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Abstract

Measuring the properties of black hole images has the potential to constrain deviations from general relativity on
horizon scales. Of particular interest is the ellipticity of the ring that is sensitive to the underlying spacetime. In
2019, the Event Horizon Telescope (EHT) produced the first-ever image of a black hole on horizon scales. Here,
we reanalyze the M87* EHT 2017 data using Bayesian imaging (BI) techniques, constructing a posterior of the ring
shape. We find that BI recovers the true on-sky ring shape more reliably than the original imaging methods used in
2019. As a result, we find that M87"’s ring ellipticity is 0.097007 and is consistent with the measured ellipticity
from general relativistic magnetohydrodynamic simulations.

Unified Astronomy Thesaurus concepts: Very long baseline interferometry (1769); Astronomy data analysis

(1858); Supermassive black holes (1663)

1. Introduction

The Event Horizon Telescope (EHT) imaged the first lensed
black hole emission on horizon scales in Event Horizon
Telescope Collaboration et al. (2019a, 2019d, hereafter Paper I
and Paper 1V, respectively). By measuring the size of the
image, the EHT provided the first direct measurement of the
mass of a supermassive black hole via strong lensing near the
horizon (Event Horizon Telescope Collaboration et al. 20191,
hereafter Paper VI). The directly measured EHT mass is
consistent with stellar (Gebhardt et al. 2011) and recent gas
mass (Liepold et al. 2023; Osorno et al. 2023; Simon et al.
2023) measurements. This consistency provides evidence that
the central black hole is consistent with general relativity (GR),
as discussed in Paper VI. However, while the size of the
measured ring is related to the central mass and, weakly, the
spin of the black hole, so is its shape. In particular, the
ellipticity of the ring provides a potential probe of the black
hole spin and beyond GR effects (Takahashi 2004; Johnson
et al. 2020; Medeiros et al. 2020). While GR predicts that the
shadow should be highly circular given M87*’s inclination,
metrics that violate the no-hair theorem can increase the
observed ellipticity in images (Johannsen & Psaltis 2010;
Broderick et al. 2014; Johannsen et al. 2016; Gralla &
Lupsasca 2020; Gralla et al. 2020). Therefore, measuring a
nonzero ellipticity of the shadow of the black hole provides a
test of GR on horizon scales.

While the set of image reconstructions presented in Paper IV
found nonzero ellipticity, in Tiede et al. (2022a), it was
demonstrated that this was due to the imaging method used, the
lack of elliptical image structure in the imaging training set, and
the EHT coverage. Namely, the set of parameters used to define
the distribution of images could not reliably recover the true
on-sky ellipticity. It could only constrain the ellipticity of
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M87*’s image to be less than 3:5. The main source of this
uncertainty is that the distribution of images does not provide a
statistical measure of uncertainty in image reconstructions.
Instead, the distribution is associated with the variation in
image reconstructions arising from different choices of the
regularized maximum likelihood (RML) hyperparameters,
codified in the “top set.” Briefly, the top set starts with a
coarse grid search over different image hyperparameters, then a
set of heuristic cuts based on their performance on some
preselected training set, and the image chi-square from fitting
the actual data. For complete details of the procedure, see
Paper IV. Tiede et al. (2022a) demonstrated that the top-set
ellipticity estimates were substantially biased. To account for
the biased estimates, a calibration procedure was employed that
corrected this bias by imaging 100 general relativistic
magnetohydrodynamic (GRMHD) simulation snapshots. The
calibration procedure greatly increased the ellipticity uncer-
tainty, preventing a measurement of the ring ellipticity.

The need for this calibration procedure is a direct
consequence of the biased ellipticity estimates. Therefore, a
new imaging approach or pipeline is needed to substantially
reduce the ellipticity estimate bias. One approach to this could
be to include various elliptical rings during top-set training.
However, choosing the training set is difficult and may
introduce new biases in the image reconstructions. Instead, in
this paper, we will use Bayesian imaging (BI). BI (Broderick
et al. 2020a; Sun & Bouman 2020; Arras et al. 2022;
Tiede 2022) provides a statistically motivated procedure to
assess uncertainty in reconstructions. As a result of its
statistical nature, there is no need for a top set to estimate
uncertainty in the image reconstructions. Furthermore, as
shown below, BI allows a self-consistent, data-driven approach
to hyperparameter optimization and image uncertainty. By
combining BI with the image feature extraction tools such as
ReX and VIDA used in Tiede et al. (2022a), we can construct
posteriors on image features such as ellipticity, measuring their
uncertainty. Therefore, the Bayesian approach may be more
immune to the biases found in Tiede et al. (2022a), providing a
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direct measurement of image features. To validate the THEMIS
and VIDA pipeline and ensure the estimated ellipticity bias is
small, we repeat the elliptical ring analysis from Tiede et al.
(2022a), demonstrating that the analysis pipeline we develop in
this paper provides an accurate estimate of the true on-sky
ellipticity. We then apply this same pipeline to the 2017 EHT
data and measure the ellipticity of M87" in 2017. The measured
ellipticity is then compared to GRMHD simulations to assess
whether M87" is consistent with GRMHD simulations.

The paper’s layout is as follows: Section 2 describes the BI
and feature extraction techniques we use in the paper. Section 3
describes the data products we are fitting and the simulated data
generation procedure. Section 4 applies the model to a set of
elliptical geometric modeling tests and assesses the amount of
bias in the estimated ellipticity. Section 5.2 then applies the
same imaging pipeline to the 2017 EHT observations of M87*
and compares the results to theoretical expectations from
GRMHD simulations.

2. Bayesian Imaging and Feature Extraction
2.1. Image Domain Model

In Broderick et al. (2020a), a new BI technique was
developed to quantify image uncertainty statistically. The
image model assumes that the on-sky image can be described
by a set of rectangular control /raster values c;; positioned at the
locations (x;, y;) = (FOV,/(n, — 1), jJFOV,/(n, — 1)). The on-
sky intensity is given by

I(x,y) =) cjrlx — x)R(y — ¥), ey
i

where x is an image response or pulse function that converts
the discrete set raster to a continuous image. The Fourier
transform of the image is
T, v) = > 2Tt ¢ R(u) R(v), )
ij
where & is the Fourier transform of the pulse function. The
choice of « is arbitrary. We follow Broderick et al. (2020a) and
use a bicubic kernel:
0 x| =2
b(IxP =5 1xP + 8lx| —4) 1<Ix][ <2, 3)
G+DIXP—-—@+3)xP+1 x| <1

k(x) =

which has Fourier transform

R(k) = —% sin(k)(2b cos(k) + (4b + 3))
+ ]lc—i[b — bcos(2k) + 2 — 2cos(k)]. 4)

For a derivation of the Fourier transform equations, see
Appendix A of Broderick et al. (2020a). The constant b is a free
parameter of the interpolation kernel and is typically set to
b= —0.5.° This model has been implemented in THEMIS as
model_image_adaptive_spline_raster.

In Broderick et al. (2020a), the grid itself was specified
a priori, and then the preferred field of view (FOV) was found
by performing a parameter survey with the FOV and number of

S This kernel is not positive definite, so the image may have negative

intensity. In practice, we find that this effect is minimal.
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raster pixels as free variables. This paper allows the raster size
and orientation ¢ to vary during sampling, following the
procedure from Broderick et al. (2022). As a result, this
imaging method only has two discrete hyperparameters,
namely, the number of pixels in the two principal directions
of the raster.

For our model priors we first use log-uniform priors between
% Jystr—! and ¢°° Jystr—! on all the raster values c;;. The raster
FOVs FOV, and FOV, were set to be independent with
uniform priors over the interval [15 pas, 120 pas] and a
uniform prior on the raster orientation. For the gains, we used
Gaussian priors on the amplitudes with unit mean and standard
deviation 0.1 on all stations except LMT, which used a prior
amplitude of 1.0 to model the large pointing offsets during the
2017 observations (Event Horizon Telescope Collaboration
et al. 2019c, hereafter Paper III). The gain phase priors were set
to a zero-mean Gaussian with a variance of 10® radians.

We will use Bayesian model averaging to find the optimal
hyperparameters for our model. For a specific raster, the
posterior is given by

p(VINy, Ny, 0)p(6|Nx, Ny)

pOIV, N, Ny) = , 4)
) p(VINy, Ny)

where 0 = (c;, FOV,,, {) represents the nonraster dimension
parameters. We can then promote the discrete raster dimension
to model parameters using Bayes' rule and introducing a raster
dimension prior p(N,, N,):

pO\V, Ny, Ny)p(VIN;, Ny)p(N;, Ny)
p(V)

Therefore, marginalizing over the raster dimension gives the
image posterior

P, N, NIV) = (6)

1
pOIV) FG) > POV, N, N)p(VIN, Ny)p (N, Ny).

NoN,
@)

Setting the prior p(N,, N,) to be uniform, each single raster
dimension posterior p(f|V, N, N,) is weighted by the Bayesian
evidence. Therefore, selecting the optimal raster dimension is
equivalent to selecting the model with the highest Bayesian
evidence.

In Section 4, we will consider a small survey of different
numbers of pixels and use the evidence, or rather an
approximation of it, to find the optimal N,, N,. This paper
uses the Bayesian information criterion (BIC) as an approx-
imation for the evidence. The BIC is defined as

BIC = x? + kIn(N), (8)

where k is the total number of nongain parameters fit, N is the
number of data points, and x? is the minimum chi-square for
the nongain marginalized likelihood, i.e., Equation (14).” The
BIC is a simple approximation of the Bayesian evidence and
compares the optimal performance of the model (first term in
Equation (8)) to its complexity (second term). The best model
is the one that minimizes the BIC or, conversely, approximately
maximizes the Bayesian evidence. We will select the model
that minimizes the BIC to define our optimal raster model.

7 Note we do not include gains, since they cancel when finding the ABIC.
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2.2. Image Feature Extraction

The output of Bl is a posterior over the image. An additional
processing step, feature extraction, is required to move from the
image samples to feature posteriors. In this paper, we will
follow Tiede et al. (2022a) and use VIDA (Tiede et al. 2022b)
to extract the image features. VIDA works by constructing
image templates 7y that parameterize the features of interest,
e.g., image ellipticity. The optimal template given the image
reconstruction is found by minimizing an objective function.
VIDA uses probability divergences as its objective function,
using the correspondence between image intensities and
probability distributions modulo total flux. To find the optimal
template, we use the Julia (Bezanson et al. 2017) package
VIDAjL®

For this paper, we follow the procedure in Tiede et al.
(2022a) and use the CosineRing{N, M} template. The
CosineRing{N, M} filter uses an elliptical Gaussian ring,
whose azimuthal thickness and brightness profile are described
by a cosine expansion of order N and M, respectively. We
parameterize the template as follows:

1. d = 2Jab gives the diameter of the elliptical ring, where
a and b are the semimajor and semiminor axis lengths of
the ellipse.

2. 7=1—b/a is the ellipticity of the ring.

3. &, is the position angle of the ellipticity measure east of

north.

. (X0, yo) is the ring center.

. The thickness o(¢) cosine expansion:

W

N
o($) =09+ Y oycosn(p — EM). )

n=1

6. The brightness s(¢) cosine expansion:

M
s(@)=1— > sucos[m(p — EW)]. (10)

m=1

We have empirically found that the image reconstructions of
ring-type images are well described using N=1 and M =4,
which will be the template used for the rest of the paper.

The image reconstructions also tend to include a low level of
emission distributed throughout the image. We also included an
intensity floor template added pointwise to the CosineRing
template to model the diffuse flux. For our divergence, we use
the Bhattacharyya (Bh) divergence:

Bh(tllD) = \Jto,ily» (an
ij

where we have assumed that the template and image intensity
have unit flux, i.e., they sum to unity. The same strategy
described in Tiede et al. (2022b) is used to optimize
Equation (11).

3. Data

The EHT is a very-long-baseline interferometer. By the van
Cittert—Zernike theorem (Thompson et al. 2017), a perfect
interferometer measures the Fourier transform of the on-sky

8 https://github.com/ptiede/VIDA jl
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image:

Tw,v) = [, Berive D dads, (12)

where I(a, () is the on-sky image intensity. However, in
reality, the measurements are corrupted by telescope and scan
specific complex gain terms g = e giving

Vi = 8, (13)

where V; is known as the complex visibilities. This is the
primary data product we will consider in this chapter. The
benefit of using complex visibilities is that the observation
likelihood of visibilities is just a complex Gaussian (Thompson
et al. 2017):

|V, — 81,,-8;;‘70(%, v 2

207

>

L) =T1] (2m,.2)1exp[

(14)

where V is the model visibility at u; and v; and 6 are the model
parameters. While closure products are immune to gains, their
statistical properties are more complicated. Namely, the
likelihoods for closure phases and amplitudes are markedly
non-Gaussian at a low signal-to-noise-ratio (SNR; Thompson
et al. 2017; Blackburn et al. 2020; Broderick et al. 2020b) and
are correlated. As a result, low SNR data are usually flagged,
potentially biasing results.

The downside of fitting complex visibilities is that the
complex gains must included in the forward model. Unfortu-
nately, modeling gains introduce many additional parameters
(~250 for the M87" observations), potentially dramatically
increasing the computational cost of imaging. To combat this,
we will use THEMIS® complex gain marginalization scheme.
This scheme uses a Laplace approximation to approximate the
marginalization at each Markov Chain Monte Carlo (MCMC)
step, meaning we do not directly sample the gains. Effectively,
this procedure acts as an averaged self-calibration step for each
proposed image during sampling.

We follow the data processing choices used in Paper VI. We
will use EHT data that has been coherently averaged over
scans. Using scan-averaged data, we effectively assume that the
gains are constant over each scan, which is approximately true
for M87" Paper III. An additional 1% fractional error to the
reported thermal noise was used to model residual calibration
systematics based on estimates from Paper III:

o — og + (0.01V)?. (15)

To create simulated data for THEMIS, we use the eht-
imaging and THEMISPY packages following the same
procedures as Paper VI. Namely, we add an overresolved
large-scale component for all simulated data sets considered in
this paper to bring the zero-baseline flux to 1.2 Jy. Complex
station gains are included to model the atmosphere and
measurement systematics using an identical procedure to that
described in Paper IV. Finally, in 2017, the EHT recorded its
data at two frequency bands commonly denoted by LO
(227.1 GHz) and HI (229.1 GHz) bands. In Section 4, we only
simulate data in the LO band, while in Section 5, we consider
both the LO band and HI band data to improve the image
reconstructions.
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4. Geometric Tests

In principle, BI should be less susceptible to the ellipticity
bias in the eht-imaging top set in Tiede et al. (2022a). We
will consider the same ellipticity validation from Tiede et al.
(2022a) to test the faithfulness of our ellipticity estimates.
Namely, we consider an elliptical Gaussian ring with ellipticity
7=0.187 at various orientations. Given the timescale of the BI
scheme used in this paper, we only consider the orientations
&.=—45° 0° 45° 90° since the remaining cases flip the
location of the brightness maximum.

To validate BI, we split the analysis into two steps. First, in
Section 4.1, we approximately find the optimal number of
pixels given the observed data. The image model described in
Section 2 has two discrete hyperparameters that need to be
specified, namely, the number of pixels in the two principal
directions of the raster grid. We use the Bayesian evidence, or
rather an approximation known as the Bayesian information
criterion (BIC), which approximates the Bayesian evidence, to
score the different numbers of pixels. Given the computational
timescale of BI, we only attempt the pixel parameter survey on
the elliptical ring with an orientation of 90°. We choose this
orientation because the eht-imaging top set had the largest
biases (Tiede et al. 2022a). Second, in Section 5.1, we use the
optimal raster dimension for the £ = 90° case and then image
the other orientations, i.e., £ = +45° and 0°. The reconstruc-
tions for the different orientations are then analyzed, and we
assess whether the proposed approach is able to recover the true
ring shape and orientation.

4.1. Pixel Optimization

We considered 6 x 4, 5 x5, 6 x 6, and 8 x 8 rasters in our
survey to find the optimal raster dimension. These raster
dimensions were inspired by Broderick et al. (2020a), who
found that the optimal number of pixels was a 5 x 5 raster for
GRMHD simulations using the uv coverage on April 11.
Therefore, using the 5 x 5 raster as our starting point, we also
considered two higher resolutions to test whether increased
resolution drastically changes the evidence and image structure.
We also considered the 6 x 4 resolution since this roughly
matches the true ellipticity of the ring.

We used the Stan NUTS sampler (Carpenter et al. 2017) with
a diagonal mass matrix and 2000 adaptation steps for the local
posterior exploration. We used the DEO parallel tempering
sampler from Syed et al. (2019) with 60 tempering levels to
enable global posterior exploration. The DEO sampler was run
for 9-10 adaptation rounds, where we used the Stan adaptation
scheme at the beginning of each round. We found an optimal
global communication barrier A =2 15-16, implying an optimal
round-trip rate of 0.032. After nine rounds, the ladder had a
communication barrier of E ~ 20-21, which gives a round-trip
rate of 0.023. All chains were run until the split-R < 1.1 for all
image raster c; parameters.

The mean images from each run are shown in the second row
of Figure 1. For the 6 x4, 5x5, and 6 X 6 rasters, the
posterior was multimodal, usually displaying 3—4 distinct
image clusters.

To move from the posterior of ¢; to image features, we
randomly selected 2000 images from the last tempering round.
These images were then run through VIDA using the templates
described in Section 2. Each raster dimension’s resulting
ellipticity and orientation are shown in Figure 1. In the

Tiede & Broderick

rightmost column, we show the results from Tiede et al.
(2022a) using the same eht-imaging top set. The true
ellipticity and orientation are within the 95% credible regions
regardless of the chosen raster dimension. This contrasts the
eht-imaging top set, which, as detailed in Tiede et al.
(2022a), does not contain a single reconstruction consistent
with the on-sky image.

The impact of adding more pixels/model freedom can be
seen moving from left to right. As the number of image pixels
increases, the posterior becomes broader. This is expected since
the model has more degrees of freedom to describe the image
structure. This pattern could be continued further. Namely, we
could keep adding more and more pixels. As we do, the
posteriors would become broader until we effectively sample
from the prior. However, adding more pixels would eventually
shrink the Bayesian evidence, signaling our model is too
complicated. Therefore, as described in Section 2, we use the
BIC to choose the optimal raster dimension.

The BIC for the different raster dimensions is shown in
Table 1. The BIC and reduced chi-square are the smallest for
the 5 x 5 and 6 x 4 models. These results are consistent with
the results from Broderick et al. (2020a). Namely, Broderick
et al. (2020a) found that the BIC favored the 5 x 5 grid for
simulated data from GRMHD models given in Event Horizon
Telescope Collaboration et al. (2019e). For this paper, we
decided to use the 5 x 5 raster as our optimal model, even
though the 6 x 4 model has a lower BIC. The reason for
choosing the 5 x 5 model is due to its similarity to the results in
Broderick et al. (2020a), and it does not presume an anisotropic
source structure.

5. M87* Imaging
5.1. Orientation Dependence of Bayesian Imaging

Given that 5 x 5 optimizes the BIC, we now repeat our
analysis on the simulated elliptical ring data with £ = 45°, 0°,
—45°, We used the same sampler settings as above and ran for
a similar number of MCMC steps. We again randomly selected
2000 images from the chain of the last tempering round to
construct the feature posteriors and used VIDA with the
template described in Section 2.2. The mean images for
THEMIS and eht-imaging are shown in Figure 2.

Visually from Figure 2, we show that THEMIS’ mean image
appears more similar to the ground truth image. Namely, it does
not appear to have the same north—south bias as the eht-
imaging top set. Quantitatively, we find that THEMIS’S
ellipticity posterior contains the truth in its 95% contours for all
the orientations considered. Interestingly, we find that the
& =90 orientation THEMIS reported substantially larger
uncertainty and has portions with values similar to the eht-
imaging top set. This implies that the M87" (u, v) coverage
poorly contains the image shape in this orientation. Critically,
BI incorporates this uncertainty into its ellipticity estimates,
and the true value is contained in the bulk of the posterior mass.

The previous section demonstrated that BI can recover the
true ellipticity. This result demonstrates that we can directly
interpret the measured ellipticity as representing the ellipticity
of the on-sky image. Therefore, in this section, we will apply
the BI and VIDA pipeline to the 2017 EHT M87" data.
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Figure 1. Comparison of the mean image reconstructions (middle row) and ellipticity posterior (bottom row) compared to the sky-truth image (top row). The
probability contours show the 68% and 95% probability regions. All images have been blurred with a circular Gaussian with a 15 pas FWHM, but feature extraction is
done on the unblurred images. The first row columns are the results using the different rasters described in Section 4.1. The last columns show the results from the
eht-imaging top set from Paper IV. Overall, we find the ellipticity is within the 95% probability regions for all raster dimensions considered. This is the opposite of
the eht-imaging top set, which failed to produce a single image representing the true ellipticity and orientation.

Table 1
Elliptical Ring Raster Survey Results
8 x 38 6x6 S5x5 6 x4
ABIC 240.6 68.9 52 0.0
iy 1.49 1.28 1.23 1.22

5.2. Imaging Pipeline for M87*

We consider two data sets to analyze the 2017 M87" EHT data.
First, we analyze the LO band-only data to compare the results
with those in Tiede et al. (2022a). Second, we combine HI and
LO bands and fit the total HI4+-LO band data. We expect that the
combined data will increase the constraining power since we are
effectively doubling the amount of data. Additionally, splitting the
data into two sets effectively performs a jackknife test as it allows
us to assess which features are robust. Namely, if our model
adequately represents the on-sky image, we expect consistent
results between the two data sets.

For both data sets, we will use the same image model.
Following the parameter exploration in Section 4.1, we consider a
5 x 5 raster with an adaptive FOV and orientation. Note that for
the combined HI4-LO analysis, we do not assume that the gains
are the same across bands but do assume the image is identical.

For the LO band data, we use similar sampler settings for the
elliptical ring simulated data. Namely, 60 tempering levels and

2000 adaptation steps at the beginning of each tempering
round. We found that the posterior was multimodal on April 5,
10, and 11, while on April 6, we only found a single mode.

We apply k-means clustering on the last 50% of the chain
from the last tempering round to separate the image modes.
Each cluster’s mean and the relative number of samples in each
cluster are shown in the left panels of Figure 3 for the April 11
LO band data. The three image models have a qualitatively
similar structure. Namely, each mode is dominated by a ring-
like feature whose brightness peak is in the south. The nonring
emission, however, differs across the three modes. The
dominant mode has emission in the northeastern part of the
image, and the two subdominant modes either lack extended
emission or place it in the southwestern part.

For the combined HI and LO data, we used 320 tempering
levels. Each chain was run for >50,000 MCMC steps and
achieved a split-R < 1.03. Interestingly, the additional data
from fitting the combined bands eliminated the multimodality
on April 5 and 11. This is shown in Figure 3 for April 11. The
LO band-only reconstructions have three distinct image modes;
however, the other two lower probability modes disappear once
we include the HI band data. On April 10, we found the same
three modes for the HI4-LO band as the LO band-only fits. To
create the feature posteriors, we created 2000 images from the
last tempering round’s chain and then applied VIDA using the
same template from Section 5.1.
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Tiede & Broderick
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Figure 2. Comparison between eht-imaging and THEMIS’ Bl reconstructions of the elliptical ring test from Tiede et al. (2022a). The left column shows the on-sky-
truth image. The second column shows the mean image from the eht-imaging top set. The third column shows the mean image from the THEMIS posterior using a
5 x 5 raster. All images have been blurred by a Gaussian with a 15 gas FWHM. The rightmost column shows the joint distribution for the recovered ellipticity 7 and
its position angle &, for eht-imaging (orange) and THEMIS (blue). The contours display the 68% and 95% probability regions. The black dashed line shows the on-
sky-truth values, and the gray dashed line shows the truth values after being blurred by a Gaussian with 15 pas FWHM.

5.3. Ellipticity Results

The resulting ellipticity and orientation joint posteriors for
THEMIS are shown in Figure 4. Overall, we find that the
combined HI4-LO band ellipticity posterior is contained in the
LO band posterior. Therefore, our single-band and multiband
fits are consistent. Given that the combined band fits have less
uncertainty in the remaining discussion, we will focus on the
HI+LO band fits exclusively.

In Figure 5, we compare the eht-imaging and THEMIS
results across each observation day. The top two rows show the
mean THEMIS and eht-imaging images blurred by a Gaussian
with 15 pias FWHM. The bottom row shows the joint ellipticity
and ellipticity position angle posterior for THEMIS compared to
the join distribution estimated from the eht-imaging top set.
The THEMIS and eht-imaging measured ellipticity are
discrepant at over 20 on April 5, 6, and 11. On April 10, the

ellipticity and position angles between eht-imaging and
THEMIS do overlap. However, April 10 has substantially less data
than the other days. As a result, the relative error bars are much
larger, likely aiding in the consistency.

Focusing on the THEMIS results, we see that on April 5 and 6,
the resulting ellipticity distributions are consistent at a 20 level,
while April 10 and 11 are consistent. Quantitatively, we find that
the measured ellipticity from THEMIS on April 5 is 7 = 0.0970:03,
April 6 is 7 = 0.147093, April 10 is 7 = 0.0870:0%, and April 11
is 7 = 0.057:92, where the main value is the median and the error
bars are the 95% credible intervals around the median. To create a
conservative estimate of the average ellipticity of MS87", we
combine ellipticity samples for each day weighted inversely by the
standard deviation of the posterior. Computing the median and
95% credible interval on the combined samples, we find that the
ring ellipticity of M87" is 0.0907.
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HI4-LO

Figure 3. Example image reconstructions of M87" LO band on April 11 (left three plots) and HI4+-LO band (right). For the LO band, we show three images
corresponding to the three image clusters found in the MCMC chains. In the top-left corner of the LO band plots, we show the percentage of images in each cluster
taken from the last 50% of the MCMC chain. For the HI+-LO band, we find that the extra data removes the two lower percentage modes.
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Figure 4. Joint ellipticity value and orientation from M87* on April 5, 6, 10, and 11. The contours show the 68% and 95% probability regions from THEMIS using the
combined HI+LO band data (blue) and LO band only (pink). The LO band and HI+LO ellipticity results are consistent between bands.

In Tiede et al. (2022a), the authors reported an upper limit on the
ring ellipticity of 7<0.3, assuming the image of MS87" is
approximately described by a GRMHD simulation. The origin of
the upper limit was due to requiring GRMHD calibration to
account for biased ring ellipticity measurements from the eht-
imaging imaging pipeline in Paper IV. The imaging pipeline in
this paper does not require the same calibration pipeline. As a result
of the ellipticity measurement being entirely data driven, we are
able to improve on the results compared to Tiede et al. (2022a).

5.4. Physical Interpretation of Ellipticity

A comparison to expectations from theoretical simulations is
required to provide a physical interpretation of the measured
ellipticity. The source of ellipticity in the reconstructed image
can come from spacetime effects such as the photon ring
(Johannsen et al. 2016; Medeiros et al. 2018), inner shadow
(Chael et al. 2021), and the accretion flow (Tiede et al. 2022a).
We will use the scaled set of GRMHD simulations from Tiede

et al. (2022a) to make this comparison. The scaled set of
GRMHD simulations consists of 100 random GRMHD
snapshots rescaled to the best-fit mass from Paper VI, whose
image size is further stretched by a factor of 0.8, 0.9, 1.0, 1.1,
and 1.2 isotropically to approximate the uncertainty in the mass
measurement. The result is 500 GRMHD simulations.

To compare the simulations to the measured M87"
asymmetry, one approach would be to first apply the same
synthetic data and imaging pipeline from Section 5.2 for each
of the 500 GRMHD simulations and construct the empirical
GRMHD ellipticity distribution. The computation timescale of
the BI pipeline used in this paper (~5-6 days for a single
source using hundreds of CPUs) makes this approach
prohibitively expensive. To approximate the true GRMHD
ellipticity distribution from the BI pipeline, we will instead blur
the GRMHD simulations by 15 pas and run VIDA on the
blurred images to approximate the ellipticity we expect to see
from the image reconstructions. If the M87" inferred ellipticity
distribution lives within the values from the blurred GRMHD,
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Figure 5. Mean images from the THEMIS BI posterior (top) and eht-imaging top set (middle) both blurred by a 15 pas FWHM Gaussian. The bottom row shows
the joint distribution of the image ellipticity vs. position angle for the THEMIS results (blue) and eht-imaging results (orange). The contours shown are 68% and

95% credible regions.
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Figure 6. Comparison of recovered ellipticity of M87" using BI (blue), and the
expected ellipticity from GRMHD simulations blurred with a 15 pas Gaussian
kernel (green line). Both the GRMHD and BI asymmetries were found using
VIDA. We find that the recovered M87" ellipticity is within the expected GRMHD
ellipticity distribution and thus is consistent with theoretical expectations.

we can conclude that M87"s shape is consistent with
expectations from the GRMHD simulations. Figure 6 shows
the inferred distribution of ring ellipticity from the GRMHD
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Figure 7. Recovered ellipticity 7 for each image in the GRMHD set as a

function of the black hole spin. The thick/thin lines show the 68% and 95%
quantile ranges for the ellipticity posteriors, and the white dot is the median.

simulations (green) versus the stacked posterior’ across M87*
on April 5, 6, and 11. We can see that the ellipticity observed

® We combine the samples from the three posteriors as a conservative
estimate of the ellipticity uncertainty.
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from M87" is consistent with expectations from the GRMHD
simulations.

Of particular interest is whether the recovered ellipticity is
related to the underlying spacetime or, rather, is more
measuring ellipticity due to the accreting plasma. To assess
the ellipticity’s origin, Figure 7 shows each snapshot image’s
measured ellipticity as a function of spin. Comparing the
measured ellipticity to the GRMHD simulations as a function
of spin, we see that the effect of spin is minor on the overall
value of ellipticity. Namely, the measured ring shape is driven
not by the underlying spacetime but rather by the properties of
the emitting plasma. The lack of spin dependence results from
the finite resolution of the EHT array, where any ellipticity due
to the black hole shadow or photon ring (expected to be 1% for
MB87*; Farah et al. 2020) is washed out by the background
accretion flow. Therefore, we conclude that the shape of
M87*’s shadow is consistent with black hole spin.

6. Summary

This paper presents the first-ever Bayesian estimates of the
ring ellipticity of M87"’s shadow. We found that M87*’s
averaged ellipticity is 0.09709/. Compared to the eht-
imaging results from Paper IV and Tiede et al. (2022a), the
Bayesian approach has provided a weak measurement of the
actual ellipticity of M87" rather than an upper limit.

Additionally, the ellipticity measurement in this paper is less
susceptible to incomplete Fourier coverage and instrumental
effects than the eht-imaging top set approach in Paper IV.
To demonstrate this improvement, we considered four
simulated data tests based on realistic simulated data to
validate our ellipticity measurement. The BI approach
recovered the correct ellipticity for all simulated data sets,
while the RML approach failed to recover the truth in every
case. Furthermore, by using the BIC to score our different
image reconstructions, we are able to select the optimal
hyperparameters given our data, providing a data-driven,
hyperparameter-optimized imaging algorithm.

Comparing the measured ellipticity of M87* with GRMHD,
we assessed whether M87* is consistent with theoretical
expectations. We found that M87" is consistent with GRMHD
simulations, and the measured ellipticity is dominated by the
accretion flow and not the spin of the black hole. To
disentangle the ellipticity due to gravitational effects from the
accretion flow will require new observations. Future EHT
observations will be able to provide more stringent measure-
ments of M87" as more telescopes are included in the array,
such as GLT (added in 2018), Kitt Peak, and NOEMA (added
in 2021; Event Horizon Telescope Collaboration et al. 2019b).
These new sites will dramatically lower the ellipticity
uncertainty and provide more stringent comparisons with
theoretical simulations. However, conclusively identifying the
gravitationally induced ellipticity in M87"’s shadow will likely
require a space-based radio dish or very-long-baseline inter-
ferometry (VLBI) arrays, such as the recently proposed black

Tiede & Broderick

hole Explorer (Kurczynski et al. 2022) or THEZA project
(Gurvits et al. 2021). Space-based VLBI arrays will provide the
necessary resolution to resolve the properties of the n=1
photon ring, providing a more stringent measurement of the
properties of spacetime around supermassive black holes.
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Appendix
MS87 2017 Feature Posteriors

Figure 8 shows the marginal feature posteriors for the
THEMIS results and the top set distribution from the 2017 eht -
imaging results. The THEMIS results for the diameter are
stable across days and frequency bands, although the measured
diameter is slightly larger than the eht-imaging results for
each day. The brightness asymmetry for THEMIS is consistent
on April 5, 6, and 10, while April 11 may be marginally more
azimuthally symmetric. On all days, THEMIS’ measured
brightness asymmetry is larger than the measured value from
eht-imaging. Finally, for the brightness position angle
(PA), THEMIS does not find significant evolution, remaining
consistent with an angle of 170° for all days. On the other hand,
eht-imaging sees modest evolution, with the PA increasing
from April 5/6 to April 10/11.

10 https://github.com/aeb/ThemisPy
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