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Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory 
inputs or inputs from other brain regions. To avoid misinterpreting temporally struc-
tured inputs as intrinsic dynamics, dynamical models of neural activity should account 
for measured inputs. However, incorporating measured inputs remains elusive in joint 
dynamical modeling of neural-behavioral data, which is important for studying neural 
computations of behavior. We first show how training dynamical models of neural 
activity while considering behavior but not input or input but not behavior may lead to 
misinterpretations. We then develop an analytical learning method for linear dynamical 
models that simultaneously accounts for neural activity, behavior, and measured inputs. 
The method provides the capability to prioritize the learning of intrinsic behaviorally 
relevant neural dynamics and dissociate them from both other intrinsic dynamics and 
measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics 
that performs different tasks, the method correctly finds the same intrinsic dynamics 
regardless of the task while other methods can be influenced by the task. In neural 
datasets from three subjects performing two different motor tasks with task instruction 
sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are 
missed by other methods and are more predictive of behavior and/or neural activity. 
The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics 
are largely similar across the different subjects and tasks, whereas the overall neural 
dynamics are not. These input-driven dynamical models of neural-behavioral data can 
uncover intrinsic dynamics that may otherwise be missed.

intrinsic dynamics | input dynamics | behavior | neural encoding | dynamical systems

Neural population activity exhibits rich temporal structures (1–26). Investigating these 
temporal structures, i.e., dynamics, can reveal the neural computations that underlie 
behavior (5, 6, 12, 15, 16, 19, 20). Much progress has been made in developing models 
that can describe the dynamics of neural population activity using a low-dimensional 
latent state (2–4, 7, 8, 10–14, 16, 19). However, a major challenge in such investigations 
is that neural dynamics can arise due to two distinct sources that reflect distinct compu-
tations (12, 15, 27). The first source consists of the intrinsic dynamics within a given brain 
region. Intrinsic dynamics arise due to the recurrent connections within a region’s neuronal 
population as it responds in a temporally structured manner to any excitations from within 
or outside that region (6, 12, 15, 18, 27, 28). The second source consists of input dynamics, 
which are temporal structures that already exist in inputs to the recorded brain region, 
including sensory inputs or inputs from other brain regions (1, 9, 12, 15, 27–31). While 
measuring all inputs is infeasible experimentally, measurements of sensory inputs such as 
task instructions or partial measurements of neural inputs into a brain region are often 
possible. As such, correctly interpreting how neural computations in a given brain region 
give rise to a specific behavior can greatly benefit from simultaneously achieving two 
objectives, which remains elusive.

First, given the above two sources, neural dynamics that are intrinsic to a given brain 
region need to be dissociated from those that are simply due to temporally structured 
measured inputs to that region. Second, within intrinsic neural dynamics, those that are 
relevant to the specific behavior of interest need to be dissociated from other intrinsic 
neural dynamics. This latter dissociation is important because neural dynamics of a specific 
behavior often constitute a minority of the total variance in the recorded neural activity 
(5, 6, 19, 32–39). Indeed, recent work has shown that learning dynamical models of 
neural-behavioral data together and in a way that dissociates and prioritizes their shared 
dynamics can unmask behaviorally relevant neural dynamics that may otherwise not be 
found (19, 20). We refer to such prioritized learning approach for neural-behavioral data 
as preferential dynamical modeling because it preferentially models the behaviorally relevant 
neural dynamics with priority instead of non-preferentially modeling prevalent dynamics 
in neural data as is typically done. However, prior methods for preferential dynamical 
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modeling of neural-behavioral data do not account for the effect 
of measured inputs to a given brain region. Thus, the dissociation 
of intrinsic and input-driven neural population dynamics that 
underlie specific behaviors has remained challenging.

Here, we first show how misinterpretation and incorrect iden-
tification of intrinsic behaviorally relevant dynamics could result 
from modeling neural activity while considering behavior but not 
input or while considering input but not behavior. Indeed, mod-
eling neural activity without considering the measured input could 
result in a model that mistakes the temporal structure in the input 
as part of the intrinsic dynamics within the recorded brain region 
(9, 27) and consequently confounds scientific conclusions. For 
non-preferential modeling of neural activity on its own, while not 
commonly done, various methods can be adapted to fit models 
with measured inputs (40) but they cannot account for behavior. 
Thus, as we show, despite considering input, these non-preferential 
methods can miss those intrinsic neural dynamics that are behav-
iorally relevant. Further, as stated above, methods for preferential 
dynamical modeling that consider the neural-behavioral data 
together do not consider measured inputs. Here we aim to for-
mulate and solve a learning problem that involves neural activity, 
behavior, and measured inputs simultaneously.

To do so, we develop a preferential modeling approach, termed 
input preferential subspace identification (IPSID) that can con-
sider both measured inputs and behaviors in the training set while 
learning linear dynamical models of neural population activity. 
By doing so, IPSID provides the capability to learn the intrinsic 
behaviorally relevant neural dynamics with priority and dissociate 
them both from other intrinsic neural dynamics and from the 
dynamics of measured inputs. We also develop a version of IPSID 
that achieves this capability when some input dynamics influence 
the behavior through pathways that are neither recorded nor 
downstream of the recorded neural activity. Compared with our 
prior preferential dynamical modeling method (i.e., PSID) (19, 
41), which does not incorporate input or dissociate intrinsic and 
input dynamics, IPSID requires distinct mathematical operations 
and additional steps (SI Appendix, Note S1). We show that two 
capabilities introduced by IPSID are critical for accurate dissoci-
ation of intrinsic behaviorally relevant neural dynamics: prioritized 
learning of these dynamics in the presence of input and ensuring 
all learned dynamics are directly present in the neural recordings 
even when inputs affect behavior.

We validate IPSID and its capabilities in extensive numerical 
simulations of diverse dynamical systems and in two independent 
motor cortical datasets from three non-human primates (NHP) 
recorded during two different tasks with task instruction sensory 
inputs. First, we simulate a brain with fixed intrinsic dynamics 
that performs different behavioral tasks. IPSID correctly learns 
the same intrinsic behaviorally relevant neural dynamics regardless 
of which specific task is used to collect the simulated training 
neural data. In contrast, other methods learn intrinsic dynamics 
that are inaccurate and influenced by the specific task. Second, we 
apply IPSID to motor cortical population activity recorded from 
three NHPs in two independent datasets with two different 
2-dimensional (2D) cursor-control tasks. IPSID finds intrinsic 
behaviorally relevant dynamics that not only predict motor behav-
ior better than non-preferential methods even with input, but also 
predict neural activity better than preferential methods, which 
cannot consider task instruction inputs. Further, IPSID reveals 
that intrinsic behaviorally relevant neural dynamics are largely 
similar across the three animals despite differences in the two 
cursor-control tasks and animals, while other methods miss these 
similar dynamics. By dissociating intrinsic behaviorally relevant 
dynamics from both other intrinsic dynamics and measured input 

dynamics, IPSID can help explore unanswered questions regarding 
how intrinsic and input-driven neural computations give rise to 
behavior across subjects and tasks.

Methods

Modeling Intrinsic Neural Dynamics Underlying Behavior in the Presence 
of Inputs. To see how measured inputs, if unaccounted for, can be misinterpreted 
as intrinsic neural dynamics, consider a task where a subject is instructed to follow 
an on-screen target with their hand while motor cortical activity that represents 
the hand movements is recorded (Fig. 1A). Here, movements of the target would 
result in corresponding movements in the hand that follows the target and thus 
would also introduce corresponding dynamics in the neural activity that repre-
sents hand movements. Consequently, any arbitrary movement of the target 
will be, to some extent, reflected in the recorded neural activity. An example 
is shown in a numerical simulation in Fig.  1 A and B. As another example, if 
the target moves up and down with a 1-s period, one would expect the neural 
activity to also include similar periodic patterns with a 1-s period. If the period of 
target movements changes to 2 s, so would the period of the patterns in neural 
activity that represent the hand movements. Any neural modeling that is not 
informed by target movements, which serve as task instruction sensory inputs, 
cannot distinguish between such input dynamics and intrinsic dynamics that 
originate in the recorded brain region. Thus, modeling without considering this 
input may incorrectly conclude that there exist intrinsic dynamics originating 
in the recorded brain area that are periodic with a 1-s period. The reflection of 
input dynamics in neural dynamics can also be seen in terms of the frequency 
domain spectrum of these signals (Fig. 1B). In this view, the correct dissociation 
of intrinsic dynamics from input dynamics requires the correct learning of the 
transfer function from inputs to neural signals, in a way that does not incorrectly 
attribute the input dynamics that appear in neural activity to having originated 
from the transfer function (Fig. 1B).

To formulate the goal of IPSID, we represent the dynamical state of the recorded 
brain regions as a high-dimensional vector. Each state dimension may or may 
not contribute to generating the specific behavior of interest, i.e., be behaviorally 
relevant (Fig. 1A). As discussed in the Introductory paragraphs, two major factors 
can confound the learning of intrinsic behaviorally relevant neural dynamics: 1) 
the dynamics of the measured input and 2) other intrinsic neural dynamics. IPSID 
removes both confounding factors by accounting for neural activity, behavior, and 
measured inputs simultaneously during learning. Unlike IPSID, prior methods 
address only one or the other confound but not both. First, non-preferential neural 
dynamic modeling (NDM) with input (SI Appendix, Methods), which we term 
INDM, accounts for neural activity and measured input but not behavior during 
learning. As such, INDM may miss or confound the intrinsic neural dynamics that 
are behaviorally relevant. Second, a dynamical method termed PSID (19, 41) 
addresses the second confound by accounting for neural activity and behavior 
during learning but not input. As such, PSID does not dissociate intrinsic and 
input dynamics. We thus use this naming convention for ease of exposition but 
the algebraic operations in IPSID are different from those in both PSID and INDM 
and further IPSID includes additional steps compared with these prior methods 
(SI Appendix, Notes S1 and S2).

In IPSID, we use the following linear state-space model to jointly describe the 
dynamics of neural activity ( yk ) and behavior ( zk ) in the presence of measured 
input ( uk)

	 [1]

where xk ∈ ℝ
nx is the latent state in the recorded neural activity and com-

posed of two parts: 1) x(1)
k

∈ ℝ
n1 , which is the behaviorally relevant states and  

2) x(2)
k

∈ ℝ
nx−n1 , which is the other states. In this model, yk ∈ ℝ

ny , zk ∈ ℝ
nz , 

and uk ∈ ℝ
nu represent the recorded neural activity, the measured behavior, and 

the measured input, respectively. Here, x(1)
k

 being behaviorally relevant means 

⎧
⎪⎪⎨⎪⎪⎩

xk+1=Axk+Buk+wk

yk =Cyxk+Dyuk+vk , xk =

�
x(1)
k

x(2)
k

�

zk =Czxk+Dzuk+�k
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that only those dimensions of xk corresponding to x(1)
k

 contribute to generating 
behavior ( zk ) in the third row of Eq. 1. Finally, wk and vk are zero mean white 
Gaussian noises (SI Appendix, Methods), and �k is a general Gaussian random 
process representing any behavior dynamics not encoded in the recorded neural 
activity (i.e., not driven by xk).

Prior works have not addressed the problem of fitting this model in a way 
that dissociates and prioritizes the learning of behaviorally relevant latent states, 
which is achieved by IPSID. Operationally, dissociation is the process of differen-
tiating two subtypes of neural dynamics from each other and returning both to 
the user. Prioritization is the process of dedicating model capacity (e.g., latent 
state dimensions) to explaining one subtype first and dedicating model capacity 
to other subtypes only if some model capacity is left, which results in the learning 
of the former subtype taking priority over the learning of the second subtype. 
To enable such preferential/prioritized learning, IPSID introduces a two-stage 
learning procedure that incorporates input as follows. In the first stage of IPSID, 
we develop algebraic operations that extract the behaviorally relevant latent states 
with priority via an oblique (non-orthogonal) projection of future behavior onto 
past neural activity and past inputs along the subspace spanned by future inputs 
(SI Appendix, Fig. S1 and Methods). Then, in an optional second stage, we devise 
algebraic operations that extract any other latent neural states by another oblique 
projection from any residual/unexplained future neural activity onto past neural 
activity and past inputs along future inputs (SI Appendix, Fig. S1). Model param-
eters are then learned via least squares based on the extracted latent states and 
their relation in Eq. 1.

IPSID’s two-stage learning introduces the capability for prioritized learning 
of the intrinsic behaviorally relevant neural dynamics over other intrinsic neural 
dynamics in the presence of inputs, because the former dynamics are learned 
first, i.e., in the first stage. Specifically, IPSID can learn a minimally complex model 
of those intrinsic neural dynamics that are behaviorally relevant in the first stage 
(i.e., a model with low-dimensional states), instead of having to learn a more 
complex model that includes all of the intrinsic neural dynamics simultaneously. 
As learning less complex models can be more accurate for a given number of 

training samples, this two-stage learning can lead to learning more accurate 
models of intrinsic behaviorally relevant dynamics for a given dataset as shown 
in simulations and in real data analyses below. Moreover, IPSID achieves disso-
ciation of behaviorally relevant dynamics because the two sets of states learned 
by the two stages are placed in predetermined and distinct dimensions of the 
latent state: the first n1 dimensions versus the rest. After the model is learned, in 
the test set, extraction of intrinsic behaviorally relevant neural dynamics is done 
without using behavior and via a Kalman filter associated with the learned model 
(SI Appendix, Methods). Details of IPSID are provided in SI Appendix, Methods 
and Notes S1 and S2.

To assess the methods, we look at the eigenvalues of the latent state transition 
matrix A , which quantify the dynamics (SI Appendix, Methods and Fig. 1 C and 
D). We also compute the accuracy in decoding behavior from neural activity as 
well as in neural self-prediction—defined as predicting neural activity one step 
ahead from its own past (SI Appendix, Methods).

Results

IPSID Correctly Learns All Model Parameters in the Presence 
of Inputs. We first validated the accurate learning of intrinsic 
behaviorally relevant neural dynamics using IPSID in a simulated 
model (Fig. 1A). The eigenvalues of the state transition matrix A 
affect the transfer function from the input to the states and neural 
activity (Fig. 1B), characterize the state response to excitations, 
and describe the dynamics (Fig. 1C and SI Appendix, Methods). 
We thus use these eigenvalues to quantify the intrinsic neural 
dynamics (SI Appendix, Methods). We found that IPSID was the 
only method that correctly learned the eigenvalues associated with 
the intrinsic behaviorally relevant neural dynamics (Fig. 1D). In 
contrast, NDM or PSID that do not consider inputs learned 
models that were confounded by input dynamics (eigenvalues 
were deflected toward input eigenvalues); INDM that does not 
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Fig. 1. Intrinsic behaviorally relevant neural dynamics 
may be confounded by other intrinsic neural dynamics 
as well as by measured input dynamics, a challenge that 
the IPSID method resolves. (A) Data generated from a 
simulated brain following Eq. 1 with a 1D input and a 4D 
latent state out of which only 2 dimensions (green) drive 
behavior. The input is taken as the sensory input such 
as target position moving up and down on a screen as 
depicted, but input can also consist of measured activity 
from other upstream brain regions. Neural dynamics 
that arise from the recurrent dynamics of neuronal 
networks within the brain region constitute the intrinsic 
neural dynamics. Oscillating temporal patterns of the 
input (Left) constitute the input dynamics and clearly 
also appear in the neural activity (Right) in a way that is 
mixed with the intrinsic neural dynamics. (B) Appearance 
of input dynamics in neural dynamics can also be clearly 
seen in the frequency domain representation of (A), 
showing: the power spectral density (PSD), or spectrum, 
of input time series S

u
(f) (Top-Left); PSD of unmeasured 

excitations S
w
(f) modeled as white Gaussian noise 

(Bottom-Left); transfer function from inputs to the neural 
activity (Middle); and PSD of neural activity (Right). Neural 
activity exhibits two dominant frequency components. In 
this simulation, the lower-frequency component is the 
reflection of input dynamics while the higher-frequency 
component represents intrinsic neural dynamics (as also 
present in the transfer function). Horizontal axes show 
the normalized frequency with 1 being the maximum, 
i.e., � . (C) The eigenvalues of the state transition matrix 
A in the simulated brain model in Eq. 1. (D) Learned 
eigenvalues using (I)PSID or (I)NDM and their error (red 
lines). The normalized error value—average line length 
normalized by the average true eigenvalue magnitude—
is noted below each plot.
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consider behavior was confounded by other intrinsic neural 
dynamics beyond the behaviorally relevant ones (Fig. 1D).

To more comprehensively validate IPSID, we applied it to data 
generated from 100 random models in the form of Eq. 1 with 
random parameters and dimensions (SI Appendix, Methods). To 
provide input to these models, we independently simulated another 
100 models without input (Eq. 3 from SI Appendix, Methods) with 
random parameters and passed their output as the input to the 
original models—these inputs are thus generated by an independent 
dynamical system and can be thought of as activity of other brain 
regions or as structured sensory inputs. IPSID correctly learned all 
model parameters in the presence of inputs (SI Appendix, Fig. S2). 
Moreover, the rate of convergence of parameters as a function of 
training samples was similar to INDM (SI Appendix, Fig. S2B); this 
suggests that despite its additional capability in dissociating intrinsic 
behaviorally relevant dynamics, IPSID does not require more train-
ing data than INDM even when modeling all dynamics.

IPSID Prioritizes the Learning of Intrinsic Behaviorally Relevant 
Dynamics in the Presence of Inputs. In another numerical 
simulation, we found that IPSID correctly prioritizes the learning 
of intrinsic behaviorally relevant neural dynamics in the presence 
of inputs (Fig. 2). We simulated 100 random models formulated 
by Eq. 1 with a 6D latent state, out of which only 2 dimensions 
were behaviorally relevant (SI Appendix, Methods). To get the input 
to these models, we independently simulated 100 random models 
without input (Eq. 3 from SI Appendix, Methods) with 2D latent 
states and passed their output as the input to the original models. 
We then learned and evaluated models using (I)PSID and (I)
NDM with varying latent state dimensions ( nx ). In each case, we 
computed the error in learning the intrinsic behaviorally relevant 
eigenvalues, which quantifies how accurately intrinsic behaviorally 
relevant dynamics are learned (Fig. 2B and SI Appendix, Fig. S3).

We found that only IPSID could learn all the intrinsic behavio-
rally relevant neural dynamics/eigenvalues using the minimal latent 
state dimension of 2, which is their true dimension (Fig. 2B and 
SI Appendix, Fig. S4). Thus, IPSID could simultaneously dissociate 
the intrinsic behaviorally relevant dynamics from other intrinsic 
dynamics and input dynamics by considering both input and 
behavior during learning. In contrast, even though INDM consid-
ers inputs, it does not consider behavior during learning and thus 
it required a much larger latent state dimension of 6 (true total 
model dimension) to learn the intrinsic behaviorally relevant eigen-
values (Fig. 2B). This higher required dimension also led to INDM’s 
higher eigenvalue error with the same training sample size as IPSID 
(Fig. 2C) because models with higher dimensional states are more 
complex and difficult to learn. Indeed, IPSID required orders of 
magnitude fewer training samples to learn the intrinsic behaviorally 
relevant dynamics in the presence of inputs (Fig. 2C).

We next found that NDM and PSID models, which do not 
consider input, were unable to dissociate the intrinsic versus input 
dynamics, leading to a high intrinsic eigenvalue error (Fig. 2B). This 
error was high even when increasing NDM/PSID’s state dimensions 
to learn a mixture of all intrinsic neural dynamics and input dynam-
ics first. When we reduced these high-dimensional models to only 
keep the two dimensions that were best in decoding behavior (as 
we did with INDM above, SI Appendix, Methods), the associated 
eigenvalues were still much less accurate than low-dimensional mod-
els learned with IPSID (see Fig. 2B at high dimensions).

IPSID Can Dissociate the Effects of Input on Behavior that Are 
Reflected in the Recorded Neural Activity from those that Are 
Not. In Eq. 1, all the effects of input on behavior happen through 
latent states that are reflected in the recorded neural activity. In this 
scenario, all the downstream regions of the input are either covered 

in the recordings or reflected in them (e.g., are downstream of the 
recorded regions). In addition to this scenario, we now show that 
IPSID can also apply to a more general scenario where inputs 
may also influence behavior through pathways/regions that are 
neither recorded nor reflected in the recorded activity (Fig. 3A). 
We formulate this scenario with the following model

	 [2]

where compared with Eq. 1, an additional segment x(3)
k

 is added to 
the latent state xk to represent the effects of input uk on behavior zk 
that are not reflected in the recorded neural activity yk . In this for-
mulation, IPSID dissociates the latent state into three segments: 1) 
x
(1)

k
∈ ℝ

n1 , which is the behaviorally relevant latent state that is 
reflected in neural activity yk , 2) x(2)

k
∈ ℝ

n2 , which is the latent state 
that describes any other neural dynamics, and 3) x(3)

k
∈ ℝ

nx−n1−n2 , 
which is the behaviorally relevant latent state not reflected in the 
recorded neural activity yk . These three types of latent states are shown 
in an example in Fig. 3A. Note that in this case, only x(1)

k
 and x(2)

k
 

constitute the intrinsic latent states because only these latent states 
drive the recorded neural activity. To add support for dissociation of 
these three types of latent states to IPSID, we developed two addi-
tional optional steps for IPSID (SI Appendix, Fig. S5 and Note S2).

In the first additional step, before the initial oblique projection 
of behavior onto neural activity and input, we project behavior onto 
the subspace of latent states in neural activity (i.e., neural states) 
irrespective of the relevance of these states to behavior; these neural 
states are obtained using only the second stage of IPSID (SI Appendix, 
Methods, Note S2 and Figs. S5 and S6A). We then apply IPSID as 
before (SI Appendix, Note S1) but now use the results of this addi-
tional projection as the behavior signal. This additional projection 
ensures that behavior dynamics that are not encoded in the recorded 
neural activity are not included in the first set of states x(1)

k
.

In the second additional step, we optionally extract x(3)
k

 , which 
represents any behavior dynamics that are driven by the input but 
are not encoded in the recorded neural activity—e.g., due to pro-
cessing in the downstream regions of input that are not recorded/
reflected as part of neural activity. In this step, after performing 
the first additional step above and subsequently both stages of 
IPSID to extract x(1)

k
 and x(2)

k
 , we compute the residual behavior 

that is still not predictable using x(1)
k

 and x(2)
k

 . Then, using the 
second stage of IPSID, we build a model that predicts these resid-
ual behavior dynamics purely using the input (SI Appendix, 
Methods, Note S2 and Fig. S5)—this gives x(3)

k
 . Together, these two 

additional steps enable IPSID to learn a model as in Eq. 2. If 
extraction of x(3)

k
 is not of interest, the second step can be skipped 

and solely the first step can be added to IPSID.
We simulated models in the form of Eq. 2 and confirmed that 

with the above additional steps, again only IPSID correctly dissociates 
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intrinsic behaviorally relevant neural dynamics (i.e., x(1)
k

 ) from other 
dynamics—i.e., from other intrinsic neural dynamics, input dynam-
ics, and behavior dynamics not encoded in the recorded neural activity 
(Fig. 3C). Moreover, across 100 random models, IPSID correctly 
learned all model parameters in Eq. 2 (SI Appendix, Fig. S7). Finally, 
by learning x(3)

k
 , IPSID also achieved ideal prediction of behavior 

from input and neural activity (SI Appendix, Fig. S8).
These results demonstrate that IPSID is applicable to scenarios 

where the recorded neural activity does not cover all the downstream 
regions of the measured input. IPSID can also dissociate the influ-
ences of input on behavior that are reflected in the recorded neural 
activity from those that are not. Without this capability, some of 
the learned dynamics may not be present in the recorded region 
(Fig. 3C, top row comparisons). Thus, this is another capability by 
IPSID that is important for accurately dissociating intrinsic behav-
iorally relevant dynamics in neural recordings.

IPSID’s Prioritized Modeling of Intrinsic Behaviorally Relevant 
Neural Dynamics Is Important for their Accurate Learning. 
Using its two-stage learning procedure in the presence of inputs, 
IPSID enables prioritized learning of intrinsic behaviorally 
relevant neural dynamics. To show the importance of two-stage 
learning, we also implemented an alternative block-structured 
numerical optimization approach to solve our formulation; in 
this approach, we fit a model with the same block structure as 
the IPSID model in Eq.  6 from SI  Appendix, Methods but do 
so in a single stage by simultaneously maximizing the neural-
behavioral data log-likelihood (SI  Appendix, Methods). When 
applied to the same simulated data as in Fig. 2C, IPSID’s two-stage 
approach was significantly more accurate than this single-stage 
block-structured numerical optimization in learning the intrinsic 
behaviorally relevant eigenvalues. Also, IPSID required orders of 
magnitude fewer training samples to achieve comparable accuracy 
(SI Appendix, Fig. S9A). Consistent with its more accurate intrinsic 
behaviorally relevant eigenvalues, IPSID also outperformed this 

single-stage method and INDM in terms of achieving higher 
behavior data likelihood (SI Appendix, Fig. S9B) while achieving 
comparable neural data likelihood (SI Appendix, Fig. S9C). These 
results highlight the benefit of two-stage (i.e., prioritized) learning 
of intrinsic behaviorally relevant dynamics over their single- 
stage learning (see also SI  Appendix, Methods). Finally, IPSID 
was also significantly faster in model learning than the numerical 
optimization method, given that IPSID involves a fixed set of 
linear algebraic operations whereas numerical optimization 
involves iterative gradient descent (SI Appendix, Fig. S10).

Realistic Motor Task Simulations Show How Sensory Inputs 
Can Confound Models of Neural Activity. Sensory inputs to 
the brain such as task instructions can have different dynamics 
from task to task, even if the intrinsic neural dynamics remain 
unchanged (Fig. 1A). Developing a method that can learn the 
correct intrinsic neural dynamics regardless of the task would allow 
experimenters to study any behavioral task of interest or compare 
intrinsic dynamics across different tasks without worrying about 
confounding the results and without limiting the task design. We 
hypothesized that even when the intrinsic neural dynamics remain 
unchanged, methods that do not consider the task sensory inputs 
may learn different and incorrect intrinsic dynamics depending 
on the exact task, whereas IPSID can learn the same intrinsic 
dynamics regardless of the task. Here, we confirm this hypothesis 
by simulating a brain performing multiple different realistic 
cursor control tasks during which simulated neural data for model 
training is observed (Fig. 4 and SI Appendix, Methods).

Specifically, we modeled the brain as an optimal feedback control-
ler (42–44) (OFC), which controls a part of its state that represents 
the 2D cursor kinematics toward targets presented via task instruc-
tions (SI Appendix, Methods and Fig. 4 A and B). For generality, as 
part of the simulated brain, we included two latent states (similar to 
x
(3)

k
   in Eq. 2) that are driven by input and affect the measured motor 

behavior but are not reflected in neural dynamics (SI Appendix, 
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Fig. 2. IPSID prioritizes the learning of intrinsic behaviorally relevant neural dynamics thus achieving preferential neural-behavioral modeling even in the presence 
of input. (A) For one simulated model (Eq. 1), the identified intrinsic behaviorally relevant eigenvalues are shown for (I)PSID and (I)NDM using a 2D latent state. 
Eigenvalues of the state transition matrix A in the true model are shown as colored circles. Crosses show the identified behaviorally relevant eigenvalues when 
modeling the neural activity. (B) Normalized error of learning the intrinsic behaviorally relevant eigenvalues vs. state dimension given 106 training samples is shown. 
Results are averaged over 100 random models each with total latent state dimension of n

x
= 6 and behaviorally relevant state dimension of n

1
= 2 . For all models, 

an independent random model with state dimension of 2 generated the input (SI Appendix, Methods). Solid lines show the average and shaded areas show the SEM 
(n = 100 random models). For all methods, we vary the state dimension n

x
from 1 to 8; for n

x
< 2 , we find the 2 state dimensions that best predict behavior and 

evaluate their 2 associated eigenvalues (SI Appendix, Methods). (C) Normalized error of learning the intrinsic behaviorally relevant eigenvalues vs. training samples 
for 100 random models. For INDM, we try i) directly learning a model with a 2D latent state and ii) first learning a model with a high enough dimension to achieve 
almost zero error in B and then reducing the model to keep the top 2 dimensions with the best behavior decoding (indicated by dimension → 2) (SI Appendix, Methods).
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Methods). As the first task, we simulated 8 equally spaced targets 
around a circle and instructed the simulated brain to move the cursor 
to the targets in order (Fig. 4 C, Left). As the second task, we simu-
lated a standard center-out-and-back task where in each trial the 
cursor needs to move from the center to a randomly specified target 
among 8 targets and then return back to the center (Fig. 4 C, Middle). 
Last, we simulated a 10-by-10 grid of targets where in each trial a 
random target within a limited distance of the most recent target 
needs to be visited (Fig. 4 C, Right) similar to the tasks in the NHP 
datasets (SI Appendix, Methods). For each task, we used (I)PSID and 
(I)NDM to learn models of neural dynamics (Fig. 4D).

We found that regardless of the task, IPSID correctly learned the 
intrinsic behaviorally relevant neural dynamics. This is evident from 
comparing the IPSID eigenvalues and flow fields for every task with 
their ground truth (first row of Fig. 4D vs. Fig. 4B). INDM, which 
considers input but not behavior during training, learned an approx-
imation of some intrinsic behaviorally relevant neural dynamics with 
error, and also mistakenly included some intrinsic neural dynamics 
that were not relevant to behavior (Fig. 4D, second row). PSID, which 
considers behavior and neural activity but not input during training, 
learned biased intrinsic neural dynamics that were influenced by task 
instruction inputs (Fig. 4D, third row). Finally, NDM, which only 
considers neural activity during training, not only learned neural 
dynamics that were not related to behavior but also learned inaccurate 
intrinsic behaviorally relevant neural dynamics that were influenced 
by task instruction inputs (Fig. 4D, fourth row). For example, in the 
first task, the biased dynamics learned by NDM and PSID were very 
close to the dominant frequency of the task instructions, which was 
around 0.2 Hz (Fig. 4D, left column). These results demonstrate that 
by considering both behavior and sensory inputs such as task instruc-
tions during model training, IPSID can learn models of neural 
dynamics that are not confounded by the specific behavioral task 
during which neural data are collected. Avoiding these confounds is 
critical for comparing intrinsic neural dynamics across tasks in neu-
roscience investigations, as we also show in our NHP data analyses 
below (Figs. 5–7).

Consistent with the above results, models trained by IPSID on 
data from one task had minimal drop in behavior decoding per-
formance when tested on data from a different task, thus achieving 
generalization from task to task. In contrast, models learned by all 
other methods had significantly larger drops in behavior decoding 
performance in the other task (SI Appendix, Fig. S11; P < 0.001; 
one-sided signed-rank; n = 10 simulations).

Modeling Task Instructions as Inputs Reveals Distinct Intrinsic 
Behaviorally Relevant Neural Dynamics in Non-human Primate 
Neural Population Activity. We next used IPSID to study intrinsic 
behaviorally relevant neural dynamics in two independent motor 
cortical datasets recorded from three monkeys (monkeys I and L 
from the first datasets and monkey T from the second dataset) 
during two distinct behavioral motor tasks with planar cursor 
movements (Figs. 5A and 6A). In the first dataset, which was made 
publicly available by the Sabes lab (45), primary motor cortical (M1) 
population activity was recorded while two monkeys controlled 
a 2D cursor to reach random targets on a grid (Fig.  5A and 
SI Appendix, Methods). The 3D position of the monkey’s fingertip 
was tracked and its horizontal elements controlled the cursor 
(SI Appendix, Methods). In the second dataset, which was made 
publicly available by the Miller lab (46, 47), population activity from 
the dorsal premotor cortex (PMd) was recorded while the monkey 
performed sequential reaches to random target positions on a plane 
(Fig. 6A and SI Appendix, Methods). The cursor was controlled via 
a manipulandum that only allowed horizontal movements. For all 
subjects, we modeled the smoothed spike counts (3, 13, 39, 48) 
as neural signals (SI Appendix, Methods). We took the 2D position 
and velocity of the cursor as the behavior signal, and the time series 
of target positions as the input task instructions (Figs. 5A and 6A).

First, we found that IPSID revealed distinct intrinsic behaviorally 
relevant neural dynamics/eigenvalues that were not found by other 
methods. This could be seen from the learned eigenvalues by IPSID 
that were different from those found by other methods (Figs. 5B 
and 6B and SI Appendix, Fig. S12B). Second, eigenvalues found by 
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(I)PSID identified eigenvalues
(I)NDM identification errorInput eigenvalues
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Fig. 3. IPSID also applies to scenarios where the recorded regions do not cover all downstream regions of the input. (A) A simulated brain (as in Eq. 2) with a 6D 
latent state out of which only 4 dimensions drive the recorded neural activity and the other 2 dimensions just drive the behavior. (B) The eigenvalues of the state 
transition matrix A in the simulated model. The 4 eigenvalues associated with the 4 state dimensions that drive the recorded neural activity are shown as green and 
orange circles, depending on whether they drive behavior (green) or not (orange). Eigenvalues associated with the two additional state dimensions that only drive 
the behavior but not recorded neural activity are shown as black circles. (C) Eigenvalues of the models learned using IPSID, block-structured numerical optimization, 
IPSID (without additional steps), PSID, and (I)NDM. A simplified schematic of key operations for each method is in SI Appendix, Fig. S6. The block-structured numerical 
optimization learns the model parameters via gradient descent (SI Appendix, Methods). Notation is as in Fig. 1. IPSID can also address this scenario and its additional 
steps are needed to avoid the black eigenvalues/dynamics (behaviorally relevant dynamics not reflected in the recordings; see the top row comparisons).
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PSID were far from those found by IPSID, whereas eigenvalues 
found by NDM were close to those found by INDM (Figs. 5B and 
6B and SI Appendix, Fig. S12B). Note that IPSID/PSID focus on 
explaining the behaviorally relevant neural dynamics whereas 
INDM/NDM focus on explaining the overall neural dynamics 
regardless of relevance to behavior. Thus, the aforementioned result 
suggests that task instructions, which are taken as inputs in IPSID/
INDM, are highly informative of behaviorally relevant neural 
dynamics (seen from their effect on PSID vs. IPSID), but are not 
very informative of the overall neural dynamics (seen from NDM 
and INDM results being similar). This is consistent with the vast 
body of work suggesting that neural dynamics relevant to any spe-
cific behavior may constitute a minority of the overall neural vari-
ance (5, 6, 19, 32–39).

In these analyses, we used the additional steps in IPSID that 
were designed for scenarios in which some input dynamics may 
affect behavior through unrecorded regions/pathways (SI Appendix, 
Fig. S5). However, we found that even without these additional 
steps, the average learned eigenvalues remained almost unchanged 
in one subject (SI Appendix, Fig. S13B) and remained relatively 
similar in the other two subjects (SI Appendix, Fig. S13 A and C). 
This result could suggest, particularly in the former (SI Appendix, 
Fig. S13B), that behaviorally relevant neural dynamics that were 
downstream of visual task instruction inputs were largely reflected 
in, or downstream of, the motor cortical recordings here. Having 
established the distinction of eigenvalues found by IPSID, we next 
explored whether these eigenvalues better describe the data.

IPSID Learns more Accurate Intrinsic Behaviorally Relevant 
Neural Dynamics in Non-human Primate Neural Population 
Activity. We hypothesized that as in simulations (Fig.  4), the 
eigenvalues learned by IPSID are more accurate descriptions 
of the true intrinsic behaviorally relevant neural dynamics. As a 
measure of closeness of two sets of dynamics, we computed the 
Kullback–Leibler (KL) divergence between the distribution of 
their associated eigenvalues (SI Appendix, Methods). We performed 
multiple evaluations to test this hypothesis.

First, we showed that IPSID’s algebraic operations can mitigate 
the problem of learning intrinsic dynamics that are confounded 
by input dynamics, unlike NDM and PSID. We characterized the 
input dynamics by modeling the time series of task instructions 
as a linear state-space model and finding the associated input 
eigenvalues (Eq. 3 in SI Appendix, Methods). We found that in all 
three subjects and in the two tasks, the input eigenvalues were 
close to those learned using NDM and PSID but not to those 
learned using IPSID (Figs. 5B and 6B and SI Appendix, Fig. S12B). 
Also, in all subjects, the KL-divergence between the input dynam-
ics and learned dynamics was much larger for IPSID compared 
with PSID, which does not consider inputs during learning 
(Figs. 5C and 6C and SI Appendix, Fig. S12C).

Second, we demonstrated the success of preferential neural- 
behavioral modeling in the presence of input enabled by IPSID 
by comparing with INDM and NDM. In all three subjects, IPSID 
learned the intrinsic behaviorally relevant neural dynamics signif-
icantly more accurately than both INDM and NDM (Figs. 5D 
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Fig. 4. By considering task instruction inputs, IPSID learns the correct intrinsic behaviorally relevant neural dynamics regardless of the task unlike other methods. 
(A) The brain model consists of an optimal feedback controller (OFC) combined with a linear state space model (LSSM). Four of the 8 latent state dimensions of 
the LSSM encode the 2D position and velocity of the cursor (SI Appendix, Methods). OFC controls these four state dimensions such that cursor position reaches 
the target shown on the screen while cursor velocity goes to zero (i.e., cursor stops at the target). (B) Eigenvalues of the state transition matrix in the full brain 
model (i.e., OFC together with the LSSM) and the flow field associated with the behaviorally relevant neural eigenvalues. Flow fields show the direction in which 
the state would change starting from various initial values. In this brain model, there are two sets of behaviorally relevant complex conjugate eigenvalues that 
are at the same location and thus overlapping. Each set is associated with one movement direction, horizontal and vertical, respectively, per Eq. 13, SI Appendix, 
Methods. The fact that there are two overlapping sets of eigenvalues is indicated by writing a 2 next to these eigenvalues. Since horizontal and vertical directions 
have identical dynamics, the flow field is only shown for one of them. In addition to the four states representing position and velocity in the 2D space, there are 
two states that only drive the neural activity, whose associated eigenvalues are depicted as orange circles. There are also two states that only drive the behavior, 
whose associated eigenvalues are depicted as black circles. (C) Tasks performed by the simulated brain. (D) Identified eigenvalues for each task using each method 
with a state dimension of 4. The flow field for one of the two sets of eigenvalues identified by each method (the one with the lighter green/red color) is also 
shown as an example. Only IPSID correctly learns the intrinsic behaviorally relevant neural eigenvalues regardless of the behavioral task used during training.
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and 6D and SI Appendix, Fig. S12D). This was evident from com-
paring the cross-validated behavior decoding from neural activity 
for these methods (Figs. 5D and 6D and SI Appendix, Fig. S12D).

Third, we showed the success of IPSID’s algebraic operations in 
accounting for inputs in preferential neural-behavioral modeling 
by comparing it to PSID, which is preferential yet does not con-
sider inputs. We found that IPSID learned models that were sig-
nificantly more predictive of neural dynamics compared to PSID 
in all three subjects, as evident by comparing the cross-validated 
neural self-prediction accuracy across the two methods (Figs. 5E 
and 6E and SI Appendix, Fig. S12E). These results held even if the 
feedthrough term Dyuk in Eq. 2—which reflects the effect of input 
on neural activity directly and not through the latent states xk—was 
discarded when predicting neural activity using IPSID (Figs. 5E 
and 6E and SI Appendix, Fig. S12E). This analysis demonstrates 
that the better prediction in IPSID is due to its latent states being 
more predictive of neural dynamics rather than due to a static 
feedthrough effect of input on neural dynamics.

Overall, these consistent results from three NHPs in two inde-
pendent neural datasets with two different tasks suggest that 
IPSID can successfully dissociate intrinsic behaviorally relevant 
neural dynamics from other intrinsic neural dynamics and from 
measured input dynamics. Moreover, these results demonstrate 
that not considering task instruction sensory inputs when mode-
ling neural activity can result in less accurate models of neural 

dynamics and confound conclusions about intrinsic dynamics, a 
problem that IPSID addresses (see also next section).

IPSID Uniquely Revealed that Intrinsic Behaviorally Relevant 
Dynamics Were Similar across the Different Subjects and Tasks. 
While the specific task instructions are different in the two behavioral 
tasks in the independent datasets here—reaches to random targets 
on a grid vs. sequential reaches to random targets—the two datasets 
also have similarities; they both have recordings from the motor 
cortical areas and involve cursor control tasks with targets on a 
2D plane. We thus hypothesized that there may be similarities in 
the intrinsic behaviorally relevant neural dynamics across the two 
tasks and three subjects. To test this hypothesis, we compared the 
distribution of eigenvalues learned using IPSID across all pairs of 
the three subjects (Fig. 7) and quantified their average difference 
with three metrics: 1) symmetric KL divergence between eigenvalue 
distributions (SI Appendix, Methods and Fig. 7D), 2) correlation 
coefficient (CC) between the probability mass functions of the 
eigenvalue distributions (Fig. 7E) 3) distance between the modes of 
the eigenvalue distributions, i.e., most probable locations (Fig. 7F).

We found that IPSID identified intrinsic behaviorally relevant 
dynamics that were strikingly similar across the two tasks and three 
subjects both qualitatively (Fig. 7 A–C) and quantitatively (Fig. 7 
D–F). This similarity was despite the fact that the task instruction 
sensory inputs were distinct between the two tasks and that these 
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Fig. 5. IPSID uncovers distinct and more accurate intrinsic behaviorally relevant neural dynamics in motor cortical population activity by considering task 
instructions as inputs to the brain. (A) We modeled the population spiking activity in a monkey (monkey I) performing a 2D cursor control task (SI Appendix, 
Methods). See SI Appendix, Fig. S12 for results from a second monkey in this task and Fig. 6 for results in a second dataset recorded from a different monkey in a 
different task. Spike counts are smoothed using a Gaussian kernel with SD of 50 ms (SI Appendix, Methods). The 2D position and velocity of the cursor were taken 
as the behavior signal and the instructed target position time series was taken as the input to the brain. (B) Distribution of the eigenvalues of the state transition 
matrix for models learned using (I)PSID and (I)NDM across datasets. Input eigenvalue was found by applying NDM to the time-series of instructed targets. Models 
were learned with a latent state dimension of n

x
= 4, which is sufficient for capturing most behavior dynamics (SI Appendix, Fig. S14). We estimated the probability 

of an eigenvalue occurring at each location on the complex plane by adding Gaussian kernels centered at locations of all identified eigenvalues (n = 70 cross-
validation folds across two channel subsets and seven recording sessions, SI Appendix, Methods). Red dots indicate the location that has the maximum estimated 
eigenvalue occurrence probability, with the associated frequency and decay rate (SI Appendix, Methods) noted. When the occurrence probability map has more 
than one local maximum (i.e., for NDM or INDM), pink dots indicate the location of the second local maximum. (C) KL-divergence between the probability mass 
function of input eigenvalues (panel B, Right) and that of eigenvalues learned by IPSID/PSID (panel B, Top and Bottom Left). The eigenvalues learned by PSID were 
much closer to input eigenvalues than the eigenvalues learned by IPSID, showing the success of IPSID’s distinct algebraic operations in accounting for inputs 
in neural-behavioral modeling. (D and E) Cross-validated behavior decoding (panel D) and neural self-prediction (panel E) when modeling data with dimension 
n
x
= 4 and corresponding to models in B. Triple asterisks indicate P < 0.0005 for a one-sided signed-rank test.
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recordings were from three different animals across two independ-
ent datasets. Also, even without its additional steps (SI Appendix, 
Fig. S5 and Note S2), IPSID still found largely similar eigenvalues 
across tasks and monkeys showing the robustness of this result, 
but the additional steps helped it reveal this similarity slightly 
more strongly (SI Appendix, Fig. S13 D–F).

We next studied the dynamics found by INDM. INDM aims 
to learn the overall intrinsic neural dynamics while IPSID aims 
to prioritize the learning of intrinsic behaviorally relevant neural 
dynamics. Interestingly, unlike IPSID, the dynamics found by 
INDM were much more distinct across the three monkeys both 
visually (Fig. 7 A–C) and quantitatively (Fig. 7 D–F). Moreover, 
as shown in the previous section, the more similar dynamics found 
by IPSID were also a more accurate description of intrinsic behav-
iorally relevant neural dynamics in each monkey (Figs. 5D and 
6D and SI Appendix, Fig. S12D). Together, these results suggest 
that while the overall intrinsic neural dynamics (as found by 
INDM) were different across these two planar motor tasks and 
three animals, the intrinsic behaviorally relevant neural dynamics 
were similar as revealed by IPSID. We propose that this similarity 
may suggest that similar neural computations in the motor cortex 
underlie these planar cursor control tasks despite the differences 
between task instruction inputs and animals.

IPSID was the only method that revealed the above similarity of 
dynamics because it not only accounts for inputs (task instructions) 
but also prioritizes the learning of intrinsic behaviorally relevant 
dynamics over other neural dynamics in the presence of input—
which is something INDM cannot do. Interestingly, this result is 
also consistent with our simulation study in Fig. 4 in which IPSID 
was the only method that correctly found the fixed intrinsic behav-
iorally relevant dynamics regardless of task while other methods 
were confused by the task instructions and/or overall intrinsic 
dynamics. Thus, IPSID can help researchers compare the intrinsic 
neural dynamics across different behavioral tasks by mitigating the 
confound that similarity or lack thereof in dynamics may simply be 
due to task instruction/input comparisons across tasks.

Together, these results highlight that the algebraic operations 
in IPSID can lead both to more accurate models and to useful 

scientific insight. These results also demonstrate that while meas-
uring all inputs to a given brain region is typically experimentally 
infeasible, even incorporating partial input measurements (task 
instruction sensory inputs in this case) can already yield insights 
into neural computations across different tasks and subjects that 
may otherwise be missed.

Discussion

We developed IPSID, a method that introduces the capability to 
perform preferential dynamical modeling of neural-behavioral 
data in the presence of measured inputs. In the IPSID formula-
tion, a dynamical model of neural activity is learned by accounting 
for measured input, neural, and behavioral data simultaneously, 
and the learning of intrinsic behaviorally relevant neural dynamics 
is prioritized over other intrinsic dynamics. By doing so, IPSID 
can dissociate intrinsic behaviorally relevant dynamics not only 
from other intrinsic dynamics but also from the dynamics of meas-
ured inputs such as task instructions or recorded activity of 
upstream regions. We demonstrated that without IPSID, dynam-
ics in measured inputs to a given brain region or other intrinsic 
neural dynamics may be incorrectly identified as intrinsic behav-
iorally relevant neural dynamics within that brain region and thus 
confound conclusions. Indeed, in the neural data from monkeys, 
we showed that task instructions can act as such confounding 
inputs. IPSID can analytically account for such measured inputs 
to reveal more accurate intrinsic behaviorally relevant neural 
dynamics compared with alternative approaches even when they 
considered input (as in INDM). IPSID also provided useful sci-
entific insights by revealing the similarity of intrinsic neural 
dynamics of behavior across different tasks and animals, which 
was not found by other methods.

IPSID could allow future studies to more easily compare across 
tasks without worrying about the temporal structure of task 
instruction inputs and how their reflection in neural activity may 
be misinterpreted as intrinsic neural dynamics. We first showed 
this potential with experiments where a simulated brain with fixed 
intrinsic dynamics performed different cursor control tasks. Here, 
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sensory inputs in the form of task instructions could lead to learn-
ing intrinsic dynamics that incorrectly appeared different across 
tasks. IPSID addressed this issue and was the only approach that 
found the correct intrinsic behaviorally relevant neural dynamics 
regardless of the task. Consistently, in the real motor cortical data-
sets and by modeling the task instructions as sensory inputs, IPSID 
not only learned the intrinsic behaviorally relevant neural dynam-
ics more accurately but also was the only method that revealed 
their similarity across tasks and animals.

Unexpectedly, despite differences in animals and in motor tasks/
instructions across the motor cortical datasets, we found similar 
intrinsic behaviorally relevant dynamics in all three animals across 
both tasks using IPSID. In contrast, INDM found that the domi-
nant overall intrinsic dynamics were different across tasks and ani-
mals. This result may suggest that motor cortical regions across 
different animals could have different intrinsic dynamics overall, 
but the part of their intrinsic dynamics that is engaged in arm 
movements to control 2D planar cursors may have similarity. These 
similar dynamics may suggest that similar intrinsic neural compu-
tations in the motor cortex underlie the performance of these two 
different planar cursor-reaching tasks. Prior work has found simi-
larities in static projections of neural activity (49, 50) across subjects 
(50) or tasks (49), but these prior works have not modeled temporal 
dynamics (e.g., eigenvalues) and have not disentangled the effect of 
task instruction input dynamics on the observed similarity. Thus, 
IPSID provides a useful tool to explore whether such observed sim-
ilarities reflect input dynamics or are intrinsic.

When the activity of some upstream brain regions that have 
inputs to the recorded region (27, 31, 51–53) is not measured, 
the learned intrinsic dynamics could also partly originate from 
these other regions. In the motor cortical datasets here for exam-
ple, neural dynamics in upstream regions such as the visual cor-
tex—which is involved in processing the sensory input and passing 
it to other regions along the visual-motor pathway—may also be 
reflected in the learned intrinsic motor cortical dynamics. Taking 

the sensory instructions as input can, to some extent, account for 
the dynamics of inputs from these upstream visual areas. Similarly, 
a sensory input that is not measured or accounted for, for example, 
the sunrise-sunset cycles during chronic recordings, may confound 
the modeled neural dynamics of a specific behavioral or mental 
state such as mood (e.g., in the form of circadian rhythms) (54, 
55). Thus, recording activity from more upstream regions and 
measuring more sensory inputs can allow IPSID to consider more 
comprehensive inputs during modeling to better discover intrinsic 
behaviorally relevant dynamics.

As it is mostly experimentally infeasible to identify and record 
all inputs to a given brain region, a complete disentanglement of 
intrinsic dynamics from all input dynamics to a region becomes 
impractical. This experimental limitation is thus a fundamental 
limit on methodological efforts aimed at disentanglement. Thus, 
one still needs to interpret the results cautiously by noting that 
only dynamics of measured inputs are being disentangled from 
intrinsic dynamics. Nevertheless, our results show that even this 
partial disentanglement can lead to more accurate models and to 
useful scientific insights compared to alternative models which 
either do not consider measured inputs, or consider measured 
input but not behavior during learning.

Here, we address the challenge of preferential modeling of neural- 
behavioral data with measured inputs, which has been unresolved. 
For non-preferential modeling of neural data on its own and when 
inputs are not measured, prior studies have looked at the distinct 
problem of separating the recorded neural dynamics into intrinsic 
dynamics and a dynamic input that is inferred (12, 56, 57). This 
decomposition is typically done by making certain a priori assump-
tions about the input such that inputs can be inferred, for example, 
that input is constrained to be considerably less dynamic than intrinsic 
neural dynamics, or that input is sparse or spatiotemporally inde-
pendent (12, 56). In addition to preferential neural-behavioral mod-
eling with measured inputs, which is addressed here, future work 
can extend preferential modeling to also incorporate similar input 
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inference approaches, which could be complementary to IPSID. For 
example, such input inference approaches can help further interpret 
the intrinsic behaviorally relevant dynamics extracted by IPSID and 
hypothesize which parts of them could be due to unmeasured inputs. 
The results from such input inference efforts can depend on the a 
priori assumptions made regarding the input, since mathematically 
both extremes are plausible when inputs are not measured: All neural 
dynamics could be due to input from another area or they could all 
be intrinsic. For this reason, validating the inferred inputs from these 
inference approaches against actually measured inputs is an important 
step (12, 53, 56, 57). Such validation is also important because the 
underlying dynamics and inputs can have potential nonlinearities, 
thus making the inference of unmeasured inputs challenging or infea-
sible due to the potential unidentifiability in nonlinear systems (58).

One main contribution here is to formulate and highlight the 
problem of how intrinsic neural dynamics underlying a specific behav-
ior can be confounded by both input dynamics and other intrinsic 
neural dynamics. We formulated this disentanglement problem that 
simultaneously involves measured input, neural, and behavioral data 
during learning and derived IPSID as an analytical solution based on 
subspace identification. By comparing with INDM and implement-
ing a block-structured numerical optimization approach (Fig. 3 and 
SI Appendix, Fig. S9), we showed that two capabilities in IPSID are 
critical for disentanglement: first, prioritized learning of intrinsic 
behaviorally relevant dynamics via the two-stage learning operations 
with inputs; second, dissociating those behavior dynamics that are 
due to input but not reflected in the neural recordings from those 
that are, via the additional analytical steps (SI Appendix, Figs. S1 and 
S5). Prior works have proposed enforcing block-structure on linear 
dynamic models and developed Expectation–Maximization algo-
rithms for fitting them (59, 60). But these studies have distinct goals 
and thus do not address the input disentanglement problem, or the 
behaviorally relevant dissociation problem addressed here. As such, 
they also do not enable the above two capabilities enabled by IPSID 
that are important for solving these problems. Future work can utilize 
the ideas developed here for enabling the IPSID capabilities in order 
to develop alternative numerical optimization solutions to the for-
mulated disentanglement problem.

In addition to sensory inputs or activity in other brain regions, the 
input could also be any external electrical or optogenetic brain stim-
ulation, for example in a brain-machine interface (BMI). Developing 
closed-loop stimulation treatments for mental disorders such as 
depression (61, 62) hinges on building dynamic models of neural 
activity that satisfy two criteria: i) describe how mental states are 
encoded in neural activity (61, 62); ii) describe the effect of electrical 
stimulation on the neural activity (28, 62, 63). The approach devel-
oped here enables learning of models that satisfy both criteria. First, 
by prioritizing behaviorally relevant dynamics, models could accu-
rately learn the neural dynamics relevant to behavioral measurements 
of mental states [e.g., mood reports in depression (61)]. Further, this 
prioritization enables the learned models to have lower-dimensional 
latent states, which is important in developing robust controllers (64). 
Second, the models could explicitly learn the effect of external elec-
trical stimulation parameters on neural activity (28, 63).

Here, we used continuous-valued variables with Gaussian dis-
tributions to model neural activity, as has been done extensively 
in prior works modeling local field potentials (LFP) (14, 16, 19, 

30, 44, 61, 65, 66) and spike counts (7, 19, 67, 68). However, 
recent works suggest that modeling spike counts as Poisson dis-
tributed variables (8, 12, 16, 69–72) can improve BMI perfor-
mance (70, 71). Thus, an interesting direction is to extend the 
method to support Poisson distributed neural observations or 
support simultaneous Gaussian and Poisson neural observations 
for multiscale modeling of neural modalities such as LFP and 
spikes together (16, 44, 65, 73–75). We also focused on learning 
linear dynamical models given their interpretability for neurosci-
ence investigations (e.g., eigenvalue analyses in Figs. 5–7), as well 
as their computational efficiency and their tractability for real-time 
and/or closed-loop control systems applications such as BMIs (7, 
28, 62, 63, 67, 70, 71, 76, 77). Further, linear dynamical models 
could approximate neural dynamics well given enough latent state 
dimensions (14, 20, 78). Nevertheless, capturing nonlinearities 
in models of intrinsic dynamics is another interesting future direc-
tion, which may be facilitated by incorporating a two-stage learn-
ing approach similar to that of IPSID into a numerical optimization 
learning framework. Moreover, similar to nonlinear dynamical 
models, linear dynamical models with input can have multiple 
fixed points because the fixed point can change with input. Thus, 
it would be interesting to investigate whether neural dynamics 
that can be explained by multiple fixed points can be alternatively 
explained with linear dynamical models with measured input for 
example from other brain regions or whether nonlinear models 
are essential for explaining these dynamics even with input. Finally, 
developing adaptive extensions that update the dynamical latent 
state model to adapt to non-stationarities in neural signals or to 
stimulation-induced plasticity (43, 79–82) will be important for 
BMIs and for studying learning and plasticity and their effect on 
intrinsic behaviorally relevant dynamics.

In conclusion, we develop an analytical method for preferential 
dynamical modeling of neural-behavioral data that can account 
for measured inputs—whether sensory input, neural input from 
other regions, or external stimulation. We show the importance 
of doing so for correct interpretation and modeling of neural 
computations/dynamics that underlie behavior and for gaining 
useful scientific insights about them across different tasks and 
subjects. These results and the developed preferential modeling 
approach have important implications for future neuroscientific 
and neuroengineering studies.

Data, Materials, and Software Availability. Datasets used in this work 
are publicly available online (45–47). The code for IPSID is available online at 
https://github.com/ShanechiLab/PSID (Matlab) (83) and https://github.com/
ShanechiLab/PyPSID (Python) (84).
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