privacy-sensitive datasets that are costly to collect and
pose several issues. One major issue is that these large datasets
often lack ethnic and demographic diversity, which causes
deep facial recognition models to suffer from similar biases.
Ensuring the collection of highly diverse image datasets is
not only difficult but also expensive. Another issue is that
many countries have recognized biometric data privacy as a
fundamental right and have regulated its collection and usage
by law [1], [2], [3]. This makes it challenging to collect data
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from a large number of users and raises privacy concerns.
Companies like Facebook [4], Google [5], and Shutterfly [6]
have faced scrutiny for their usage of facial images of users
under the BIPA law.

This work presents an approach to address the issues
of bias and data privacy in facial recognition models by
leveraging advancements in image generation. Generative
models offer a cost and time-effective alternative to manual
data collection and annotation. They provide better control
over environmental conditions, lighting, occlusions, camera
angles, and backgrounds, enabling the training of more robust
and adaptable models. Additionally, synthetic datasets do not
contain any personally identifiable information, thus providing
crucial privacy protection. There are also various applications
related to identity anonymization where controlled facial and
protected attributes are required.

However, there is a major challenge in using existing gen-
erative models as they are highly biased. For instance, when
randomly sampling 10,000 images from a StyleGAN2 [7]
model, only 26 corresponded to Indians, 171 to Africans, while
over 6500 were Caucasians, as depicted in Figure 2. Thus,
generating large balanced datasets through simple rejection
sampling is not only inefficient but also implausible for
underrepresented groups.

Previous methods that aimed to generate data for spe-
cific protected attributes, such as race, have either trained
a generative model from scratch or fine-tuned an existing
model. However, both of these approaches either require
the collection of large amounts of balanced real data or
depend on its availability. For instance, a recent study [8]
collected over 5 million images of Africans and 3 million
images of Asians from various YouTube sources. Similarly, [9]
used real datasets such as FairFace, UTKFace, and MORPH.
Reference [10] instead generated 256,000 synthetic images just
to find latent directions pertaining to different demographic
groups. In contrast, we propose a simple yet effective search-
based algorithm that exploits the disentangled nature of the
StyleGAN latent space. This approach can generate a large
number of demographically balanced unique synthetic identi-
ties in a zero-shot manner, i.e., without any training or using
real datasets.

Moreover, as compared to optimizing over a single protected
attributes as in [8], the ability to generate combination of
protected attributes allows jointly optimizing for multiple
fairness objectives. Though, it is important to note this is
limited by the existence of such variations in the existing
StyleGAN2 model. We show examples of the output of the
proposed algorithm in Figure 1.
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e We show that pre-training on the generated dataset
improves the performance of facial recognition and analy-
sis models while reducing the bias present in the models.

« We contribute to the ongoing discussion of address-
ing bias in facial recognition by providing a practical
and scalable solution that can be implemented without
requiring the collection of large amounts of real data.

This paper was invited to be submitted as an extension of

our previous IJCB 2023 paper [18], and compared to that paper

Fig. 1. Examples of images generated using our approach for combination of protected attributes.
3.1%
17.5%
W White [ Asian PLatino ] Indian [Middle [l Black
Hispanic Eastern

Fig. 2. Pie-chart depicting the racial distribution in the generated output of
the StyleGAN2 model across 10000 randomly drawn samples.

To show how this approach could be used to boost facial
recognition and analysis networks while mitigating biases, we
generate a racially balanced synthetic dataset. The dataset
consists of 50,000 synthetic identities each for six different
racial groups, including Indian, White, African, Black, Asian,
Middle Eastern, and Latino Hispanic, resulting in a total of
13.5 million images with 45 images per person. We demon-
strate that pretraining on this data can significantly improve
the performance of facial recognition systems. We evaluate
three different systems, namely ArcFace [11], AdaFace [12],
and ElasticFace [13], and show that our approach outperforms
models trained using widely accepted unbalanced datasets
such as VGGFace2 [14]. Our approach shows improvements
even on the BUPT balanced-face dataset [15] which already
contains an equal number of identities per race. Similarly, we
show results on ethnicity and gender classification using the
same generated dataset on the FairFace [16] and the UTKFace
datasets [17]. We show that the approach helps in boosting
performance while reducing biases.

To summarize, we make the following contributions in this
paper:

« We propose a simple evolutionary search-based approach
to generate a large balanced set of images using
an existing biased generative model. Our approach
doesn’t require any training dataset, synthetic or real.
Additionally, it doesn’t require training or fine-tuning of
the generative model.

« We contribute a dataset of over 50,000 distinct synthetic
identities for six different racial groups resulting in a total
of 13.5 million images with 45 images per person.

this manuscript contains the following additional material:

« We extend the work to show we use an modified fitness
function of the evolutionary algorithm to generate face
images with a combination of protected attributes.

o We further expanded on the explanation and analysis of
the proposed approach.

« We show that the generated racially balanced dataset can
be used to boost facial analysis algorithms while reducing
biases. We show results on the FairFace and UTKFace
datasets for ethnicity and gender classification tasks.

o We extended the training framework of face recognition
systems on the generated dataset to show results when
using only 4 racial groups, as is the case with the Racial
Faces in the Wild (RFW) dataset.

II. RELATED WORK

This section provides an overview of the most relevant work
done on bias mitigation in facial recognition models, including
the use of synthetic data for training these models, which is
particularly pertinent to the proposed approach.

A. Bias Mitigation in Face Recognition

Past research has extensively shown that widely accepted
deep learning-based facial recognition algorithms exhibit bias
towards a particular ethnicity [19], [20], [21], [22]. Most
of the research done on bias mitigation has been directed
towards mitigating the bias for particular demographic sub-
groups rather than arriving at generalizable solutions across
demographic groups [19].

Zhang et al. [23] proposed an adversarial learning approach
to reduce bias in facial recognition systems. Yucer et al. [24]
proposed an approach to alter the ethnicity of a person through
an adversarial training procedure applied to a CycleGAN
model. Gong et al. [25] used adaptive convolutional kernels
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and attention mechanisms based on the demographic subgroup
to mitigate demographic biases. Wang and Deng [15] propose
a reinforcement learning-based race balance network. They
also introduce the BUPT-GlobalFace and BUPT-BalancedFace
datasets containing datasets with racial distribution on global
and balanced distributions respectively. Researchers have also
proposed approaches to remove protected attributes in data
representations by adversarial training models [23], [26], [27].

Other researchers who studied biases in facial recogni-
tion models have pointed out correlations between protected
attributes and other features which is often the reason for
biases in face recognition models. Researchers have proposed
approaches to disentangle the protected attribute from other
features [28] as well as suppressing the protected attribute [29]
to have fairer face recognition models. In our case, given the
control that generative models provide, we can ensure that
some attributes such as pose, illumination, and expression do
not correlate with the protected attribute.

B. Synthetic Data Generation

Recently, researchers have shown interest in the use of
synthetic data for face recognition systems due to their
privacy-preserving properties. Most researchers have trained
new generative models on different types of real datasets [8],
[30], [31], [32]. Boutros et al. [31] proposed an approach to
train facial recognition using synthetic images. They trained
a generative model conditioned on the user identity to create
a synthetic dataset. Sevastopolsky et al. [8] also proposed
an approach to train a generative model on unlabelled data
collected from YouTube. They use this model to train an
encoder model which is then finetuned for face recognition.
However, all of these methods require a large number of either
labeled or unlabelled images for training the generative models
for their task. In this paper, we eliminate this step by making
use of an existing generative model even though it is biased.

Ramaswamy et al. [33] proposed a method to de-correlate
target labels (e.g., glasses, hats) with protected attributes (e.g.,
race, gender) to remove biases in facial attribute classification
models. Other researchers have also proposed approaches to
alter the facial attributes in images using generative mod-
els [34], [35], [36], [37], [38]. Researchers have also found
ways to disentangle the identity of a person from other facial
attributes of the image [39], [40].

A more related line of research to our work has been
on using pre-trained generative models to edit images by
traversing the latent space. Colbois et al. [41] demonstrated
that specific latent directions exist in the StyleGAN2 latent
space that can modify the pose, illumination, and expressions
of synthetic identity. Similarly, [10] used synthetic images
labeled by an auxiliary classifier as feedback to find latent
directions corresponding to different facial and protected
attributes. Reference [9] instead proposed using Gaussian
mixtures on a disentangled lower dimensional space instead
of directly using the StyleGAN latent space. Interestingly,
they claimed the StyleGAN3 latent space was not disentan-
gled for protected attributes. This could be because, as [42]
claimed, the StyleGAN3 latent space is more entangled

(b)

Fig. 3. We produce intra-class variations in expression (first row), poses
(second row) and illumination (third row) using latent directions in the
StyleGAN latent space. As we show, these variations work well across
demographics while preserving the identity.

than the StyleGAN2 counterpart. We discuss this further in
Appendix 2. Jain et al. [18] showed that the subspaces exist
in the original latent space of the StyleGAN2 model and can
be explored by using an evolutionary algorithm.

III. UNBIASED DATA GENERATION

In this section, we present our approach to generate
demographic-specific data. We start by defining the problem in
Section III-A followed by the proposed evolutionary algorithm
in Section III-B.

A. Problem Statement

We are given a generative model that exhibits biases wrt to
certain demographic groups and we wish to generate unbiased
data from this model. Let us assume a generative model G
parameterized by 6 and learned distribution pg : X, D — R
over a set of demographic groups {di,d>,...,d,} € D and
samples x € X. py(d;) is the marginal distribution over the
demographic class d; for the joint distribution pg(x, d). Thus,

po(dy) # po(d;) Vdi dj € D;i#j. (1)
Ex~p9 [x € dl] 75 ]Ex~p9 [x € d]] le‘, dj S D; i 75] (2)

This implies that in expectation when randomly sampling
data from the generative model we do not get an equally
representative set across the group of demographics. We wish
to mitigate this disparity such that, for a generated dataset with
data distribution pge, : X, D — R,

Ex~pge.[x € dil = 1/ID| Vd; € D. 3)
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Fig. 5.
while mutating in the z-subspace with the number of mutations set to 3.

In this work, we use a pre-trained StyleGAN2 [7] model
that was trained on the Flickr-Faces High-Quality [43]
dataset to generate 1024x1024 closeup facial images. The
StyleGAN2 model uses two latent spaces, the space Z € R>1?
sampled from a Gaussian random vector. This is mapped to
a larger latent space W+ € R'®312 using a small neural
network-based mapping function.

B. Generating Demographic-Specific Identities

While there exists representation biases in the StyleGAN
model, there is still significant variability which can allow
the generation of unique synthetic identities that are balanced
in terms of the demographic groups. Reference [44] showed
that StyleGAN models have a capacity of approximately
1.43 x 10° unique identities. Additionally, previous research
has shown the existence of latent directions or subspaces in
the StyleGAN2 latent space pertaining to different facial or
protected attributes [10], [41]. In this work, we make use of
these subspaces to propose using a controllable latent space
search algorithm similar to a breadth-first search in the latent
space of a StyleGAN2 model. Figure 4 presents a high-level
overview of the proposed approach which consists of two
parts. The first step is finding a latent vector in the subspace
pertaining to the target demographic group. This is done
by random rejection sampling using auxiliary race, gender
and age classifiers [45] for checking whether the generated
image belongs to the target groups. Using these demographic
classifiers we define a fitness function as follows,

Lif C(D),Ce(D),Co(D) ==T,, Ty, Ty
0 otherwise

fv) = { “4)

501

a = queue.popl()
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queue.enqueue(a?)
queue.enqueue(a3d)

(b) Iterative search in the subspace

Our proposed approach consists of two parts, (a) randomly sampling latent vectors till demographic criteria are met, followed by (b) iteratively

(e) Iteration 4

(d) Iteration 3 (f) Iteration 5

Images showing the generation of synthetic data using our approach targeting the ‘Latino Hispanic’ ethnic group and the “Woman’ gender group

where T,,T,, T, are the target demographic groups corre-
sponding to gender, age and ethnicity, G is the generative
model, and C,, C,, C, are the race, gender and age classifiers
respectively. We use the latent vector found through random
sampling as the starting point, referred to as v, in Algorithm 1.
Similar to the breadth-first search we maintain a queue for the
traversal. The starting point is added to a queue and we use
this to begin the search.

Iteratively, we dequeue a latent vector from the queue,
referred to as v.. If f(v.) = 1 then, we sample neighboring
points by mutating the current latent vector v, with a random
variable. We use a uniform random variable instead of a
multivariate Gaussian random variable, which is typically used
in most search algorithms, as it provides better control in the
GAN latent space and allows us to generate reasonable facial
images by staying within appropriate boundaries. Let v; be the
set of vectors mutated from the vector v, at the i-th iteration.

)

where n is the number of mutations of the current vector v,.
We append the entire set v; into the queue. We continue the
search process till the queue is not empty and other search
controls such as maximum iterations have not been exceeded.
We show the iterative generation of synthetic identities in
Figure 5 for the Asian demographic subgroup with the number
of mutations set to 1.

Our approach works well on both the Z and W+ latent
vector space, even though previous research has suggested
limited disentanglement of the Z space. The trade-off here
is similar to the use of a truncation-psi parameter, between
the diversity and quality of the images. The Z latent space

Vi = {Vi1, Vi2, ..., Vin}
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Algorithm 1 Latent Space Exploration for Generating
Synthetic Identities for Each Demographic Subgroup

Input: A generative model G; an auxiliary race, gender and
age classifier C,, Cg, Cqy; target demographic group T, Tg, Ty
starting latent vector found using random sampling vg s.t.
C(G(vs)) = t; number of mutations n; max range of random
mutation §; maximum number of iteration for a particular
starting vector max_iter

bfOutput: A list of latent space vectors w.

1: queue < []
out <[]
iter < 0
queue.enqueue(Vg)
while len(queue) # 0 and iter < max_iter do
Ve = queue.dequeue()
Z=G(ve)
if face not detected in Z then
continue
end if
if C,(Z) == T, and C,(Z) == T, and C,(Z) == T,
then

B A T o

—_—
—_ O

12: out.append(ve)

13: iter < iter + 1

14: for j = 0 to n do

15: Vj < V¢ + random(range = [ — §, §])ju
16: if dist(vj, vs) > dist(v¢, vs) then

17: queue.enqueue(Vj)

18: end if

19: end for

20: end if

21: end while
22: return List of latent vectors corresponding to the target
ethnicity - out.

ensures better quality, however with limited diversity. In
contrast, the W+ latent space ensures higher diversity but
may compromise the quality of the image. Thus, we use a
Google mediapipe [46] face detection model when searching
in the W+ latent space to ensure we stay within bounds. This
is however not required when evolving the Z latent space
which follows a smooth Gaussian distribution. Also, in the
case of mutating in the W+ latent space, we observed that
after a large number of iterations (> 500), when a number of
possible directions had been exhausted, the synthetic identities
started looking similar. This is because the search algorithm
is forced to take directions where the identity doesn’t change
but only variants of the same identity are produced. We see
that limiting the number of iterations from a particular seed
value can efficiently take care of this problem.

The proposed approach runs independently for different
ethnicities as shown in Algorithm 1 and can thus parallelly
generate data for different ethnicities. This allows us to
specifically control how many samples are required for each
demographic subgroup and we can appropriately terminate the
search operation once this criterion is satisfied.

For generating multiple images for each identity, we use
the approach proposed by Colbois et al. [41] using latent
directions for generating expression, pose, and illumination
variations. We have shown examples of intra class variations in
Figure 3. We have, however, excluded extreme pose variations
due to the limitations of the approach on StyleGAN2 as shown
by the original authors. This allows us to specifically curate
a diverse yet controlled set of facial expressions, poses, and
illumination while maintaining consistency across identities
and ethnicities.

To show advantages of the approach in face recognition and
analysis we use the proposed approach to generate a large
racially balanced dataset. We have broadly classified images
into 6 ethnic groups using an auxiliary ethnicity classifier [45]
- Caucasian, African, Indian, Asian, Middle Eastern, and
Latino Hispanic. In comparison to previous studies that have
generally used only 4 racial groups, we believe this is more
inclusive even though the test face recognition datasets only
contain labels for 4 groups - Indian, African, Caucasian, and
Asian. We generate two versions each for the Z and W+
spaces containing 15,000 and 50,000 synthetic identities per
ethnicity with 25 and 45 images per person respectively. These
are referred to as z-15k and z-50k for the Z latent space and
w-15k and w-50k for the W+ latent space.

C. Results: Are the Synthetic Identities Biometrically
Different?

Since we do not use a facial recognition algorithm in the
loop while searching for unique synthetic identities, an impor-
tant question arises, are the identities biometrically unique?
In this section, we experimentally validate this using a SOTA
biometric recognition system. The latent space search for
synthetic identities is done keeping the perceptual dissimilarity
between two consecutive images in mind. We do this by
controlling the step size or the range of the uniform random
vector. However, we don’t provide the search any feedback
on the biometric similarity score between two consecutive
images that are generated. To validate that these images are
in fact biometrically dissimilar, we perform a study using a
pre-trained SFace model [31]. The model has been taken from
the DeepFace library [47]. We specifically choose SFace as
compared to an ArcFace model as it has also been trained on
synthetic data and would be better at classifying such data.
It achieves similar performance on other metrics compared to
the ArcFace model.

We match each person with every other person in the
dataset. We show the results in the form of histograms in
figure 6 for the z-50k and w-50k datasets created using the
Z and W+ latent spaces respectively. We use images with
the same facial expression, pose, and illumination for every
identity to remove any bias from such attributes. In the figure,
the red line shows the operating threshold of 0.593 that was
set by DeepFace for the SFace model. As visible in the plots,
there is an extremely small tail of the histogram that is below
the threshold. Implying that the search algorithm can guarantee
uniqueness with extremely high accuracy. Additionally, we do
not see any low scores, which would have clearly indicated
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Fig. 6. Histogram showing the verification scores on 500,000 generated
identities using the (a) YW+ and (b) Z subspace of StyleGAN2. The red line
depicts the operating threshold set by DeepFace. As expected there is a larger
tail below the threshold for the Z space-generated identities.

TABLE I
COMPARISON OF TIME IT TAKES (IN MINUTES) TO GENERATE
1000 SAMPLES THROUGH RANDOM REJECTION SAMPLING VERSUS OUR
PROPOSED APPROACH FOR DIFFERENT ETHNICITIES. WE SEE OVER 200
TIMES IMPROVEMENT FOR INDIANS AND BLACKS

Demographic Group | Rejection Sampling | Ours
Indian 751.74 31.32
Black 843.84 17.16
White 20.62 13.73
Asian 118.96 17.28
Hispanic Latino 124.31 20.80
Middle Eastern 170.63 22.82

the same person being returned in multiple iterations of the
search. This also implies that using this evolutionary search
process we are able to generate almost 50 times as many
unique biometric identities as there were in the original FFHQ
dataset for some ethnicities such as Africans and Indians.

D. Results: Comparison of Computational Time

We empirically compare the computational time required for
sampling racially diverse data using random rejection sampling
as compared to our proposed approach. In Table I we show
results on the time (in minutes) required for both approaches.
Random rejection sampling for under-represented groups such
as Indians and Blacks is highly inefficient and requires over
12 hours to just generate 1000 samples. Our approach has
comparable time for each ethnicity, requiring 32 minutes or
less for the same number of samples.

IV. TRAINING THE FACE RECOGNITION MODEL

To show the advantages of the generated racially bal-
anced dataset, we pre-train face recognition models on this
dataset. We make use of three facial recognition models,
namely ArcFace, ElasticFace, and AdaFace. As a baseline,
these models have been trained on a real dataset. We have
specifically selected three popularly used datasets in face
recognition with varied levels of demographic imbalances -
VGGFace2, BUPT-BalancedFace, and BUPT-GlobalFace. We
followed the same training and testing protocols as the original
authors of the respective recognition models. We provide the
training and fine-tuning details including the hyperparameters
in Appendix 3.

503

The VGGFace?2 dataset contains 9000+ identities and over
3.3 million images. They do not provide any information on
the numbers corresponding to each demographic group.

The BUPT-BalancedFace contains 7000 identities per race
but with small variations in the total number of images per
race. The subset of the dataset with images of Caucasians
contains 326 thousand images and in contrast, the subset for
Indians only contains 275 thousand images. Thus even though
the dataset is balanced in terms of the number of identities, it
has a notable difference in the number of images per identity
for the Indian subset.

The BUPT-GlobalFace dataset mimics the demographic
distribution that is prevalent in the world. It contains 38
thousand identities and 2 million images in total. 38% percent
of the dataset corresponds to white people, 31% to Asians
18% to Indians, and the remaining 13% to Africans.

We report results on the Racial Faces in the Wild (RFW)
dataset [48] which contains partitions for 4 racial groups -
Caucasians, Blacks, Indians, and Asians. We also report results
on the Labeled Faces in the Wild (LFW) [49], Celebrities
in Frontal-Profile in the Wild (CFP-FP and CFP-FF) [50],
AgeDB [51], Cross-Age LFW (CALFW) [52] and the Cross-
Pose LFW (CPLFW) [53] datasets.

The LFW dataset contains 13,233 images of 5,749 peo-
ple that were extracted using the Viola-Jones face detector
algorithm. It is often referred to as the de facto benchmark
for unconstrained face recognition. The CFP dataset contains
images of celebrities in frontal and profile views. It contains
a total of 7,000 pairs of celebrities in both the frontal-frontal
(CFP-FF) and frontal-profile (CFP-FP) views. The dataset is
primarily used for benchmarking the performance of face
recognition across poses. The AgeDB dataset contains 12,240
images of famous personalities, including actors, writers,
scientists, and politicians. It contains 440 subjects with varied
ages and poses. The dataset is a good benchmark for age-
invariant face recognition and age progression. It subject’s ages
vary from 3 years to 101 years. Similarly, the Cross-Age LFW
dataset has been used as a testbed for face recognition across
age groups. It has been created from the LFW dataset where
3,000 pairs of images have been selected with age gaps to
add aging progression intra-class variance. Similarly negative
pairs were also selected with the same gender and race to
reduce the influence of other attributes. The CPLFW dataset
on the contrary focuses on adding positive subjects with pose
variations. They also add 3,000 positive pairs with varied poses
and construct the same number of negative pairs keeping the
same constraints as the CALFW dataset.

1) Metrics Used for Evaluation: For evaluating the facial
recognition models, we report the recognition accuracy on
various datasets. Additionally, similar to [54] we utilize the
recognition accuracy difference (AD), metric for evaluation of
the post-training model biases. Accuracy difference is the max-
imum difference or disparity between the recognition accuracy

of different facets in a set of demographics {d1, d>, ...,d,} €
D (equation (6)).
AD = max; j|ACC; — ACC;|Vi,j e D 6)
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TABLE 11
RECOGNITION PERFORMANCE WHEN TRAINING ON THE VGGFACE2
DATASET AND TESTING ON THE SUBSETS OF THE RFW DATASET. THE
MODELS TRAINED ON REAL DATA SERVE AS A BASELINE. Z-15K AND
Z-50K ARE SYNTHETIC DATASETS CREATED BY SEARCHING ON THE
Z-LATENT SPACE WITH 15,000 AND 50,000 IDENTITIES PER RACE
RESPECTIVELY. W-15K AND W-50K ARE ONES CREATED USING THE
W-LATENT SPACE. W-50K-4 AND Z-50K-4 ARE SUBSETS OF THE
SYNTHETIC DATASETS CONTAINING ONLY 4 RACIAL GROUPS
SIMILAR TO THE ONES IN THE RFW DATASET - INDIAN,
ASIAN, WHITE, AND AFRICAN

Model Dataset RFW AD
Indian Asian White African

Real 79.17 7490 8248 73.80 8.68

w-15k 7943 7542 82.03 7458 745

ArcFace z-15k  77.83 7477 8153 7440 7.13
w-50k  80.58 77.10 83.12 7647 6.65

z-50k  80.28 7692 83.12 7595 7.17

w-50k-4  78.41 7480 80.73 7441 6.32

z-50k-4  78.15 74.66 79.83 7425 5.58
Adaface Real 7797 75.67 8252 70.18 12.33
w-15k  77.53 7450 80.88 70.15 10.73

z-15k  78.17 7538 8130 71.72 9.58
w-50k  77.20 76.07 82.02 6840 13.62
z-50k  79.15 77.55 8273 7248 10.25
w-50k-4 7720 7635 81.66 7040 11.26
z-50k-4 80.46 77.88 84.23 73.36 10.87

Elasticface Real 7497 7132 7778 7092  6.87
w-15k  79.78 7587 83.47 7590 7.57

z-15k  81.10 7623 84.62 77.08 7.53

w-50k 8092 76.88 83.83 7632 752

z-50k  79.90 7552 8372 75.63 8.08

w-50k-4  79.86 75.63 83.65 74775 8.90

z-50k-4 80.23 75.03 84.06 7536 9.03

A. Results on the Use of the Synthetic Dataset for Training
Facial Recognition

We hypothesize that using a balanced dataset in terms
of ethnic distribution will lead to a more accurate and fair
face recognition model. A balanced dataset will help ensure
that the model is better able to recognize individuals from
underrepresented communities, who may be more likely to
be falsely identified by traditional biased models. Most facial
recognition models currently are trained on datasets such as
MS-1M, and VGGFace2. All of these datasets are unbalanced
with respect to ethnic diversity. We compare the advantages of
pretraining on the generated synthetic dataset as compared to
only training a face recognition model on real data. Given, the
distributional shift from high-quality synthetic images to real-
world in-the-wild datasets, we finetune all the models trained
on balanced synthetic datasets on real-world datasets.

We summarize the results on the RFW dataset in
Table II, Table III and Table IV for the VGGFace2, BUPT-
BalancedFace and BUPT-GlobalFace datasets respectively. We
see a significant improvement in the performance of the
models especially in the case of the ElasticFace model when
finetuned on the VGGFace?2 dataset. The recognition accuracy
on the RFW dataset improves from 74.97% to 81.10% for
Indians, 71.31% to 76.23% for Asians, 77.78% to 84.62%
for Caucasians, and 70.92% to 77.08% for Africans. Even for
the AdaFace model, on average, we see an improvement of

TABLE III
RECOGNITION PERFORMANCE WHEN TRAINING ON THE
BUPT-BALANCEDFACE DATASET AND TESTING ON
THE SUBSETS OF THE RFW DATASET

Model Dataset RFW AD
Indian Asian White African
ArcFace Real 9423 92.87 95.03 9292 2.12
w-15k 9497 93770 9535 93.15 220
z-15k 9497 93.67 9525 93.67 1.58
w-50k  93.73 9275 9495 9238 2.57
z-50k 9443 93.00 9477 9248 2.28
w-50k-4 94.18 93.06 95.16 9243 273
z-50k-4  95.15 94.51 9551 93.71 1.80
Adaface Real 93.28 92.87 95.02 90.78 4.23
w-15k 9343 92.87 9497 90.23 4.73
z-15k 9343 9297 94.62 89.80 4.82
w-50k  93.33 9230 9422 90.18 4.03
z-50k  93.38 9257 9437 89.92 4.45
w-50k-4 92.60 9198 93.56 89.06 5.50
z-50k-4  93.43 92.66 9530 90.71 4.59
Elasticface  Real 9423 93.83 9530 93.03 227
w-15k 9455 9398 95.68 93.15 253
z-15k 9470 9397 96.02 93.82 2.20
w-50k  94.63 9350 95.85 9352 233
z-50k 9422 93.60 9577 93.67 210
w-50k-4  95.00 94.13 96.10 93.80 2.30
z-50k-4  94.12 9358 9595 9348 247
TABLE IV

RECOGNITION PERFORMANCE WHEN TRAINING ON THE
BUPT-GLOBALFACE DATASET AND TESTING ON THE
SUBSETS OF THE RFW DATASET

Model Dataset RFW AD
Indian Asian White African

ArcFace Real 94.85 9428 96.23 9320 3.03

w-15k  95.10 94.65 97.27 9297 4.30

z-15k 9533 95.05 97.00 93.60 3.40

w-50k 9498 93.78 96.33 92.60 3.73

z-50k  95.17 94.13 97.10 9230 4.80

w-50k-4  95.07 94.13 96.45 9275 3.70

z-50k-4 9595 95.12 96.92 93.87 3.05

Adaface Real 9422 93.88 96.63 91.05 5.58

w-15k  94.68 94.22 96.87 9152 535

z-15k  94.80 94.00 96.57 91.55 5.02

w-50k  94.75 9392 96.72 9120 5.52

z-50k  94.72 94.15 96.97 91.25 5.72

w-50k-4 94.67 9397 96.77 9093 5.84

z-50k-4  94.65 93.65 96.85 90.80 6.05

Elasticface Real 9532 9470 97.07 93.68 3.38

w-15k  95.52 94.60 97.28 93.37 3.92

z-15k  95.73 94.38 97.63 93.73 3.90

w-50k 9442 9328 9643 91.77 4.67

z-50k 9547 9420 97.03 93.68 3.35

w-50k-4 95.03 94.13 96.83 92.58 4.25

z-50k-4 9478 9425 97.03 9240 4.63

approximately 2% in the model that was pre-trained with the
z-50k synthetic dataset.

We also see improvements in the set of experiments involv-
ing the BUPT-GlobalFace dataset. However, it is important
to note that the RFW dataset has been extracted from the
same MS-1M celeb dataset that BUPT-GlobalFace was created
from. While the two sets are disjoint, the datasets are similar
in terms of the data distribution. Thus, the finetuning on
the BUPT-GlobalFace dataset played a larger role in the
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TABLE V
RECOGNITION PERFORMANCE WHEN TRAINING ON THE VGGFACE2 DATASET AND TESTING ON THE
LFW, CFP-FP, CFP-FF, CALFW, AGEDB, AND THE CPLFW DATASETS

Model Train Dataset LFW  CFP-FP CFP-FF  AGED-DB CALFW CPLFW
ArcFace Real 81.95 57.63 68.51 55.77 90.45 80.60
w-15k 82.10 56.90 67.83 55.82 90.13 80.70
z-15k 81.82 58.00 68.90 55.55 90.05 81.33
w-50k 82.37 58.96 69.14 55.55 90.82 81.50
z-50k 81.55 57.59 69.51 56.17 91.27 81.00
w-50k-4 80.96 5822 69.47 55.81 89.85 79.48
z-50k-4 81.15 58.00 68.06 55.30 88.66 79.55
Adaface Real 96.58 85.49 97.80 84.37 88.97 79.25
w-15k 95.57 82.89 97.11 83.33 88.47 77.85
z-15k 95.98 83.82 97.33 84.30 89.30 78.47
w-50k 96.75 87.03 97.67 81.63 88.57 79.72
z-50k 96.68 85.87 98.10 84.22 89.42 79.52
w-50k-4 95.92 83.57 96.86 83.30 88.73 78.05
z-50k-4 97.10 87.47 98.14 85.70 89.98 80.80
Elasticface Real 81.18 58.99 67.49 54.40 87.70 76.90
w-15k 83.20 61.13 70.36 56.40 91.20 81.52
z-15k 84.15 60.64 70.96 56.63 91.97 83.60
w-50k 83.05 60.87 71.10 56.88 92.82 82.60
z-50k 83.23 61.16 70.90 56.45 91.02 81.23
w-50k-4 86.12 62.50 72.29 57.67 91.88 79.67
z-50k-4 86.98 63.14 73.43 58.02 92.57 80.12
TABLE VI

RECOGNITION PERFORMANCE WHEN TRAINING ON THE BUPT-BALANCEDFACE DATASET AND TESTING ON THE
LFW, CFP-FP, CFP-FF, CALFW, AGEDB, AND THE CPLFW DATASETS

Model Dataset LFW CFP-FP CFP-FF AGE-DB CALFW CPLFW
ArcFace Real 86.48 60.50 71.26 58.27 94.77 90.62
w-15k  87.25 59.29 70.50 57.75 95.28 90.43
z-15k 86.92 60.87 70.51 57.34 95.35 91.03
w-50k  86.83 60.04 70.50 57.33 95.18 90.53
z-50k 86.88 58.66 70.61 57.20 95.03 90.00
w-50k-4  86.95 60.46 70.51 57.85 94.88 90.40
z-50k-4  87.51 60.84 70.57 57.73 95.25 91.95
AdaFace Real 99.43 88.14 98.70 91.97 94.97 88.38
w-15k  99.40 87.07 98.63 91.92 94.83 87.53
z-15k 99.25 87.69 98.97 90.63 94.65 87.72
w-50k  99.43 88.86 98.67 91.62 94.73 88.10
z-50k 99.25 87.99 98.50 90.68 94.53 87.52
w-50k-4  99.16 87.24 98.41 90.76 94.38 87.98
z-50k-4 9943  89.34 98.73 91.90 94.85 88.58
ElasticFace Real 87.52  61.30 71.60 58.30 95.13 91.28
w-15k  88.00  61.41 71.19 58.25 95.13 91.92
z-15k 87.80  61.77 72.41 58.15 95.35 91.63
w-50k  88.15 61.16 71.71 58.68 95.08 91.25
z-50k 8792  61.73 72.00 57.82 95.15 91.40
w-50k-4  88.02 60.86 72.17 58.42 95.26 91.63
z-50k-4  88.05 61.21 71.51 58.23 95.30 91.50

final performance. We believe this is the reason behind the
less significant improvement for these sets of experiments.
Nonetheless, for the model that was pre-trained on the z-50k
synthetic dataset, we see an improvement of approximately
0.5% on average across the different subsets of the RFW
dataset.

Interestingly, we see improvements even for the BUPT-
BalancedFace dataset which is already balanced in terms of
ethnic diversity. A recent work [8], showed an improvement
in the range of 0.45% to 1% for different ethnicities on the

RFW dataset by using synthetic data along with the BUPT-
BalancedFace dataset. We show improvements in the range
of 0.48% to 1.64% for the ArcFace model pre-trained on
the z-50k-4 dataset. It is also important to note that our
approach has other added advantages - we do not collect
any real data and make use of an already existing generative
model. We can do the synthetic data generation in a zero-
shot manner using a simple search-based approach without the
requirement for training the StyleGAN from scratch as done
by [8].
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TABLE VII
RECOGNITION PERFORMANCE WHEN TRAINING ON THE BUPT-GLOBALFACE DATASET AND TESTING ON THE
LFW, CFP-FP, CFP-FF, CALFW, AGEDB, AND THE CPLFW DATASETS

Model Train Dataset LFW CFP-FP CFP-FF AGED-DB CALFW CPLFW
ArcFace Real 87.72 59.81 71.36 59.25 95.38 90.43
w-15k 87.58 58.60 70.66 58.82 95.62 90.50
z-15k 87.82 60.79 70.87 59.08 95.40 91.28
w-50k 87.27 57.51 70.86 58.27 95.63 89.52
z-50k 87.28 58.13 70.87 58.28 95.62 89.65
w-50k-4 87.53 58.94 70.57 58.82 95.40 90.27
z-50k-4 87.88 58.90 71.29 58.93 95.57 91.08
Adaface Real 99.60 86.23 98.97 93.55 95.40 87.40
w-15k 99.57 85.50 99.16 93.78 95.13 87.45
z-15k 99.38 85.61 99.00 93.62 95.63 87.52
w-50k 99.50 86.84 99.07 93.77 95.30 87.85
z-50k 99.47 85.31 99.10 93.27 95.48 87.52
w-50k-4 99.52 85.57 98.80 93.22 95.48 86.98
z-50k-4 99.60 86.53 99.04 93.17 95.47 87.43
Elasticface Real 88.80 61.81 72.20 60.10 95.58 91.73
w-15k 88.83 61.21 72.34 59.42 95.57 92.10
z-15k 88.97 61.36 72.71 59.75 95.42 91.95
w-50k 87.75 59.61 72.07 58.90 95.65 90.55
z-50k 89.05 61.80 71.80 59.57 95.48 91.40
w-50k-4 88.10 60.44 72.31 58.93 95.58 90.92
z-50k-4 88.03 60.07 72.23 59.70 95.48 91.23
TABLE VIII

RESULTS FOR ETHNICITY AND GENDER CLASSIFICATION ON THE FAIRFACE AND UTKFACE DATASETS. P(A) IS THE STANDARD DEVIATION OF THE
CLASSIFICATION ACCURACY ACROSS THE PROTECTED GROUPS. FAIRGRAPE REFERS TO THE APPROACH PROPOSED BY [55]

Task Method All Male Female p(A) AD  White Black Hisp E-A SE-A  Indian ME p(A)  AD
E‘:Criace’ Standard 7192 7122 7270  1.04 148 7692 8416 5572 79.06 6448 7573 6517 10.02 2843
FairGrape 668 653 686 235 330 722 803 475 758 563 702 486 134 3170
Ours 7208 7050 7385 236 335 7636 8445 5511 7942 6541 77.17 64.63 1031 29.34
g?;?;e Standard 9442 9445 9386 048 068 9416 9070 9511 9502 9383 9519 9580 170  5.10
FairGrape 91.1 913 910 020 030 904 854 923  90.1 905 919 928 247 740
Ours 94.53 9443 9464 014 021 9477 9048 9552 9450 9453 96.12 9589 190  5.63
PaRFace:  Standard 9232 9177 9295 083 117 9385 9410 - 93.67 - 8571 - 408 839
FairGrape 887 882  89.3 078 110 906 922 - 889 - 790 - 593 13.20
Ours 9200 91.61 9246  0.60 0.85 9354 9323 - 92.81 - 8642 - 339 111
OURRICe:  Standard 9432 9398 9471 052 073 9538 9563 - 90.80 - 9333 - 221 482
FairGrape 922 920  92.5 031 050 927 940 - 879 - 913 - 261 6.10
Ours 93.82 9279 9500 156 221 9446 9541 - 89.94 - 93.80 - 240 547
We also show that the models pre-trained on the balanced ] 2 it varinee for Random vctor
synthetic data help in mitigating the bias in the model. For 0
the Adaface models trained on the VGGFace2 dataset, we
see a 2.55% reduction in the maximum disparity between §:“
different racial groups. Similarly, there is a 2.02% reduction §£M
for the Arcface model. However, there is a slight increase m“
in the accuracy difference for the ElasticFace model. We see
similar improvements even in the case of the models trained on 00
BUPT-BalancedFace which is already trained on an unbiased ’ e prncipal Comporent o
dataset. Thus, the approach boosts the performance of the i
Fig. 7. PCA analysis of 300,000 randomly sampled W+ vectors.

models while simultaneously reducing the bias.

Finally, we also improvements in the recognition
performance for the other datasets - LFW, AgeDB, CFP-
FP, CFP-FF, CPLFW, and, CALFW. We reported these
results in Table V for the VGGFace dataset, Table VI
for the BUPT-BalancedFace dataset and Table VII for
the BUPT-GlobalFace dataset. We see the maximum
improvements in the case of the AdaFace model when

compared to pretraining on w-50k dataset. The performance
on the CFP-FP dataset improves from 85.49% to 87.03%. We
can attribute any improvement in performance improvements
in the CFP-FP dataset to the presence of profile view images
in the synthetic training set. We made use of the control
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Fig. 8.
selected from the dataset showing different poses and expression.

over the generative process to include all 180-degree pose
variations in the training set.

V. TRAINING THE FACE ANALYSIS MODEL

We further show the advantages of synthetic racially
balanced data in facial analysis. We specifically focus on
two tasks, i.e., ethnicity and gender classification. Similar
to FR, the baselines are trained purely on real datasets.
We show results on the FairFace [16] and the UTKFace
datasets [17].

The FairFace dataset contains 108,501 images that are
balanced in terms of racial distribution. The dataset contains

Examples of 100 different identities corresponding to the “Indian” racial group generated using the proposed approach. These have been randomly

7 racial groups - White, Black, Indian, East Asian, Southeast
Asian, Middle Eastern, and Latino along with two gender
classes Male and Female.

The UTKFace dataset contains over 20,000 images anno-
tated with age, gender, and race. The dataset however is not
balanced in terms of racial groups and it contains 4 racial
groups - White, Black, Asian, and Indian.

We followed the same training and testing protocols as
in [55]. Similar to [55] we reported results on the standard
deviation between the performance on the protected groups,
referred to as p(A). In addition to the accuracy difference
metric, this helps us quantitatively access the biases present
in the model.
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Fig. 9. Examples of 100 different identities corresponding to the “African” racial group generated using the proposed approach. These have been randomly

selected from the dataset showing different poses and expression.

A. Results on Facial Analysis

The results have been summarized in Table VIII. We
see that for the FairFace and UTKFace datasets, models
pre-trained on our balanced data outperform the approach
proposed by [55]. Given the balanced nature of the FairFace
and UTKFace datasets, we did not see a significant improve-
ment in the performance over the only training on real data.
We expect to see more significant improvements in situations
where the real dataset is imbalanced. Nevertheless, for the
FairFace dataset we saw that both the accuracy difference
(AD) and p(A) reduced for gender classification task across
the gender groups. However, it was slightly higher for the
same task across the racial groups. At the same time, we saw

better overall classification accuracy for both race and gender
classification.

VI. DISCUSSION

Although GANSs offer some control over the data generation
process, they also have several limitations. For instance, GANs
can only change certain attributes in the variations of each
identity, and they cannot replicate real-world data accurately.
The generated samples are always consistent in terms of
quality and size, which is not the case with real-world data.
Consequently, we require additional fine-tuning on a real-
world dataset to address this domain gap.
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Fig. 10. Examples of 100 different identities corresponding to the “Caucasian” racial group generated using the proposed approach. These have been randomly

selected from the dataset showing different poses and expression.

While we can generate a large number of samples for
minority communities we can expect there to be differences in
the diversity of samples belonging to the minority communities
as there are fewer examples in the original training dataset.
Moreover, in the case of generating a combination of protected
attributes, this issue is further exacerbated as some combina-
tions may not have been present in the original training dataset.
For example, we saw very few examples of ‘middle eastern’
race and the ‘woman’ gender group.

In this work, we use a state-of-the-art existing ethnicity,
gender, and age classifier [47]. The approach assumes that
this classifier is perfect and uses it as supervision for the

evolutionary algorithm. We do not consider imperfections in
the classifications of the classifier and thus we can expect some
noisy predictions or misclassifications. A misclassification can
occur in two different situations, the starting latent vector
itself has been misclassified and the second case is where
a misclassification occurs during a latent space search. In
both these cases false positives can introduce some examples
of different demographics during the search for a particu-
lar demographic group but it would be limited since the
classifier would need to constantly misclassify images in a
particular latent subspace/ direction to continue the search
there. Otherwise, the search would terminate in that latent
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Fig. 11.

Examples of 100 different identities corresponding to the “Middle Eastern” racial group generated using the proposed approach. These have been

randomly selected from the dataset showing different poses and expression. What is interesting is that most samples are male. There are two possible reasons
- biased nature of the ethnicity classifier and the absence of female middle eastern humans in the GAN latent space.

space/ direction after its mutations return negative matches
with the target demographic. On the other hand, false negatives
can negatively impact the search. These misclassifications
become even more pertinent in the case of searching for
combinations of demographics where the error multiplies.
Here any misclassification in any of the protected attributes
leads to termination of the search in that direction/ subspace.

In this study, we have utilized the StyleGAN2 generative
model due to its disentangled latent space and its ability
to generate high-quality facial images. We believe a similar
approach can be applied to any generative model with a
disentangled latent space such as Latent Diffusion Models.

Diffusion-based models have been shown to generate images
with high diversity, however, with higher computational time
and cost.

VII. CONCLUSION

In conclusion, this work presents an approach to generate
a balanced number of distinct synthetic identities for differ-
ent demographic subgroups from a highly biased generative
model. We do so in a zero-shot manner without training or
finetuning a generative model. We show that this approach
works well on the StyleGAN2, and is successful in generating
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Fig. 12. Examples of 100 different identities corresponding to the “Asian” racial group generated using the proposed approach. These have been randomly

selected from the dataset showing different poses and expression.

over 50,000 synthetic identities per race. Finally, we show
that pretraining a face recognition and analysis models on this
dataset boosts the performance of the model. Being a balanced
dataset it also assists in mitigating the biases in the model
and achieves fairer performance across different demographic
groups. This shows that this approach is generalizable and
balanced datasets generated using this approach can be used
for training any downstream task.

APPENDIX
A. Discussion

We experimented with other approaches similar to past
researchers [8], [10], [41] that project real data onto the latent

space to get synthetic data. In addition to using privacy-
sensitive real data, the projection approach tries to give an
exact match between the real identity and projection. While for
this task, we are only concerned about an estimated ethnicity
match between them. This leads the projection operation to
generate unclear or often even demonic faces in an effort
to match other unnecessary details such as the background
and clothes. Moreover, the projection is more difficult for the
underrepresented groups where the variations in the biased
generative model are considerably lesser. Additionally, this
limits the variations of synthetic data that can be generated
to variations or interpolations of the projection of the real
data. This would also limit the uniqueness of the identities.
Along similar lines as [10], we had also experimented with
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Fig. 13.
randomly selected from the dataset showing different poses and expression.

randomly generating data and using these as references for
these approaches instead of projecting real images on the
latent space. However, due to the highly biased nature of
StyleGAN2, even after generating over 100,000 samples we
had very few samples for the under-represented ethnicities
(<2000). This made it computationally expensive in terms
of both the time required and storage space. Our proposed
approach even without making use of any real or synthetic
training data is able to generate a more diverse set of unique
identities. This makes it both efficient in terms of time and
space as it requires no training data to learn latent directions
or interpolations of the data.

Examples of 100 different identities corresponding to the “Latino Hispanic” racial group generated using the proposed approach. These have been

B. Disentanglement of the StyleGAN Latent Space

Rahimi et al. [9] suggested limited disentanglement of the
StyleGAN3 latent space by visualizing t-SNE plots in two
dimensions. We however argue that due to limited correlation
between the YW+ dimensions, it is inadequate to rely solely
on the t-SNE visualization. In Figure 7 we show that even
for preserving 80% of the energy you need approximately
4000 dimensions of the data. Thus, there doesn’t seem
to be strong evidence to suggest that the 9216 dimen-
sional W+ can be accuracy represented on a 2 dimensional
plane.
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C. Hyper-Parameters for Training and Finetuning Facial
Recognition Models

We utilize the following hyperparameters for training the
respective face recognition model with a ResNet-50 backbone
for all the datasets for consistency. We have used the same
parameters for finetuning as well. We had experimented with
different learning rates for the synthetic datasets but had found
these parameters to be the best performing.

1) AdaFace:

L]

Batch Size: 512

Epochs: 26

Learning rate milestones: 12, 20, 24
Learning rate: 0.1

m: 0.4

h: 0.333

Low-resolution augmentation probability: 0.2
Crop augmentation probability: 0.2
Photometric augmentation probability: 0.2

2) ArcFace:

L]

Embedding size: 512
Momentum: 0.9

Weight Decay: Se-4
Batch Size: 128

Learning rate: 0.02
Epochs: 20

Margin list: (1.0, 0.5, 0.0)

3) ElasticFace:

[1]

[3]
[4]

[6]

Epoch: 40

Batch size: 128
Learning rate: 0.1

s: 64.0

m: 0.5

std: 0.0175
Momentum: 0.9
Warmup: -1

Weight decay: Se-4
Embedding size: 512
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