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Brain energy metabolism as an underlying basis of slow and
fast cognitive phenotypes in honeybees
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ABSTRACT

In the context of slow—fast behavioral variation, fast individuals are
hypothesized to be those who prioritize speed over accuracy while
slow individuals are those which do the opposite. Since energy
metabolism is a critical component of neural and cognitive functioning,
this predicts such differences in cognitive style to be reflected at the
level of the brain. We tested this idea in honeybees by first classifying
individuals into slow and fast cognitive phenotypes based on a learning
assay and then measuring their brain respiration with high-resolution
respirometry. Our results broadly show that inter-individual differences
in cognition are reflected in differences in brain mass and
accompanying energy use at the level of the brain and the whole
animal. Larger brains had lower mass-specific energy usage and bees
with larger brains had a higher metabolic rate. These differences
in brain respiration and brain mass were, in turn, associated with
cognitive differences, such that bees with larger brains were
fast cognitive phenotypes whereas those with smaller brains were
slow cognitive phenotypes. We discuss these results in the context of
the role of energy in brain functioning and slow—fast decision making
and speed accuracy trade-off.
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INTRODUCTION

Slow—fast phenotypic differences in terms of behavior, life history
and physiology, integrated into a suite of traits described as the ‘pace
of life’, have lately attracted considerable attention (Ricklefs and
Wikelski, 2002; Réale et al., 2010). Metabolic rate, the rate at which
organisms acquire, transform and expend energy, and therefore often
described as the fundamental biological rate (Brown et al., 2004), has
been cited as the potential pacemaker that drives this slow—fast
phenotypic variation (Glazier, 2015; Biro and Stamps, 2010).
Although there is substantial empirical support for an association
between metabolic rate and slow—fast phenotypic differences, both
between and within species (Wiersma et al., 2007; Pettersen et al.,
2016; Wong et al., 2021), the mechanistic relationship between
metabolic rate and behavioral traits is complex and far from clear
(Careau et al., 2008; Salzman et al., 2018; Chung et al., 2018). In this
context, it has also been proposed that such slow—fast differences are
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fundamentally tied to cognitive differences related to a speed-
accuracy trade-off in decision-making, in which fast phenotypes
spend less time gathering information, making rapid but less accurate
decisions, compared with slow phenotypes (Carere and Locurto,
2011; Sih and Del Guidice, 2012; Dougherty and Guillette, 2018).

Both behavioral ecology and neuroscience research have
independently emphasized the role of energy metabolism in
different cognitive processes and in the modulation of complex
behavioral phenotypes (Niven and Laughlin, 2008; Mathot and
Dingemanse, 2015), but few studies have integrated this perspective
to understand the underpinnings of behavioral variation (Rittschof
etal., 2015; Coto and Traniello, 2021). Neural tissue is widely known
to be energetically expensive to produce, operate and maintain
(Laughlin et al., 1998; Laughlin, 2001; Ames, 2000; Lennie, 2003).
This is substantiated by a large body of work demonstrating that
cognitive processes such as learning and memory formation are
associated with significant energetic costs (Déglise et al., 2003; Mery
and Kawecki, 2005; Jaumann et al,, 2013; Placgais and Preat,
2013). There is also substantial inter-individual variation in energy
production and usage in the brain that has, in turn, been linked to
behavioral variation, notably in social species (Hollis et al., 2015;
Rittschof and Schirmeier, 2018).

In social insects, behavioral variation — the underlying basis for
division of labor — has been shown to be correlated to differences in
brain organization (Molina et al., 2009; Muscedere and Traniello,
2014; Kambhi et al., 2016). More specifically, in terms of cognitive
differences, slow—fast differences in behavior were shown to match
the predicted differences in metabolic rate and cognitive traits in
honeybees (Mugel and Naug, 2020; Tait and Naug, 2020). This
provides a background to test whether slow and fast cognitive
phenotypes in honeybees exhibit any differences in the energetic
capacity of their brains. In this study, we therefore first classified
bees into slow and fast cognitive types using a discrimination and
reversal learning assay based on the principle that fast phenotypes
are defined by fast discrimination learning and slow reversal
learning while the opposite is true for slow phenotypes (Sih and Del
Giudice, 2012). We then measured the whole-animal metabolic rate of
these bees using flow-through respirometry, followed by measuring
the maximum oxidative phosphorylation (OXPHOS)-linked
respiration rate of their brain using high-resolution respirometry.
The broad goal of the study was to test the hypothesis that slow—fast
cognitive differences and the related speed—accuracy trade-off are
associated with differences in energy metabolism at the level of the
brain, which in turn is reflected in differences in brain size and whole-
animal metabolic rate.

MATERIALS AND METHODS

The bees used in the experiment came from six source colonies of
the honeybee Apis mellifera. Brood frames with pupae were
collected one day prior to adult emergence and kept in an incubator
set at 32°C. Upon emergence, individual adult bees were marked
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with paint on their thorax and introduced into an experimental hive
that consisted of two brood frames, a full honey frame, a laying queen
and workers. Marked bees of foraging age were collected at the hive
entrance, immobilized on ice, and harnessed within a 4.5 cm long
plastic drinking straw with a small wire around the thorax. Each bee
was fed to satiation with 30% sucrose solution and then kept starved
for 24 h inside an incubator set at 27°C to increase motivation for
appetitive learning. Before the start of the learning assay, all bees
were tested for their responsiveness to sucrose by touching their
antennae with 30% sucrose solution and any bee that did not extend
its proboscis to this stimulus was excluded.

Discrimination and reversal learning

The discrimination and reversal learning ability of an individual bee
were determined by using the proboscis extension reflex (PER)
assay. This consisted of presenting a bee with an odor A (CS+)
followed by a sucrose reward (US) and a second odor B (CS-)
followed by a saline punishment in a predetermined pseudorandom
sequence (ABBABABBABABAABAABAB) in a series of 12
trials with a 5 min inter-trial interval. Discrimination learning ability
of a bee was measured first by pairing one odor with a sucrose
reward (A+) and another odor with saline solution (B-) and, after a
gap of 60 min, reversal learning ability of the same individual was
assessed by reversing the odor pairings (A- and B+). The
conditioned response of a bee, the extension of the proboscis to
the CS alone prior to the presentation of US, to the sugar reward and
its non-response to the saline solution were considered as correct
choices and the opposite responses were considered as incorrect
choices. Bees that completed both the learning assays were kept in
an incubator at 27°C for 30 min before measuring their metabolic
rate.

Whole-animal metabolic rate

Active whole-animal metabolic rate (MR) of a bee was measured
using flow through respirometry. Ambient air, scrubbed of H,O and
CO,, was passed at a constant rate of 750 ml min~"' through a 250 ml
sealed glass chamber containing a single bee and CO, in the excurrent
airstream was measured for 10 min with a FoxBox gas analyzer
(Sable Systems), lightly agitating the chamber to stimulate flight as
necessary. Bees that did show flight activity were discarded. Each bee
was weighed immediately afterward and MR was calculated as the
weight corrected mean CO, production (in ml h™' g~!) for the 180 s
with the lowest variance in CO, production. This was transformed
into a weight-corrected power output (in mW g~') by multiplying it
with 21.4 J ml~! CO, and dividing by 3600 J h=! W~! (Mugel and
Naug, 2020).

Brain mitochondrial respiration

Following the measurement of whole-animal metabolic rate, bees
were immediately anaesthetized on ice and their heads were removed.
Fresh brains were carefully removed under a dissecting microscope
in chilled MiRO0S respiration buffer (containing 0.5 mmol 17! EGTA,
3mmol I MgCl,, 60 mmol 1! K-lactobionate, 20 mmol I~!
taurine, 10 mmol 1! KH,PO,4, 20 mmol 1=' HEPES, 110 mmol I~
sucrose and 1 mmol 17! g 17! fatty-acid free BSA). Brains were then
transferred to pre-weighed centrifuge tubes containing 2 ml chilled
MiRO05 buffer and weighed on a microbalance with a resolution of
0.01 mg (Mettler Toledo). Four to six brains were measured in any
one round of the assay, which ensured that their oxygen consumption
could be quantified simultaneously within 3—4 h of dissection, which
is well within the timeframe in which fresh brain preparations remain
viable (Williamson and Hiesinger, 2010; Neville et al., 2018).

Oxygen consumption rate in the brain was quantified ex vivo using
an Oxygraph-2k high-resolution respirometer (Oroboros Instruments
GmbH, Innsbruck, Austria). Before adding brains, chambers were
rinsed with 70% ethanol (3x) and milliQ H,O (6%), then filled with
MiRO5 respiration buffer and air-calibrated to a starting oxygen
content of 160 uM in a circulated chamber (with a 750 r.p.m. stir bar)
maintained at 37°C. Following measurement of basal oxygen
consumption rate of intact brains, digitonin (10 pg ml~") was added
to permeabilize brain cells while leaving mitochondrial membranes
intact for assessments of substrate-specific respiratory capacities.
Low flux LEAK respiration state was measured first by adding a
combination of substrates (0.5 mmol 1~ malate, 5 mmol 1=! pyruvate
and 10 mmol 17! glutamate) in the absence of ADP, which reflect
NADH-linked electron flow facilitated by non-specific proton leak
across the inner mitochondrial membrane. The OXPHOS-linked
respiration rate was measured next by the addition of 2.5 mmol 17!
ADP to the same chamber, which enables a higher rate of NADH-
linked electron flow by dissipating the inner membrane proton gradient
through the ATP synthase. Finally, a maximal OXPHOS-linked
respiration rate was measured by the addition of 20 mmol 1=! succinate
to provide additional electron supply through succinate dehydrogenase
(CII), thereby fully reconstituting the supply of reducing equivalents
from the tricarboxylic acid cycle to the electron transfer system. During
these measurements, mass-corrected oxygen consumption rates were
recorded continuously by monitoring changes in the negative time
derivative of the chamber oxygen concentration signal following
standardized instrumental and chemical background calibrations and
recorded as the average of at least 2 min of stable (linear) oxygen
consumption readings. Brain energetic capacity was defined in terms
of mass-specific brain respiration, calculated from the maximum
OXPHOS-linked respiration, a direct indicator of mitochondrial
bioenergetics (Sauerbeck et al., 2011; Rittschof et al., 2018).

Statistical analysis
Discrimination and reversal learning scores of a bee were
calculated as:

Learning score (discrimination or reversal)
()

__total no. of correct responses
N total no. of responses

Slow and fast cognitive phenotypes were defined based on a
learning index that was calculated for each bee by subtracting its
discrimination learning score from its reversal learning score (reversal
score—discrimination score). This resulted in values ranging from —1
to +1, where individuals with negative indices defined fast cognitive
phenotypes (low reversal and high discrimination scores) and
individuals with positive indices defined slow cognitive phenotypes
(high reversal and low discrimination scores). The association among
the different traits was assessed using the linear mixed model package
Ime4 in R (https:/github.com/lme4/lme4/) with age and colony of
origin used as random effects.

All data used in this research are available in Dataset 1.

RESULTS

Brain mass of bees was positively correlated with mass-specific
whole-animal metabolic rate (}>=5.52, N=37, P=0.01, Fig. 1A)
and negatively correlated with mass-specific brain mitochondrial
respiration (x*=44.58, N=51, P<0.001, Fig. 1B). There was,
however, no significant relationship between brain mitochondrial
respiration and whole-animal metabolic rate (y?=1.34, N=51, P=0.24,
Table S1).
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Fig. 1. Whole-animal metabolic rate and mitochondrial respiration in
the brain of honeybees as a function of brain mass. Log—log plots of
(A) whole-animal metabolic rate (MR) (mW) and (B) brain mitochondrial
respiration (pmol O, mg~" s~") as a function of brain mass (mg). Datapoints
of different colors represent individual bees from different colonies and the
lines represent the direction of significant relationships (A, N=37; B, N=51).

The learning index of a bee was negatively correlated to brain
mass (x>=4.94, N=51, P=0.02, Fig. 2A) but positively correlated to
brain mitochondrial respiration (y>=4.43, P=0.01, N=51, Fig. 2B),
which means that bees with fast cognitive phenotypes had larger
brains with a lower respiratory rate compared with slow bees.
Learning index, however, was not significantly correlated to whole-
animal metabolic rate (x>=0.14, N=51, P=0.7). There was no effect
of age or colony of origin on any of the relationships (Table S1).

DISCUSSION

This is the first time, to the best of our knowledge, slow—fast
differences in cognition have been shown to be associated with
differences in brain respiration rate, thereby establishing a possible
common energetic link that ties the cognitive axis with other parts
of the pace-of-life axis. Fast bees were those with larger brains,
which were also associated with an overall higher whole-animal
metabolic rate compared with slow bees. The observed positive
relationship between brain mass and whole-animal metabolic rate is
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Fig. 2. Honeybee cognitive phenotype as a function of brain mass and
brain mitochondrial respiration. Cognitive function versus log (A) brain
mass (mg) and (B) brain mitochondrial respiration (pmol O, mg="s~").

A negative learning index defines fast cognitive phenotypes and a positive
learning index defines slow cognitive phenotypes. Data points of different
colors represent bees (N=51) from different colonies and the lines represent
the direction of significant relationships.

consistent with what has been observed across a wide variety of taxa
(Isler and van Schaik, 2006) and can be attributed to the high
energetic expense of brain tissue (Mink et al., 1981; Ames, 2000).
While the larger brains seem to impose an overall higher metabolic
expenditure in the fast bees, it is important to note that the
larger brains were also associated with lower mass-specific energy
consumption. It has been shown that there is a hypometric
relationship in terms of how energy consumption of the brain
scales with brain mass (Karbowski, 2007), which along with other
mechanisms such as reduced size of other metabolically expensive
tissues (Aiello and Wheeler, 1995; Goncerzewicz, et al., 2022) can
lower the relative cost of larger brains.

The allometric relationship of larger brains having relatively
lower rates of energy usage is generally attributed to decreases in the
density of neurons or their firing rate (Karbowski, 2007, 2009). This
suggests that differences in brain size could be associated with
possible trade-offs in cognitive performance. A speed—accuracy
trade-off is an intrinsic part of cognitive performance and fast
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cognitive phenotypes are defined as those which prioritize speed
over accuracy, while slow cognitive phenotypes are those which
show the opposite pattern (Sih and Del Giudice, 2012). There is
ample evidence of such alternative cognitive strategies in honeybees
(Chittka et al., 2003; Burns and Dyer, 2008; Tait and Naug, 2020;
2022) and the results from this study suggest that fast bees are those
with larger brains with a high overall but low mass-specific energy
consumption. The only other study which we found to have tested
for a similar relationship observed a somewhat opposite pattern
in guppies such that there was a positive correlation between
telencephalon size and the time to make decision, although its
relationship with accuracy was less clear (Burns and Rodd, 2008).
This would mean that fishes with larger brains are likely to have
slow cognitive phenotypes compared with those with smaller
brains. However, this study did not measure energy usage in the
brain, making it difficult to directly compare their results with what
was found here. It also suggests that brain size alone may not be
enough to explain how it influences cognitive functioning.
Although brain size has often been used as a measure of cognitive
capacity (Deaner et al., 2007; Benson-Amram et al., 2016; Collado
etal., 2021), it has also repeatedly been shown that the relationship
between the two is more complex (Schoenemann et al., 2000;
Chittka and Niven, 2009; Logan et al., 2018; Triki et al., 2021,
Hooper et al., 2022) and energetic considerations are an important
part of it (Herculano-Houzel, 2011; Heldstab et al., 2022).

Energy used in the brain is largely required for the propagation of
action potentials and for restoring postsynaptic ion fluxes, and the
energetic cost of information processing at the neuronal level is
associated with noise and the speed of response (Laughlin et al.,
1998; Laughlin, 2001; Niven et al., 2007). During signal
transmission, speed is related to the bandwidth over which a
signal is transmitted while accuracy is related to the signal-to-noise
ratio. Noise can be reduced by averaging the outputs from multiple
neurons, although it comes with an increased energetic cost.
Therefore, the number of neurons that can be activated will trade off
with the average discharge rate of each neuron. Signal-to-noise
ratios can also be improved by a higher level of inhibition at the
neuronal level that results in slower neuronal integration of the
downstream process. The fixed and signaling cost of a neuron both
increase supra-linearly with its ability to transmit information and
therefore efficiency declines with increasing capacity. It has been
shown that while energy usage is positively correlated to the
transmission rate of neuronal signals, cells that fire at a higher rate
also carry less information (Ames, 2000; Koch et al., 2006). The
cost of each spike puts a constraint on how many neurons can be
concurrently active, thus implying an upper limit to aggregate neural
activity and task accuracy (Levy and Baxter, 1996).

Models of speed—accuracy trade-off in decision-making are
largely accumulator models that are based on two parameters:
information accumulation and a threshold that defines the amount of
information at which a decision is made (Gold and Shadlen, 2007,
Bogacz et al., 2010; Heitz and Schall, 2012; Standage et al., 2014).
This broadly implies that adjustments in either the rate of
information accumulation, or the value of the decision threshold,
or both, are at the basis of speed accuracy trade-off. The rate of
information accumulation can be directly tied to the firing rate of
individual neurons and/or the total number of neurons involved in
the process, which in turn will be correlated to the overall energy
expenditure (Penconek, 2022). A higher firing rate would allow a
given value of decision threshold to be reached sooner, which might
suggest that a higher level of energy metabolism in the brain is
associated with fast cognitive phenotypes. However, an alternative

possibility is that brains with lower rates of energy metabolism are
associated with lower decision thresholds, which means that they
can reach decisions sooner, consistent with what we report here.
There is some evidence that information processing speed is lower
during energetic compromise, and hungry neurons cannot maintain
the firing speed necessary for optimal computations (Lord et al.,
2013; Killeen et al., 2016). While faster decisions can be made by
either increasing the rate of information accumulation or lowering
the decision threshold, a higher accuracy is more constrained by a
high value of the decision threshold and therefore by the quality and
efficiency of information transfer in which energetic considerations
play a strong role (Schreiber et al., 2002; Lennie, 2003). Our results
suggest a higher energetic capacity in the brain might be needed to
achieve these higher thresholds that translate to the higher accuracy
defining the slow cognitive phenotypes.

Our measurement of brain respiration specifically reflects
oxidative phosphorylation and mitochondrial activity, which are
particularly important in meeting neuronal energetic demands
(Kasischke et al., 2004; Ly and Verstreken, 2006; Hall et al., 2012;
Picard and McEwen, 2014). It has been proposed that mitochondrial
respiratory capacity could play a key role in the phenotypic variation
related to pace of life (Jimenez et al., 2014), but the empirical
evidence for this is somewhat mixed, with slow—fast differences
being correlated to mitochondrial activity in the liver, but not in the
brain or the heart (Chung et al., 2018). This suggests that the
connection between mitochondrial function and whole-organism
metabolic rate, and thus pace of life, is likely to be complicated. The
plasticity of mitochondrial function both in the short-term and
across life stages adds a further level of complexity to this issue
(Chan, 2006; Jendrach et al., 2008). In addition, one may need to
account for differences in the organizational structure of the
neurocircuitry, which has a strong role in determining the efficiency
of information transfer and energy usage in the brain (Chittka and
Niven, 2009; Sengupta et al., 2013; Karbowski, 2019; Farnworth
and Montgomery, 2024). Energy metabolism is a critical
component of cognitive function and many cognitive impairments
are associated with metabolic dysfunction (Sullivan et al., 2005; Lin
and Beal, 2006; Frisardi et al., 2010), underscoring the importance
of understanding how energetics and metabolism are associated
with interindividual differences in cognition.

Slow and fast cognitive phenotypes represent differences in
information acquisition strategy (Sih and Del Giudice, 2012; Tait
and Naug, 2020, 2022). It has been shown that such differences could
be tied to physiological differences (Moreira et al., 2004; @Qverli et al.,
2007) although our understanding of the underlying mechanisms that
drive differences between cognitive types is still limited. The
foundational idea of cognitive ability being tied to brain size and
accompanying energetic demands (Dunbar and Shultz, 2007; Pérez-
Barberia et al., 2007) has not been extended to understand the basis of
slow—fast cognitive variation at the individual level. More recently, it
has been shown how behavioral variation can be traced to energetic
processes at the brain level (Chandrasekaran et al., 2015; Hollis et al.,
2015; Kamhi et al., 2016; Rittschof et al., 2018), which provides
support for the idea that differences in metabolic rate and energetic
capacity may be the common underlying basis of variation across
multiple phenotypic levels.
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