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Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory
inputs or inputs from other brain regions. To avoid misinterpreting temporally struc-
tured inputs as intrinsic dynamics, dynamical models of neural activity should account
for measured inputs. However, incorporating measured inputs remains elusive in joint
dynamical modeling of neural-behavioral data, which is important for studying neural
computations of behavior. We first show how training dynamical models of neural
activity while considering behavior but not input or input but not behavior may lead to
misinterpretations. We then develop an analytical learning method for linear dynamical
models that simultaneously accounts for neural activity, behavior, and measured inputs.
The method provides the capability to prioritize the learning of intrinsic behaviorally
relevant neural dynamics and dissociate them from both other intrinsic dynamics and
measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics
that performs different tasks, the method correctly finds the same intrinsic dynamics
regardless of the task while other methods can be influenced by the task. In neural
datasets from three subjects performing two different motor tasks with task instruction
sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are
missed by other methods and are more predictive of behavior and/or neural activity.
The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics
are largely similar across the different subjects and tasks, whereas the overall neural
dynamics are not. These input-driven dynamical models of neural-behavioral data can
uncover intrinsic dynamics that may otherwise be missed.

intrinsic dynamics | inputdynamics | behavior | neural encoding | dynamical systems

Neural population activity exhibits rich temporal structures (1-26). Investigating these
temporal structures, i.e., dynamics, can reveal the neural computations that underlie
behavior (5, 6, 12, 15, 16, 19, 20). Much progress has been made in developing models
that can describe the dynamics of neural population activity using a low-dimensional
latent state (2—4, 7, 8, 10-14, 16, 19). However, a major challenge in such investigations
is that neural dynamics can arise due to two distinct sources that reflect distinct compu-
tations (12, 15, 27). The first source consists of the intrinsic dynamics within a given brain
region. Intrinsic dynamics arise due to the recurrent connections within a region’s neuronal
population as it responds in a temporally structured manner to any excitations from within
or outside that region (6, 12, 15, 18, 27, 28). The second source consists of input dynamics,
which are temporal structures that already exist in inputs to the recorded brain region,
including sensory inputs or inputs from other brain regions (1, 9, 12, 15, 27-31). While
measuring all inputs is infeasible experimentally, measurements of sensory inputs such as
task instructions or partial measurements of neural inputs into a brain region are often
possible. As such, correctly interpreting how neural computations in a given brain region
give rise to a specific behavior can greatly benefit from simultaneously achieving two
objectives, which remains elusive.

First, given the above two sources, neural dynamics that are intrinsic to a given brain
region need to be dissociated from those that are simply due to temporally structured
measured inputs to that region. Second, within intrinsic neural dynamics, those that are
relevant to the specific behavior of interest need to be dissociated from other intrinsic
neural dynamics. This latter dissociation is important because neural dynamics of a specific
behavior often constitute a minority of the total variance in the recorded neural activity
(5, 6, 19, 32-39). Indeed, recent work has shown that learning dynamical models of
neural-behavioral data together and in a way that dissociates and prioritizes their shared
dynamics can unmask behaviorally relevant neural dynamics that may otherwise not be
found (19, 20). We refer to such prioritized learning approach for neural-behavioral data
as preferential dynamical modeling because it preferentially models the behaviorally relevant
neural dynamics with priority instead of non-preferentially modeling prevalent dynamics
in neural data as is typically done. However, prior methods for preferential dynamical

PNAS 2024 Vol.121 No.7 e2212887121

https://doi.org/10.1073/pnas.2212887121

Significance

Neural dynamics emerge either
intrinsically within the recorded
brain regions or due to inputs to
those regions, such as sensory
inputs or neural inputs from
other regions. Further, recorded
neural dynamics may or may not
be related to a specific measured
behavior of interest. We first
show how intrinsic neural
dynamics that underlie a
behavior can be confounded by
both measured inputs and other
intrinsic neural dynamics. To
address this challenge, we
develop methods that dissociate
the intrinsic neural dynamics
related to specific behaviors from
other intrinsic dynamics and
measured input dynamics
simultaneously. We show the
success of these methods in
simulations and real data

from three subjects in two
independent neural datasets
recorded during two distinct
motor tasks.

Author contributions: P.V., 0.G.S., and M.M.S. designed
research; performed research; contributed new analytic
tools; analyzed data; and wrote the paper.

Competing interest statement: USC has a patent related
to modeling and decoding of shared dynamics between
signals.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

"P.V. and 0.G.S. contributed equally to this work.

2To whom correspondence may be addressed. Email:
shanechi@usc.edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2212887121/-/DCSupplemental.

Published February 9, 2024.

10f 12


https://orcid.org/0000-0003-0591-8382
https://orcid.org/0000-0003-3032-5669
mailto:
https://orcid.org/0000-0002-0544-7720
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:shanechi@usc.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212887121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212887121/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2212887121&domain=pdf&date_stamp=2024-2-9

Downloaded from https://www.pnas.org by 72.138.118.251 on December 13, 2024 from IP address 72.138.118.251.

modeling of neural-behavioral data do not account for the effect
of measured inputs to a given brain region. Thus, the dissociation
of intrinsic and input-driven neural population dynamics that
underlie specific behaviors has remained challenging,.

Here, we first show how misinterpretation and incorrect iden-
tification of intrinsic behaviorally relevant dynamics could result
from modeling neural activity while considering behavior but not
input or while considering input but not behavior. Indeed, mod-
eling neural activity without considering the measured input could
result in a model that mistakes the temporal structure in the input
as part of the intrinsic dynamics within the recorded brain region
(9, 27) and consequently confounds scientific conclusions. For
non-preferential modeling of neural activity on its own, while not
commonly done, various methods can be adapted to fit models
with measured inputs (40) but they cannot account for behavior.
Thus, as we show, despite considering input, these non-preferential
methods can miss those intrinsic neural dynamics that are behav-
iorally relevant. Further, as stated above, methods for preferential
dynamical modeling that consider the neural-behavioral data
together do not consider measured inputs. Here we aim to for-
mulate and solve a learning problem that involves neural activity,
behavior, and measured inputs simultaneously.

To do so, we develop a preferential modeling approach, termed
input preferential subspace identification (IPSID) that can con-
sider both measured inputs and behaviors in the training set while
learning linear dynamical models of neural population activity.
By doing so, IPSID provides the capability to learn the intrinsic
behaviorally relevant neural dynamics with priority and dissociate
them both from other intrinsic neural dynamics and from the
dynamics of measured inputs. We also develop a version of IPSID
that achieves this capability when some input dynamics influence
the behavior through pathways that are neither recorded nor
downstream of the recorded neural activity. Compared with our
prior preferential dynamical modeling method (i.e., PSID) (19,
41), which does not incorporate input or dissociate intrinsic and
input dynamics, IPSID requires distinct mathematical operations
and additional steps (S7 Appendix, Note S1). We show that two
capabilities introduced by IPSID are critical for accurate dissoci-
ation of intrinsic behaviorally relevant neural dynamics: prioritized
learning of these dynamics in the presence of input and ensuring
all learned dynamics are directly present in the neural recordings
even when inputs affect behavior.

We validate IPSID and its capabilities in extensive numerical
simulations of diverse dynamical systems and in two independent
motor cortical datasets from three non-human primates (NHP)
recorded during two different tasks with task instruction sensory
inputs. First, we simulate a brain with fixed intrinsic dynamics
that performs different behavioral tasks. IPSID correctly learns
the same intrinsic behaviorally relevant neural dynamics regardless
of which specific task is used to collect the simulated training
neural data. In contrast, other methods learn intrinsic dynamics
that are inaccurate and influenced by the specific task. Second, we
apply IPSID to motor cortical population activity recorded from
three NHPs in two independent datasets with two different
2-dimensional (2D) cursor-control tasks. IPSID finds intrinsic
behaviorally relevant dynamics that not only predict motor behav-
ior better than non-preferential methods even with input, but also
predict neural activity better than preferential methods, which
cannot consider task instruction inputs. Further, IPSID reveals
that intrinsic behaviorally relevant neural dynamics are largely
similar across the three animals despite differences in the two
cursor-control tasks and animals, while other methods miss these
similar dynamics. By dissociating intrinsic behaviorally relevant
dynamics from both other intrinsic dynamics and measured input
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dynamics, IPSID can help explore unanswered questions regarding
how intrinsic and input-driven neural computations give rise to
behavior across subjects and tasks.

Methods

Modeling Intrinsic Neural Dynamics Underlying Behavior in the Presence
of Inputs. To see how measured inputs, if unaccounted for, can be misinterpreted
asintrinsic neural dynamics, consider a task where a subject is instructed to follow
an on-screen target with their hand while motor cortical activity that represents
the hand movements is recorded (Fig. 14). Here, movements of the target would
resultin corresponding movements in the hand that follows the target and thus
would also introduce corresponding dynamics in the neural activity that repre-
sents hand movements. Consequently, any arbitrary movement of the target
will be, to some extent, reflected in the recorded neural activity. An example
is shown in a numerical simulation in Fig. 1 A and B. As another example, if
the target moves up and down with a 1-s period, one would expect the neural
activity to also include similar periodic patterns with a 1-s period. If the period of
target movements changes to 2 s, so would the period of the patterns in neural
activity that represent the hand movements. Any neural modeling that is not
informed by target movements, which serve as task instruction sensory inputs,
cannot distinguish between such input dynamics and intrinsic dynamics that
originate in the recorded brain region. Thus, modeling without considering this
input may incorrectly conclude that there exist intrinsic dynamics originating
in the recorded brain area that are periodic with a 1-s period. The reflection of
input dynamics in neural dynamics can also be seen in terms of the frequency
domain spectrum of these signals (Fig. 1B). In this view, the correct dissociation
of intrinsic dynamics from input dynamics requires the correct learning of the
transfer function from inputs to neural signals, in a way that does not incorrectly
attribute the input dynamics that appear in neural activity to having originated
from the transfer function (Fig. 1B).

Toformulate the goal of IPSID, we represent the dynamical state of the recorded
brain regions as a high-dimensional vector. Each state dimension may or may
not contribute to generating the specific behavior of interest, i.e., be behaviorally
relevant (Fig. 14). As discussed in the Introductory paragraphs, two major factors
can confound the learning of intrinsic behaviorally relevant neural dynamics: 1)
the dynamics of the measured input and 2) other intrinsic neural dynamics. IPSID
removes both confounding factors by accounting for neural activity, behavior, and
measured inputs simultaneously during learning. Unlike IPSID, prior methods
address only one or the other confound but not both. First, non-preferential neural
dynamic modeling (NDM) with input (S Appendix, Methods), which we term
INDM, accounts for neural activity and measured input but not behavior during
learning. As such, INDM may miss or confound the intrinsic neural dynamics that
are behaviorally relevant. Second, a dynamical method termed PSID (19, 41)
addresses the second confound by accounting for neural activity and behavior
during learning but not input. As such, PSID does not dissociate intrinsic and
input dynamics. We thus use this naming convention for ease of exposition but
the algebraic operations in IPSID are different from those in both PSID and INDM
and further IPSID includes additional steps compared with these prior methods
(S1 Appendix, Notes S1and S2).

InIPSID, we use the following linear state-space model to jointly describe the
dynamics of neural activity (y,) and behavior (z,) in the presence of measured
input (uy)

Xk+1 =AXk+Buk+WI<

@

X(1)
}’k=Cka+Dyuk+ka xk=[k ] (1]

X

k

Zk =C1Xk+DZuk+€k

where x, € R™ is the latent state in the recorded neural activity and com-
posed of two parts: 1)x£1) € R™, which is the behaviorally relevant states and

2) x? € R™=™, which is the other states. In this model, y, € R, z, € R",
andu, € R™representthe recorded neural activity, the measured behavior, and
the measured input, respectively. Here, xf) being behaviorally relevant means
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that only those dimensions of x, corresponding to xi” contribute to generating
behavior (z,) in the third row of Eq. 1. Finally, w, and v, are zero mean white
Gaussian noises (S Appendix, Methods), and €, is a general Gaussian random
process representing any behavior dynamics notencoded in the recorded neural
activity (i.e., not driven by x,).

Prior works have not addressed the problem of fitting this model in a way
that dissociates and prioritizes the learning of behaviorally relevant latent states,
which is achieved by IPSID. Operationally, dissociation is the process of differen-
tiating two subtypes of neural dynamics from each other and returning both to
the user. Prioritization is the process of dedicating model capacity (e.g., latent
state dimensions) to explaining one subtype first and dedicating model capacity
to other subtypes only if some model capacity is left, which results in the learning
of the former subtype taking priority over the learning of the second subtype.
To enable such preferential/prioritized learning, IPSID introduces a two-stage
learning procedure that incorporates input as follows. In the first stage of IPSID,
we develop algebraic operations that extract the behaviorally relevant latent states
with priority via an oblique (non-orthogonal) projection of future behavior onto
past neural activity and past inputs along the subspace spanned by future inputs
(S1Appendix, Fig. S1and Methods). Then, in an optional second stage, we devise
algebraic operations that extract any other latent neural states by another oblique
projection from any residual/unexplained future neural activity onto past neural
activity and past inputs along future inputs (S/ Appendix, Fig. S1). Model param-
eters are then learned via least squares based on the extracted latent states and
their relationin Eq. 1.

IPSID's two-stage learning introduces the capability for prioritized learning
of the intrinsic behaviorally relevant neural dynamics over other intrinsic neural
dynamics in the presence of inputs, because the former dynamics are learned
first,i.e., inthe first stage. Specifically, IPSID can learn a minimally complex model
of those intrinsic neural dynamics that are behaviorally relevant in the first stage
(i.e., a model with low-dimensional states), instead of having to learn a more
complex model thatincludes all of the intrinsic neural dynamics simultaneously.
As learning less complex models can be more accurate for a given number of
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training samples, this two-stage learning can lead to learning more accurate
models of intrinsic behaviorally relevant dynamics for a given dataset as shown
in simulations and in real data analyses below. Moreover, IPSID achieves disso-
ciation of behaviorally relevant dynamics because the two sets of states learned
by the two stages are placed in predetermined and distinct dimensions of the
latent state: the first n,dimensions versus the rest. After the model is learned, in
the test set, extraction of intrinsic behaviorally relevant neural dynamics is done
without using behaviorand via a Kalman filter associated with the learned model
(S Appendix, Methods). Details of IPSID are provided in SI Appendix, Methods
and Notes S1and S2.

Toassess the methods, we look at the eigenvalues of the latent state transition
matrix A, which quantify the dynamics (S/ Appendix, Methods and Fig. 1 C and
D). We also compute the accuracy in decoding behavior from neural activity as
well as in neural self-prediction-defined as predicting neural activity one step
ahead from its own past (S/ Appendix, Methods).

Results

IPSID Correctly Learns All Model Parameters in the Presence
of Inputs. We first validated the accurate learning of intrinsic
behaviorally relevant neural dynamics using IPSID in a simulated
model (Fig. 14). The eigenvalues of the state transition matrix 4
affect the transfer function from the input to the states and neural
activity (Fig. 1B), characterize the state response to excitations,
and describe the dynamics (Fig. 1C and SI Appendix, Methods).
We thus use these eigenvalues to quantify the intrinsic neural
dynamics (8] Appendix, Methods). We found that IPSID was the
only method that correctly learned the eigenvalues associated with
the intrinsic behaviorally relevant neural dynamics (Fig. 1D). In
contrast, NDM or PSID that do not consider inputs learned
models that were confounded by input dynamics (eigenvalues
were deflected toward input eigenvalues); INDM that does not
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consider behavior was confounded by other intrinsic neural
dynamics beyond the behaviorally relevant ones (Fig. 1D).

To more comprehensively validate IPSID, we applied it to data
generated from 100 random models in the form of Eq. 1 with
random parameters and dimensions (S Appendix, Methods). To
provide input to these models, we independently simulated another
100 models without input (Eq. 3 from 87 Appendix, Methods) with
random parameters and passed their output as the input to the
original models—these inputs are thus generated by an independent
dynamical system and can be thought of as activity of other brain
regions or as structured sensory inputs. IPSID correctly learned all
model parameters in the presence of inputs (S/ Appendix, Fig. S2).
Moreover, the rate of convergence of parameters as a function of
training samples was similar to INDM (S Appendix, Fig. S2B); this
suggests that despite its additional capability in dissociating intrinsic
behaviorally relevant dynamics, IPSID does not require more train-
ing data than INDM even when modeling all dynamics.

IPSID Prioritizes the Learning of Intrinsic Behaviorally Relevant
Dynamics in the Presence of Inputs. In another numerical
simulation, we found that IPSID correctly prioritizes the learning
of intrinsic behaviorally relevant neural dynamics in the presence
of inputs (Fig. 2). We simulated 100 random models formulated
by Eq. 1 with a 6D latent state, out of which only 2 dimensions
were behaviorally relevant (SI Appendix, Methods). To get the input
to these models, we independently simulated 100 random models
without input (Eq. 3 from SI Appendix, Methods) with 2D latent
states and passed their output as the input to the original models.
We then learned and evaluated models using (I)PSID and (I)
NDM with varying latent state dimensions (n,). In each case, we
computed the error in learning the intrinsic behaviorally relevant
eigenvalues, which quantifies how accurately intrinsic behaviorally
relevant dynamics are learned (Fig. 2B and SI Appendix, Fig. S3).

We found that only IPSID could learn all the intrinsic behavio-
rally relevant neural dynamics/eigenvalues using the minimal latent
state dimension of 2, which is their true dimension (Fig. 2B and
SI Appendix, Fig. S4). Thus, IPSID could simultaneously dissociate
the intrinsic behaviorally relevant dynamics from other intrinsic
dynamics and input dynamics by considering both input and
behavior during learning. In contrast, even though INDM consid-
ers inputs, it does not consider behavior during learning and thus
it required a much larger latent state dimension of 6 (true total
model dimension) to learn the intrinsic behaviorally relevant eigen-
values (Fig. 2B). This higher required dimension also led to INDM’s
higher eigenvalue error with the same training sample size as IPSID
(Fig. 2C) because models with higher dimensional states are more
complex and difficult to learn. Indeed, IPSID required orders of
magnitude fewer training samples to learn the intrinsic behaviorally
relevant dynamics in the presence of inputs (Fig. 2C).

We next found that NDM and PSID models, which do not
consider input, were unable to dissociate the intrinsic versus input
dynamics, leading to a high intrinsic eigenvalue error (Fig. 2B). This
error was high even when increasing NDM/PSID’s state dimensions
to learn a mixture of all intrinsic neural dynamics and input dynam-
ics first. When we reduced these high-dimensional models to only
keep the two dimensions that were best in decoding behavior (as
we did with INDM above, ST Appendix, Methods), the associated
eigenvalues were still much less accurate than low-dimensional mod-
els learned with IPSID (see Fig. 2B at high dimensions).

IPSID Can Dissociate the Effects of Input on Behavior that Are
Reflected in the Recorded Neural Activity from those that Are
Not. In Eq. 1, all the effects of input on behavior happen through
latent states that are reflected in the recorded neural activity. In this
scenario, all the downstream regions of the input are either covered
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in the recordings or reflected in them (e.g., are downstream of the
recorded regions). In addition to this scenario, we now show that
IPSID can also apply to a more general scenario where inputs
may also influence behavior through pathways/regions that are
neither recorded nor reflected in the recorded activity (Fig. 3A4).
We formulate this scenario with the following model

X/Sr)l Ay 00 xlgl) By w/(el)
X/gr)l =1 A4y, Ay O xl(zz) +| B, |4t w/iz)
xgl 0 0 A xf ) B wf)
o
1 J’/e=[Cy1 G, 0] xf) +Dyu+v, ' 2]
N
%=[C, 0C,| x|+ e
\ x|

where compared with Eq. 1, an additional segment xf) is added to

the latent state x;, to represent the effects of input #;, on behavior 2,
that are not reflected in the recorded neural activity Y. In this for-
mulation, IPSID dissociates the latent state into three segments: 1)
x/(el) € R™, which is the behaviorally relevant latent state that is
reflected in neural activity ¥, 2) x/(ez) € R”2, which is the latent state
that describes any other neural dynamics, and 3) xf) € R™7"M™",
which is the behaviorally relevant latent state not reflected in the
recorded neural activity Y. These three types of latent states are shown

in an example in Fig. 34. Note that in this case, only x/(el) and x/(ez)

constitute the intrinsic latent states because only these latent states
drive the recorded neural activity. To add support for dissociation of
these three types of latent states to IPSID, we developed two addi-
tional optional steps for IPSID (87 Appendix, Fig. S5 and Note S2).
In the first additional step, before the initial oblique projection
of behavior onto neural activity and input, we project behavior onto
the subspace of latent states in neural activity (i.e., neural states)
irrespective of the relevance of these states to behavior; these neural
states are obtained using only the second stage of IPSID (87 Appendix;
Methods, Note S2 and Figs. S5 and S6A). We then apply IPSID as
before (SI Appendix, Note S1) but now use the results of this addi-
tional projection as the behavior signal. This additional projection
ensures that behavior dynamics that are not encoded in the recorded
al activity are not included in the first set of states x .
neural activity .

In the second additional step, we optionally extract xf) , which
represents any behavior dynamics that are driven by the input but
are not encoded in the recorded neural activity—e.g., due to pro-
cessing in the downstream regions of input that are not recorded/
reflected as part of neural activity. In this step, after performing
the first additional step above and subsequently both stages of

IPSID to extract le)

that is still not predictable using x and x?. Then, using the
second stage of IPSID, we build a model that predicts these resid-
ual behavior dynamics purely using the input (ST Appendix,
Methods, Note S2 and Fig. S5)—this gives x/?). Together, these two
additional steps enable IPSID to learn a model as in Eq. 2. If

2 . .
and xz , we compute the residual behavior

. 3). . .
extraction of x/i )is not of interest, the second step can be skipped

and solely the first step can be added to IPSID.
We simulated models in the form of Eq. 2 and confirmed that
with the above additional steps, again only IPSID correctly dissociates
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Eigenvalues of the state transition matrix A in the true model are shown as colored circles. Crosses show the identified behaviorally relevant eigenvalues when
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Results are averaged over 100 random models each with total latent state dimension of n, = 6 and behaviorally relevant state dimension of n; = 2. For all models,
an independent random model with state dimension of 2 generated the input (S/ Appendix, Methods). Solid lines show the average and shaded areas show the SEM
(n =100 random models). For all methods, we vary the state dimensionn, from 1 to 8; for n, < 2, we find the 2 state dimensions that best predict behavior and
evaluate their 2 associated eigenvalues (S/ Appendix, Methods). (C) Normalized error of learning the intrinsic behaviorally relevant eigenvalues vs. training samples
for 100 random models. For INDM, we try i) directly learning a model with a 2D latent state and ii) first learning a model with a high enough dimension to achieve
almost zero error in B and then reducing the model to keep the top 2 dimensions with the best behavior decoding (indicated by dimension — 2) (S/ Appendix, Methods).

intrinsic behaviorally relevant neural dynamics (i.e., x,il)) from other
dynamics—i.e., from other intrinsic neural dynamics, input dynam-
ics, and behavior dynamics not encoded in the recorded neural activity
(Fig. 3C). Moreover, across 100 random models, IPSID correctly
learned all model parameters in Eq. 2 (SI Appendix, Fig. S7). Finally,
by learning xf), IPSID also achieved ideal prediction of behavior
from input and neural activity (SI Appendix, Fig. S8).

These results demonstrate that IPSID is applicable to scenarios
where the recorded neural activity does not cover all the downstream
regions of the measured input. IPSID can also dissociate the influ-
ences of input on behavior that are reflected in the recorded neural
activity from those that are not. Without this capability, some of
the learned dynamics may not be present in the recorded region
(Fig. 3C, top row comparisons). Thus, this is another capability by
IPSID that is important for accurately dissociating intrinsic behav-
iorally relevant dynamics in neural recordings.

IPSID’s Prioritized Modeling of Intrinsic Behaviorally Relevant
Neural Dynamics Is Important for their Accurate Learning.
Using its two-stage learning procedure in the presence of inputs,
IPSID enables prioritized learning of intrinsic behaviorally
relevant neural dynamics. To show the importance of two-stage
learning, we also implemented an alternative block-structured
numerical optimization approach to solve our formulation; in
this approach, we fit a model with the same block structure as
the IPSID model in Eq. 6 from SI Appendix, Methods but do
so in a single stage by simultaneously maximizing the neural-
behavioral data log-likelihood (SI Appendix, Methods). When
applied to the same simulated data as in Fig. 2C, IPSID’s two-stage
approach was significantly more accurate than this single-stage
block-structured numerical optimization in learning the intrinsic
behaviorally relevant eigenvalues. Also, IPSID required orders of
magnitude fewer training samples to achieve comparable accuracy
(81 Appendix, Fig. S9A). Consistent with its more accurate intrinsic
behaviorally relevant eigenvalues, IPSID also outperformed this

PNAS 2024 Vol.121 No.7 e2212887121

single-stage method and INDM in terms of achieving higher
behavior data likelihood (S7 Appendix, Fig. S9B) while achieving
comparable neural data likelihood (87 Appendix, Fig. S9C). These
results highlight the benefit of two-stage (i.e., prioritized) learning
of intrinsic behaviorally relevant dynamics over their single-
stage learning (see also SI Appendix, Methods). Finally, IPSID
was also significantly faster in model learning than the numerical
optimization method, given that IPSID involves a fixed set of
linear algebraic operations whereas numerical optimization
involves iterative gradient descent (87 Appendix, Fig. S10).

Realistic Motor Task Simulations Show How Sensory Inputs
Can Confound Models of Neural Activity. Sensory inputs to
the brain such as task instructions can have different dynamics
from task to task, even if the intrinsic neural dynamics remain
unchanged (Fig. 14). Developing a method that can learn the
correct intrinsic neural dynamics regardless of the task would allow
experimenters to study any behavioral task of interest or compare
intrinsic dynamics across different tasks without worrying about
confounding the results and without limiting the task design. We
hypothesized that even when the intrinsic neural dynamics remain
unchanged, methods that do not consider the task sensory inputs
may learn different and incorrect intrinsic dynamics depending
on the exact task, whereas IPSID can learn the same intrinsic
dynamics regardless of the task. Here, we confirm this hypothesis
by simulating a brain performing multiple different realistic
cursor control tasks during which simulated neural data for model
training is observed (Fig. 4 and SI Appendix, Methods).
Specifically, we modeled the brain as an optimal feedback control-
ler (42-44) (OFC), which controls a part of its state that represents
the 2D cursor kinematics toward targets presented via task instruc-
tions (SI Appendix, Methods and Fig. 4 A and B). For generality, as
part of the simulated brain, we included two latent states (similar to
P in Eq. 2) thatare driven by input and affect the measured motor

k
behavior but are not reflected in neural dynamics (S Appendix;
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Fig. 3. IPSID also applies to scenarios where the recorded regions do not cover all downstream regions of the input. (4) A simulated brain (as in Eq. 2) with a 6D
latent state out of which only 4 dimensions drive the recorded neural activity and the other 2 dimensions just drive the behavior. (B) The eigenvalues of the state
transition matrix Ain the simulated model. The 4 eigenvalues associated with the 4 state dimensions that drive the recorded neural activity are shown as green and
orange circles, depending on whether they drive behavior (green) or not (orange). Eigenvalues associated with the two additional state dimensions that only drive
the behavior but not recorded neural activity are shown as black circles. (C) Eigenvalues of the models learned using IPSID, block-structured numerical optimization,
IPSID (without additional steps), PSID, and (I)NDM. A simplified schematic of key operations for each method is in S/ Appendiix, Fig. S6. The block-structured numerical
optimization learns the model parameters via gradient descent (S/ Appendix, Methods). Notation is as in Fig. 1. IPSID can also address this scenario and its additional
steps are needed to avoid the black eigenvalues/dynamics (behaviorally relevant dynamics not reflected in the recordings; see the top row comparisons).

Methods). As the first task, we simulated 8 equally spaced targets
around a circle and instructed the simulated brain to move the cursor
to the targets in order (Fig. 4 C, Leff). As the second task, we simu-
lated a standard center-out-and-back task where in each trial the
cursor needs to move from the center to a randomly specified target
among 8 targets and then return back to the center (Fig. 4 C, Middle).
Last, we simulated a 10-by-10 grid of targets where in each trial a
random target within a limited distance of the most recent target
needs to be visited (Fig. 4 C, Right) similar to the tasks in the NHP
datasets (SI Appendix, Methods). For each task, we used (I)PSID and
(DNDM to learn models of neural dynamics (Fig. 4D).

We found that regardless of the task, IPSID correctly learned the
intrinsic behaviorally relevant neural dynamics. This is evident from
comparing the IPSID eigenvalues and flow fields for every task with
their ground truth (first row of Fig. 4D vs. Fig. 4B). INDM, which
considers input but not behavior during training, learned an approx-
imation of some intrinsic behaviorally relevant neural dynamics with
error, and also mistakenly included some intrinsic neural dynamics
that were not relevant to behavior (Fig. 4D, second row). PSID, which
considers behavior and neural activity but not input during training,
learned biased intrinsic neural dynamics that were influenced by task
instruction inputs (Fig. 4D, third row). Finally, NDM, which only
considers neural activity during training, not only learned neural
dynamics that were not related to behavior but also learned inaccurate
intrinsic behaviorally relevant neural dynamics that were influenced
by task instruction inputs (Fig. 4D, fourth row). For example, in the
first task, the biased dynamics learned by NDM and PSID were very
close to the dominant frequency of the task instructions, which was
around 0.2 Hz (Fig. 4D, left column). These results demonstrate that
by considering both behavior and sensory inputs such as task instruc-
tions during model training, IPSID can learn models of neural
dynamics that are not confounded by the specific behavioral task
during which neural data are collected. Avoiding these confounds is
critical for comparing intrinsic neural dynamics across tasks in neu-
roscience investigations, as we also show in our NHP data analyses

below (Figs. 5-7).
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Consistent with the above results, models trained by IPSID on
data from one task had minimal drop in behavior decoding per-
formance when tested on data from a different task, thus achieving
generalization from task to task. In contrast, models learned by all
other methods had significantly larger drops in behavior decoding
performance in the other task (87 Appendix, Fig. S11; P < 0.001;
one-sided signed-rank; 7 = 10 simulations).

Modeling Task Instructions as Inputs Reveals Distinct Intrinsic
Behaviorally Relevant Neural Dynamics in Non-human Primate
Neural Population Activity. We next used IPSID to study intrinsic
behaviorally relevant neural dynamics in two independent motor
cortical datasets recorded from three monkeys (monkeys I and L
from the first datasets and monkey T from the second dataset)
during two distinct behavioral motor tasks with planar cursor
movements (Figs. 54 and 6A). In the first dataset, which was made
publicly available by the Sabes lab (45), primary motor cortical (M1)
population activity was recorded while two monkeys controlled
a 2D cursor to reach random targets on a grid (Fig. 54 and
SI Appendix, Methods). The 3D position of the monkey’s fingertip
was tracked and its horizontal elements controlled the cursor
(SI Appendix, Methods). In the second dataset, which was made
publicly available by the Miller lab (46, 47), population activity from
the dorsal premotor cortex (PMd) was recorded while the monkey
performed sequential reaches to random target positions on a plane
(Fig. 6A and ST Appendix, Methods). The cursor was controlled via
a manipulandum that only allowed horizontal movements. For all
subjects, we modeled the smoothed spike counts (3, 13, 39, 48)
as neural signals (S] Appendix, Methods). We took the 2D position
and velocity of the cursor as the behavior signal, and the time series
of target positions as the input task instructions (Figs. 54 and 6A4).

First, we found that IPSID revealed distinct intrinsic behaviorally
relevant neural dynamics/eigenvalues that were not found by other
methods. This could be seen from the learned eigenvalues by IPSID
that were different from those found by other methods (Figs. 58
and 68 and SI Appendix, Fig. S12B). Second, eigenvalues found by
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Fig.4. By considering task instruction inputs, IPSID learns the correct intrinsic behaviorally relevant neural dynamics regardless of the task unlike other methods.
(A) The brain model consists of an optimal feedback controller (OFC) combined with a linear state space model (LSSM). Four of the 8 latent state dimensions of
the LSSM encode the 2D position and velocity of the cursor (S/ Appendix, Methods). OFC controls these four state dimensions such that cursor position reaches
the target shown on the screen while cursor velocity goes to zero (i.e., cursor stops at the target). (B) Eigenvalues of the state transition matrix in the full brain
model (i.e., OFC together with the LSSM) and the flow field associated with the behaviorally relevant neural eigenvalues. Flow fields show the direction in which
the state would change starting from various initial values. In this brain model, there are two sets of behaviorally relevant complex conjugate eigenvalues that
are at the same location and thus overlapping. Each set is associated with one movement direction, horizontal and vertical, respectively, per Eq. 13, S/ Appendix,
Methods. The fact that there are two overlapping sets of eigenvalues is indicated by writing a 2 next to these eigenvalues. Since horizontal and vertical directions
have identical dynamics, the flow field is only shown for one of them. In addition to the four states representing position and velocity in the 2D space, there are
two states that only drive the neural activity, whose associated eigenvalues are depicted as orange circles. There are also two states that only drive the behavior,
whose associated eigenvalues are depicted as black circles. (C) Tasks performed by the simulated brain. (D) Identified eigenvalues for each task using each method
with a state dimension of 4. The flow field for one of the two sets of eigenvalues identified by each method (the one with the lighter green/red color) is also
shown as an example. Only IPSID correctly learns the intrinsic behaviorally relevant neural eigenvalues regardless of the behavioral task used during training.

PSID were far from those found by IPSID, whereas eigenvalues
found by NDM were close to those found by INDM (Figs. 5B and
6B and SI Appendix, Fig. S12B). Note that IPSID/PSID focus on
explaining the behaviorally relevant neural dynamics whereas
INDM/NDM focus on explaining the overall neural dynamics
regardless of relevance to behavior. Thus, the aforementioned result
suggests that task instructions, which are taken as inputs in IPSID/
INDM, are highly informative of behaviorally relevant neural
dynamics (seen from their effect on PSID vs. IPSID), but are not
very informative of the overall neural dynamics (seen from NDM
and INDM results being similar). This is consistent with the vast
body of work suggesting that neural dynamics relevant to any spe-
cific behavior may constitute a minority of the overall neural vari-
ance (5, 6, 19, 32-39).

In these analyses, we used the additional steps in IPSID that
were designed for scenarios in which some input dynamics may
affect behavior through unrecorded regions/pathways (S Appendix,
Fig. S5). However, we found that even without these additional
steps, the average learned eigenvalues remained almost unchanged
in one subject (8] Appendix, Fig. S13B) and remained relatively
similar in the other two subjects (S7 Appendix, Fig. S13 A and C).
This result could suggest, particularly in the former (S Appendix,
Fig. S13B), that behaviorally relevant neural dynamics that were
downstream of visual task instruction inputs were largely reflected
in, or downstream of, the motor cortical recordings here. Having
established the distinction of eigenvalues found by IPSID, we next
explored whether these eigenvalues better describe the data.

PNAS 2024 Vol.121 No.7 e2212887121

IPSID Learns more Accurate Intrinsic Behaviorally Relevant
Neural Dynamics in Non-human Primate Neural Population
Activity. We hypothesized that as in simulations (Fig. 4), the
eigenvalues learned by IPSID are more accurate descriptions
of the true intrinsic behaviorally relevant neural dynamics. As a
measure of closeness of two sets of dynamics, we computed the
Kullback—Leibler (KL) divergence between the distribution of
their associated eigenvalues (S/ Appendix, Methods). We performed
multiple evaluations to test this hypothesis.

First, we showed that IPSID’s algebraic operations can mitigate
the problem of learning intrinsic dynamics that are confounded
by input dynamics, unlike NDM and PSID. We characterized the
input dynamics by modeling the time series of task instructions
as a linear state-space model and finding the associated input
eigenvalues (Eq. 3 in SI Appendix, Methods). We found that in all
three subjects and in the two tasks, the input eigenvalues were
close to those learned using NDM and PSID but not to those
learned using IPSID (Figs. 5B and 6B and SI Appendix, Fig. S12B).
Also, in all subjects, the KL-divergence between the input dynam-
ics and learned dynamics was much larger for IPSID compared
with PSID, which does not consider inputs during learning
(Figs. 5Cand 6C and SI Appendix, Fig. S12C).

Second, we demonstrated the success of preferential neural-
behavioral modeling in the presence of input enabled by IPSID
by comparing with INDM and NDM. In all three subjects, IPSID
learned the intrinsic behaviorally relevant neural dynamics signif-
icantly more accurately than both INDM and NDM (Figs. 5D

https://doi.org/10.1073/pnas.2212887121
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Fig. 5. IPSID uncovers distinct and more accurate intrinsic behaviorally relevant neural dynamics in motor cortical population activity by considering task
instructions as inputs to the brain. (A) We modeled the population spiking activity in a monkey (monkey 1) performing a 2D cursor control task (S/ Appendix,
Methods). See SI Appendix, Fig. S12 for results from a second monkey in this task and Fig. 6 for results in a second dataset recorded from a different monkey in a
different task. Spike counts are smoothed using a Gaussian kernel with SD of 50 ms (S/ Appendix, Methods). The 2D position and velocity of the cursor were taken
as the behavior signal and the instructed target position time series was taken as the input to the brain. (B) Distribution of the eigenvalues of the state transition
matrix for models learned using (1)PSID and (I)NDM across datasets. Input eigenvalue was found by applying NDM to the time-series of instructed targets. Models
were learned with a latent state dimension of n, = 4, which is sufficient for capturing most behavior dynamics (S/ Appendix, Fig. S14). We estimated the probability
of an eigenvalue occurring at each location on the complex plane by adding Gaussian kernels centered at locations of all identified eigenvalues (n = 70 cross-
validation folds across two channel subsets and seven recording sessions, S/ Appendix, Methods). Red dots indicate the location that has the maximum estimated
eigenvalue occurrence probability, with the associated frequency and decay rate (S/ Appendix, Methods) noted. When the occurrence probability map has more
than one local maximum (i.e., for NDM or INDM), pink dots indicate the location of the second local maximum. (C) KL-divergence between the probability mass
function of input eigenvalues (panel B, Right) and that of eigenvalues learned by IPSID/PSID (panel B, Top and Bottom Left). The eigenvalues learned by PSID were
much closer to input eigenvalues than the eigenvalues learned by IPSID, showing the success of IPSID's distinct algebraic operations in accounting for inputs
in neural-behavioral modeling. (D and E) Cross-validated behavior decoding (panel D) and neural self-prediction (panel £) when modeling data with dimension

n, =4 and corresponding to models in B. Triple asterisks indicate P < 0.0005 for a one-sided signed-rank test.

and 6D and SI Appendix, Fig. S12D). This was evident from com-
paring the cross-validated behavior decoding from neural activity
for these methods (Figs. 5D and 6D and S/ Appendix, Fig. S12D).

Third, we showed the success of IPSID’s algebraic operations in
accounting for inputs in preferential neural-behavioral modeling
by comparing it to PSID, which is preferential yet does not con-
sider inputs. We found that IPSID learned models that were sig-
nificantly more predictive of neural dynamics compared to PSID
in all three subjects, as evident by comparing the cross-validated
neural self-prediction accuracy across the two methods (Figs. 5E
and 6F and S7 Appendix, Fig. S12E). These results held even if the
feedthrough term D,u, in Eq. 2—which reflects the effect of input
on neural activity directly and not through the latent states x—was
discarded when predicting neural activity using IPSID (Figs. 5
and 6F and SI Appendix, Fig. S12E). This analysis demonstrates
that the better prediction in IPSID is due to its latent states being
more predictive of neural dynamics rather than due to a static
feedthrough effect of input on neural dynamics.

Opverall, these consistent results from three NHPs in two inde-
pendent neural datasets with two different tasks suggest that
IPSID can successfully dissociate intrinsic behaviorally relevant
neural dynamics from other intrinsic neural dynamics and from
measured input dynamics. Moreover, these results demonstrate
that not considering task instruction sensory inputs when mode-
ling neural activity can result in less accurate models of neural
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dynamics and confound conclusions about intrinsic dynamics, a
Yy Y
problem that IPSID addresses (see also next section).

IPSID Uniquely Revealed that Intrinsic Behaviorally Relevant
Dynamics Were Similar across the Different Subjects and Tasks.
While the specific task instructions are different in the two behavioral
tasks in the independent datasets here—reaches to random targets
on a grid vs. sequential reaches to random targets—the two datasets
also have similarities; they both have recordings from the motor
cortical areas and involve cursor control tasks with targets on a
2D plane. We thus hypothesized that there may be similarities in
the intrinsic behaviorally relevant neural dynamics across the two
tasks and three subjects. To test this hypothesis, we compared the
distribution of eigenvalues learned using IPSID across all pairs of
the three subjects (Fig. 7) and quantified their average difference
with three metrics: 1) symmetric KL divergence between eigenvalue
distributions (S7 Appendix, Methods and Fig. 7D), 2) correlation
coeflicient (CC) between the probability mass functions of the
eigenvalue distributions (Fig. 7E) 3) distance between the modes of
the eigenvalue distributions, i.e., most probable locations (Fig. 7).

We found that IPSID identified intrinsic behaviorally relevant
dynamics that were strikingly similar across the two tasks and three
subjects both qualitatively (Fig. 7 A-C) and quantitatively (Fig. 7
D-F). This similarity was despite the fact that the task instruction
sensory inputs were distinct between the two tasks and that these
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In a second dataset recorded from a different monkey and during a different task, IPSID again uncovers distinct and more accurate intrinsic behaviorally

relevant neural dynamics by considering task instructions as inputs. (A-E) Similar to Fig. 5, for the second subject (monkey T, n = 15 cross-validation folds across
three recording sessions, S/ Appendix, Methods) during a different second task with sequential reaches to random targets (S/ Appendix, Methods).

recordings were from three different animals across two independ-
ent datasets. Also, even without its additional steps (S Appendix,
Fig. S5 and Note S2), IPSID still found largely similar eigenvalues
across tasks and monkeys showing the robustness of this result,
but the additional steps helped it reveal this similarity slightly
more strongly (SI Appendix, Fig. S13 D—F).

We next studied the dynamics found by INDM. INDM aims
to learn the overall intrinsic neural dynamics while IPSID aims
to prioritize the learning of intrinsic behaviorally relevant neural
dynamics. Interestingly, unlike IPSID, the dynamics found by
INDM were much more distinct across the three monkeys both
visually (Fig. 7 A-C) and quantitatively (Fig. 7 D—F). Moreover,
as shown in the previous section, the more similar dynamics found
by IPSID were also a more accurate description of intrinsic behav-
iorally relevant neural dynamics in each monkey (Figs. 5D and
6D and SI Appendix, Fig. S12D). Together, these results suggest
that while the overall intrinsic neural dynamics (as found by
INDM) were different across these two planar motor tasks and
three animals, the intrinsic behaviorally relevant neural dynamics
were similar as revealed by IPSID. We propose that this similarity
may suggest that similar neural computations in the motor cortex
underlie these planar cursor control tasks despite the differences
between task instruction inputs and animals.

IPSID was the only method that revealed the above similarity of
dynamics because it not only accounts for inputs (task instructions)
but also prioritizes the learning of intrinsic behaviorally relevant
dynamics over other neural dynamics in the presence of input—
which is something INDM cannot do. Interestingly, this result is
also consistent with our simulation study in Fig. 4 in which IPSID
was the only method that correctly found the fixed intrinsic behav-
jorally relevant dynamics regardless of task while other methods
were confused by the task instructions and/or overall intrinsic
dynamics. Thus, IPSID can help researchers compare the intrinsic
neural dynamics across different behavioral tasks by mitigating the
confound that similarity or lack thereof in dynamics may simply be
due to task instruction/input comparisons across tasks.

Together, these results highlight that the algebraic operations
in IPSID can lead both to more accurate models and to useful

PNAS 2024 Vol.121 No.7 e2212887121

scientific insight. These results also demonstrate that while meas-
uring all inputs to a given brain region is typically experimentally
infeasible, even incorporating partial input measurements (task
instruction sensory inputs in this case) can already yield insights
into neural computations across different tasks and subjects that
may otherwise be missed.

Discussion

We developed IPSID, a method that introduces the capability to
perform preferential dynamical modeling of neural-behavioral
data in the presence of measured inputs. In the IPSID formula-
tion, a dynamical model of neural activity is learned by accounting
for measured input, neural, and behavioral data simultaneously,
and the learning of intrinsic behaviorally relevant neural dynamics
is prioritized over other intrinsic dynamics. By doing so, IPSID
can dissociate intrinsic behaviorally relevant dynamics not only
from other intrinsic dynamics but also from the dynamics of meas-
ured inputs such as task instructions or recorded activity of
upstream regions. We demonstrated that without IPSID, dynam-
ics in measured inputs to a given brain region or other intrinsic
neural dynamics may be incorrectly identified as intrinsic behav-
iorally relevant neural dynamics within that brain region and thus
confound conclusions. Indeed, in the neural data from monkeys,
we showed that task instructions can act as such confounding
inputs. IPSID can analytically account for such measured inputs
to reveal more accurate intrinsic behaviorally relevant neural
dynamics compared with alternative approaches even when they
considered input (as in INDM). IPSID also provided useful sci-
entific insights by revealing the similarity of intrinsic neural
dynamics of behavior across different tasks and animals, which
was not found by other methods.

IPSID could allow future studies to more easily compare across
tasks without worrying about the temporal structure of task
instruction inputs and how their reflection in neural activity may
be misinterpreted as intrinsic neural dynamics. We first showed
this potential with experiments where a simulated brain with fixed
intrinsic dynamics performed different cursor control tasks. Here,
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IPSID reveals largely similar intrinsic behaviorally relevant neural dynamics across three monkeys and two tasks from two independent datasets while INDM

identifies different overall intrinsic neural dynamics. (A) Same as Fig. 5B, showing the eigenvalues learned for IPSID and INDM. (B and C) Similar to A for the second
and third monkeys, respectively (taken form Fig. 6 and S/ Appendlix, Fig. S12). (D-F) Average pairwise symmetric KL-divergence between the eigenvalue probability
mass functions of the three monkeys (D), average pairwise Pearson correlation coefficient (CC) between these probability mass functions (£), and average pairwise
distance between the modes (i.e., most probable eigenvalue location) of these probability mass functions (F). Lower KL-divergence/mode distance implies more
similarity across monkeys, with a minimum possible value of 0. Higher CC implies more similarity across monkeys, with a maximum possible value of 1. Based
on all three metrics, IPSID finds largely similar eigenvalues across tasks and animals whereas INDM finds eigenvalues that are different across tasks and animals.

sensory inputs in the form of task instructions could lead to learn-
ing intrinsic dynamics that incorrectly appeared different across
tasks. IPSID addressed this issue and was the only approach that
found the correct intrinsic behaviorally relevant neural dynamics
regardless of the task. Consistently, in the real motor cortical data-
sets and by modeling the task instructions as sensory inputs, IPSID
not only learned the intrinsic behaviorally relevant neural dynam-
ics more accurately but also was the only method that revealed
their similarity across tasks and animals.

Unexpectedly, despite differences in animals and in motor tasks/
instructions across the motor cortical datasets, we found similar
intrinsic behaviorally relevant dynamics in all three animals across
both tasks using IPSID. In contrast, INDM found that the domi-
nant overall intrinsic dynamics were different across tasks and ani-
mals. This result may suggest that motor cortical regions across
different animals could have different intrinsic dynamics overall,
but the part of their intrinsic dynamics that is engaged in arm
movements to control 2D planar cursors may have similarity. These
similar dynamics may suggest that similar intrinsic neural compu-
tations in the motor cortex underlie the performance of these two
different planar cursor-reaching tasks. Prior work has found simi-
larities in static projections of neural activity (49, 50) across subjects
(50) or tasks (49), but these prior works have not modeled temporal
dynamics (e.g., eigenvalues) and have not disentangled the effect of
task instruction input dynamics on the observed similarity. Thus,
IPSID provides a useful tool to explore whether such observed sim-
ilarities reflect input dynamics or are intrinsic.

When the activity of some upstream brain regions that have
inputs to the recorded region (27, 31, 51-53) is not measured,
the learned intrinsic dynamics could also partly originate from
these other regions. In the motor cortical datasets here for exam-
ple, neural dynamics in upstream regions such as the visual cor-
tex—which is involved in processing the sensory input and passing
it to other regions along the visual-motor pathway—may also be
reflected in the learned intrinsic motor cortical dynamics. Taking
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the sensory instructions as input can, to some extent, account for
the dynamics of inputs from these upstream visual areas. Similarly,
a sensory input that is not measured or accounted for, for example,
the sunrise-sunset cycles during chronic recordings, may confound
the modeled neural dynamics of a specific behavioral or mental
state such as mood (e.g., in the form of circadian rhythms) (54,
55). Thus, recording activity from more upstream regions and
measuring more sensory inputs can allow IPSID to consider more
comprehensive inputs during modeling to better discover intrinsic
behaviorally relevant dynamics.

As it is mostly experimentally infeasible to identify and record
all inputs to a given brain region, a complete disentanglement of
intrinsic dynamics from all input dynamics to a region becomes
impractical. This experimental limitation is thus a fundamental
limit on methodological efforts aimed at disentanglement. Thus,
one still needs to interpret the results cautiously by noting that
only dynamics of measured inputs are being disentangled from
intrinsic dynamics. Nevertheless, our results show that even this
partial disentanglement can lead to more accurate models and to
useful scientific insights compared to alternative models which
either do not consider measured inputs, or consider measured
input but not behavior during learning.

Here, we address the challenge of preferential modeling of neural-
behavioral data with measured inputs, which has been unresolved.
For non-preferential modeling of neural data on its own and when
inputs are not measured, prior studies have looked at the distinct
problem of separating the recorded neural dynamics into intrinsic
dynamics and a dynamic input that is inferred (12, 56, 57). This
decomposition is typically done by making certain a priori assump-
tions about the input such that inputs can be inferred, for example,
that input is constrained to be considerably less dynamic than intrinsic
neural dynamics, or that input is sparse or spatiotemporally inde-
pendent (12, 56). In addition to preferential neural-behavioral mod-
eling with measured inputs, which is addressed here, future work
can extend preferential modeling to also incorporate similar input
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inference approaches, which could be complementary to IPSID. For
example, such input inference approaches can help further interpret
the intrinsic behaviorally relevant dynamics extracted by IPSID and
hypothesize which parts of them could be due to unmeasured inputs.
The results from such input inference efforts can depend on the a
priori assumptions made regarding the input, since mathematically
both extremes are plausible when inputs are not measured: All neural
dynamics could be due to input from another area or they could all
be intrinsic. For this reason, validating the inferred inputs from these
inference approaches against actually measured inputs is an important
step (12, 53, 56, 57). Such validation is also important because the
underlying dynamics and inputs can have potential nonlinearities,
thus making the inference of unmeasured inputs challenging or infea-
sible due to the potential unidentifiability in nonlinear systems (58).

One main contribution here is to formulate and highlight the
problem of how intrinsic neural dynamics underlying a specific behav-
ior can be confounded by both input dynamics and other intrinsic
neural dynamics. We formulated this disentanglement problem that
simultaneously involves measured input, neural, and behavioral data
during learning and derived IPSID as an analytical solution based on
subspace identification. By comparing with INDM and implement-
ing a block-structured numerical optimization approach (Fig. 3 and
SI Appendix, Fig. S9), we showed that two capabilities in IPSID are
critical for disentanglement: first, prioritized learning of intrinsic
behaviorally relevant dynamics via the two-stage learning operations
with inputs; second, dissociating those behavior dynamics that are
due to input but not reflected in the neural recordings from those
that are, via the additional analytical steps (SI Appendix, Figs. S1 and
S5). Prior works have proposed enforcing block-structure on linear
dynamic models and developed Expectation—Maximization algo-
rithms for fitting them (59, 60). But these studies have distinct goals
and thus do not address the input disentanglement problem, or the
behaviorally relevant dissociation problem addressed here. As such,
they also do not enable the above two capabilities enabled by IPSID
that are important for solving these problems. Future work can utilize
the ideas developed here for enabling the IPSID capabilities in order
to develop alternative numerical optimization solutions to the for-
mulated disentanglement problem.

In addition to sensory inputs or activity in other brain regions, the
input could also be any external electrical or optogenetic brain stim-
ulation, for example in a brain-machine interface (BMI). Developing
closed-loop stimulation treatments for mental disorders such as
depression (61, 62) hinges on building dynamic models of neural
activity that satisfy two criteria: i) describe how mental states are
encoded in neural activity (61, 62); ii) describe the effect of electrical
stimulation on the neural activity (28, 62, 63). The approach devel-
oped here enables learning of models that satisfy both criteria. First,
by prioritizing behaviorally relevant dynamics, models could accu-
rately learn the neural dynamics relevant to behavioral measurements
of mental states [e.g., mood reports in depression (61)]. Further, this
prioritization enables the learned models to have lower-dimensional
latent states, which is important in developing robust controllers (64).
Second, the models could explicitly learn the effect of external elec-
trical stimulation parameters on neural activity (28, 63).

Here, we used continuous-valued variables with Gaussian dis-
tributions to model neural activity, as has been done extensively
in prior works modeling local field potentials (LFP) (14, 16, 19,

1. D.V.Buonomano, W. Maass, State-dependent computations: Spatiotemporal processing in cortical
networks. Nat. Rev. Neurosci. 10,113-125(2009).

2. W.Wu, J. E. Kulkarni, N. G. Hatsopoulos, L. Paninski, Neural decoding of hand motion using a
linear state-space model with hidden states. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 370-378
(2009).
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30, 44, 61, 65, 66) and spike counts (7, 19, 67, 68). However,
recent works suggest that modeling spike counts as Poisson dis-
tributed variables (8, 12, 16, 69-72) can improve BMI perfor-
mance (70, 71). Thus, an interesting direction is to extend the
method to support Poisson distributed neural observations or
support simultaneous Gaussian and Poisson neural observations
for multiscale modeling of neural modalities such as LFP and
spikes together (16, 44, 65, 73—75). We also focused on learning
linear dynamical models given their interpretability for neurosci-
ence investigations (e.g., eigenvalue analyses in Figs. 5-7), as well
as their computational efficiency and their tractability for real-time
and/or closed-loop control systems applications such as BMlIs (7,
28,62, 63,67,70,71,76,77). Further, linear dynamical models
could approximate neural dynamics well given enough latent state
dimensions (14, 20, 78). Nevertheless, capturing nonlinearities
in models of intrinsic dynamics is another interesting future direc-
tion, which may be facilitated by incorporating a two-stage learn-
ing approach similar to that of IPSID into a numerical optimization
learning framework. Moreover, similar to nonlinear dynamical
models, linear dynamical models with input can have multiple
fixed points because the fixed point can change with input. Thus,
it would be interesting to investigate whether neural dynamics
that can be explained by multiple fixed points can be alternatively
explained with linear dynamical models with measured input for
example from other brain regions or whether nonlinear models
are essential for explaining these dynamics even with input. Finally,
developing adaptive extensions that update the dynamical latent
state model to adapt to non-stationarities in neural signals or to
stimulation-induced plasticity (43, 79-82) will be important for
BMIs and for studying learning and plasticity and their effect on
intrinsic behaviorally relevant dynamics.

In conclusion, we develop an analytical method for preferential
dynamical modeling of neural-behavioral data that can account
for measured inputs—whether sensory input, neural input from
other regions, or external stimulation. We show the importance
of doing so for correct interpretation and modeling of neural
computations/dynamics that underlie behavior and for gaining
useful scientific insights about them across different tasks and
subjects. These results and the developed preferential modeling
approach have important implications for future neuroscientific
and neuroengineering studies.
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are publicly available online (45-47). The code for IPSID is available online at
https://github.com/Shanechilab/PSID (Matlab) (83) and https://github.com/
ShanechiLab/PyPSID (Python) (84).
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