

Sodalis praecaptivus subsp. *spalangiae* subsp. nov., a nascent bacterial endosymbiont isolated from the parasitoid wasp, *Spalangia cameroni*

Li Szen Teh^{1,*}, Sarit Rohkin Shalom², Ian James¹, Anna Dolgova², Elad Chiel² and Colin Dale¹

Abstract

An endosymbiotic bacterium of the genus *Sodalis*, designated as strain HZ^T, was cultured from the parasitoid wasp *Spalangia cameroni*, which develops on the pupae of various host flies. The bacterium was detected in *S. cameroni* developed on houseflies, *Musca domestica*, in a poultry facility in Hazon, northern Israel. After culturing, this bacterium displayed no surface motility on Luria–Bertani agar and was rod-shaped and irregular in size, ~10–30 nm in diameter and 5–20 µm in length. Phylogenetic analyses revealed that strain HZ^T is closely related to *Sodalis praecaptivus* strain HST^T, a free-living species of the genus *Sodalis* that includes many insect endosymbionts. Although these bacteria maintain >98% sequence identity in shared genes, genomic characterization revealed that strain HZ^T has undergone substantial reductive evolution, such that it lacks many gene functions that are maintained in *S. praecaptivus* strain HST^T. Based on the results of phylogenetic, genomic and chemotaxonomic analyses, we propose that this endosymbiont should be classified in a new subspecies as *S. praecaptivus* subsp. *spalangiae* subsp. nov. The type strain for this new subspecies is HZ^T (=ATCC TSD-398^T=NCIMB 15482^T). The subspecies *Sodalis praecaptivus* subsp. *praecaptivus* strain HST^T is created automatically with the type strain ATCC BAA-2554^T (=DSMZ 27494^T).

INTRODUCTION

In 1999, the genus *Sodalis*, within the family ‘*Bruguierivoracaceae*’, in the order *Enterobacterales* and in the class *Gammaproteobacteria* of the phylum *Pseudomonadota*, was established with the isolation, culture and characterization of *Sodalis glossinidius*, a facultative endosymbiont of the tsetse fly, *Glossina morsitans morsitans* [1]. Since then, symbionts from a wide range of insect taxa have been identified sharing high levels of 16S rRNA gene sequence identity with *S. glossinidius*, but many were not described with validly published species names due to the absence of laboratory culture, which is often difficult to achieve with fastidious insect endosymbionts [2]. Examples include symbionts of leafhoppers, weevils, mealybugs, stinkbugs, psyllids and lice, in addition to blood-feeding dipteran flies [3–5]. In many cases, the bacteria have been demonstrated to provide beneficial functions for their insect hosts, commonly encompassing the provision of nutrients such as amino acids and vitamins [6–8].

Outside of association with insects, a close relative of *S. glossinidius* was isolated and cultured from a human wound in 2012 and subsequently named *S. praecaptivus* strain HST^T [9, 10]. Interestingly, the genomes/gene inventories of many insect-associated *Sodalis*-allied symbionts were found to be subsets of *S. praecaptivus* strain HST^T, implying that the symbionts are derived from

Author affiliations: ¹School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; ²Department of Biology and Environment, University of Haifa-Oranim, Tivon 36006, Israel.

***Correspondence:** Li Szen Teh, liszen.teh@utah.edu

Keywords: culture; degenerative evolution; endosymbiont; fastidious; insect; insertion sequences; nascent symbiosis.

Abbreviations: ANI, average nucleotide identity; ATCC, American Type Culture Collection; dDDH, digital DNA:DNA hybridization; DSMZ, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH; FM4-64, N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide; G+C, guanine + cytosine; HMW, high molecular weight; LB, Luria–Bertani; ML, maximum likelihood; NCBI, National Center for Biotechnology Information; NCIMB, National Collection of Industrial Food and Marine Bacteria; PGAP, Prokaryotic Genome Annotation Pipeline; Q30, Phred quality score 30; RH, relative humidity; TRITC, tetramethylrhodamine isothiocyanate; TYGS, Type Strain Genome Server; X-Gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside.

The reads generated by the sequencing efforts described in this study have been deposited in the NCBI sequence read archive under the accession numbers SRR25556807 (Illumina) and SRR28852625 (Nanopore). The 16S rRNA gene sequence is deposited in NCBI GenBank under the accession number OR464179.1. The ribosomal protein-coding gene sequences are deposited in NCBI Genbank under accession numbers PP273189–235. The Nanopore-derived assembly of the genome has been deposited in NCBI Genbank under accession number JBDHPY000000000 and assembly number GCA_039646275.1.

Eight supplementary figures and two supplementary tables are available with the online version of this article.

environmental progenitors with genome composition similar to *S. praecaptivus* strain HST, as supported by phylogenetic and comparative genomic analyses [4, 9, 10]. More recently, bacteria isolated from decaying wood samples were also proposed to be members of the genus *Sodalis*, including *S. ligni*, which has been validly published [11], on the basis that they maintain >97% 16S rRNA gene sequence identity with *S. praecaptivus* strain HST [12]. However, pangenomic comparisons revealed that the wood-decomposing representatives maintain unique functions, including lignin degradation and nitrogen fixation, which are absent in *S. praecaptivus* strain HST and insect-associated *Sodalis* spp., which group within a separate clade and maintain genes in common that are not found in deadwood-associated strains [12].

The ability to culture symbionts in the laboratory provides a means to perform experimental infections *in vivo* and explore molecular interactions in symbiosis, particularly in cases where bacteria are amenable to genetic modification [2, 13–16]. To this end, *S. praecaptivus* strain HST and *S. glossinidius* have been used to gain insight into the functions of numerous genes (or networks of genes), including those encoding type III secretion systems, the PhoPQ two-component regulation system that facilitates insect antimicrobial peptide resistance and a quorum-sensing system that regulates the expression of insect-specific virulence factors [2, 15–17]. Furthermore, in a recent study, *S. praecaptivus* strain HST was engineered to replicate and replace the function of a native (long-established) symbiont of a grain weevil, yielding a novel synthetic symbiosis replete with mutualistic functionality and vertical symbiont transmission [18]. The implementation of these techniques also fuels opportunities to utilize symbiotic bacteria to control insect vector-borne diseases by engineering symbionts to interfere with the processes of pathogen colonization and/or transmission by insects [19].

In this study, we focus on the cultivation of a novel member of the *Sodalis* genus that was recently identified as a symbiont of a parasitoid wasp, *Spalangia cameroni* (Hymenoptera: Spalangiidae), collected in Hazon, Israel [20]. Subsequently, it was determined to have high fidelity of maternal transmission in *S. cameroni* and persist in a range of host tissues [21]. Phylogenetic analyses revealed an extremely close relationship between this symbiont and *S. praecaptivus* strain HST, suggesting a very recent origin of the symbiotic association. Based on this observation, we reasoned that the symbiont of *S. cameroni* should be amenable to laboratory culture, given that it likely retains a large quotient of gene functions found in the free-living relative, *S. praecaptivus* strain HST. Thus, the objective of this work was to perform cultivation, characterization, phylogenetic and genomic analyses of strain HZ^T, establishing a new, experimentally tractable system to explore interactions between insects and symbiotic bacteria.

METHODS

Housefly rearing

Adult houseflies were held in net cages with water and a diet of sugar, milk powder and egg yolk powder mixture (2:2:1 by weight, respectively). The larvae were reared on a medium of wheat bran mixed with calves' food pellets, wetted with water to 60–65% moisture. The flies were maintained at 26±1 °C, 60±20% relative humidity (RH) and 14:10 light/dark photoperiod.

Parasitoid rearing

S. cameroni was collected in 2014 from an egg-laying poultry facility in Hazon, Israel (32°54'25.8"N; 35°23'49.0"E), using sentinel pupae of *Musca domestica*, as previously described [22]. The parasitoids were subsequently reared on housefly pupae under conditions of 25±1 °C, 60±20% RH and 14:10 light/dark photoperiod.

Strain HZ^T cultivation

Twenty *S. cameroni* adults that harbour strain HZ^T were chilled on ice and placed in 1% bleach (NaOCl) for 3 min to sterilize their external integument. All the subsequent steps were carried out in a sterile flow hood. The wasps were rinsed three times with sterile double-deionized water, placed in groups of five in 0.5 ml sterile tubes containing 100 µl Luria–Bertani (LB) medium with polymyxin B sulphate (25 µg ml⁻¹) and 0.5% L-cysteine (as an antioxidant), and were homogenized using a sterile pestle. Each lysate was added to a 15-ml sterile tube containing 10 ml of sterile molten LB medium with 0.1% low-melting point agarose and 25 µg ml⁻¹ polymyxin B sulphate at 37 °C and mixed by inversion to distribute the bacteria (the polymyxin B sulphate was added after the medium was sterilized and cooled below 60 °C). Each mixture was poured into a sterile glass tube with a solid plug at the bottom consisting of 1% agar containing 5 mg ml⁻¹ thioglycolate and sealed with a sterile cap. The tubes were maintained vertically at 27 °C and left undisturbed once set. The incubated tubes were checked daily until a band of cells was visible about 1 cm below the surface of the medium at reduced oxygen tension. One microlitre of agar and cells extracted from this region were checked by PCR using *Sodalis*-specific primers targeting a *Sodalis*-specific *marR* homologue (locus tag Sant_4061). An additional 5 µl was seeded onto LB agar plates containing 25 µg ml⁻¹ polymyxin B sulphate, 0.16 mM IPTG and 0.032 mg ml⁻¹ X-Gal and incubated at 27 °C. These additives were included to reduce contamination and facilitate identification based on the observation that *S. praecaptivus* strain HST maintains an intact *lacZ* homologue and (along with *S. glossinidius*) is known to be resistant to polymyxin B (mediating antimicrobial peptide resistance in insects [17]). The plates were checked daily, and blue colonies that grew were tested by colony PCR for the presence of the *marR* (Sant_4061) gene. The primers used were F5'-GCGTATCTATCACCGCCTGA-3'

and R5'-CATTGCAGACTTCGCTGAAC-3', generating a 359 bp amplicon. The PCR conditions comprised an initial denaturation cycle of 2 min at 95 °C, followed by 30 cycles of 30 s at 94 °C, 30 s at 60 °C and 30 s at 72 °C, with a final extension step of 5 min at 72 °C. The PCR product was separated by electrophoresis on a 1.5% agarose gel, stained with RedSafe (iNtRON Biotechnology) and visualized by UV transillumination. The PCR products were purified using a PCR purification kit (Qiagen) and Sanger-sequenced to verify their identity. Each PCR reaction included a positive control (a lysate of *Sodalis*-infected *S. cameroni*) and a negative control (PCR mix with no added lysate). The positive control lysates were prepared as follows: a single wasp was homogenized in 40 µl of buffer (10 mM Tris-Cl, pH 8.2, 1 mM EDTA, 25 mM NaCl) containing 2 mg ml⁻¹ proteinase K (Invitrogen). The lysates were incubated for 15 min at 65 °C, then 10 min at 95 °C and kept at -20 °C until further use. Strain HZ^T has been deposited in public culture collections at the American Type Culture Collection (TSD-398^T) and the National Collection of Industrial, Food and Marine Bacteria (NCIMB 15482^T).

Glycerol stock preparation

Each blue colony that formed on the agar plates prior to testing by PCR was streaked onto a new LB agar plate containing polymyxin B sulphate, IPTG and X-Gal (concentrations specified above) and incubated under the same conditions as described previously. Single colonies that grew on these plates were used to inoculate 5 ml liquid LB with 25 µg ml⁻¹ polymyxin B in 15 ml sterile tubes and were incubated vertically without shaking until bacterial growth was visible. The 5-ml cultures were transferred to 50 ml sterile tubes and 10 ml fresh media were added. Another 25 ml fresh media were added after 1 week and after 7–10 additional days. For cryopreservation, 80% sterile glycerol was added to the bacterial cultures to provide a final concentration of 20%. The glycerol stocks were aliquoted into Eppendorf tubes (1 ml each) and stored at -80 °C.

Growth of strain HZ^T at different temperatures

Strain HZ^T from a glycerol stock was streaked onto an LB agar plate containing polymyxin B sulphate, IPTG and X-Gal (concentrations as above) and incubated at 27 °C. From the colonies that grew on this plate, a single colony was picked to inoculate a 10 ml starter culture, incubated at 27 °C, without shaking. When the OD_{600nm} of this starter culture reached 0.14, 0.5 ml aliquots were transferred to 12 tubes, each containing 49.5 ml liquid LB with 25 µg ml⁻¹ polymyxin B. Groups of three tubes (experimental replicates) were incubated at different temperatures: 23 °C, 28 °C, 33 °C and 37 °C, without shaking. Growth of strain HZ^T was monitored by OD_{600nm} (turbidity) measurements taken every 48 h in the first 4 days and then every 24 h between days 5 and 14. The turbidity measurements were made using 1 ml cuvettes (polystyrene 10×4×45 mm, SARSTEDT) with the NanoDrop One spectrophotometer (Thermo Fisher Scientific).

Microscopy

Liquid cultures of *S. praecaptivus* strain HS^T and strain HZ^T were grown in LB + 25 µg ml⁻¹ polymyxin B at 30 °C until OD_{600nm} reached 0.1. For fluorescence microscopy, 1.5 ml of culture was pelleted at 8000g for 10 min. The cells were then resuspended in 100 µl of PBS and stained by the addition of 1 µl of 100 µg ml⁻¹ FM4-64 (Molecular Probes) and visualized on an Echo Revolve microscope using a 100× fluorite objective and tetramethylrhodamine isothiocyanate (TRITC) filter cube. For transmission electron microscopy, *S. praecaptivus* strain HS^T and strain HZ^T cultures were grown in LB + 25 µg ml⁻¹ polymyxin B at 30 °C until OD_{600nm} reached 0.03, and 15 ml of each culture was pelleted at 3000g for 10 min. Bacteria were resuspended in 200 µl of freshly prepared fixative (32% paraformaldehyde in Live Cell Imaging Solution; Invitrogen) and incubated for 2 h at room temperature. The cells were pelleted again before resuspension in 50 µl water, and 3 µl of cell suspension was then deposited onto a glow-discharged formvar–carbon-coated grid. The cells adsorbed on the grid were passed over three consecutive drops of 0.1% phosphotungstic acid, pH 7.0, and excessive fluid on the grid was removed by blotting with filter paper. Air-dried specimens were then examined with a transmission electron microscope (JOEL JEM-1400Plus), operated at 120 kV at the University of Utah Electron Microscopy Core Laboratory. Transmission electron micrographs were analysed using Gatan Digital Micrograph software version 3.0.

PCR amplification of 16S rRNA gene sequence

The 16S rRNA gene sequence of strain HZ^T was amplified by PCR using primers 27F (F5'-AGAGTTGATCMTGGCTCAG-3') and 1492R (F5'-GGTTACCTTGTTACGACTT-3') with a 2× PCR Master Mix (Thermo Scientific), and cycling conditions consisting of a 5 min initial denaturation at 94 °C, followed by 30 cycles of denaturation (1 min at 94 °C), annealing (1 min at 50 °C) and extension (1 min at 72 °C), with a final extension at 72 °C for 5 min. The resulting amplicon was purified using AxyPrep Mag PCR Clean-Up beads (Axygen) and sequenced using the Sanger method.

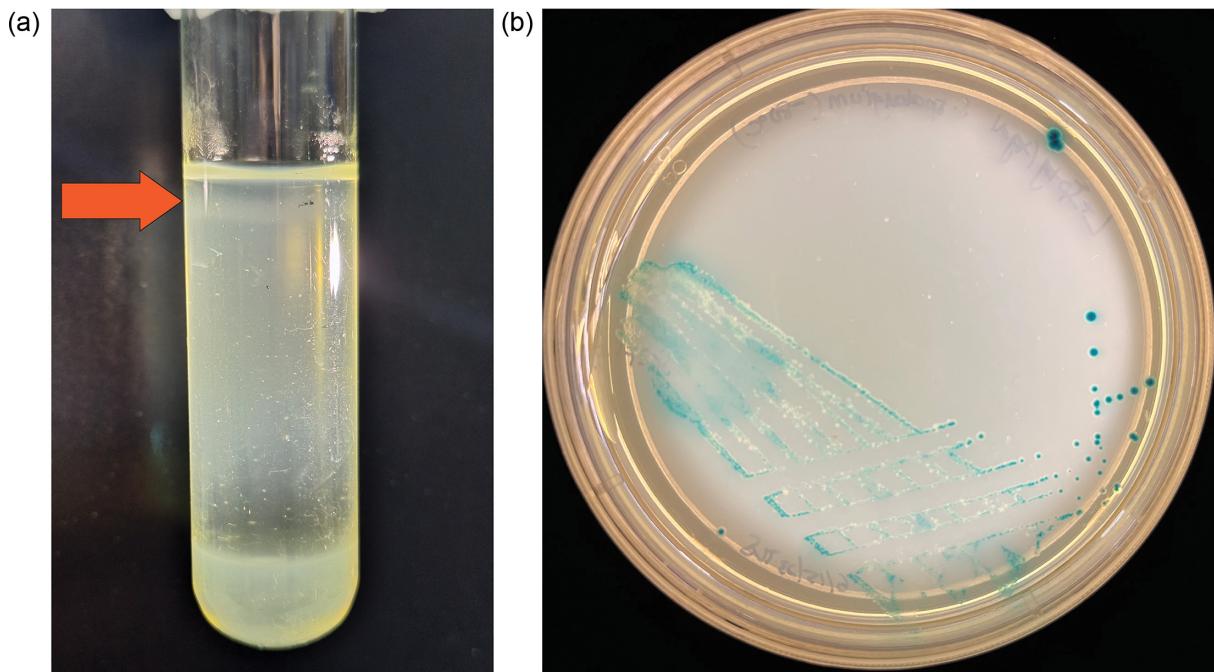
Genome sequencing

A 40 ml liquid culture of strain HZ^T was grown in LB + 25 µg ml⁻¹ polymyxin B at 30 °C until OD_{600nm} reached 0.1. The cells were pelleted at 9000g for 10 min and transferred into 180 µl Buffer ATL. DNA was extracted using a Qiagen Blood and

Tissue Kit protocol (Qiagen), following the manufacturer's protocol for Gram-negative bacteria. The genomic DNA was treated with 1 µl RNase A for 15 min at room temperature and purified using Ampure XP purification beads, following the manufacturer's protocol (Axygen). Purified DNA was eluted in 50 µl nuclease-free water; the DNA concentration was determined using a NanoDrop Lite spectrophotometer (Thermo Scientific) and DNA quality was assessed by electrophoresis.

Library construction and sequencing were performed using the Illumina Nextera DNA Flex Library Preparation Kit and Illumina NovaSeq 6000 S4 Reagent Kit v1.5 to generate 150-base paired-end reads in accordance with the manufacturer's protocols. Sequencing was performed on an Illumina NovaSeq 6000 instrument at the University of Utah Huntsman Cancer Institute High-Throughput Genomic Core facility, yielding 14.8 M raw paired-end reads. Reads were trimmed using BBDuk [23] at both ends with a minimum quality of Q30, and any reads <100 bases were discarded. The resulting 5.2M trimmed paired-end reads were assembled using Tadpole [23] with default parameters.

For Nanopore sequencing, genomic DNA was isolated from 50 ml of a strain HZ^T culture grown without shaking in LB media at 30 °C with 25 µg ml⁻¹ polymyxin B sulphate to an OD_{600nm} of 0.09. High-molecular-weight (HMW) genomic DNA was isolated using a Circulomics Nanobind CBB Big DNA Isolation Kit (Circulomics), following the 'Nanobind HMW DNA Extraction Gram-Negative Bacteria' protocol. The resulting soluble and insoluble fractions were collected and sequenced separately by preparing libraries using the SQK-LSK110 library preparation kit (Oxford Nanopore Technologies) from 1.3 µg of each DNA sample. The resulting libraries were loaded onto FLO-MIN106 flow cells and sequenced in the Mk1C sequencing device (Oxford Nanopore Technologies) for 20 h (soluble fraction) and 22 h (insoluble fraction). Primary acquisition of data and real-time basecalling were carried out using the graphical user interface MinKNOW v2.0 (Oxford Nanopore Technologies, <https://community.nanoporetech.com>), using default parameters, and reads passing the quality filter were extracted after sequencing for downstream analysis.


Raw Nanopore FAST5 reads were basecalled using MinKNOW Core module v4.4.3 (<https://community.nanoporetech.com>), employing high-accuracy calling mode. The resulting FASTQ reads from each sequencing run were filtered to remove reads <60 kbp in size. The Nanopore reads from each run were then combined and assembled *de novo* using Flye (version 2.8.3) [24] with the -nano raw argument. The resulting contigs were subjected to polishing using Medaka v1.5.0 (<https://github.com/nanoporetech/medaka>) with default parameters and four iterations of Pilon (v1.24) [25]. In each iteration of Pilon (v1.24) [25], minimap2 (v2.23) [26] was used to map Illumina reads to the assembly, using the preset for short single-ended reads without splicing and the option to generate output in a SAM format, following which SAMtools (v1.12) [27] was used to sort and index the alignment created by minimap2 (v2.23) [26], using default parameters for indexing, and finally Pilon (v1.24) [25] was used to polish the assembly based on the aforementioned alignment. Genome annotation was performed on 21 contigs derived from the assembly of Nanopore reads from strain HZ^T using the automated National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (PGAP) version 6.7 [28]. A custom script was generated to identify pseudogenes, tRNAs, rRNAs, phage and transposon genes via keyword search in the annotation file to facilitate data visualization.

Comparative genomics

Illumina reads from strain HZ^T were aligned to the *S. praecaptivus* strain HS^T chromosome and plasmid sequences (GenBank CP006569 and CP006570) using Geneious Prime 2023.1.2 with default parameters to facilitate a comparative analysis of the gene inventories. Average nucleotide identity (ANI) and coverage (shared genomic content) between strain HZ^T contigs and the *S. praecaptivus* strain HS^T chromosome and plasmid were estimated using the OrthoANIu algorithm [29]. Digital DNA:DNA hybridization (dDDH) was performed using the same query sequences with the genome-to-genome distance calculator [30], using the recommended formula (#2).

Phylogenetic analyses

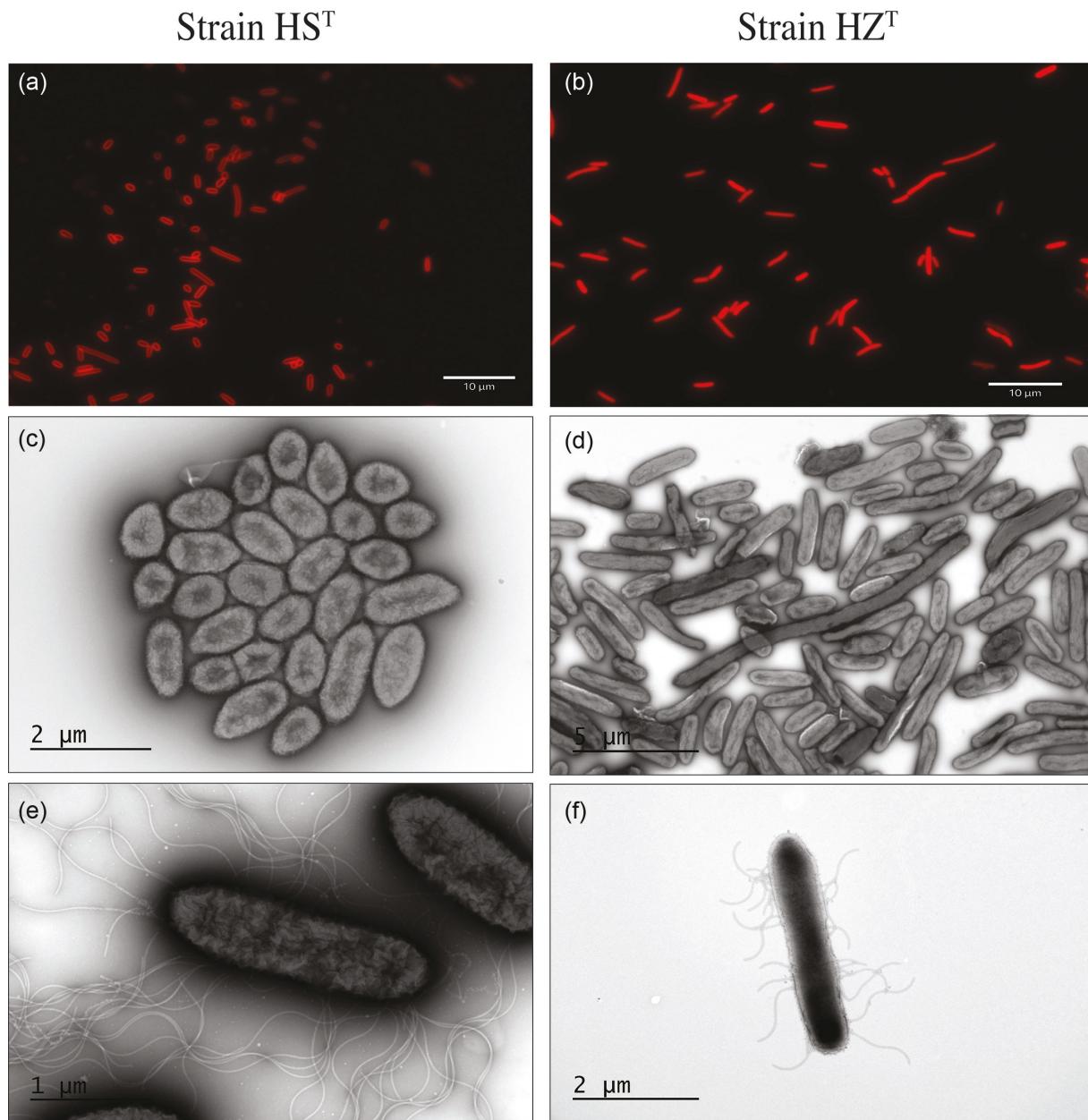
Whole-genome phylogenetic analysis was performed using the Type Strain Genome Server (TYGS; <https://tygs.dsmz.de/>) [31], following the importation of requisite whole-genome sequences from GenBank, including strain HZ^T, other *Sodalis* spp. and *Pectobacterium carotovorum* (as an outgroup). For 16S rRNA gene sequence and ribosomal protein-coding gene-based analyses, all strain HZ^T sequences were extracted from a consensus sequence derived from the alignment of Illumina reads to the *S. praecaptivus* strain HS^T genome sequence. Orthologous sequences from other bacteria, encompassing numerous *Sodalis*-allied symbionts and related environmental isolates, were obtained from the NCBI. All sequence alignments for phylogenetic analyses were generated using MUSCLE v5.1 [32] in Geneious Prime and inspected manually. For the alignment of concatenated ribosomal protein-coding genes, a translation alignment (using MUSCLE v5.1 [32]) was generated from 47 genes, including *rpsJ*, *rplCDWB*, *rpsS*, *rplV*, *rpsC*, *rplP*, *rpmC*, *rpsQ*, *rplNXE*, *rpsH*, *rplFR*, *rpsE*, *rplO*, *rpsMKD*, *rplQ*, *rplY*, *rplT*, *rpmI*, *rplS*, *rpsP*, *rpmA*, *rplU*, *rplI*, *rpsR*, *rpsF*, *rpsI*, *rplM*, *rplJAK*, *rpmF*, *rpmGB*, *rpsLG*, *rpsB*, *rpsO* and *rpsU*. Maximum likelihood (ML) phylogenies were then inferred using RAxML v8.2.11 [33], with a GTR+GAMMA substitution model and 10 000 bootstrap replicates. For both the 16S rRNA gene sequence and ribosomal protein-coding gene trees, sequences from *Pectobacterium carotovorum* were designated as the outgroup for each rooted tree.

Fig. 1. (a). Strain HZ^T growing in the microaerobic zone of a semi-solid LB agar redox gradient, highlighted with an orange arrow. (b). Strain HZ^T growing on LB agar plates with IPTG, X-Gal and polymyxin B sulphate.

Phenotypic and metabolic features

API 50 CH test strips (bioMérieux) were utilized to examine carbon source utilization by strain HZ^T and strain HS^T (for comparative purposes). Following the manufacturer's instructions, bacteria were grown in 40 ml LB + 25 μ g ml⁻¹ polymyxin B at 30°C until OD_{600nm} reached 0.12, pelleted by centrifugation (6000 g, 10 min) and resuspended to generate suspensions with turbidity equivalent to 2 McFarland units for testing. Following inoculation into API 50 CHL medium, the strip wells were covered with mineral oil and incubated at 30°C. API strips were inspected daily, and the results were documented after 48 h.

RESULTS AND DISCUSSION


Strain HZ^T cultivation

As reported in a subsequent section of these results, whole genome sequencing revealed that the genome of strain HZ^T includes intact homologues of the machinery comprising the *lac* operon and maintains the necessary genetic machinery to grow in the presence of antimicrobial peptides such as polymyxin B. Hence, we exploited these features in our procedure to cultivate strain HZ^T from *S. cameroni*.

Strain HZ^T was isolated from members of a laboratory population of *S. cameroni* that have maintained this symbiont for several years [20]. Bacterial growth was visible 5–10 days post-inoculation (Fig. 1a) and was enhanced on plates incubated under micro-aerophilic conditions. Two results were indicative of the success of isolating and culturing the bacterial symbiont from its host. First, the PCR with *Sodalis marR*-specific primers yielded a single abundant amplicon with a sequence sharing 99.7% identity with the *S. praecaptivus* strain HS^T ortholog (GenBank accession number CP006569). Second, blue colonies on IPTG/X-Gal agar plates were formed (Fig. 1b), and colony PCR assays provided the same results as detailed above, indicating that strain HZ^T also produces β -galactosidase.

Growth of strain HZ^T at different temperatures

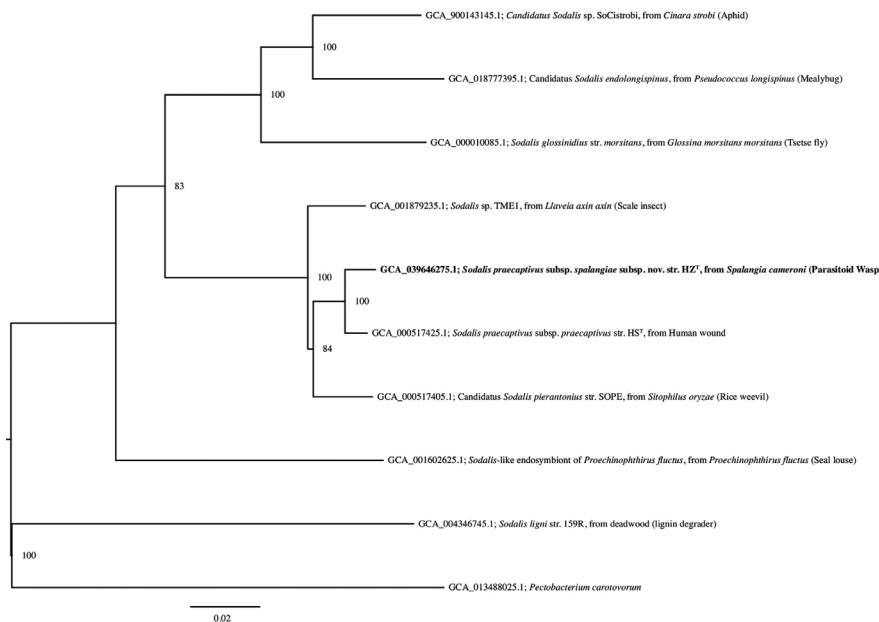
Overall, the highest growth rate was observed at 28°C with a maximal OD_{600nm} of 0.18, followed by growth at 23°C and 33°C (Fig. S1, available in the online version of this article). Growth at 37°C was significantly lower compared to the other three temperatures, achieving an OD_{600nm} of 0.03. In the first 4 days, steady growth was observed at all four temperatures, which was optimal at 28°C. Between days 4 and 14, growth rates curtailed and remained relatively stationary, possibly due to the activities of endogenous phages as explained later.

Fig. 2. (a) Micrographs of cultured *S. praecaptivus* strain HST taken using fluorescence microscopy following staining with FM4-64. (b) Micrographs of cultured strain HZ^T taken using fluorescence microscopy following staining with FM4-64. (c and e) Transmission electron micrographs of *S. praecaptivus* strain HST cells at low and high magnifications, respectively (see scale bars for reference). (d and f) Transmission electron micrographs of strain HZ^T cells at low and high magnifications, respectively (see scale bars for reference).

Microscopy

Colonies of strain HZ^T varied in size and were white in the absence of X-Gal, circular and glistening with entire edges. They displayed no surface motility on LB agar. Fluorescence imaging revealed that the cells are filamentous, relative to *S. praecaptivus* strain HST, measuring ~10–30 nm in diameter and 5–20 μm in length (Fig. 2). Transmission electron microscopy confirmed these findings and revealed the presence of lateral flagella on both *S. praecaptivus* strain HST and strain HZ^T, although these structures were less abundant on the latter (Fig. 2). Furthermore, phage particles were observed in cultures of strain HZ^T, having a 54-nm head and long, contractile tail (Fig. S2).

Genome sequencing and analysis


The Illumina sequence reads of strain HZ^T, assembled using Tadpole, yielded 1393 contigs with an N50 size of 8522 bp, indicating that the assembly was highly fragmented. Inspection of the sequences at the contig ends using Basic Local Alignment Search Tool (BLAST) analyses revealed that the contigs were terminated by repetitive sequences sharing high levels of identity with insertion sequences and phages. The proliferation of mobile genetic elements is known to occur frequently in the early stages, following the establishment of symbiotic associations [34] and is documented for other *Sodalis*-allied symbionts [35, 36]. Since high levels of repetitive DNA diminish the utility of short-read assembly, we also performed Nanopore sequencing, followed by polishing/error correction using the Illumina reads. The resulting sequence assembly (GenBank GCA_039646275.1; Table S1) yielded a single circular chromosome of 5.24 Mb with 56.8% guanine + cytosine (G+C) content and 408-fold mean coverage. An additional 20 contigs were obtained, comprising putative extrachromosomal elements ranging in size from 0.52 to 231 kbp and coverage from 3- to 513-fold. Due to the large numbers of mobile DNA elements in the strain HZ^T genome, these 20 contigs likely represent a combination of assembly artefacts in addition to canonical (replicative) plasmids, DNA from phage particles within bacterial cells and possibly other non-replicating elements arising from mobile element activity. Preliminary annotation of the strain HZ^T genome was conducted using the PGAP (version 6.7) [28] and deposited under accession JBDHPY000000000 and assembly number GCA_039646275.1. Further manual annotation will be required to definitively characterize and annotate extrachromosomal elements and the extensive array of mobile DNA insertions in this genome. In order to determine if the relationship between strain HZ^T and *S. praecaptivus* strain HS^T merits placement of strain HZ^T in the same species, we computed ANI and performed dDDH between the two strains. These analyses yielded estimates of ANI=98.5% and dDDH=85.4%, which would typically be considered high enough to merit the placement of the bacteria in the same species. However, comparison of the gene content between *S. praecaptivus* strain HS^T and strain HZ^T reveals key distinctions (Table S1) and shows that strain HZ^T maintains only a subset of the gene inventory of *S. praecaptivus* strain HS^T. This is evidenced by (1) an average genome coverage (determined by orthoANIu) of only 50.2% and (2) the absence of alignment of strain HZ^T Illumina reads to numerous regions of the *S. praecaptivus* strain HS^T genome (Fig. S3), noting that the same reads align contiguously to the strain HZ^T Nanopore assembly (Fig. S4). Furthermore, strain HZ^T harbours substantial numbers of novel, mobile DNA elements and predicted pseudogenes (Table S1; Fig. S5). Based on this insight, it appears that, like many other insect symbionts, including *Sodalis* spp., strain HZ^T has undergone reductive genome evolution, involving deletions, gene-inactivating mutations and accumulation/proliferation of mobile genetic elements [4, 5, 8, 35–37]. Thus, while intact coding sequences shared between *S. praecaptivus* strain HS^T and strain HZ^T maintain high sequence identity, indicating recent common ancestry, *S. praecaptivus* strain HS^T and strain HZ^T may differ substantially in terms of gene inventories and resulting phenotypic properties. Therefore, we propose that strain HZ^T is classified as a new subspecies, *S. praecaptivus* subsp. *spalangiae* subsp. nov. This is justified on the basis that it maintains >98% sequence identity in gene sequences shared with *S. praecaptivus* strain HS^T, yet harbours many pseudogenes and mobile DNA elements, in addition to occupying a distinct ecological niche.

Phylogenetic analyses

Phylogenomic analysis was performed with the TYGS [31], using reference genome sequences derived from *Sodalis*-allied symbionts, including strain HZ^T, several free-living *Sodalis* spp. and an outgroup, *Pectobacterium carotovorum* (Fig. 3). The resulting tree shows that strain HZ^T is the closest known insect-associated relative of *S. praecaptivus* strain HS^T discovered to date, again supporting the notion that the association between the wasp *S. cameroni* and strain HZ^T is very recent in origin. Additional phylogenetic analyses (Figs S6–8), utilizing the PCR-derived 16S rRNA gene sequence (deposited in NCBI GenBank under accession number KY985293.1) and 47 ribosomal protein-coding genes (deposited in NCBI GenBank under accession numbers PP273189–235), yield similar results. Notably, the 16S rRNA gene sequence tree shows that the strain HS^T sequence shares a higher sequence identity with strain HZ^T than with the sequence derived from the symbiont of the weevil *Archarius roelofsi*, which was formerly the closest known insect-associated relative of strain HS^T [9]. All three trees also provide strong support for a clade comprising *S. praecaptivus* strain HS^T and *Sodalis*-allied insect symbionts, excluding *Sodalis* spp. isolated from deadwood and soil, as reported in another study [12]. In addition, the 16S rRNA gene sequence derived from the cultured strain HZ^T shares 100% sequence identity with the 16S rRNA gene sequence derived from the wasp host reported previously [20] (GenBank KY985293.1), indicating that the cultured isolate matches the *Sodalis* symbiont reported in that study.

Phenotypic and metabolic features

API 50 CH strip tests revealed the carbon source utilization capabilities and preferences of *S. praecaptivus* strain HS^T and strain HZ^T (Table S2). The results derived for *S. praecaptivus* strain HS^T were in agreement with those obtained from a previous study [10]. The phenotypic test results also suggest that strain HZ^T maintains a subset of the metabolic properties found in strain HS^T, again consistent with the notion that strain HZ^T has undergone genomic and functional degeneration following the transition to symbiotic life. This includes loss of the ability to utilize 6 of the 23 carbon sources utilized by *S. praecaptivus* strain HS^T in the API 50 CH-testing regime (L-arabinose, D-ribose, D-xylose, L-xylose, D-lactose and D-melibiose). Notably, strain HZ^T was found to lack the ability to utilize lactose in spite of the fact that it produces blue colonies on plates with IPTG and X-Gal. This may be indicative of loss of function of some other gene(s) required for lactose utilization or it may be due to a change in the

Fig. 3. Phylogenomic tree based on genome sequences of strain HZ^T and related bacteria in the TYGS (<https://tygs.dsmz.de/>). The midpoint rooted tree was inferred with FastME 2.1.6.1 [31] from GBDP (Genome Blast Distance Phylogeny) distances calculated from genome sequences. The branch lengths are scaled in terms of the GBDP distance formula d_5 . The numbers above branches are GBDP pseudo-bootstrap support values >60% from 100 replications, with an average branch support of 95.3%.

specificity of the β -galactosidase enzyme. Also, observation of the API strips at time intervals following inoculation revealed that strain HZ^T favours the utilization of *N*-acetylglucosamine over other carbon sources (including glucose) present in the test, as evidenced by it having the most rapid colour change. Interestingly, this mirrors findings documented for carbon source utilization by *S. glossinidius* [1], which also showed a metabolic preference for *N*-acetylglucosamine, noted to be a constituent of chitin, the abundant exoskeletal component of insects. In addition, we found that strain HZ^T, unlike strain HS^T, does not grow on M9 minimal medium (with either glucose or *N*-acetylglucosamine provided as a carbon source), suggesting that it is auxotrophic for one or more amino acids, vitamins and/or co-factors.

Proposal of novel subspecies within *S. praecaptivus*

Levels of nucleotide sequence identity, based on discrete alignments and estimation of ANI and dDDH, between strain HZ^T and *S. praecaptivus* strain HS^T, are above the thresholds, typically used to define species boundaries [38, 39], yet strain HZ^T lacks genes and phenotypic properties that are maintained in the closely related *S. praecaptivus* strain HS^T, as evidenced by comparative genomics and phenotypic testing. Therefore, we propose that strain HZ^T be designated as a new subspecies of *S. praecaptivus* as *S. praecaptivus* subsp. *spalangiae* subsp. nov. By virtue of this change, we also propose that strain HS^T be designated *S. praecaptivus* subsp. *praecaptivus* subsp. nov.

Emended description of *S. praecaptivus*

S. praecaptivus (prae.cap.ti'vus, L. prep. *prae*, before; L. masc. adj. *captivus*, taken prisoner; N.L. masc. adj. *praecaptivus*, not yet taken prisoner).

Cells are aerobic, Gram-stain-negative, non-spore-forming short rods measuring 2–10 mm in length and 0.5–1.5 mm in diameter. Colonies are white and circular when grown at 30 °C on LB agar plates. In the API 50 CH assay, the following carbon sources are utilized at 30 °C: glycerol, D-arabinose, D-galactose, D-glucose, D-fructose, D-mannose, L-rhamnose, D-mannitol, D-sorbitol, *N*-acetylglucosamine, D-trehalose, xylitol, D-lyxose, D-tagatose, L-fucose, potassium gluconate and potassium-5-ketogluconate. In contrast, the following carbon sources are not utilized at 30 °C: erythritol, D-adonitol, methyl- β -D-xylopyranoside, L-sorbose, dulcitol, methyl- α -D-mannopyranoside, arbutin, salicin, D-maltose, L-arabitol and potassium 2-ketogluconate. The cells produce β -galactosidase (forming blue colonies with the presence of X-Gal) and are polymyxin B resistant.

The chromosomal sizes are in the range of 4.71–5.25 Mb and the G+C content is 56.8–57.5%.

The type strain is *HS^T* (=DSM 27494^T=ATCC BAA-2554^T), isolated from a human patient in the USA. The GenBank/EMBL/DDBJ accession numbers for the genome sequence of strain *HS^T* are CP006569.1 (chromosome) and CP006570.1 (plasmid), while those for the 16S rRNA gene and *groEL* gene sequences are JX444565 and JX444566, respectively.

DESCRIPTION OF *S. PRAECAPTIVUS* SUBSP. *PRAECAPTIVUS* SUBSP. NOV.

S. praecaptivus subsp. *praecaptivus* subsp. nov. (prae.cap.ti'vus, L. prep. *prae*, before; L. masc. adj. *captivus*, taken prisoner; N.L. masc. adj. *praecaptivus*, not yet taken prisoner).

The description of this subspecies follows the species description of *S. praecaptivus* with the following additions.

Colonies are mucoid and grow to 1–2 mm in diameter after 24 h of growth at 30 °C on LB agar plates. Growth is observed on LB agar, MacConkey agar, Columbia blood agar, Mitsuhashi and Maramorosch medium blood agar and M9 minimal salt agar from 25 °C to 37 °C. With shaking (200 r.p.m.), liquid cultures reach an OD_{600nm} of ~0.4–0.5 after 16 h in LB media at 30 °C. It exhibits swarming motility on LB agar and grows in LB broth at an optimal pH of 5.5 and a maximum NaCl concentration of 3.5%. In the API 50 CH assay, L-arabinose, D-ribose, D-xylose, L-xylose, aesculin ferric citrate, D-cellobiose, D-lactose, D-melibiose, D-melezitose, D-raffinose, D-turanose, D-fucose and D-arabitol are utilized as carbon sources at both 30 °C and 35 °C. Starch and glycogen are utilized at 30 °C, while inositol, methyl- α -D-glucopyranoside, amygdalin, D-saccharose (sucrose), inulin and gentiobiose are utilized at 35 °C only. This produces catalase and chitinase.

The strain adheres to the species description. This subspecies type strain is the same as the species type strain *HS^T* (=DSM 27494^T=ATCC BAA-2554^T), isolated from a human patient in the USA. The GenBank/EMBL/DDBJ accession numbers for the complete genome sequence of strain *HS^T* are CP006569.1 (chromosome) and CP006570.1 (plasmid), and those for the 16S rRNA gene and *groEL* gene sequences are JX444565 and JX444566, respectively.

DESCRIPTION OF *S. PRAECAPTIVUS* SUBSP. *SPALANGIAE* SUBSP. NOV.

S. praecaptivus subsp. *spalangiae* subsp. nov. (spa.langi.ae. N.L. gen. n. *spalangiae*, of the wasp genus *Spalangia*).

The description of this subspecies follows the species description of *S. praecaptivus*. However, this subspecies can be distinguished from *S. praecaptivus* subsp. *praecaptivus* subsp. nov. based on different growth properties. The cells are non-motile in both liquid LB medium and on the surface of LB agar. It grows microaerobically in semi-solid agar but tolerates atmospheric oxygen sufficiently to form irregularly sized colonies after 5–7 days of incubation on LB agar at 30 °C. The cells grow slowly in the absence of shaking in LB broth, reaching an OD_{600nm} of ~0.1 after 4 days. Colonies are glistening with entire edges and are capable of growth at 23–33 °C, with an optimum temperature of 28 °C. In the API 50 CH assay, this subspecies cannot utilize L-arabinose, D-ribose, D-xylose, L-xylose, D-lactose and D-melibiose as carbon sources at 30 °C. It demonstrates faster growth on N-acetylglucosamine relative to glucose.

The type strain is *HZ^T* (NCIMB 15482^T=ATCC TSH-398^T) and was isolated from the parasitoid wasp, *S. cameroni* (Hymenoptera: Spalangiidae), collected in an egg-laying poultry facility in Hazon, Israel, in April–May 2014, where the wasps develop on pupae of the housefly, *Musca domestica* (Diptera: Muscidae). The reads described in this study have been deposited in the NCBI Sequence Read Archive under the accession numbers SRR25556807 (Illumina) and SRR28852625 (Nanopore). The 16S rRNA gene sequence and ribosomal protein-coding gene sequences used for phylogenetic analyses are deposited in NCBI GenBank under the accession numbers OR464179.1 and PP273189-235, respectively. The genome sequence is deposited in GenBank under the accession number JBDHPY000000000 and assembly number GCA_039646275.1.

Funding information

We gratefully acknowledge funding provided by National Science Foundation award DEB 2114510 (to C.D.) and Binational Science Foundation award 2020791 (to E.C.). No individuals employed by the funders, other than the authors, played any role in the study or in the preparation of the article or decision to publish.

Acknowledgements

We gratefully acknowledge Willisa Liou and the University of Utah Electron Microscopy Facility for the electron microscopy images. We thank the University of Utah Huntsman Cancer Institute High-Throughput Genomics Core Facility for assistance with high-throughput sequencing and Diane Downhour in the Department of the Human Genetics at the University of Utah School of Medicine, for assistance with nanopore sequencing.

Author contributions

L.S.T.: conceptualization, investigation, analysis, visualization, writing – original, review and editing. S.R.S.: conceptualization, investigation, analysis, writing – original, review and editing. I.J.: conceptualization, investigation, analysis, visualization, writing – original, review and editing. A.D.: investigation, analysis, writing – review. E.C.: conceptualization, supervision, project administration, analysis, writing – original, review and editing. C.D.: conceptualization, supervision, project administration, analysis, visualization, writing – original, review and editing.

Conflicts of interest

The authors declare no competing interests.

References

- Dale C, Maudlin I. *Sodalis* gen. nov. and *Sodalis glossinidius* sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly *Glossina morsitans morsitans*. *Int J Syst Evol Microbiol* 1999;49:267–275.
- Pontes MH, Dale C. Culture and manipulation of insect facultative symbionts. *Trends Microbiol* 2006;14:406–412.
- Michalik A, Jankowska W, Kot M, Gołas A, Szklarzewicz T. Symbiosis in the green leafhopper, *Cicadella viridis* (Hemiptera, Cicadellidae). Association in statu nascendi? *Arthropod Struct Dev* 2014;43:579–587.
- McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. *Curr Biol* 2019;29:R485–R495.
- Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The all-rounder sodalis: a new bacteriome-associated endosymbiont of the lygaeoid bug *Henestaris halophilus* (Heteroptera: Henestrinae) and a critical examination of its evolution. *Genome Biol Evol* 2017;9:2893–2910.
- Vigneron A, Masson F, Vallier A, Balmand S, Rey M, et al. Insects recycle endosymbionts when the benefit is over. *Curr Biol* 2014;24:2267–2273.
- Husnik F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. *Proc Natl Acad Sci USA* 2016;113:E5416–24.
- Boyd BM, Allen JM, Koga R, Fukatsu T, Sweet AD, et al. Two bacterial genera, *Sodalis* and *Rickettsia*, associated with the seal louse *Prochinophthirus fluctus* (Phthiraptera: Anoplura). *Appl Environ Microbiol* 2016;82:3185–3197.
- Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. *PLoS Genet* 2012;8:e1002990.
- Chari A, Oakeson KF, Enomoto S, Jackson DG, Fisher MA, et al. Phenotypic characterization of *Sodalis praecaptivus* sp. nov., a close non-insect-associated member of the sodalis-allied lineage of insect endosymbionts. *Int J Syst Evol Microbiol* 2015;65:1400–1405.
- Oren A, Göker M. Validation List no. 209. Valid publication of new names and new combinations effectively published outside the IJSEM. *Int J Syst Evol Microbiol* 2023;73:005709.
- Tláskal V, Pylro VS, Žifčáková L, Baldrian P. Ecological divergence within the enterobacterial genus *Sodalis*: from insect symbionts to inhabitants of decomposing deadwood. *Front Microbiol* 2021;12:668644.
- Keller CM, Kendra CG, Bruna RE, Craft D, Pontes MH. Genetic modification of *Sodalis* species by DNA transduction. *mSphere* 2021;6:e01331-20.
- Elston KM, Leonard SP, Geng P, Bialik SB, Robinson E, et al. Engineering insects from the endosymbiont out. *Trends Microbiol* 2022;30:79–96.
- Dale C, Young SA, Haydon DT, Welburn SC. The insect endosymbiont *Sodalis glossinidius* utilizes a type III secretion system for cell invasion. *Proc Natl Acad Sci U S A* 2001;98:1883–1888.
- Enomoto S, Chari A, Clayton AL, Dale C. Quorum sensing attenuates virulence in *Sodalis praecaptivus*. *Cell Host Microbe* 2017;21:629–636.
- Clayton AL, Enomoto S, Su Y, Dale C. The regulation of antimicrobial peptide resistance in the transition to insect symbiosis. *Mol Microbiol* 2017;103:958–972.
- Su Y, Lin H-C, Teh LS, Chevance F, James I, et al. Rational engineering of a synthetic insect-bacterial mutualism. *Curr Biol* 2022;32:3925–3938..
- De Vooght L, Caljon G, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, *Sodalis glossinidius*. *Microb Cell Fact* 2014;13:156.
- Betelman K, Caspi-Fluger A, Shamir M, Chiel E. Identification and characterization of bacterial symbionts in three species of filth fly parasitoids. *FEMS Microbiol Ecol* 2017;93:fix107.
- Rohkin Shalom S, Weiss B, Lalzar M, Kaltenpoth M, Chiel E. Abundance and localization of symbiotic bacterial communities in the fly parasitoid *Spalangia cameroni*. *Appl Environ Microbiol* 2022;88:e0254921.
- Chiel E, Kuslitzky W. Diversity and abundance of house fly pupal parasitoids in Israel, with first records of two *Spalangia* species. *Environ Entomol* 2016;45:283–291.
- Bushnell B. BBTools; 2016. <https://jgi.doe.gov/data-and-tools/bbtools>
- Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. *Nat Biotechnol* 2019;37:540–546.
- Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLOS ONE* 2014;9:e112963.
- Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 2018;34:3094–3100.
- Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. Twelve years of SAMtools and BCFtools. *Gigascience* 2021;10:giab008.
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, et al. NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res* 2016;44:6614–6624.
- Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. *Antonie van Leeuwenhoek* 2017;110:1281–1286.
- Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. *Nucleic Acids Res* 2022;50:D801–7.
- Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. *Nat Commun* 2019;10:2182.
- Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. *Nat Commun* 2022;13:6968.
- Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 2014;30:1312–1313.
- Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. *FEMS Microbiol Rev* 2014;38:865–891.
- Belda E, Moya A, Bentley S, Silva FJ. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of *Sodalis glossinidius*, the secondary endosymbiont of tsetse flies. *BMC Genomics* 2010;11:449.
- Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, et al. Genome degeneration and adaptation in a nascent stage of symbiosis. *Genome Biol Evol* 2014;6:76–93.
- Clayton AL, Jackson DG, Weiss RB, Dale C. Adaptation by deleterious replication slippage in a nascent symbiont. *Mol Biol Evol* 2016;33:1957–1966.
- Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. *Proc Natl Acad Sci U S A* 2009;106:19126–19131.
- Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics* 2013;14:60.